]> gitweb.michael.orlitzky.com - dunshire.git/blob - dunshire/games.py
Add setup.py and reorganize everything to make its "test" command happy.
[dunshire.git] / dunshire / games.py
1 """
2 Symmetric linear games and their solutions.
3
4 This module contains the main :class:`SymmetricLinearGame` class that
5 knows how to solve a linear game.
6 """
7
8 from cvxopt import matrix, printing, solvers
9 from .cones import CartesianProduct
10 from .errors import GameUnsolvableException
11 from .matrices import append_col, append_row, identity
12 from . import options
13
14 printing.options['dformat'] = options.FLOAT_FORMAT
15 solvers.options['show_progress'] = options.VERBOSE
16
17
18 class Solution:
19 """
20 A representation of the solution of a linear game. It should contain
21 the value of the game, and both players' strategies.
22
23 Examples
24 --------
25
26 >>> print(Solution(10, matrix([1,2]), matrix([3,4])))
27 Game value: 10.0000000
28 Player 1 optimal:
29 [ 1]
30 [ 2]
31 Player 2 optimal:
32 [ 3]
33 [ 4]
34
35 """
36 def __init__(self, game_value, p1_optimal, p2_optimal):
37 """
38 Create a new Solution object from a game value and two optimal
39 strategies for the players.
40 """
41 self._game_value = game_value
42 self._player1_optimal = p1_optimal
43 self._player2_optimal = p2_optimal
44
45 def __str__(self):
46 """
47 Return a string describing the solution of a linear game.
48
49 The three data that are described are,
50
51 * The value of the game.
52 * The optimal strategy of player one.
53 * The optimal strategy of player two.
54
55 The two optimal strategy vectors are indented by two spaces.
56 """
57 tpl = 'Game value: {:.7f}\n' \
58 'Player 1 optimal:{:s}\n' \
59 'Player 2 optimal:{:s}'
60
61 p1_str = '\n{!s}'.format(self.player1_optimal())
62 p1_str = '\n '.join(p1_str.splitlines())
63 p2_str = '\n{!s}'.format(self.player2_optimal())
64 p2_str = '\n '.join(p2_str.splitlines())
65
66 return tpl.format(self.game_value(), p1_str, p2_str)
67
68
69 def game_value(self):
70 """
71 Return the game value for this solution.
72
73 Examples
74 --------
75
76 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
77 >>> s.game_value()
78 10
79
80 """
81 return self._game_value
82
83
84 def player1_optimal(self):
85 """
86 Return player one's optimal strategy in this solution.
87
88 Examples
89 --------
90
91 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
92 >>> print(s.player1_optimal())
93 [ 1]
94 [ 2]
95 <BLANKLINE>
96
97 """
98 return self._player1_optimal
99
100
101 def player2_optimal(self):
102 """
103 Return player two's optimal strategy in this solution.
104
105 Examples
106 --------
107
108 >>> s = Solution(10, matrix([1,2]), matrix([3,4]))
109 >>> print(s.player2_optimal())
110 [ 3]
111 [ 4]
112 <BLANKLINE>
113
114 """
115 return self._player2_optimal
116
117
118 class SymmetricLinearGame:
119 r"""
120 A representation of a symmetric linear game.
121
122 The data for a symmetric linear game are,
123
124 * A "payoff" operator ``L``.
125 * A symmetric cone ``K``.
126 * Two points ``e1`` and ``e2`` in the interior of ``K``.
127
128 The ambient space is assumed to be the span of ``K``.
129
130 With those data understood, the game is played as follows. Players
131 one and two choose points :math:`x` and :math:`y` respectively, from
132 their respective strategy sets,
133
134 .. math::
135 \begin{aligned}
136 \Delta_{1}
137 &=
138 \left\{
139 x \in K \ \middle|\ \left\langle x, e_{2} \right\rangle = 1
140 \right\}\\
141 \Delta_{2}
142 &=
143 \left\{
144 y \in K \ \middle|\ \left\langle y, e_{1} \right\rangle = 1
145 \right\}.
