]> gitweb.michael.orlitzky.com - numerical-analysis.git/blob - src/Linear/Matrix.hs
Fix the incorrect definition of "minor".
[numerical-analysis.git] / src / Linear / Matrix.hs
1 {-# LANGUAGE ExistentialQuantification #-}
2 {-# LANGUAGE FlexibleContexts #-}
3 {-# LANGUAGE FlexibleInstances #-}
4 {-# LANGUAGE MultiParamTypeClasses #-}
5 {-# LANGUAGE NoMonomorphismRestriction #-}
6 {-# LANGUAGE ScopedTypeVariables #-}
7 {-# LANGUAGE TypeFamilies #-}
8 {-# LANGUAGE RebindableSyntax #-}
9
10 -- | Boxed matrices; that is, boxed m-vectors of boxed n-vectors. We
11 -- assume that the underlying representation is
12 -- Data.Vector.Fixed.Boxed.Vec for simplicity. It was tried in
13 -- generality and failed.
14 --
15 module Linear.Matrix
16 where
17
18 import Data.List (intercalate)
19
20 import Data.Vector.Fixed (
21 (!),
22 N1,
23 N2,
24 N3,
25 N4,
26 N5,
27 S,
28 Z,
29 generate,
30 mk1,
31 mk2,
32 mk3,
33 mk4,
34 mk5 )
35 import qualified Data.Vector.Fixed as V (
36 and,
37 fromList,
38 head,
39 ifoldl,
40 ifoldr,
41 imap,
42 map,
43 maximum,
44 replicate,
45 reverse,
46 toList,
47 zipWith )
48 import Data.Vector.Fixed.Cont ( Arity, arity )
49 import Linear.Vector ( Vec, delete, element_sum )
50 import Normed ( Normed(..) )
51
52 import NumericPrelude hiding ( (*), abs )
53 import qualified NumericPrelude as NP ( (*) )
54 import qualified Algebra.Absolute as Absolute ( C )
55 import Algebra.Absolute ( abs )
56 import qualified Algebra.Additive as Additive ( C )
57 import qualified Algebra.Algebraic as Algebraic ( C )
58 import Algebra.Algebraic ( root )
59 import qualified Algebra.Field as Field ( C )
60 import qualified Algebra.Ring as Ring ( C )
61 import qualified Algebra.Module as Module ( C )
62 import qualified Algebra.RealRing as RealRing ( C )
63 import qualified Algebra.ToRational as ToRational ( C )
64 import qualified Algebra.Transcendental as Transcendental ( C )
65 import qualified Prelude as P ( map )
66
67 -- | Our main matrix type.
68 data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a))
69
70 -- Type synonyms for n-by-n matrices.
71 type Mat1 a = Mat N1 N1 a
72 type Mat2 a = Mat N2 N2 a
73 type Mat3 a = Mat N3 N3 a
74 type Mat4 a = Mat N4 N4 a
75 type Mat5 a = Mat N5 N5 a
76
77 -- * Type synonyms for 1-by-n row "vectors".
78
79 -- | Type synonym for row vectors expressed as 1-by-n matrices.
80 type Row n a = Mat N1 n a
81
82 type Row1 a = Row N1 a
83 type Row2 a = Row N2 a
84 type Row3 a = Row N3 a
85 type Row4 a = Row N4 a
86 type Row5 a = Row N5 a
87
88 -- * Type synonyms for n-by-1 column "vectors".
89
90 -- | Type synonym for column vectors expressed as n-by-1 matrices.
91 type Col n a = Mat n N1 a
92
93 type Col1 a = Col N1 a
94 type Col2 a = Col N2 a
95 type Col3 a = Col N3 a
96 type Col4 a = Col N4 a
97 type Col5 a = Col N5 a
98
99 -- We need a big column for Gaussian quadrature.
100 type N10 = S (S (S (S (S N5))))
101 type Col10 a = Col N10 a
102
103
104 instance (Eq a) => Eq (Mat m n a) where
105 -- | Compare a row at a time.
106 --
107 -- Examples:
108 --
109 -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int
110 -- >>> let m2 = fromList [[1,2],[3,4]] :: Mat2 Int
111 -- >>> let m3 = fromList [[5,6],[7,8]] :: Mat2 Int
112 -- >>> m1 == m2
113 -- True
114 -- >>> m1 == m3
115 -- False
116 --
117 (Mat rows1) == (Mat rows2) =
118 V.and $ V.zipWith comp rows1 rows2
119 where
120 -- Compare a row, one column at a time.
