]> gitweb.michael.orlitzky.com - dunshire.git/blob - src/dunshire/games.py
Finish overhauling the docstrings to numpy format.
[dunshire.git] / src / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7
8 # These few are used only for tests.
9 from math import sqrt
10 from random import randint, uniform
11 from unittest import TestCase
12
13 # These are mostly actually needed.
14 from cvxopt import matrix, printing, solvers
15 from cones import CartesianProduct, IceCream, NonnegativeOrthant
16 from errors import GameUnsolvableException
17 from matrices import append_col, append_row, identity, inner_product
18 import options
19
20 printing.options['dformat'] = options.FLOAT_FORMAT
21 solvers.options['show_progress'] = options.VERBOSE
22
23
24 class Solution:
25 """
26 A representation of the solution of a linear game. It should contain
27 the value of the game, and both players' strategies.
28
29 Examples
30 --------
31
32 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
33 Game value: 10.0000000
34 Player 1 optimal:
35 [ 1]
36 [ 2]
37 Player 2 optimal:
38 [ 3]
39 [ 4]
40
41 """
42 def __init__(self, game_value, p1_optimal, p2_optimal):
43 """
44 Create a new Solution object from a game value and two optimal
45 strategies for the players.
46 """
47 self._game_value = game_value
48 self._player1_optimal = p1_optimal
49 self._player2_optimal = p2_optimal
50
51 def __str__(self):
52 """
53 Return a string describing the solution of a linear game.
54
55 The three data that are described are,
56
57 * The value of the game.
58 * The optimal strategy of player one.
59 * The optimal strategy of player two.
60
61 The two optimal strategy vectors are indented by two spaces.
62 """
63 tpl = 'Game value: {:.7f}\n' \
64 'Player 1 optimal:{:s}\n' \
65 'Player 2 optimal:{:s}'
66
67 p1_str = '\n{!s}'.format(self.player1_optimal())
68 p1_str = '\n '.join(p1_str.splitlines())
69 p2_str = '\n{!s}'.format(self.player2_optimal())
70 p2_str = '\n '.join(p2_str.splitlines())
71
72 return tpl.format(self.game_value(), p1_str, p2_str)
73
74
75 def game_value(self):
76 """
77 Return the game value for this solution.
78
79 Examples
80 --------
81
82 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
83 >>> s.game_value()
84 10
85
86 """
87 return self._game_value
88
89
90 def player1_optimal(self):
91 """
92 Return player one's optimal strategy in this solution.
93
94 Examples
95 --------
96
97 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
98 >>> print(s.player1_optimal())
99 [ 1]
100 [ 2]
101 <BLANKLINE>
102
103 """
104 return self._player1_optimal
105
106
107 def player2_optimal(self):
108 """
109 Return player two's optimal strategy in this solution.
110
111 Examples
112 --------
113
114 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
115 >>> print(s.player2_optimal())
116 [ 3]
117 [ 4]
118 <BLANKLINE>
119
120 """
121 return self._player2_optimal
122
123
124 class SymmetricLinearGame:
125 r"""
126 A representation of a symmetric linear game.
127
128 The data for a symmetric linear game are,
129
130 * A "payoff" operator ``L``.
131 * A symmetric cone ``K``.
132 * Two points ``e1`` and ``e2`` in the interior of ``K``.
133
134 The ambient space is assumed to be the span of ``K``.
135
136 With those data understood, the game is played as follows. Players
137 one and two choose points :math:`x` and :math:`y` respectively, from
138 their respective strategy sets,
139
140 .. math::
141 \begin{aligned}
142 \Delta_{1}
143 &=
144 \left\{
145 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
146 \right\}\\
147 \Delta_{2}
148 &=
149 \left\{
150 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
151 \right\}.
152 \end{aligned}
153
154 Afterwards, a "payout" is computed as :math:`\left\langle
155 L\left(x\right), y \right\rangle` and is paid to player one out of
156 player two's pocket. The game is therefore zero sum, and we suppose
157 that player one would like to guarantee himself the largest minimum
158 payout possible. That is, player one wishes to,
159
160 .. math::
161 \begin{aligned}
162 \text{maximize }
163 &\underset{y \in \Delta_{2}}{\min}\left(
164 \left\langle L\left(x\right), y \right\rangle
165 \right)\\
166 \text{subject to } & x \in \Delta_{1}.
