]> gitweb.michael.orlitzky.com - numerical-analysis.git/blob - src/Roots/Simple.hs
Add the secant method to Roots.Simple.
[numerical-analysis.git] / src / Roots / Simple.hs
1 -- | The Roots.Simple module contains root-finding algorithms. That
2 -- is, procedures to (numerically) find solutions to the equation,
3 --
4 -- > f(x) = 0
5 --
6 -- where f is assumed to be continuous on the interval of interest.
7 --
8
9 module Roots.Simple
10 where
11
12 import Data.List (find)
13
14 import qualified Roots.Fast as F
15
16 -- | Does the (continuous) function @f@ have a root on the interval
17 -- [a,b]? If f(a) <] 0 and f(b) ]> 0, we know that there's a root in
18 -- [a,b] by the intermediate value theorem. Likewise when f(a) >= 0
19 -- and f(b) <= 0.
20 --
21 -- Examples:
22 --
23 -- >>> let f x = x**3
24 -- >>> has_root f (-1) 1 Nothing
25 -- True
26 --
27 -- This fails if we don't specify an @epsilon@, because cos(-2) ==
28 -- cos(2) doesn't imply that there's a root on [-2,2].
29 --
30 -- >>> has_root cos (-2) 2 Nothing
31 -- False
32 -- >>> has_root cos (-2) 2 (Just 0.001)
33 -- True
34 --
35 has_root :: (Fractional a, Ord a, Ord b, Num b)
36 => (a -> b) -- ^ The function @f@
37 -> a -- ^ The \"left\" endpoint, @a@
38 -> a -- ^ The \"right\" endpoint, @b@
39 -> Maybe a -- ^ The size of the smallest subinterval
40 -- we'll examine, @epsilon@
41 -> Bool
42 has_root f a b epsilon =
43 F.has_root f a b epsilon Nothing Nothing
44
45
46
47
48 -- | We are given a function @f@ and an interval [a,b]. The bisection
49 -- method checks finds a root by splitting [a,b] in half repeatedly.
50 --
51 -- If one is found within some prescribed tolerance @epsilon@, it is
52 -- returned. Otherwise, the interval [a,b] is split into two
53 -- subintervals [a,c] and [c,b] of equal length which are then both
54 -- checked via the same process.
55 --
56 -- Returns 'Just' the value x for which f(x) == 0 if one is found,
57 -- or Nothing if one of the preconditions is violated.
58 --
59 -- Examples:
60 --
61 -- >>> bisect cos 1 2 0.001
62 -- Just 1.5712890625
63 --
64 -- >>> bisect sin (-1) 1 0.001
65 -- Just 0.0
66 --
67 bisect :: (Fractional a, Ord a, Num b, Ord b)
68 => (a -> b) -- ^ The function @f@ whose root we seek
69 -> a -- ^ The \"left\" endpoint of the interval, @a@
70 -> a -- ^ The \"right\" endpoint of the interval, @b@
71 -> a -- ^ The tolerance, @epsilon@
72 -> Maybe a
73 bisect f a b epsilon =
74 F.bisect f a b epsilon Nothing Nothing
75
76
77
78 -- | The sequence x_{n} of values obtained by applying Newton's method
79 -- on the function @f@ and initial guess @x0@.
80 newton_iterations :: (Fractional a, Ord a)
81 => (a -> a) -- ^ The function @f@ whose root we seek
82 -> (a -> a) -- ^ The derivative of @f@
83 -> a -- ^ Initial guess, x-naught
84 -> [a]
85 newton_iterations f f' x0 =
86 iterate next x0
87 where
88 next xn =
89 xn - ( (f xn) / (f' xn) )
90
91
92
93 -- | Use Newton's method to find a root of @f@ near the initial guess
94 -- @x0@. If your guess is bad, this will recurse forever!
95 newtons_method :: (Fractional a, Ord a)
96 => (a -> a) -- ^ The function @f@ whose root we seek
97 -> (a -> a) -- ^ The derivative of @f@
98 -> a -- ^ The tolerance epsilon
99 -> a -- ^ Initial guess, x-naught
100 -> Maybe a
101 newtons_method f f' epsilon x0
102 = find (\x -> abs (f x) < epsilon) x_n
103 where
104 x_n = newton_iterations f f' x0
105
106
107
108 -- | Takes a function @f@ of two arguments and repeatedly applies @f@
109 -- to the previous two values. Returns a list containing all
110 -- generated values, f(x0, x1), f(x1, x2), f(x2, x3)...
111 --
112 -- Examples:
113 --
114 -- >>> let fibs = iterate2 (+) 0 1
115 -- >>> take 15 fibs
116 -- [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377]
117 --
118 iterate2 :: (a -> a -> a) -- ^ The function @f@
119 -> a -- ^ The initial value @x0@
120 -> a -- ^ The second value, @x1@
121 -> [a] -- ^ The result list, [x0, x1, ...]
122 iterate2 f x0 x1 =
123 x0 : x1 : (go x0 x1)
124 where
125 go prev2 prev1 =
126 let next = f prev2 prev1 in
127 next : go prev1 next
128
129 -- | The sequence x_{n} of values obtained by applying the secant
130 -- method on the function @f@ and initial guesses @x0@, @x1@.
131 --
132 -- The recursion more or less implements a two-parameter 'iterate',
133 -- although one list is passed to the next iteration (as opposed to
134 -- one function argument, with iterate). At each step, we peel the
135 -- first two elements off the list and then compute/append elements
136 -- three, four... onto the end of the list.
137 --
138 -- Examples:
139 --
140 -- Atkinson, p. 67.
141 -- >>> let f x = x^6 - x - 1
142 -- >>> take 4 $ secant_iterations f 2 1
143 -- [2.0,1.0,1.0161290322580645,1.190577768676638]
144 --
145 secant_iterations :: (Fractional a, Ord a)
146 => (a -> a) -- ^ The function @f@ whose root we seek
147 -> a -- ^ Initial guess, x-naught
148 -> a -- ^ Second initial guess, x-one
149 -> [a]
150 secant_iterations f x0 x1 =
151 iterate2 g x0 x1
152 where
153 g prev2 prev1 =
154 let x_change = prev1 - prev2
155 y_change = (f prev1) - (f prev2)
156 in
157 (prev1 - (f prev1 * (x_change / y_change)))
158
159
160 -- | Use the secant method to find a root of @f@ near the initial guesses
161 -- @x0@ and @x1@. If your guesses are bad, this will recurse forever!
162 --
163 -- Examples:
164 --
165 -- Atkinson, p. 67.
166 -- >>> let f x = x^6 - x - 1
167 -- >>> let Just root = secant_method f (1/10^9) 2 1
168 -- >>> root
169 -- 1.1347241384015196
170 -- >>> abs (f root) < (1/10^9)
171 -- True
172 --
173 secant_method :: (Fractional a, Ord a)
174 => (a -> a) -- ^ The function @f@ whose root we seek
175 -> a -- ^ The tolerance epsilon
176 -> a -- ^ Initial guess, x-naught
177 -> a -- ^ Second initial guess, x-one
178 -> Maybe a
179 secant_method f epsilon x0 x1
180 = find (\x -> abs (f x) < epsilon) x_n
181 where
182 x_n = secant_iterations f x0 x1