146 \end{aligned}
147
148 Afterwards, a "payout" is computed as :math:`\left\langle
149 L\left(x\right), y \right\rangle` and is paid to player one out of
150 player two's pocket. The game is therefore zero sum, and we suppose
151 that player one would like to guarantee himself the largest minimum
152 payout possible. That is, player one wishes to,
153
154 .. math::
155 \begin{aligned}
156 \text{maximize }
157 &\underset{y \in \Delta_{2}}{\min}\left(
158 \left\langle L\left(x\right), y \right\rangle
159 \right)\\
160 \text{subject to } & x \in \Delta_{1}.
161 \end{aligned}
162
163 Player two has the simultaneous goal to,
164
165 .. math::
166 \begin{aligned}
167 \text{minimize }
168 &\underset{x \in \Delta_{1}}{\max}\left(
169 \left\langle L\left(x\right), y \right\rangle
170 \right)\\
171 \text{subject to } & y \in \Delta_{2}.
172 \end{aligned}
173
174 These goals obviously conflict (the game is zero sum), but an
175 existence theorem guarantees at least one optimal min-max solution
176 from which neither player would like to deviate. This class is
177 able to find such a solution.
178
179 Parameters
180 ----------
181
182 L : list of list of float
183 A matrix represented as a list of ROWS. This representation
184 agrees with (for example) SageMath and NumPy, but not with CVXOPT
185 (whose matrix constructor accepts a list of columns).
186
187 K : :class:`SymmetricCone`
188 The symmetric cone instance over which the game is played.
189
190 e1 : iterable float
191 The interior point of ``K`` belonging to player one; it
192 can be of any iterable type having the correct length.
193
194 e2 : iterable float
195 The interior point of ``K`` belonging to player two; it
196 can be of any enumerable type having the correct length.
197
198 Raises
199 ------
200
201 ValueError
202 If either ``e1`` or ``e2`` lie outside of the cone ``K``.
203
204 Examples
205 --------
206
207 >>> from dunshire import *
208 >>> K = NonnegativeOrthant(3)
209 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
210 >>> e1 = [1,1,1]
211 >>> e2 = [1,2,3]
212 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
213 >>> print(SLG)
214 The linear game (L, K, e1, e2) where
215 L = [ 1 -5 -15]
216 [ -1 2 -3]
217 [-12 -15 1],
218 K = Nonnegative orthant in the real 3-space,
219 e1 = [ 1]
220 [ 1]
221 [ 1],
222 e2 = [ 1]
223 [ 2]
224 [ 3].
225
226 Lists can (and probably should) be used for every argument::
227
228 >>> from dunshire import *
229 >>> K = NonnegativeOrthant(2)
230 >>> L = [[1,0],[0,1]]
231 >>> e1 = [1,1]
232 >>> e2 = [1,1]
233 >>> G = SymmetricLinearGame(L, K, e1, e2)
234 >>> print(G)
235 The linear game (L, K, e1, e2) where
236 L = [ 1 0]
237 [ 0 1],
238 K = Nonnegative orthant in the real 2-space,
239 e1 = [ 1]
240 [ 1],
241 e2 = [ 1]
242 [ 1].
243
244 The points ``e1`` and ``e2`` can also be passed as some other
245 enumerable type (of the correct length) without much harm, since
246 there is no row/column ambiguity::
247
248 >>> import cvxopt
249 >>> import numpy
250 >>> from dunshire import *
251 >>> K = NonnegativeOrthant(2)
252 >>> L = [[1,0],[0,1]]
253 >>> e1 = cvxopt.matrix([1,1])
254 >>> e2 = numpy.matrix([1,1])
255 >>> G = SymmetricLinearGame(L, K, e1, e2)
256 >>> print(G)
257 The linear game (L, K, e1, e2) where
258 L = [ 1 0]
259 [ 0 1],
260 K = Nonnegative orthant in the real 2-space,
261 e1 = [ 1]
262 [ 1],
263 e2 = [ 1]
264 [ 1].
