]> gitweb.michael.orlitzky.com - spline3.git/blob - src/Cube.hs
Eliminate common subexpressions in Cube.hs (Ben Lippmeier).
[spline3.git] / src / Cube.hs
1 module Cube (
2 Cube(..),
3 cube_properties,
4 find_containing_tetrahedron,
5 tetrahedra,
6 tetrahedron
7 )
8 where
9
10 import Data.Maybe (fromJust)
11 import qualified Data.Vector as V (
12 Vector,
13 findIndex,
14 map,
15 minimum,
16 singleton,
17 snoc,
18 unsafeIndex
19 )
20 import Prelude hiding (LT)
21 import Test.Framework (Test, testGroup)
22 import Test.Framework.Providers.QuickCheck2 (testProperty)
23 import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose)
24
25 import Cardinal
26 import Comparisons ((~=), (~~=))
27 import qualified Face (Face(Face, v0, v1, v2, v3))
28 import FunctionValues (FunctionValues, eval, rotate)
29 import Misc (all_equal, disjoint)
30 import Point
31 import Tetrahedron (Tetrahedron(..), c, volume)
32 import ThreeDimensional
33
34 data Cube = Cube { h :: !Double,
35 i :: !Int,
36 j :: !Int,
37 k :: !Int,
38 fv :: !FunctionValues,
39 tetrahedra_volume :: !Double }
40 deriving (Eq)
41
42
43 instance Arbitrary Cube where
44 arbitrary = do
45 (Positive h') <- arbitrary :: Gen (Positive Double)
46 i' <- choose (coordmin, coordmax)
47 j' <- choose (coordmin, coordmax)
48 k' <- choose (coordmin, coordmax)
49 fv' <- arbitrary :: Gen FunctionValues
50 (Positive tet_vol) <- arbitrary :: Gen (Positive Double)
51 return (Cube h' i' j' k' fv' tet_vol)
52 where
53 -- The idea here is that, when cubed in the volume formula,
54 -- these numbers don't overflow 64 bits. This number is not
55 -- magic in any other sense than that it does not cause test
56 -- failures, while 2^23 does.
57 coordmax = 4194304 -- 2^22
58 coordmin = -coordmax
59
60
61 instance Show Cube where
62 show cube =
63 "Cube_" ++ subscript ++ "\n" ++
64 " h: " ++ (show (h cube)) ++ "\n" ++
65 " Center: " ++ (show (center cube)) ++ "\n" ++
66 " xmin: " ++ (show (xmin cube)) ++ "\n" ++
67 " xmax: " ++ (show (xmax cube)) ++ "\n" ++
68 " ymin: " ++ (show (ymin cube)) ++ "\n" ++
69 " ymax: " ++ (show (ymax cube)) ++ "\n" ++
70 " zmin: " ++ (show (zmin cube)) ++ "\n" ++
71 " zmax: " ++ (show (zmax cube)) ++ "\n"
72 where
73 subscript =
74 (show (i cube)) ++ "," ++ (show (j cube)) ++ "," ++ (show (k cube))
75
76
77 -- | The left-side boundary of the cube. See Sorokina and Zeilfelder,
78 -- p. 76.
79 xmin :: Cube -> Double
80 xmin cube = (i' - 1/2)*delta
81 where
82 i' = fromIntegral (i cube) :: Double
83 delta = h cube
84
85 -- | The right-side boundary of the cube. See Sorokina and Zeilfelder,
86 -- p. 76.
87 xmax :: Cube -> Double
88 xmax cube = (i' + 1/2)*delta
89 where
90 i' = fromIntegral (i cube) :: Double
91 delta = h cube
92
93 -- | The front boundary of the cube. See Sorokina and Zeilfelder,
94 -- p. 76.
95 ymin :: Cube -> Double
96 ymin cube = (j' - 1/2)*delta
97 where
98 j' = fromIntegral (j cube) :: Double
99 delta = h cube
100
101 -- | The back boundary of the cube. See Sorokina and Zeilfelder,
102 -- p. 76.
103 ymax :: Cube -> Double
104 ymax cube = (j' + 1/2)*delta
105 where
106 j' = fromIntegral (j cube) :: Double
107 delta = h cube
108
109 -- | The bottom boundary of the cube. See Sorokina and Zeilfelder,
110 -- p. 76.
