from sage.functions.other import sqrt from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector def _all2list(x): r""" Flatten a vector, matrix, or cartesian product of those things into a long list. """ if hasattr(x, 'list'): # Easy case... return x.list() else: # But what if it's a tuple or something else? This has to # handle cartesian products of cartesian products, too; that's # why it's recursive. return sum( map(_all2list,x), [] ) def _mat2vec(m): return vector(m.base_ring(), m.list()) def _vec2mat(v): return matrix(v.base_ring(), sqrt(v.degree()), v.list()) def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized vectors over the smallest extention ring containing the necessary roots. SETUP:: sage: from mjo.eja.eja_utils import gram_schmidt EXAMPLES: The usual inner-product and norm are default:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) True sage: bool(u[0].inner_product(u[1]) == 0) True sage: bool(u[0].inner_product(u[2]) == 0) True sage: bool(u[1].inner_product(u[2]) == 0) True But if you supply a custom inner product, the result is orthonormal with respect to that (and not the usual inner product):: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: B = matrix(QQ, [ [6, 4, 2], ....: [4, 5, 4], ....: [2, 4, 9] ]) sage: ip = lambda x,y: (B*x).inner_product(y) sage: norm = lambda x: ip(x,x) sage: u = gram_schmidt(v,ip) sage: all( norm(u_i) == 1 for u_i in u ) True sage: ip(u[0],u[1]).is_zero() True sage: ip(u[0],u[2]).is_zero() True sage: ip(u[1],u[2]).is_zero() True This Gram-Schmidt routine can be used on matrices as well, so long as an appropriate inner-product is provided:: sage: E11 = matrix(QQ, [ [1,0], ....: [0,0] ]) sage: E12 = matrix(QQ, [ [0,1], ....: [1,0] ]) sage: E22 = matrix(QQ, [ [0,0], ....: [0,1] ]) sage: I = matrix.identity(QQ,2) sage: trace_ip = lambda X,Y: (X*Y).trace() sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip) [ [1 0] [ 0 1/2*sqrt(2)] [0 0] [0 0], [1/2*sqrt(2) 0], [0 1] ] TESTS: Ensure that zero vectors don't get in the way:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(0,0,0)) sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True """ if inner_product is None: inner_product = lambda x,y: x.inner_product(y) norm = lambda x: inner_product(x,x).sqrt() v = list(v) # make a copy, don't clobber the input # Drop all zero vectors before we start. v = [ v_i for v_i in v if not v_i.is_zero() ] if len(v) == 0: # cool return v R = v[0].base_ring() # Define a scaling operation that can be used on tuples. # Oh and our "zero" needs to belong to the right space. scale = lambda x,alpha: x*alpha zero = v[0].parent().zero() if hasattr(v[0], 'cartesian_factors'): P = v[0].parent() scale = lambda x,alpha: P(tuple( x_i*alpha for x_i in x.cartesian_factors() )) def proj(x,y): return scale(x, (inner_product(x,y)/inner_product(x,x))) # First orthogonalize... for i in range(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. v[i] -= sum( (proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ), zero ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] # Just normalize. If the algebra is missing the roots, we can't add # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): v[i] = scale(v[i], ~norm(v[i])) return v