167 \end{aligned}
168
169 Player two has the simultaneous goal to,
170
171 .. math::
172 \begin{aligned}
173 \text{minimize }
174 &\underset{x \in \Delta_{1}}{\max}\left(
175 \left\langle L\left(x\right), y \right\rangle
176 \right)\\
177 \text{subject to } & y \in \Delta_{2}.
178 \end{aligned}
179
180 These goals obviously conflict (the game is zero sum), but an
181 existence theorem guarantees at least one optimal min-max solution
182 from which neither player would like to deviate. This class is
183 able to find such a solution.
184
185 Parameters
186 ----------
187
188 L : list of list of float
189 A matrix represented as a list of ROWS. This representation
190 agrees with (for example) SageMath and NumPy, but not with CVXOPT
191 (whose matrix constructor accepts a list of columns).
192
193 K : :class:`SymmetricCone`
194 The symmetric cone instance over which the game is played.
195
196 e1 : iterable float
197 The interior point of ``K`` belonging to player one; it
198 can be of any iterable type having the correct length.
199
200 e2 : iterable float
201 The interior point of ``K`` belonging to player two; it
202 can be of any enumerable type having the correct length.
203
204 Raises
205 ------
206
207 ValueError
208 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
209
210 Examples
211 --------
212
213 >>> from cones import NonnegativeOrthant
214 >>> K = NonnegativeOrthant(3)
215 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
216 >>> e1 = [1,1,1]
217 >>> e2 = [1,2,3]
218 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
219 >>> print(SLG)
220 The linear game (L, K, e1, e2) where
221 L = [ 1 -5 -15]
222 [ -1 2 -3]
223 [-12 -15 1],
224 K = Nonnegative orthant in the real 3-space,
225 e1 = [ 1]
226 [ 1]
227 [ 1],
228 e2 = [ 1]
229 [ 2]
230 [ 3].
231
232 Lists can (and probably should) be used for every argument::
233
234 >>> from cones import NonnegativeOrthant
235 >>> K = NonnegativeOrthant(2)
236 >>> L = [[1,0],[0,1]]
237 >>> e1 = [1,1]
238 >>> e2 = [1,1]
239 >>> G = SymmetricLinearGame(L, K, e1, e2)
240 >>> print(G)
241 The linear game (L, K, e1, e2) where
242 L = [ 1 0]
243 [ 0 1],
244 K = Nonnegative orthant in the real 2-space,
245 e1 = [ 1]
246 [ 1],
247 e2 = [ 1]
248 [ 1].
249
250 The points ``e1`` and ``e2`` can also be passed as some other
251 enumerable type (of the correct length) without much harm, since
252 there is no row/column ambiguity::
253
254 >>> import cvxopt
255 >>> import numpy
256 >>> from cones import NonnegativeOrthant
257 >>> K = NonnegativeOrthant(2)
258 >>> L = [[1,0],[0,1]]
259 >>> e1 = cvxopt.matrix([1,1])
260 >>> e2 = numpy.matrix([1,1])
261 >>> G = SymmetricLinearGame(L, K, e1, e2)
262 >>> print(G)
263 The linear game (L, K, e1, e2) where
264 L = [ 1 0]
265 [ 0 1],
266 K = Nonnegative orthant in the real 2-space,
267 e1 = [ 1]
268 [ 1],
269 e2 = [ 1]
270 [ 1].
271
272 However, ``L`` will always be intepreted as a list of rows, even
273 if it is passed as a :class:`cvxopt.base.matrix` which is
274 otherwise indexed by columns::
275
276 >>> import cvxopt
277 >>> from cones import NonnegativeOrthant
278 >>> K = NonnegativeOrthant(2)
279 >>> L = [[1,2],[3,4]]
280 >>> e1 = [1,1]
281 >>> e2 = e1
282 >>> G = SymmetricLinearGame(L, K, e1, e2)
283 >>> print(G)
284 The linear game (L, K, e1, e2) where
285 L = [ 1 2]
286 [ 3 4],
287 K = Nonnegative orthant in the real 2-space,
288 e1 = [ 1]
289 [ 1],
290 e2 = [ 1]
291 [ 1].
292 >>> L = cvxopt.matrix(L)
293 >>> print(L)
294 [ 1 3]
295 [ 2 4]
296 <BLANKLINE>
297 >>> G = SymmetricLinearGame(L, K, e1, e2)
298 >>> print(G)
299 The linear game (L, K, e1, e2) where
300 L = [ 1 2]
301 [ 3 4],
302 K = Nonnegative orthant in the real 2-space,
303 e1 = [ 1]
304 [ 1],
305 e2 = [ 1]
306 [ 1].