111 zmin :: Cube -> Double
112 zmin cube = (k' - 1/2)*delta
113 where
114 k' = fromIntegral (k cube) :: Double
115 delta = h cube
116
117 -- | The top boundary of the cube. See Sorokina and Zeilfelder,
118 -- p. 76.
119 zmax :: Cube -> Double
120 zmax cube = (k' + 1/2)*delta
121 where
122 k' = fromIntegral (k cube) :: Double
123 delta = h cube
124
125 instance ThreeDimensional Cube where
126 -- | The center of Cube_ijk coincides with v_ijk at
127 -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76.
128 center cube = (x, y, z)
129 where
130 delta = h cube
131 i' = fromIntegral (i cube) :: Double
132 j' = fromIntegral (j cube) :: Double
133 k' = fromIntegral (k cube) :: Double
134 x = delta * i'
135 y = delta * j'
136 z = delta * k'
137
138 -- | It's easy to tell if a point is within a cube; just make sure
139 -- that it falls on the proper side of each of the cube's faces.
140 contains_point cube (x, y, z)
141 | x < (xmin cube) = False
142 | x > (xmax cube) = False
143 | y < (ymin cube) = False
144 | y > (ymax cube) = False
145 | z < (zmin cube) = False
146 | z > (zmax cube) = False
147 | otherwise = True
148
149
150
151 -- Face stuff.
152
153 -- | The top (in the direction of z) face of the cube.
154 top_face :: Cube -> Face.Face
155 top_face cube = Face.Face v0' v1' v2' v3'
156 where
157 delta = (1/2)*(h cube)
158 cc = center cube
159 v0' = cc + (delta, -delta, delta)
160 v1' = cc + (delta, delta, delta)
161 v2' = cc + (-delta, delta, delta)
162 v3' = cc + (-delta, -delta, delta)
163
164
165
166 -- | The back (in the direction of x) face of the cube.
167 back_face :: Cube -> Face.Face
168 back_face cube = Face.Face v0' v1' v2' v3'
169 where
170 delta = (1/2)*(h cube)
171 cc = center cube
172 v0' = cc + (delta, -delta, -delta)
173 v1' = cc + (delta, delta, -delta)
174 v2' = cc + (delta, delta, delta)
175 v3' = cc + (delta, -delta, delta)
176
177
178 -- The bottom face (in the direction of -z) of the cube.
179 down_face :: Cube -> Face.Face
180 down_face cube = Face.Face v0' v1' v2' v3'
181 where
182 delta = (1/2)*(h cube)
183 cc = center cube
184 v0' = cc + (-delta, -delta, -delta)
185 v1' = cc + (-delta, delta, -delta)
186 v2' = cc + (delta, delta, -delta)
187 v3' = cc + (delta, -delta, -delta)
188
189
190
191 -- | The front (in the direction of -x) face of the cube.
192 front_face :: Cube -> Face.Face
193 front_face cube = Face.Face v0' v1' v2' v3'
194 where
195 delta = (1/2)*(h cube)
196 cc = center cube
197 v0' = cc + (-delta, -delta, delta)
198 v1' = cc + (-delta, delta, delta)
199 v2' = cc + (-delta, delta, -delta)
200 v3' = cc + (-delta, -delta, -delta)
201
202 -- | The left (in the direction of -y) face of the cube.
203 left_face :: Cube -> Face.Face
204 left_face cube = Face.Face v0' v1' v2' v3'
205 where
206 delta = (1/2)*(h cube)
207 cc = center cube
208 v0' = cc + (delta, -delta, delta)
209 v1' = cc + (-delta, -delta, delta)
210 v2' = cc + (-delta, -delta, -delta)
211 v3' = cc + (delta, -delta, -delta)
212
213
214 -- | The right (in the direction of y) face of the cube.
