]> gitweb.michael.orlitzky.com - numerical-analysis.git/blob - src/Linear/QR.hs
Implement the QR algorithm for computing eigenvalues.
[numerical-analysis.git] / src / Linear / QR.hs
1 {-# LANGUAGE NoImplicitPrelude #-}
2 {-# LANGUAGE ScopedTypeVariables #-}
3
4 -- | QR factorization via Givens rotations.
5 --
6 module Linear.QR (
7 eigenvalues,
8 givens_rotator,
9 qr )
10 where
11
12 import qualified Algebra.Ring as Ring ( C )
13 import qualified Algebra.Algebraic as Algebraic ( C )
14 import Data.Vector.Fixed ( N1, S, ifoldl )
15 import Data.Vector.Fixed.Cont ( Arity )
16 import NumericPrelude hiding ( (*) )
17
18 import Linear.Matrix (
19 Mat(..),
20 (*),
21 (!!!),
22 construct,
23 diagonal,
24 identity_matrix,
25 transpose )
26
27
28 -- | Construct a givens rotation matrix that will operate on row @i@
29 -- and column @j@. This is done to create zeros in some column of
30 -- the target matrix. You must also supply that column's @i@th and
31 -- @j@th entries as arguments.
32 --
33 -- Examples (Watkins, p. 193):
34 --
35 -- >>> import Normed ( Normed(..) )
36 -- >>> import Linear.Vector ( Vec2, Vec3 )
37 -- >>> import Linear.Matrix ( Mat2, Mat3, fromList, frobenius_norm )
38 -- >>> import qualified Data.Vector.Fixed as V ( map )
39 --
40 -- >>> let m = givens_rotator 0 1 1 1 :: Mat2 Double
41 -- >>> let m2 = fromList [[1, -1],[1, 1]] :: Mat2 Double
42 -- >>> m == (1 / (sqrt 2) :: Double) *> m2
43 -- True
44 --
45 -- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double
46 -- >>> let rot = givens_rotator 0 1 2.0 5.0 :: Mat2 Double
47 -- >>> ((transpose rot) * m) !!! (1,0) < 1e-12
48 -- True
49 -- >>> let (Mat rows) = rot
50 -- >>> let (Mat cols) = transpose rot
51 -- >>> V.map norm rows :: Vec2 Double
52 -- fromList [1.0,1.0]
53 -- >>> V.map norm cols :: Vec2 Double
54 -- fromList [1.0,1.0]
55 --
56 -- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double
57 -- >>> let rot = givens_rotator 1 2 6 (-4) :: Mat3 Double
58 -- >>> let ex_rot_r1 = [1,0,0] :: [Double]
59 -- >>> let ex_rot_r2 = [0,0.83205,-0.55470] :: [Double]
60 -- >>> let ex_rot_r3 = [0, 0.55470, 0.83205] :: [Double]
61 -- >>> let ex_rot = fromList [ex_rot_r1, ex_rot_r2, ex_rot_r3] :: Mat3 Double
62 -- >>> frobenius_norm ((transpose rot) - ex_rot) < 1e-4
63 -- True
64 -- >>> ((transpose rot) * m) !!! (2,0) == 0
65 -- True
66 -- >>> let (Mat rows) = rot
67 -- >>> let (Mat cols) = transpose rot
68 -- >>> V.map norm rows :: Vec3 Double
69 -- fromList [1.0,1.0,1.0]
70 -- >>> V.map norm cols :: Vec3 Double
71 -- fromList [1.0,1.0,1.0]
72 --
73 givens_rotator :: forall m a. (Eq a, Ring.C a, Algebraic.C a, Arity m)
74 => Int -> Int -> a -> a -> Mat m m a
75 givens_rotator i j xi xj =
76 construct f
77 where
78 xnorm = sqrt $ xi^2 + xj^2
79 c = if xnorm == (fromInteger 0) then (fromInteger 1) else xi / xnorm
80 s = if xnorm == (fromInteger 0) then (fromInteger 0) else xj / xnorm
81
82 f :: Int -> Int -> a
83 f y z
84 | y == i && z == i = c
85 | y == j && z == j = c
86 | y == i && z == j = negate s
87 | y == j && z == i = s
88 | y == z = fromInteger 1
89 | otherwise = fromInteger 0
90
91
92 -- | Compute the QR factorization of a matrix (using Givens
93 -- rotations). This is accomplished with two folds: the first one
94 -- traverses the columns of the matrix from left to right, and the
95 -- second traverses the entries of the column from top to
96 -- bottom.
97 --
98 -- The state that is passed through the fold is the current (q,r)
99 -- factorization. We keep the pair updated by multiplying @q@ and
100 -- @r@ by the new rotator (or its transpose).