307
308 """
309 def __init__(self, L, K, e1, e2):
310 """
311 Create a new SymmetricLinearGame object.
312 """
313 self._K = K
314 self._e1 = matrix(e1, (K.dimension(), 1))
315 self._e2 = matrix(e2, (K.dimension(), 1))
316
317 # Our input ``L`` is indexed by rows but CVXOPT matrices are
318 # indexed by columns, so we need to transpose the input before
319 # feeding it to CVXOPT.
320 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
321
322 if not K.contains_strict(self._e1):
323 raise ValueError('the point e1 must lie in the interior of K')
324
325 if not K.contains_strict(self._e2):
326 raise ValueError('the point e2 must lie in the interior of K')
327
328 def __str__(self):
329 """
330 Return a string representation of this game.
331 """
332 tpl = 'The linear game (L, K, e1, e2) where\n' \
333 ' L = {:s},\n' \
334 ' K = {!s},\n' \
335 ' e1 = {:s},\n' \
336 ' e2 = {:s}.'
337 indented_L = '\n '.join(str(self._L).splitlines())
338 indented_e1 = '\n '.join(str(self._e1).splitlines())
339 indented_e2 = '\n '.join(str(self._e2).splitlines())
340 return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
341
342
343 def solution(self):
344 """
345 Solve this linear game and return a :class:`Solution`.
346
347 Returns
348 -------
349
350 :class:`Solution`
351 A :class:`Solution` object describing the game's value and
352 the optimal strategies of both players.
353
354 Raises
355 ------
356 GameUnsolvableException
357 If the game could not be solved (if an optimal solution to its
358 associated cone program was not found).
359
360 Examples
361 --------
362
363 This example is computed in Gowda and Ravindran in the section
364 "The value of a Z-transformation"::
365
366 >>> from cones import NonnegativeOrthant
367 >>> K = NonnegativeOrthant(3)
368 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
369 >>> e1 = [1,1,1]
370 >>> e2 = [1,1,1]
371 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
372 >>> print(SLG.solution())
373 Game value: -6.1724138
374 Player 1 optimal:
375 [ 0.5517241]
376 [-0.0000000]
377 [ 0.4482759]
378 Player 2 optimal:
379 [0.4482759]
380 [0.0000000]
381 [0.5517241]
382
383 The value of the following game can be computed using the fact
384 that the identity is invertible::
385
386 >>> from cones import NonnegativeOrthant
387 >>> K = NonnegativeOrthant(3)
388 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
389 >>> e1 = [1,2,3]
390 >>> e2 = [4,5,6]
391 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
392 >>> print(SLG.solution())
393 Game value: 0.0312500
394 Player 1 optimal:
395 [0.0312500]
396 [0.0625000]
397 [0.0937500]
398 Player 2 optimal:
399 [0.1250000]
400 [0.1562500]
401 [0.1875000]
402
403 """
404 # The cone "C" that appears in the statement of the CVXOPT
405 # conelp program.
406 C = CartesianProduct(self._K, self._K)
407
408 # The column vector "b" that appears on the right-hand side of
409 # Ax = b in the statement of the CVXOPT conelp program.
410 b = matrix([1], tc='d')
411
412 # A column of zeros that fits K.
413 zero = matrix(0, (self._K.dimension(), 1), tc='d')
414
415 # The column vector "h" that appears on the right-hand side of
416 # Gx + s = h in the statement of the CVXOPT conelp program.
417 h = matrix([zero, zero])
418
419 # The column vector "c" that appears in the objective function
420 # value <c,x> in the statement of the CVXOPT conelp program.
421 c = matrix([-1, zero])
422
423 # The matrix "G" that appears on the left-hand side of Gx + s = h
424 # in the statement of the CVXOPT conelp program.
425 G = append_row(append_col(zero, -identity(self._K.dimension())),
426 append_col(self._e1, -self._L))
427
428 # The matrix "A" that appears on the right-hand side of Ax = b
429 # in the statement of the CVXOPT conelp program.
430 A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
431
432 # Actually solve the thing and obtain a dictionary describing
433 # what happened.