121 comp row1 row2 = V.and (V.zipWith (==) row1 row2)
122
123
124 instance (Show a) => Show (Mat m n a) where
125 -- | Display matrices and vectors as ordinary tuples. This is poor
126 -- practice, but these results are primarily displayed
127 -- interactively and convenience trumps correctness (said the guy
128 -- who insists his vector lengths be statically checked at
129 -- compile-time).
130 --
131 -- Examples:
132 --
133 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
134 -- >>> show m
135 -- ((1,2),(3,4))
136 --
137 show (Mat rows) =
138 "(" ++ (intercalate "," (V.toList row_strings)) ++ ")"
139 where
140 row_strings = V.map show_vector rows
141 show_vector v1 =
142 "(" ++ (intercalate "," element_strings) ++ ")"
143 where
144 v1l = V.toList v1
145 element_strings = P.map show v1l
146
147
148 -- | Convert a matrix to a nested list.
149 toList :: Mat m n a -> [[a]]
150 toList (Mat rows) = map V.toList (V.toList rows)
151
152
153 -- | Create a matrix from a nested list.
154 fromList :: (Arity m, Arity n) => [[a]] -> Mat m n a
155 fromList vs = Mat (V.fromList $ map V.fromList vs)
156
157
158 -- | Unsafe indexing. Much faster than the safe indexing.
159 (!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a
160 (!!!) (Mat rows) (i, j) = (rows ! i) ! j
161
162
163 -- | Safe indexing.
164 --
165 -- Examples:
166 --
167 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
168 -- >>> m !!? (-1,-1)
169 -- Nothing
170 -- >>> m !!? (-1,0)
171 -- Nothing
172 -- >>> m !!? (-1,1)
173 -- Nothing
174 -- >>> m !!? (0,-1)
175 -- Nothing
176 -- >>> m !!? (0,0)
177 -- Just 1
178 -- >>> m !!? (0,1)
179 -- Just 2
180 -- >>> m !!? (1,-1)
181 -- Nothing
182 -- >>> m !!? (1,0)
183 -- Just 3
184 -- >>> m !!? (1,1)
185 -- Just 4
186 -- >>> m !!? (2,-1)
187 -- Nothing
188 -- >>> m !!? (2,0)
189 -- Nothing
190 -- >>> m !!? (2,1)
191 -- Nothing
192 -- >>> m !!? (2,2)
193 -- Nothing
194 --
195 (!!?) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> Maybe a
196 (!!?) matrix idx =
197 ifoldl2 f Nothing matrix
198 where
199 f k l found cur = if (k,l) == idx then (Just cur) else found
200
201
202 -- | The number of rows in the matrix.
203 nrows :: forall m n a. (Arity m) => Mat m n a -> Int
204 nrows _ = arity (undefined :: m)
205
206
207 -- | The number of columns in the first row of the
208 -- matrix. Implementation stolen from Data.Vector.Fixed.length.
209 ncols :: forall m n a. (Arity n) => Mat m n a -> Int
210 ncols _ = arity (undefined :: n)
211
212
213 -- | Return the @i@th row of @m@ as a matrix. Unsafe.
214 row :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a
215 row m i =
216 construct lambda
217 where
218 lambda _ j = m !!! (i, j)
219
220
221 -- | Return the @j@th column of @m@ as a matrix. Unsafe.
222 column :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a
223 column m j =
224 construct lambda
225 where
226 lambda i _ = m !!! (i, j)
227
228
229 -- | Transpose @m@; switch it's columns and its rows. This is a dirty
230 -- implementation, but I don't see a better way.
231 --
232 -- TODO: Don't cheat with fromList.
233 --
234 -- Examples:
235 --
236 -- >>> let m = fromList [[1,2], [3,4]] :: Mat2 Int
237 -- >>> transpose m
238 -- ((1,3),(2,4))
239 --
240 transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a
241 transpose matrix =
242 construct lambda
243 where
244 lambda i j = matrix !!! (j,i)
245
246
247 -- | Is @m@ symmetric?
248 --
249 -- Examples:
250 --
251 -- >>> let m1 = fromList [[1,2], [2,1]] :: Mat2 Int
252 -- >>> symmetric m1
253 -- True
254 --
255 -- >>> let m2 = fromList [[1,2], [3,1]] :: Mat2 Int
256 -- >>> symmetric m2
257 -- False
258 --
259 symmetric :: (Eq a, Arity m) => Mat m m a -> Bool
260 symmetric m =
261 m == (transpose m)
262
263
264 -- | Construct a new matrix from a function @lambda@. The function
265 -- @lambda@ should take two parameters i,j corresponding to the
266 -- entries in the matrix. The i,j entry of the resulting matrix will
267 -- have the value returned by lambda i j.