215 right_face :: Cube -> Face.Face
216 right_face cube = Face.Face v0' v1' v2' v3'
217 where
218 delta = (1/2)*(h cube)
219 cc = center cube
220 v0' = cc + (-delta, delta, delta)
221 v1' = cc + (delta, delta, delta)
222 v2' = cc + (delta, delta, -delta)
223 v3' = cc + (-delta, delta, -delta)
224
225
226 tetrahedron :: Cube -> Int -> Tetrahedron
227
228 tetrahedron cube 0 =
229 Tetrahedron (fv cube) v0' v1' v2' v3' vol
230 where
231 v0' = center cube
232 ff = front_face cube
233 v1' = center ff
234 v2' = Face.v0 ff
235 v3' = Face.v1 ff
236 vol = tetrahedra_volume cube
237
238 tetrahedron cube 1 =
239 Tetrahedron fv' v0' v1' v2' v3' vol
240 where
241 v0' = center cube
242 ff = front_face cube
243 v1' = center ff
244 v2' = Face.v1 ff
245 v3' = Face.v2 ff
246 fv' = rotate ccwx (fv cube)
247 vol = tetrahedra_volume cube
248
249 tetrahedron cube 2 =
250 Tetrahedron fv' v0' v1' v2' v3' vol
251 where
252 v0' = center cube
253 ff = front_face cube
254 v1' = center ff
255 v2' = Face.v2 ff
256 v3' = Face.v3 ff
257 fv' = rotate ccwx $ rotate ccwx $ fv cube
258 vol = tetrahedra_volume cube
259
260 tetrahedron cube 3 =
261 Tetrahedron fv' v0' v1' v2' v3' vol
262 where
263 v0' = center cube
264 ff = front_face cube
265 v1' = center ff
266 v2' = Face.v3 ff
267 v3' = Face.v0 ff
268 fv' = rotate cwx (fv cube)
269 vol = tetrahedra_volume cube
270
271 tetrahedron cube 4 =
272 Tetrahedron fv' v0' v1' v2' v3' vol
273 where
274 v0' = center cube
275 tf = top_face cube
276 v1' = center tf
277 v2' = Face.v0 tf
278 v3' = Face.v1 tf
279 fv' = rotate cwy (fv cube)
280 vol = tetrahedra_volume cube
281
282 tetrahedron cube 5 =
283 Tetrahedron fv' v0' v1' v2' v3' vol
284 where
285 v0' = center cube
286 tf = top_face cube
287 v1' = center tf
288 v2' = Face.v1 tf
289 v3' = Face.v2 tf
290 fv' = rotate cwy $ rotate cwz $ fv cube
291 vol = tetrahedra_volume cube
292
293 tetrahedron cube 6 =
294 Tetrahedron fv' v0' v1' v2' v3' vol
295 where
296 v0' = center cube
297 tf = top_face cube
298 v1' = center tf
299 v2' = Face.v2 tf
300 v3' = Face.v3 tf
301 fv' = rotate cwy $ rotate cwz
302 $ rotate cwz
303 $ fv cube
304 vol = tetrahedra_volume cube
305
306 tetrahedron cube 7 =
307 Tetrahedron fv' v0' v1' v2' v3' vol
308 where
309 v0' = center cube
310 tf = top_face cube
311 v1' = center tf
312 v2' = Face.v3 tf
313 v3' = Face.v0 tf
314 fv' = rotate cwy $ rotate ccwz $ fv cube
315 vol = tetrahedra_volume cube
316
317 tetrahedron cube 8 =
318 Tetrahedron fv' v0' v1' v2' v3' vol
319 where
320 v0' = center cube
321 bf = back_face cube
322 v1' = center bf
323 v2' = Face.v0 bf
324 v3' = Face.v1 bf
325 fv' = rotate cwy $ rotate cwy $ fv cube
326 vol = tetrahedra_volume cube
327
328 tetrahedron cube 9 =
329 Tetrahedron fv' v0' v1' v2' v3' vol
330 where
331 v0' = center cube
332 bf = back_face cube
333 v1' = center bf
334 v2' = Face.v1 bf
335 v3' = Face.v2 bf
336 fv' = rotate cwy $ rotate cwy
337 $ rotate cwx
338 $ fv cube
339 vol = tetrahedra_volume cube
340
341 tetrahedron cube 10 =
342 Tetrahedron fv' v0' v1' v2' v3' vol
343 where
344 v0' = center cube
345 bf = back_face cube
346 v1' = center bf
347 v2' = Face.v2 bf
348 v3' = Face.v3 bf
349 fv' = rotate cwy $ rotate cwy
350 $ rotate cwx
351 $ rotate cwx
352 $ fv cube
353
354 vol = tetrahedra_volume cube
355
356 tetrahedron cube 11 =
357 Tetrahedron fv' v0' v1' v2' v3' vol
358 where
359 v0' = center cube
360 bf = back_face cube
361 v1' = center bf