101 --
102 -- We do not require that the diagonal elements of R are positive,
103 -- so our factorization is a little less unique than usual.
104 --
105 -- Examples:
106 --
107 -- >>> import Linear.Matrix
108 --
109 -- >>> let m = fromList [[1,2],[1,3]] :: Mat2 Double
110 -- >>> let (q,r) = qr m
111 -- >>> let c = (1 / (sqrt 2 :: Double))
112 -- >>> let ex_q = c *> (fromList [[1,-1],[1,1]] :: Mat2 Double)
113 -- >>> let ex_r = c *> (fromList [[2,5],[0,1]] :: Mat2 Double)
114 -- >>> frobenius_norm (q - ex_q) == 0
115 -- True
116 -- >>> frobenius_norm (r - ex_r) == 0
117 -- True
118 -- >>> let m' = q*r
119 -- >>> frobenius_norm (m - m') < 1e-10
120 -- True
121 -- >>> is_upper_triangular' 1e-10 r
122 -- True
123 --
124 -- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double
125 -- >>> let (q,r) = qr m
126 -- >>> frobenius_norm (m - (q*r)) < 1e-12
127 -- True
128 -- >>> is_upper_triangular' 1e-10 r
129 -- True
130 --
131 -- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double
132 -- >>> let (q,r) = qr m
133 -- >>> frobenius_norm (m - (q*r)) < 1e-12
134 -- True
135 -- >>> is_upper_triangular' 1e-10 r
136 -- True
137 --
138 qr :: forall m n a. (Arity m, Arity n, Eq a, Algebraic.C a, Ring.C a)
139 => Mat m n a -> (Mat m m a, Mat m n a)
140 qr matrix =
141 ifoldl col_function initial_qr columns
142 where
143 Mat columns = transpose matrix
144 initial_qr = (identity_matrix, matrix)
145
146 -- | Process the column and spit out the current QR
147 -- factorization. In the first column, we want to get rotators
148 -- Q12, Q13, Q14,... In the second column, we want rotators Q23,
149 -- Q24, Q25,...
150 col_function (q,r) col_idx col =
151 ifoldl (f col_idx) (q,r) col
152
153 -- | Process the entries in a column, doing basically the same
154 -- thing as col_dunction does. It updates the QR factorization,
155 -- maybe, and returns the current one.
156 f col_idx (q,r) idx _ -- ignore the current element
157 | idx <= col_idx = (q,r) -- leave it alone
158 | otherwise = (q*rotator, (transpose rotator)*r)
159 where
160 y = r !!! (idx, col_idx)
161 rotator :: Mat m m a
162 rotator = givens_rotator col_idx idx (r !!! (col_idx, col_idx)) y
163
164
165
166 -- | Determine the eigenvalues of the given @matrix@ using the
167 -- iterated QR algorithm (see Golub and Van Loan, \"Matrix
168 -- Computations\").
169 --
170 -- Examples:
171 --
172 -- >>> import Linear.Matrix ( Col2, Col3, Mat2, Mat3 )
173 -- >>> import Linear.Matrix ( frobenius_norm, fromList, identity_matrix )
174 --
175 -- >>> let m = fromList [[1,1],[-2,4]] :: Mat2 Double
176 -- >>> let actual = eigenvalues 1000 m
177 -- >>> let expected = fromList [[3],[2]] :: Col2 Double
178 -- >>> frobenius_norm (actual - expected) < 1e-12
179 -- True
180 --
181 -- >>> let m = identity_matrix :: Mat2 Double
182 -- >>> let actual = eigenvalues 10 m
183 -- >>> let expected = fromList [[1],[1]] :: Col2 Double
184 -- >>> frobenius_norm (actual - expected) < 1e-12
185 -- True
186 --
187 -- >>> let m = fromList [[0,1,0],[0,0,1],[1,-3,3]] :: Mat3 Double
188 -- >>> let actual = eigenvalues 1000 m
189 -- >>> let expected = fromList [[1],[1],[1]] :: Col3 Double
190 -- >>> frobenius_norm (actual - expected) < 1e-2
191 -- True
192 --
193 eigenvalues :: forall m a. (Arity m, Algebraic.C a, Eq a)
194 => Int
195 -> Mat (S m) (S m) a
196 -> Mat (S m) N1 a
197 eigenvalues iterations matrix =
198 diagonal (ut_approximation iterations)
199 where
200 ut_approximation :: Int -> Mat (S m) (S m) a
201 ut_approximation 0 = matrix
202 ut_approximation k = rk*qk where (qk,rk) = qr (ut_approximation (k-1))
203