268 --
269 -- Examples:
270 --
271 -- >>> let lambda i j = i + j
272 -- >>> construct lambda :: Mat3 Int
273 -- ((0,1,2),(1,2,3),(2,3,4))
274 --
275 construct :: forall m n a. (Arity m, Arity n)
276 => (Int -> Int -> a) -> Mat m n a
277 construct lambda = Mat $ generate make_row
278 where
279 make_row :: Int -> Vec n a
280 make_row i = generate (lambda i)
281
282
283 -- | Create an identity matrix with the right dimensions.
284 --
285 -- Examples:
286 --
287 -- >>> identity_matrix :: Mat3 Int
288 -- ((1,0,0),(0,1,0),(0,0,1))
289 -- >>> identity_matrix :: Mat3 Double
290 -- ((1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0))
291 --
292 identity_matrix :: (Arity m, Ring.C a) => Mat m m a
293 identity_matrix =
294 construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0))
295
296
297 -- | Given a positive-definite matrix @m@, computes the
298 -- upper-triangular matrix @r@ with (transpose r)*r == m and all
299 -- values on the diagonal of @r@ positive.
300 --
301 -- Examples:
302 --
303 -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double
304 -- >>> let r = cholesky m1
305 -- >>> frobenius_norm ((transpose r)*r - m1) < 1e-10
306 -- True
307 -- >>> is_upper_triangular r
308 -- True
309 --
310 -- >>> import Naturals ( N7 )
311 -- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double]
312 -- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double]
313 -- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double]
314 -- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double]
315 -- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double]
316 -- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double]
317 -- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double]
318 -- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double
319 --
320 -- >>> let e1 = [2.449489742783178,0,0,0,0,0,0] :: [Double]
321 -- >>> let e2 = [-1.224744871391589,3,0,0,0,0,0] :: [Double]
322 -- >>> let e3 = [0,-5/2,5/2,0,0,0,0] :: [Double]
323 -- >>> let e4 = [0,0,0,2.449489742783178,0,0,0] :: [Double]
324 -- >>> let e5 = [0,0,0,0,2.449489742783178,0,0] :: [Double]
325 -- >>> let e6 = [0,0,0,0,0,2.449489742783178,0] :: [Double]
326 -- >>> let e7 = [0,0,0,0,0,0,3.872983346207417] :: [Double]
327 -- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Mat N7 N7 Double
328 --
329 -- >>> let r = cholesky big_K
330 -- >>> frobenius_norm (r - (transpose expected)) < 1e-12
331 -- True
332 --
333 cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n)
334 => (Mat m n a) -> (Mat m n a)
335 cholesky m = construct r
336 where
337 r :: Int -> Int -> a
338 r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]])
339 | i < j =
340 (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i)
341 | otherwise = 0
342
343
344 -- | Returns True if the given matrix is upper-triangular, and False
345 -- otherwise. The parameter @epsilon@ lets the caller choose a
346 -- tolerance.
347 --
348 -- Examples:
349 --
350 -- >>> let m = fromList [[1,1],[1e-12,1]] :: Mat2 Double
351 -- >>> is_upper_triangular m
352 -- False
353 -- >>> is_upper_triangular' 1e-10 m
354 -- True
355 --
356 is_upper_triangular' :: forall m n a.
357 (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n)
358 => a -- ^ The tolerance @epsilon@.
359 -> Mat m n a
360 -> Bool
361 is_upper_triangular' epsilon matrix =
362 ifoldl2 f True matrix
363 where
364 f :: Int -> Int -> Bool -> a -> Bool
365 f _ _ False _ = False
366 f i j True x
367 | i <= j = True
368 -- use "less than or equal to" so zero is a valid epsilon
369 | otherwise = abs x <= epsilon
370
371
372 -- | Returns True if the given matrix is upper-triangular, and False
373 -- otherwise. We don't delegate to the general
374 -- 'is_upper_triangular'' here because it imposes additional
375 -- typeclass constraints throughout the library.
376 --
377 -- Examples:
378 --
379 -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int
380 -- >>> is_upper_triangular m
381 -- False
382 --
383 -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int
384 -- >>> is_upper_triangular m
385 -- True
386 --
387 is_upper_triangular :: forall m n a.