362 v2' = Face.v3 bf
363 v3' = Face.v0 bf
364 fv' = rotate cwy $ rotate cwy
365 $ rotate ccwx
366 $ fv cube
367 vol = tetrahedra_volume cube
368
369 tetrahedron cube 12 =
370 Tetrahedron fv' v0' v1' v2' v3' vol
371 where
372 v0' = center cube
373 df = down_face cube
374 v1' = center df
375 v2' = Face.v0 df
376 v3' = Face.v1 df
377 fv' = rotate ccwy $ fv cube
378 vol = tetrahedra_volume cube
379
380 tetrahedron cube 13 =
381 Tetrahedron fv' v0' v1' v2' v3' vol
382 where
383 v0' = center cube
384 df = down_face cube
385 v1' = center df
386 v2' = Face.v1 df
387 v3' = Face.v2 df
388 fv' = rotate ccwy $ rotate ccwz $ fv cube
389 vol = tetrahedra_volume cube
390
391 tetrahedron cube 14 =
392 Tetrahedron fv' v0' v1' v2' v3' vol
393 where
394 v0' = center cube
395 df = down_face cube
396 v1' = center df
397 v2' = Face.v2 df
398 v3' = Face.v3 df
399 fv' = rotate ccwy $ rotate ccwz
400 $ rotate ccwz
401 $ fv cube
402 vol = tetrahedra_volume cube
403
404 tetrahedron cube 15 =
405 Tetrahedron fv' v0' v1' v2' v3' vol
406 where
407 v0' = center cube
408 df = down_face cube
409 v1' = center df
410 v2' = Face.v3 df
411 v3' = Face.v0 df
412 fv' = rotate ccwy $ rotate cwz $ fv cube
413 vol = tetrahedra_volume cube
414
415 tetrahedron cube 16 =
416 Tetrahedron fv' v0' v1' v2' v3' vol
417 where
418 v0' = center cube
419 rf = right_face cube
420 v1' = center rf
421 v2' = Face.v0 rf
422 v3' = Face.v1 rf
423 fv' = rotate ccwz $ fv cube
424 vol = tetrahedra_volume cube
425
426 tetrahedron cube 17 =
427 Tetrahedron fv' v0' v1' v2' v3' vol
428 where
429 v0' = center cube
430 rf = right_face cube
431 v1' = center rf
432 v2' = Face.v1 rf
433 v3' = Face.v2 rf
434 fv' = rotate ccwz $ rotate cwy $ fv cube
435 vol = tetrahedra_volume cube
436
437 tetrahedron cube 18 =
438 Tetrahedron fv' v0' v1' v2' v3' vol
439 where
440 v0' = center cube
441 rf = right_face cube
442 v1' = center rf
443 v2' = Face.v2 rf
444 v3' = Face.v3 rf
445 fv' = rotate ccwz $ rotate cwy
446 $ rotate cwy
447 $ fv cube
448 vol = tetrahedra_volume cube
449
450 tetrahedron cube 19 =
451 Tetrahedron fv' v0' v1' v2' v3' vol
452 where
453 v0' = center cube
454 rf = right_face cube
455 v1' = center rf
456 v2' = Face.v3 rf
457 v3' = Face.v0 rf
458 fv' = rotate ccwz $ rotate ccwy
459 $ fv cube
460 vol = tetrahedra_volume cube
461
462 tetrahedron cube 20 =
463 Tetrahedron fv' v0' v1' v2' v3' vol
464 where
465 v0' = center cube
466 lf = left_face cube
467 v1' = center lf
468 v2' = Face.v0 lf
469 v3' = Face.v1 lf
470 fv' = rotate cwz $ fv cube
471 vol = tetrahedra_volume cube
472
473 tetrahedron cube 21 =
474 Tetrahedron fv' v0' v1' v2' v3' vol
475 where
476 v0' = center cube
477 lf = left_face cube
478 v1' = center lf
479 v2' = Face.v1 lf
480 v3' = Face.v2 lf
481 fv' = rotate cwz $ rotate ccwy $ fv cube
482 vol = tetrahedra_volume cube
483
484 tetrahedron cube 22 =
485 Tetrahedron fv' v0' v1' v2' v3' vol
486 where
487 v0' = center cube
488 lf = left_face cube
489 v1' = center lf
490 v2' = Face.v2 lf
491 v3' = Face.v3 lf
492 fv' = rotate cwz $ rotate ccwy
493 $ rotate ccwy
494 $ fv cube
495 vol = tetrahedra_volume cube
496
497 tetrahedron cube 23 =
498 Tetrahedron fv' v0' v1' v2' v3' vol
499 where
500 v0' = center cube
501 lf = left_face cube
502 v1' = center lf
503 v2' = Face.v3 lf
504 v3' = Face.v0 lf
505 fv' = rotate cwz $ rotate cwy
506 $ fv cube
507 vol = tetrahedra_volume cube
508
509 -- Feels dirty, but whatever.