434 soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
435
436 # The "status" field contains "optimal" if everything went
437 # according to plan. Other possible values are "primal
438 # infeasible", "dual infeasible", "unknown", all of which
439 # mean we didn't get a solution. That should never happen,
440 # because by construction our game has a solution, and thus
441 # the cone program should too.
442 if soln_dict['status'] != 'optimal':
443 raise GameUnsolvableException(soln_dict)
444
445 p1_value = soln_dict['x'][0]
446 p1_optimal = soln_dict['x'][1:]
447 p2_optimal = soln_dict['z'][self._K.dimension():]
448
449 return Solution(p1_value, p1_optimal, p2_optimal)
450
451 def dual(self):
452 r"""
453 Return the dual game to this game.
454
455 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
456 then its dual is :math:`G^{*} =
457 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
458 is symmetric, :math:`K^{*} = K`.
459
460 Examples
461 --------
462
463 >>> from cones import NonnegativeOrthant
464 >>> K = NonnegativeOrthant(3)
465 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
466 >>> e1 = [1,1,1]
467 >>> e2 = [1,2,3]
468 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
469 >>> print(SLG.dual())
470 The linear game (L, K, e1, e2) where
471 L = [ 1 -1 -12]
472 [ -5 2 -15]
473 [-15 -3 1],
474 K = Nonnegative orthant in the real 3-space,
475 e1 = [ 1]
476 [ 2]
477 [ 3],
478 e2 = [ 1]
479 [ 1]
480 [ 1].
481
482 """
483 # We pass ``self._L`` right back into the constructor, because
484 # it will be transposed there. And keep in mind that ``self._K``
485 # is its own dual.
486 return SymmetricLinearGame(self._L,
487 self._K,
488 self._e2,
489 self._e1)
490
491
492 class SymmetricLinearGameTest(TestCase):
493 """
494 Tests for the SymmetricLinearGame and Solution classes.
495 """
496
497 def assert_within_tol(self, first, second):
498 """
499 Test that ``first`` and ``second`` are equal within our default
500 tolerance.
501 """
502 self.assertTrue(abs(first - second) < options.ABS_TOL)
503
504
505 def assert_solution_exists(self, L, K, e1, e2):
506 """
507 Given the parameters needed to construct a SymmetricLinearGame,
508 ensure that that game has a solution.
509 """
510 G = SymmetricLinearGame(L, K, e1, e2)
511 soln = G.solution()
512 L_matrix = matrix(L).trans()
513 expected = inner_product(L_matrix*soln.player1_optimal(),
514 soln.player2_optimal())
515 self.assert_within_tol(soln.game_value(), expected)
516
517 def test_solution_exists_nonnegative_orthant(self):
518 """
519 Every linear game has a solution, so we should be able to solve
520 every symmetric linear game over the NonnegativeOrthant. Pick
521 some parameters randomly and give it a shot. The resulting
522 optimal solutions should give us the optimal game value when we
523 apply the payoff operator to them.
524 """
525 ambient_dim = randint(1, 10)
526 K = NonnegativeOrthant(ambient_dim)
527 e1 = [uniform(0.1, 10) for idx in range(K.dimension())]
528 e2 = [uniform(0.1, 10) for idx in range(K.dimension())]
529 L = [[uniform(-10, 10) for i in range(K.dimension())]
530 for j in range(K.dimension())]
531 self.assert_solution_exists(L, K, e1, e2)
532
533 def test_solution_exists_ice_cream(self):
534 """
535 Like :meth:`test_solution_exists_nonnegative_orthant`, except
536 over the ice cream cone.
537 """
538 # Use a minimum dimension of two to avoid divide-by-zero in
539 # the fudge factor we make up later.
540 ambient_dim = randint(2, 10)
541 K = IceCream(ambient_dim)
542 e1 = [1] # Set the "height" of e1 to one
543 e2 = [1] # And the same for e2
544
545 # If we choose the rest of the components of e1,e2 randomly
546 # between 0 and 1, then the largest the squared norm of the
547 # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
548 # need to make it less than one (the height of the cone) so
549 # that the whole thing is in the cone. The norm of the
550 # non-height part is sqrt(dim(K) - 1), and we can divide by
551 # twice that.
552 fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
553 e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
554 e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
555 L = [[uniform(-10, 10) for i in range(K.dimension())]
556 for j in range(K.dimension())]
557 self.assert_solution_exists(L, K, e1, e2)
558