388 (Eq a, Ring.C a, Arity m, Arity n)
389 => Mat m n a -> Bool
390 is_upper_triangular matrix =
391 ifoldl2 f True matrix
392 where
393 f :: Int -> Int -> Bool -> a -> Bool
394 f _ _ False _ = False
395 f i j True x
396 | i <= j = True
397 | otherwise = x == 0
398
399
400
401 -- | Returns True if the given matrix is lower-triangular, and False
402 -- otherwise.
403 --
404 -- Examples:
405 --
406 -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int
407 -- >>> is_lower_triangular m
408 -- True
409 --
410 -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int
411 -- >>> is_lower_triangular m
412 -- False
413 --
414 is_lower_triangular :: (Eq a,
415 Ring.C a,
416 Arity m,
417 Arity n)
418 => Mat m n a
419 -> Bool
420 is_lower_triangular = is_upper_triangular . transpose
421
422
423 -- | Returns True if the given matrix is lower-triangular, and False
424 -- otherwise. The parameter @epsilon@ lets the caller choose a
425 -- tolerance.
426 --
427 -- Examples:
428 --
429 -- >>> let m = fromList [[1,1e-12],[1,1]] :: Mat2 Double
430 -- >>> is_lower_triangular m
431 -- False
432 -- >>> is_lower_triangular' 1e-12 m
433 -- True
434 --
435 is_lower_triangular' :: (Ord a,
436 Ring.C a,
437 Absolute.C a,
438 Arity m,
439 Arity n)
440 => a -- ^ The tolerance @epsilon@.
441 -> Mat m n a
442 -> Bool
443 is_lower_triangular' epsilon = (is_upper_triangular' epsilon) . transpose
444
445
446 -- | Returns True if the given matrix is triangular, and False
447 -- otherwise.
448 --
449 -- Examples:
450 --
451 -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int
452 -- >>> is_triangular m
453 -- True
454 --
455 -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int
456 -- >>> is_triangular m
457 -- True
458 --
459 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
460 -- >>> is_triangular m
461 -- False
462 --
463 is_triangular :: (Ord a,
464 Ring.C a,
465 Absolute.C a,
466 Arity m,
467 Arity n)
468 => Mat m n a
469 -> Bool
470 is_triangular m = is_upper_triangular m || is_lower_triangular m
471
472
473 -- | Delete the @i@th row and @j@th column from the matrix. The name
474 -- \"preminor\" is made up, but is meant to signify that this is
475 -- usually used in the computationof a minor. A minor is simply the
476 -- determinant of a preminor in that case.
477 --
478 -- Examples:
479 --
480 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
481 -- >>> preminor m 0 0 :: Mat2 Int
482 -- ((5,6),(8,9))
483 -- >>> preminor m 1 1 :: Mat2 Int
484 -- ((1,3),(7,9))
485 --
486 preminor :: (Arity m, Arity n)
487 => Mat (S m) (S n) a
488 -> Int
489 -> Int
490 -> Mat m n a
491 preminor (Mat rows) i j = m
492 where
493 rows' = delete rows i
494 m = Mat $ V.map ((flip delete) j) rows'
495
496
497 -- | Compute the i,jth minor of a @matrix@.
498 --
499 -- Examples:
500 --
501 -- >>> let m1 = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Double
502 -- >>> minor m1 1 1
503 -- -12.0
504 --
505 minor :: (Arity m, Determined (Mat m m) a)
506 => Mat (S m) (S m) a
507 -> Int
508 -> Int
509 -> a
510 minor matrix i j = determinant (preminor matrix i j)
511
512 class (Eq a, Ring.C a) => Determined p a where
513 determinant :: (p a) -> a
514
515 instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where
516 determinant = unscalar
517
518 instance (Ord a,
519 Ring.C a,
520 Absolute.C a,
521 Arity n,
522 Determined (Mat (S n) (S n)) a)
523 => Determined (Mat (S (S n)) (S (S n))) a where
524 -- | The recursive definition with a special-case for triangular matrices.
525 --
526 -- Examples:
527 --
528 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
529 -- >>> determinant m
530 -- -1
531 --
532 determinant m
533 | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ]
534 | otherwise = determinant_recursive
535 where
536 m' i j = m !!! (i,j)
537
538 determinant_recursive =
539 sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (minor m 0 j)
540 | j <- [0..(ncols m)-1] ]
541
542
543
544 -- | Matrix multiplication.