510 tetrahedron _ _ = error "asked for a nonexistent tetrahedron"
511
512
513 -- Only used in tests, so we don't need the added speed
514 -- of Data.Vector.
515 tetrahedra :: Cube -> [Tetrahedron]
516 tetrahedra cube = [ tetrahedron cube n | n <- [0..23] ]
517
518 front_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron
519 front_left_top_tetrahedra cube =
520 V.singleton (tetrahedron cube 0) `V.snoc`
521 (tetrahedron cube 3) `V.snoc`
522 (tetrahedron cube 6) `V.snoc`
523 (tetrahedron cube 7) `V.snoc`
524 (tetrahedron cube 20) `V.snoc`
525 (tetrahedron cube 21)
526
527 front_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron
528 front_left_down_tetrahedra cube =
529 V.singleton (tetrahedron cube 0) `V.snoc`
530 (tetrahedron cube 2) `V.snoc`
531 (tetrahedron cube 3) `V.snoc`
532 (tetrahedron cube 12) `V.snoc`
533 (tetrahedron cube 15) `V.snoc`
534 (tetrahedron cube 21)
535
536 front_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron
537 front_right_top_tetrahedra cube =
538 V.singleton (tetrahedron cube 0) `V.snoc`
539 (tetrahedron cube 1) `V.snoc`
540 (tetrahedron cube 5) `V.snoc`
541 (tetrahedron cube 6) `V.snoc`
542 (tetrahedron cube 16) `V.snoc`
543 (tetrahedron cube 19)
544
545 front_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron
546 front_right_down_tetrahedra cube =
547 V.singleton (tetrahedron cube 1) `V.snoc`
548 (tetrahedron cube 2) `V.snoc`
549 (tetrahedron cube 12) `V.snoc`
550 (tetrahedron cube 13) `V.snoc`
551 (tetrahedron cube 18) `V.snoc`
552 (tetrahedron cube 19)
553
554 back_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron
555 back_left_top_tetrahedra cube =
556 V.singleton (tetrahedron cube 0) `V.snoc`
557 (tetrahedron cube 3) `V.snoc`
558 (tetrahedron cube 6) `V.snoc`
559 (tetrahedron cube 7) `V.snoc`
560 (tetrahedron cube 20) `V.snoc`
561 (tetrahedron cube 21)
562
563 back_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron
564 back_left_down_tetrahedra cube =
565 V.singleton (tetrahedron cube 8) `V.snoc`
566 (tetrahedron cube 11) `V.snoc`
567 (tetrahedron cube 14) `V.snoc`
568 (tetrahedron cube 15) `V.snoc`
569 (tetrahedron cube 22) `V.snoc`
570 (tetrahedron cube 23)
571
572 back_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron
573 back_right_top_tetrahedra cube =
574 V.singleton (tetrahedron cube 4) `V.snoc`
575 (tetrahedron cube 5) `V.snoc`
576 (tetrahedron cube 9) `V.snoc`
577 (tetrahedron cube 10) `V.snoc`
578 (tetrahedron cube 16) `V.snoc`
579 (tetrahedron cube 17)
580
581 back_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron
582 back_right_down_tetrahedra cube =
583 V.singleton (tetrahedron cube 8) `V.snoc`
584 (tetrahedron cube 9) `V.snoc`
585 (tetrahedron cube 13) `V.snoc`
586 (tetrahedron cube 14) `V.snoc`
587 (tetrahedron cube 17) `V.snoc`
588 (tetrahedron cube 18)
589
590 in_top_half :: Cube -> Point -> Bool
591 in_top_half cube (_,_,z) =
592 distance_from_top <= distance_from_bottom
593 where
594 distance_from_top = abs $ (zmax cube) - z
595 distance_from_bottom = abs $ (zmin cube) - z
596
597 in_front_half :: Cube -> Point -> Bool
598 in_front_half cube (x,_,_) =
599 distance_from_front <= distance_from_back
600 where
601 distance_from_front = abs $ (xmin cube) - x
602 distance_from_back = abs $ (xmax cube) - x
603
604
605 in_left_half :: Cube -> Point -> Bool
606 in_left_half cube (_,y,_) =
607 distance_from_left <= distance_from_right
608 where
609 distance_from_left = abs $ (ymin cube) - y
610 distance_from_right = abs $ (ymax cube) - y
611
612
613 -- | Takes a 'Cube', and returns the Tetrahedra belonging to it that
614 -- contain the given 'Point'. This should be faster than checking
615 -- every tetrahedron individually, since we determine which half
616 -- (hemisphere?) of the cube the point lies in three times: once in
617 -- each dimension. This allows us to eliminate non-candidates
618 -- quickly.