265
266 However, ``L`` will always be intepreted as a list of rows, even
267 if it is passed as a :class:`cvxopt.base.matrix` which is
268 otherwise indexed by columns::
269
270 >>> import cvxopt
271 >>> from dunshire import *
272 >>> K = NonnegativeOrthant(2)
273 >>> L = [[1,2],[3,4]]
274 >>> e1 = [1,1]
275 >>> e2 = e1
276 >>> G = SymmetricLinearGame(L, K, e1, e2)
277 >>> print(G)
278 The linear game (L, K, e1, e2) where
279 L = [ 1 2]
280 [ 3 4],
281 K = Nonnegative orthant in the real 2-space,
282 e1 = [ 1]
283 [ 1],
284 e2 = [ 1]
285 [ 1].
286 >>> L = cvxopt.matrix(L)
287 >>> print(L)
288 [ 1 3]
289 [ 2 4]
290 <BLANKLINE>
291 >>> G = SymmetricLinearGame(L, K, e1, e2)
292 >>> print(G)
293 The linear game (L, K, e1, e2) where
294 L = [ 1 2]
295 [ 3 4],
296 K = Nonnegative orthant in the real 2-space,
297 e1 = [ 1]
298 [ 1],
299 e2 = [ 1]
300 [ 1].
301
302 """
303 def __init__(self, L, K, e1, e2):
304 """
305 Create a new SymmetricLinearGame object.
306 """
307 self._K = K
308 self._e1 = matrix(e1, (K.dimension(), 1))
309 self._e2 = matrix(e2, (K.dimension(), 1))
310
311 # Our input ``L`` is indexed by rows but CVXOPT matrices are
312 # indexed by columns, so we need to transpose the input before
313 # feeding it to CVXOPT.
314 self._L = matrix(L, (K.dimension(), K.dimension())).trans()
315
316 if not self._e1 in K:
317 raise ValueError('the point e1 must lie in the interior of K')
318
319 if not self._e2 in K:
320 raise ValueError('the point e2 must lie in the interior of K')
321
322 def __str__(self):
323 """
324 Return a string representation of this game.
325 """
326 tpl = 'The linear game (L, K, e1, e2) where\n' \
327 ' L = {:s},\n' \
328 ' K = {!s},\n' \
329 ' e1 = {:s},\n' \
330 ' e2 = {:s}.'
331 indented_L = '\n '.join(str(self._L).splitlines())
332 indented_e1 = '\n '.join(str(self._e1).splitlines())
333 indented_e2 = '\n '.join(str(self._e2).splitlines())
334 return tpl.format(indented_L, str(self._K), indented_e1, indented_e2)
335
336
337 def solution(self):
338 """
339 Solve this linear game and return a :class:`Solution`.
340
341 Returns
342 -------
343
344 :class:`Solution`
345 A :class:`Solution` object describing the game's value and
346 the optimal strategies of both players.
347
348 Raises
349 ------
350 GameUnsolvableException
351 If the game could not be solved (if an optimal solution to its
352 associated cone program was not found).
353
354 Examples
355 --------
356
357 This example is computed in Gowda and Ravindran in the section
358 "The value of a Z-transformation"::
359
360 >>> from dunshire import *
361 >>> K = NonnegativeOrthant(3)
362 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
363 >>> e1 = [1,1,1]
364 >>> e2 = [1,1,1]
365 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
366 >>> print(SLG.solution())
367 Game value: -6.1724138
368 Player 1 optimal:
369 [ 0.5517241]
370 [-0.0000000]
371 [ 0.4482759]
372 Player 2 optimal:
373 [0.4482759]
374 [0.0000000]
375 [0.5517241]
376
377 The value of the following game can be computed using the fact
378 that the identity is invertible::
379
380 >>> from dunshire import *
381 >>> K = NonnegativeOrthant(3)
382 >>> L = [[1,0,0],[0,1,0],[0,0,1]]
383 >>> e1 = [1,2,3]
384 >>> e2 = [4,5,6]
385 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
386 >>> print(SLG.solution())
387 Game value: 0.0312500
388 Player 1 optimal:
389 [0.0312500]
390 [0.0625000]
391 [0.0937500]
392 Player 2 optimal:
393 [0.1250000]
394 [0.1562500]
395 [0.1875000]
396
397 """
398 # The cone "C" that appears in the statement of the CVXOPT
399 # conelp program.