545 --
546 -- Examples:
547 --
548 -- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat N2 N3 Int
549 -- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat N3 N2 Int
550 -- >>> m1 * m2
551 -- ((22,28),(49,64))
552 --
553 infixl 7 *
554 (*) :: (Ring.C a, Arity m, Arity n, Arity p)
555 => Mat m n a
556 -> Mat n p a
557 -> Mat m p a
558 (*) m1 m2 = construct lambda
559 where
560 lambda i j =
561 sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ]
562
563
564
565 instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where
566
567 (Mat rows1) + (Mat rows2) =
568 Mat $ V.zipWith (V.zipWith (+)) rows1 rows2
569
570 (Mat rows1) - (Mat rows2) =
571 Mat $ V.zipWith (V.zipWith (-)) rows1 rows2
572
573 zero = Mat (V.replicate $ V.replicate (fromInteger 0))
574
575
576 instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat m n a) where
577 -- The first * is ring multiplication, the second is matrix
578 -- multiplication.
579 m1 * m2 = m1 * m2
580
581
582 instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where
583 -- We can multiply a matrix by a scalar of the same type as its
584 -- elements.
585 x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows
586
587
588 instance (Algebraic.C a,
589 ToRational.C a,
590 Arity m)
591 => Normed (Mat (S m) N1 a) where
592 -- | Generic p-norms for vectors in R^n that are represented as nx1
593 -- matrices.
594 --
595 -- Examples:
596 --
597 -- >>> let v1 = vec2d (3,4)
598 -- >>> norm_p 1 v1
599 -- 7.0
600 -- >>> norm_p 2 v1
601 -- 5.0
602 --
603 norm_p p (Mat rows) =
604 (root p') $ sum [fromRational' (toRational x)^p' | x <- xs]
605 where
606 p' = toInteger p
607 xs = concat $ V.toList $ V.map V.toList rows
608
609 -- | The infinity norm.
610 --
611 -- Examples:
612 --
613 -- >>> let v1 = vec3d (1,5,2)
614 -- >>> norm_infty v1
615 -- 5
616 --
617 norm_infty (Mat rows) =
618 fromRational' $ toRational $ V.maximum $ V.map V.maximum rows
619
620
621 -- | Compute the Frobenius norm of a matrix. This essentially treats
622 -- the matrix as one long vector containing all of its entries (in
623 -- any order, it doesn't matter).
624 --
625 -- Examples:
626 --
627 -- >>> let m = fromList [[1, 2, 3],[4,5,6],[7,8,9]] :: Mat3 Double
628 -- >>> frobenius_norm m == sqrt 285
629 -- True
630 --
631 -- >>> let m = fromList [[1, -1, 1],[-1,1,-1],[1,-1,1]] :: Mat3 Double
632 -- >>> frobenius_norm m == 3
633 -- True
634 --
635 frobenius_norm :: (Algebraic.C a, Ring.C a) => Mat m n a -> a
636 frobenius_norm (Mat rows) =
637 sqrt $ element_sum $ V.map row_sum rows
638 where
639 -- | Square and add up the entries of a row.
640 row_sum = element_sum . V.map (^2)
641
642
643 -- Vector helpers. We want it to be easy to create low-dimension
644 -- column vectors, which are nx1 matrices.
645
646 -- | Convenient constructor for 2D vectors.
647 --
648 -- Examples:
649 --
650 -- >>> import Roots.Simple
651 -- >>> let fst m = m !!! (0,0)
652 -- >>> let snd m = m !!! (1,0)
653 -- >>> let h = 0.5 :: Double
654 -- >>> let g1 m = 1.0 + h NP.* exp(-((fst m)^2))/(1.0 + (snd m)^2)
655 -- >>> let g2 m = 0.5 + h NP.* atan((fst m)^2 + (snd m)^2)
656 -- >>> let g u = vec2d ((g1 u), (g2 u))
657 -- >>> let u0 = vec2d (1.0, 1.0)
658 -- >>> let eps = 1/(10^9)
659 -- >>> fixed_point g eps u0
660 -- ((1.0728549599342185),(1.0820591495686167))
661 --
662 vec1d :: (a) -> Col1 a
663 vec1d (x) = Mat (mk1 (mk1 x))
664
665 vec2d :: (a,a) -> Col2 a
666 vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y))
667
668 vec3d :: (a,a,a) -> Col3 a
669 vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z))
670
671 vec4d :: (a,a,a,a) -> Col4 a
672 vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z))
673
674 vec5d :: (a,a,a,a,a) -> Col5 a
675 vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z))
676
677 -- Since we commandeered multiplication, we need to create 1x1
678 -- matrices in order to multiply things.