619 --
620 -- This can throw an exception, but the use of 'head' might
621 -- save us some unnecessary computations.
622 --
623 find_containing_tetrahedron :: Cube -> Point -> Tetrahedron
624 find_containing_tetrahedron cube p =
625 candidates `V.unsafeIndex` (fromJust lucky_idx)
626 where
627 front_half = in_front_half cube p
628 top_half = in_top_half cube p
629 left_half = in_left_half cube p
630
631 candidates =
632 if front_half then
633
634 if left_half then
635 if top_half then
636 front_left_top_tetrahedra cube
637 else
638 front_left_down_tetrahedra cube
639 else
640 if top_half then
641 front_right_top_tetrahedra cube
642 else
643 front_right_down_tetrahedra cube
644
645 else -- bottom half
646
647 if left_half then
648 if top_half then
649 back_left_top_tetrahedra cube
650 else
651 back_left_down_tetrahedra cube
652 else
653 if top_half then
654 back_right_top_tetrahedra cube
655 else
656 back_right_down_tetrahedra cube
657
658 -- Use the dot product instead of 'distance' here to save a
659 -- sqrt(). So, "distances" below really means "distances squared."
660 distances = V.map ((dot p) . center) candidates
661 shortest_distance = V.minimum distances
662 lucky_idx = V.findIndex
663 (\t -> (center t) `dot` p == shortest_distance)
664 candidates
665
666
667
668
669
670
671 -- Tests
672
673 -- Quickcheck tests.
674
675 prop_opposite_octant_tetrahedra_disjoint1 :: Cube -> Bool
676 prop_opposite_octant_tetrahedra_disjoint1 cube =
677 disjoint (front_left_top_tetrahedra cube) (front_right_down_tetrahedra cube)
678
679 prop_opposite_octant_tetrahedra_disjoint2 :: Cube -> Bool
680 prop_opposite_octant_tetrahedra_disjoint2 cube =
681 disjoint (back_left_top_tetrahedra cube) (back_right_down_tetrahedra cube)
682
683 prop_opposite_octant_tetrahedra_disjoint3 :: Cube -> Bool
684 prop_opposite_octant_tetrahedra_disjoint3 cube =
685 disjoint (front_left_top_tetrahedra cube) (back_right_top_tetrahedra cube)
686
687 prop_opposite_octant_tetrahedra_disjoint4 :: Cube -> Bool
688 prop_opposite_octant_tetrahedra_disjoint4 cube =
689 disjoint (front_left_down_tetrahedra cube) (back_right_down_tetrahedra cube)
690
691 prop_opposite_octant_tetrahedra_disjoint5 :: Cube -> Bool
692 prop_opposite_octant_tetrahedra_disjoint5 cube =
693 disjoint (front_left_top_tetrahedra cube) (back_left_down_tetrahedra cube)
694
695 prop_opposite_octant_tetrahedra_disjoint6 :: Cube -> Bool
696 prop_opposite_octant_tetrahedra_disjoint6 cube =
697 disjoint (front_right_top_tetrahedra cube) (back_right_down_tetrahedra cube)
698
699
700 -- | Since the grid size is necessarily positive, all tetrahedra
701 -- (which comprise cubes of positive volume) must have positive
702 -- volume as well.
703 prop_all_volumes_positive :: Cube -> Bool
704 prop_all_volumes_positive cube =
705 all (>= 0) volumes
706 where
707 ts = tetrahedra cube
708 volumes = map volume ts
709
710
711 -- | In fact, since all of the tetrahedra are identical, we should
712 -- already know their volumes. There's 24 tetrahedra to a cube, so
713 -- we'd expect the volume of each one to be (1/24)*h^3.
