]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_utils.py
eja: fix cartesian products of cartesian product EJAs.
[sage.d.git] / mjo / eja / eja_utils.py
1 from sage.functions.other import sqrt
2 from sage.matrix.constructor import matrix
3 from sage.modules.free_module_element import vector
4
5 def _all2list(x):
6 r"""
7 Flatten a vector, matrix, or cartesian product of those things
8 into a long list.
9 """
10 if hasattr(x, 'list'):
11 # Easy case...
12 return x.list()
13 else:
14 # But what if it's a tuple or something else? This has to
15 # handle cartesian products of cartesian products, too; that's
16 # why it's recursive.
17 return sum( map(_all2list,x), [] )
18
19 def _mat2vec(m):
20 return vector(m.base_ring(), m.list())
21
22 def _vec2mat(v):
23 return matrix(v.base_ring(), sqrt(v.degree()), v.list())
24
25 def gram_schmidt(v, inner_product=None):
26 """
27 Perform Gram-Schmidt on the list ``v`` which are assumed to be
28 vectors over the same base ring. Returns a list of orthonormalized
29 vectors over the smallest extention ring containing the necessary
30 roots.
31
32 SETUP::
33
34 sage: from mjo.eja.eja_utils import gram_schmidt
35
36 EXAMPLES:
37
38 The usual inner-product and norm are default::
39
40 sage: v1 = vector(QQ,(1,2,3))
41 sage: v2 = vector(QQ,(1,-1,6))
42 sage: v3 = vector(QQ,(2,1,-1))
43 sage: v = [v1,v2,v3]
44 sage: u = gram_schmidt(v)
45 sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
46 True
47 sage: bool(u[0].inner_product(u[1]) == 0)
48 True
49 sage: bool(u[0].inner_product(u[2]) == 0)
50 True
51 sage: bool(u[1].inner_product(u[2]) == 0)
52 True
53
54
55 But if you supply a custom inner product, the result is
56 orthonormal with respect to that (and not the usual inner
57 product)::
58
59 sage: v1 = vector(QQ,(1,2,3))
60 sage: v2 = vector(QQ,(1,-1,6))
61 sage: v3 = vector(QQ,(2,1,-1))
62 sage: v = [v1,v2,v3]
63 sage: B = matrix(QQ, [ [6, 4, 2],
64 ....: [4, 5, 4],
65 ....: [2, 4, 9] ])
66 sage: ip = lambda x,y: (B*x).inner_product(y)
67 sage: norm = lambda x: ip(x,x)
68 sage: u = gram_schmidt(v,ip)
69 sage: all( norm(u_i) == 1 for u_i in u )
70 True
71 sage: ip(u[0],u[1]).is_zero()
72 True
73 sage: ip(u[0],u[2]).is_zero()
74 True
75 sage: ip(u[1],u[2]).is_zero()
76 True
77
78 This Gram-Schmidt routine can be used on matrices as well, so long
79 as an appropriate inner-product is provided::
80
81 sage: E11 = matrix(QQ, [ [1,0],
82 ....: [0,0] ])
83 sage: E12 = matrix(QQ, [ [0,1],
84 ....: [1,0] ])
85 sage: E22 = matrix(QQ, [ [0,0],
86 ....: [0,1] ])
87 sage: I = matrix.identity(QQ,2)
88 sage: trace_ip = lambda X,Y: (X*Y).trace()
89 sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip)
90 [
91 [1 0] [ 0 1/2*sqrt(2)] [0 0]
92 [0 0], [1/2*sqrt(2) 0], [0 1]
93 ]
94
95 TESTS:
96
97 Ensure that zero vectors don't get in the way::
98
99 sage: v1 = vector(QQ,(1,2,3))
100 sage: v2 = vector(QQ,(1,-1,6))
101 sage: v3 = vector(QQ,(0,0,0))
102 sage: v = [v1,v2,v3]
103 sage: len(gram_schmidt(v)) == 2
104 True
105
106 """
107 if inner_product is None:
108 inner_product = lambda x,y: x.inner_product(y)
109 norm = lambda x: inner_product(x,x).sqrt()
110
111 v = list(v) # make a copy, don't clobber the input
112
113 # Drop all zero vectors before we start.
114 v = [ v_i for v_i in v if not v_i.is_zero() ]
115
116 if len(v) == 0:
117 # cool
118 return v
119
120 R = v[0].base_ring()
121
122 # Define a scaling operation that can be used on tuples.
123 # Oh and our "zero" needs to belong to the right space.
124 scale = lambda x,alpha: x*alpha
125 zero = v[0].parent().zero()
126 if hasattr(v[0], 'cartesian_factors'):
127 P = v[0].parent()
128 scale = lambda x,alpha: P(tuple( x_i*alpha
129 for x_i in x.cartesian_factors() ))
130
131
132 def proj(x,y):
133 return scale(x, (inner_product(x,y)/inner_product(x,x)))
134
135 # First orthogonalize...
136 for i in range(1,len(v)):
137 # Earlier vectors can be made into zero so we have to ignore them.
138 v[i] -= sum( (proj(v[j],v[i])
139 for j in range(i)
140 if not v[j].is_zero() ),
141 zero )
142
143 # And now drop all zero vectors again if they were "orthogonalized out."
144 v = [ v_i for v_i in v if not v_i.is_zero() ]
145
146 # Just normalize. If the algebra is missing the roots, we can't add
147 # them here because then our subalgebra would have a bigger field
148 # than the superalgebra.
149 for i in range(len(v)):
150 v[i] = scale(v[i], ~norm(v[i]))
151
152 return v