679 scalar :: a -> Mat1 a
680 scalar x = Mat (mk1 (mk1 x))
681
682 -- Get the scalar value out of a 1x1 matrix.
683 unscalar :: Mat1 a -> a
684 unscalar (Mat rows) = V.head $ V.head rows
685
686
687 dot :: (Ring.C a, Arity m)
688 => Col (S m) a
689 -> Col (S m) a
690 -> a
691 v1 `dot` v2 = unscalar $ ((transpose v1) * v2)
692
693
694 -- | The angle between @v1@ and @v2@ in Euclidean space.
695 --
696 -- Examples:
697 --
698 -- >>> let v1 = vec2d (1.0, 0.0)
699 -- >>> let v2 = vec2d (0.0, 1.0)
700 -- >>> angle v1 v2 == pi/2.0
701 -- True
702 --
703 angle :: (Transcendental.C a,
704 RealRing.C a,
705 m ~ S t,
706 Arity t,
707 ToRational.C a)
708 => Col m a
709 -> Col m a
710 -> a
711 angle v1 v2 =
712 acos theta
713 where
714 theta = (recip norms) NP.* (v1 `dot` v2)
715 norms = (norm v1) NP.* (norm v2)
716
717
718 -- | Retrieve the diagonal elements of the given matrix as a \"column
719 -- vector,\" i.e. a m-by-1 matrix. We require the matrix to be
720 -- square to avoid ambiguity in the return type which would ideally
721 -- have dimension min(m,n) supposing an m-by-n matrix.
722 --
723 -- Examples:
724 --
725 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
726 -- >>> diagonal m
727 -- ((1),(5),(9))
728 --
729 diagonal :: (Arity m) => Mat m m a -> Col m a
730 diagonal matrix =
731 construct lambda
732 where
733 lambda i _ = matrix !!! (i,i)
734
735
736 -- | Given a square @matrix@, return a new matrix of the same size
737 -- containing only the on-diagonal entries of @matrix@. The
738 -- off-diagonal entries are set to zero.
739 --
740 -- Examples:
741 --
742 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
743 -- >>> diagonal_part m
744 -- ((1,0,0),(0,5,0),(0,0,9))
745 --
746 diagonal_part :: (Arity m, Ring.C a)
747 => Mat m m a
748 -> Mat m m a
749 diagonal_part matrix =
750 construct lambda
751 where
752 lambda i j = if i == j then matrix !!! (i,j) else 0
753
754
755 -- | Given a square @matrix@, return a new matrix of the same size
756 -- containing only the on-diagonal and below-diagonal entries of
757 -- @matrix@. The above-diagonal entries are set to zero.
758 --
759 -- Examples:
760 --
761 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
762 -- >>> lt_part m
763 -- ((1,0,0),(4,5,0),(7,8,9))
764 --
765 lt_part :: (Arity m, Ring.C a)
766 => Mat m m a
767 -> Mat m m a
768 lt_part matrix =
769 construct lambda
770 where
771 lambda i j = if i >= j then matrix !!! (i,j) else 0
772
773
774 -- | Given a square @matrix@, return a new matrix of the same size
775 -- containing only the below-diagonal entries of @matrix@. The on-
776 -- and above-diagonal entries are set to zero.
777 --
778 -- Examples:
779 --
780 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
781 -- >>> lt_part_strict m
782 -- ((0,0,0),(4,0,0),(7,8,0))
783 --
784 lt_part_strict :: (Arity m, Ring.C a)
785 => Mat m m a
786 -> Mat m m a
787 lt_part_strict matrix =
788 construct lambda
789 where
790 lambda i j = if i > j then matrix !!! (i,j) else 0
791
792
793 -- | Given a square @matrix@, return a new matrix of the same size
794 -- containing only the on-diagonal and above-diagonal entries of
795 -- @matrix@. The below-diagonal entries are set to zero.
796 --
797 -- Examples:
798 --
799 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
800 -- >>> ut_part m
801 -- ((1,2,3),(0,5,6),(0,0,9))
802 --
803 ut_part :: (Arity m, Ring.C a)
804 => Mat m m a
805 -> Mat m m a
806 ut_part = transpose . lt_part . transpose
807
808
809 -- | Given a square @matrix@, return a new matrix of the same size
810 -- containing only the above-diagonal entries of @matrix@. The on-
811 -- and below-diagonal entries are set to zero.