400 C = CartesianProduct(self._K, self._K)
401
402 # The column vector "b" that appears on the right-hand side of
403 # Ax = b in the statement of the CVXOPT conelp program.
404 b = matrix([1], tc='d')
405
406 # A column of zeros that fits K.
407 zero = matrix(0, (self._K.dimension(), 1), tc='d')
408
409 # The column vector "h" that appears on the right-hand side of
410 # Gx + s = h in the statement of the CVXOPT conelp program.
411 h = matrix([zero, zero])
412
413 # The column vector "c" that appears in the objective function
414 # value <c,x> in the statement of the CVXOPT conelp program.
415 c = matrix([-1, zero])
416
417 # The matrix "G" that appears on the left-hand side of Gx + s = h
418 # in the statement of the CVXOPT conelp program.
419 G = append_row(append_col(zero, -identity(self._K.dimension())),
420 append_col(self._e1, -self._L))
421
422 # The matrix "A" that appears on the right-hand side of Ax = b
423 # in the statement of the CVXOPT conelp program.
424 A = matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
425
426 # Actually solve the thing and obtain a dictionary describing
427 # what happened.
428 soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b)
429
430 # The optimal strategies are named ``p`` and ``q`` in the
431 # background documentation, and we need to extract them from
432 # the CVXOPT ``x`` and ``z`` variables. The objective values
433 # :math:`nu` and :math:`omega` can also be found in the CVXOPT
434 # ``x`` and ``y`` variables; however, they're stored
435 # conveniently as separate entries in the solution dictionary.
436 p1_value = -soln_dict['primal objective']
437 p2_value = -soln_dict['dual objective']
438 p1_optimal = soln_dict['x'][1:]
439 p2_optimal = soln_dict['z'][self._K.dimension():]
440
441 # The "status" field contains "optimal" if everything went
442 # according to plan. Other possible values are "primal
443 # infeasible", "dual infeasible", "unknown", all of which mean
444 # we didn't get a solution. The "infeasible" ones are the
445 # worst, since they indicate that CVXOPT is convinced the
446 # problem is infeasible (and that cannot happen).
447 if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
448 raise GameUnsolvableException(self, soln_dict)
449 elif soln_dict['status'] == 'unknown':
450 # When we get a status of "unknown", we may still be able
451 # to salvage a solution out of the returned
452 # dictionary. Often this is the result of numerical
453 # difficulty and we can simply check that the primal/dual
454 # objectives match (within a tolerance) and that the
455 # primal/dual optimal solutions are within the cone (to a
456 # tolerance as well).
457 if abs(p1_value - p2_value) > options.ABS_TOL:
458 raise GameUnsolvableException(self, soln_dict)
459 if (p1_optimal not in self._K) or (p2_optimal not in self._K):
460 raise GameUnsolvableException(self, soln_dict)
461
462 return Solution(p1_value, p1_optimal, p2_optimal)
463
464
465 def dual(self):
466 r"""
467 Return the dual game to this game.
468
469 If :math:`G = \left(L,K,e_{1},e_{2}\right)` is a linear game,
470 then its dual is :math:`G^{*} =
471 \left(L^{*},K^{*},e_{2},e_{1}\right)`. However, since this cone
472 is symmetric, :math:`K^{*} = K`.
473
474 Examples
475 --------
476
477 >>> from dunshire import *
478 >>> K = NonnegativeOrthant(3)
479 >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
480 >>> e1 = [1,1,1]
481 >>> e2 = [1,2,3]
482 >>> SLG = SymmetricLinearGame(L, K, e1, e2)
483 >>> print(SLG.dual())
484 The linear game (L, K, e1, e2) where
485 L = [ 1 -1 -12]
486 [ -5 2 -15]
487 [-15 -3 1],
488 K = Nonnegative orthant in the real 3-space,
489 e1 = [ 1]
490 [ 2]
491 [ 3],
492 e2 = [ 1]
493 [ 1]
494 [ 1].
495
496 """
497 # We pass ``self._L`` right back into the constructor, because
498 # it will be transposed there. And keep in mind that ``self._K``
499 # is its own dual.
500 return SymmetricLinearGame(self._L,
501 self._K,
502 self._e2,
503 self._e1)