812 --
813 -- Examples:
814 --
815 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
816 -- >>> ut_part_strict m
817 -- ((0,2,3),(0,0,6),(0,0,0))
818 --
819 ut_part_strict :: (Arity m, Ring.C a)
820 => Mat m m a
821 -> Mat m m a
822 ut_part_strict = transpose . lt_part_strict . transpose
823
824
825 -- | Compute the trace of a square matrix, the sum of the elements
826 -- which lie on its diagonal. We require the matrix to be
827 -- square to avoid ambiguity in the return type which would ideally
828 -- have dimension min(m,n) supposing an m-by-n matrix.
829 --
830 -- Examples:
831 --
832 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
833 -- >>> trace m
834 -- 15
835 --
836 trace :: (Arity m, Ring.C a) => Mat m m a -> a
837 trace matrix =
838 let (Mat rows) = diagonal matrix
839 in
840 element_sum $ V.map V.head rows
841
842
843 -- | Zip together two matrices.
844 --
845 -- TODO: don't cheat with construct (map V.zips instead).
846 --
847 -- Examples:
848 --
849 -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int
850 -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int
851 -- >>> zip2 m1 m2
852 -- (((1,1)),((1,2)),((1,3)))
853 --
854 -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int
855 -- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int
856 -- >>> zip2 m1 m2
857 -- (((1,1),(2,1)),((3,1),(4,1)))
858 --
859 zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a)
860 zip2 m1 m2 =
861 construct lambda
862 where
863 lambda i j = (m1 !!! (i,j), m2 !!! (i,j))
864
865
866 -- | Zip together three matrices.
867 --
868 -- TODO: don't cheat with construct (map V.zips instead).
869 --
870 -- Examples:
871 --
872 -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int
873 -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int
874 -- >>> let m3 = fromList [[4],[5],[6]] :: Col3 Int
875 -- >>> zip2three m1 m2 m3
876 -- (((1,1,4)),((1,2,5)),((1,3,6)))
877 --
878 -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int
879 -- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int
880 -- >>> let m3 = fromList [[8,2],[6,3]] :: Mat2 Int
881 -- >>> zip2three m1 m2 m3
882 -- (((1,1,8),(2,1,2)),((3,1,6),(4,1,3)))
883 --
884 zip2three :: (Arity m, Arity n)
885 => Mat m n a
886 -> Mat m n a
887 -> Mat m n a
888 -> Mat m n (a,a,a)
889 zip2three m1 m2 m3 =
890 construct lambda
891 where
892 lambda i j = (m1 !!! (i,j), m2 !!! (i,j), m3 !!! (i,j))
893
894
895 -- | Zip together two matrices using the supplied function.
896 --
897 -- Examples:
898 --
899 -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer
900 -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer
901 -- >>> zipwith2 (^) c1 c2
902 -- ((1),(32),(729))
903 --
904 zipwith2 :: Arity m
905 => (a -> a -> b)
906 -> Col m a
907 -> Col m a
908 -> Col m b
909 zipwith2 f c1 c2 =
910 construct lambda
911 where
912 lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j))
913
914
915 -- | Map a function over a matrix of any dimensions.
916 --
917 -- Examples:
918 --
919 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
920 -- >>> map2 (^2) m
921 -- ((1,4),(9,16))
922 --
923 map2 :: (a -> b) -> Mat m n a -> Mat m n b
924 map2 f (Mat rows) =
925 Mat $ V.map g rows
926 where
927 g = V.map f
928
929
930 -- | Fold over the entire matrix passing the coordinates @i@ and @j@
931 -- (of the row/column) to the accumulation function. The fold occurs
932 -- from top-left to bottom-right.
933 --
934 -- Examples:
935 --
936 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
937 -- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m
938 -- 18
939 --
940 ifoldl2 :: forall a b m n.
941 (Int -> Int -> b -> a -> b)
942 -> b
943 -> Mat m n a
944 -> b
945 ifoldl2 f initial (Mat rows) =
946 V.ifoldl row_function initial rows
947 where
948 -- | The order that we need this in (so that @g idx@ makes sense)
949 -- is a little funny. So that we don't need to pass weird
950 -- functions into ifoldl2, we swap the second and third
951 -- arguments of @f@ calling the result @g@.
952 g :: Int -> b -> Int -> a -> b
953 g w x y = f w y x
954
955 row_function :: b -> Int -> Vec n a -> b
956 row_function rowinit idx r = V.ifoldl (g idx) rowinit r
957
958
959 -- | Fold over the entire matrix passing the coordinates @i@ and @j@
960 -- (of the row/column) to the accumulation function. The fold occurs
961 -- from bottom-right to top-left.
962 --
963 -- The order of the arguments in the supplied function are different
964 -- from those in V.ifoldr; we keep them similar to ifoldl2.
965 --
966 -- Examples:
967 --
968 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
969 -- >>> ifoldr2 (\i j cur _ -> cur + i + j) 0 m
970 -- 18
971 --
972 ifoldr2 :: forall a b m n.
973 (Int -> Int -> b -> a -> b)
974 -> b
975 -> Mat m n a
976 -> b
977 ifoldr2 f initial (Mat rows) =
978 V.ifoldr row_function initial rows
979 where
980 -- | Swap the order of arguments in @f@ so that it agrees with the
981 -- @f@ passed to ifoldl2.
982 g :: Int -> Int -> a -> b -> b
983 g w x y z = f w x z y
984
985 row_function :: Int -> Vec n a -> b -> b
986 row_function idx r rowinit = V.ifoldr (g idx) rowinit r
987
988
989 -- | Map a function over a matrix of any dimensions, passing the
990 -- coordinates @i@ and @j@ to the function @f@.
991 --
992 -- Examples:
993 --
994 -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int
995 -- >>> imap2 (\i j _ -> i+j) m
996 -- ((0,1),(1,2))
997 --
998 imap2 :: (Int -> Int -> a -> b) -> Mat m n a -> Mat m n b
999 imap2 f (Mat rows) =
1000 Mat $ V.imap g rows
1001 where
1002 g i = V.imap (f i)
1003
1004
1005 -- | Reverse the order of elements in a matrix.
1006 --
1007 -- Examples:
1008 --
1009 -- >>> let m1 = fromList [[1,2,3]] :: Row3 Int
1010 -- >>> reverse2 m1
1011 -- ((3,2,1))
1012 --
1013 -- >>> let m1 = vec3d (1,2,3 :: Int)
1014 -- >>> reverse2 m1
1015 -- ((3),(2),(1))
1016 --
1017 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
1018 -- >>> reverse2 m
1019 -- ((9,8,7),(6,5,4),(3,2,1))
1020 --
1021 reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a
1022 reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows
1023
1024
1025 -- | Unsafely set the (i,j) element of the given matrix.
1026 --
1027 -- Examples:
1028 --
1029 -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int
1030 -- >>> set_idx m (1,1) 17
1031 -- ((1,2,3),(4,17,6),(7,8,9))
1032 --
1033 set_idx :: forall m n a.
1034 (Arity m, Arity n)
1035 => Mat m n a
1036 -> (Int, Int)
1037 -> a
1038 -> Mat m n a
1039 set_idx matrix (i,j) newval =
1040 imap2 updater matrix
1041 where
1042 updater :: Int -> Int -> a -> a
1043 updater k l existing =
1044 if k == i && l == j
1045 then newval
1046 else existing
1047
1048
1049 -- | Compute the i,jth cofactor of the given @matrix@. This simply
1050 -- premultiplues the i,jth minor by (-1)^(i+j).
1051 cofactor :: (Arity m, Determined (Mat m m) a)
1052 => Mat (S m) (S m) a
1053 -> Int
1054 -> Int
1055 -> a
1056 cofactor matrix i j =
1057 (-1)^(toInteger i + toInteger j) NP.* (minor matrix i j)
1058
1059
1060 -- | Compute the inverse of a matrix using cofactor expansion
1061 -- (generalized Cramer's rule).
1062 --
1063 -- Examples:
1064 --
1065 -- >>> let m1 = fromList [[37,22],[17,54]] :: Mat2 Double
1066 -- >>> let e1 = [54/1624, -22/1624] :: [Double]
1067 -- >>> let e2 = [-17/1624, 37/1624] :: [Double]
1068 -- >>> let expected = fromList [e1, e2] :: Mat2 Double
1069 -- >>> let actual = inverse m1
1070 -- >>> frobenius_norm (actual - expected) < 1e-12
1071 -- True
1072 --
1073 inverse :: (Arity m,
1074 Determined (Mat (S m) (S m)) a,
1075 Determined (Mat m m) a,
1076 Field.C a)
1077 => Mat (S m) (S m) a
1078 -> Mat (S m) (S m) a
1079 inverse matrix =
1080 (1 / (determinant matrix)) *> (transpose $ construct lambda)
1081 where
1082 lambda i j = cofactor matrix i j
1083