714 prop_all_volumes_exact :: Cube -> Bool
715 prop_all_volumes_exact cube =
716 and [volume t ~~= (1/24)*(delta^(3::Int)) | t <- tetrahedra cube]
717 where
718 delta = h cube
719
720 -- | All tetrahedron should have their v0 located at the center of the cube.
721 prop_v0_all_equal :: Cube -> Bool
722 prop_v0_all_equal cube = (v0 t0) == (v0 t1)
723 where
724 t0 = head (tetrahedra cube) -- Doesn't matter which two we choose.
725 t1 = head $ tail (tetrahedra cube)
726
727
728 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Note that the
729 -- third and fourth indices of c-t3 have been switched. This is
730 -- because we store the triangles oriented such that their volume is
731 -- positive. If T and T-tilde share \<v0,v1,v2\> and v3,v3-tilde point
732 -- in opposite directions, one of them has to have negative volume!
733 prop_c0120_identity1 :: Cube -> Bool
734 prop_c0120_identity1 cube =
735 c t0 0 1 2 0 ~= (c t0 0 0 2 1 + c t3 0 0 1 2) / 2
736 where
737 t0 = tetrahedron cube 0
738 t3 = tetrahedron cube 3
739
740
741 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
742 -- 'prop_c0120_identity1' with tetrahedrons 1 and 2.
743 prop_c0120_identity2 :: Cube -> Bool
744 prop_c0120_identity2 cube =
745 c t1 0 1 2 0 ~= (c t1 0 0 2 1 + c t0 0 0 1 2) / 2
746 where
747 t0 = tetrahedron cube 0
748 t1 = tetrahedron cube 1
749
750 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
751 -- 'prop_c0120_identity1' with tetrahedrons 1 and 2.
752 prop_c0120_identity3 :: Cube -> Bool
753 prop_c0120_identity3 cube =
754 c t2 0 1 2 0 ~= (c t2 0 0 2 1 + c t1 0 0 1 2) / 2
755 where
756 t1 = tetrahedron cube 1
757 t2 = tetrahedron cube 2
758
759 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
760 -- 'prop_c0120_identity1' with tetrahedrons 2 and 3.
761 prop_c0120_identity4 :: Cube -> Bool
762 prop_c0120_identity4 cube =
763 c t3 0 1 2 0 ~= (c t3 0 0 2 1 + c t2 0 0 1 2) / 2
764 where
765 t2 = tetrahedron cube 2
766 t3 = tetrahedron cube 3
767
768
769 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
770 -- 'prop_c0120_identity1' with tetrahedrons 4 and 5.
771 prop_c0120_identity5 :: Cube -> Bool
772 prop_c0120_identity5 cube =
773 c t5 0 1 2 0 ~= (c t5 0 0 2 1 + c t4 0 0 1 2) / 2
774 where
775 t4 = tetrahedron cube 4
776 t5 = tetrahedron cube 5
777
778 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
779 -- 'prop_c0120_identity1' with tetrahedrons 5 and 6.
780 prop_c0120_identity6 :: Cube -> Bool
781 prop_c0120_identity6 cube =
782 c t6 0 1 2 0 ~= (c t6 0 0 2 1 + c t5 0 0 1 2) / 2
783 where
784 t5 = tetrahedron cube 5
785 t6 = tetrahedron cube 6
786
787
788 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats
789 -- 'prop_c0120_identity1' with tetrahedrons 6 and 7.
790 prop_c0120_identity7 :: Cube -> Bool
791 prop_c0120_identity7 cube =
792 c t7 0 1 2 0 ~= (c t7 0 0 2 1 + c t6 0 0 1 2) / 2
793 where
794 t6 = tetrahedron cube 6
795 t7 = tetrahedron cube 7
796
797
798 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See
799 -- 'prop_c0120_identity1'.
800 prop_c0210_identity1 :: Cube -> Bool
801 prop_c0210_identity1 cube =
802 c t0 0 2 1 0 ~= (c t0 0 1 1 1 + c t3 0 1 1 1) / 2
803 where
804 t0 = tetrahedron cube 0
805 t3 = tetrahedron cube 3
806
807
808 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See
809 -- 'prop_c0120_identity1'.
810 prop_c0300_identity1 :: Cube -> Bool
811 prop_c0300_identity1 cube =
812 c t0 0 3 0 0 ~= (c t0 0 2 0 1 + c t3 0 2 1 0) / 2
813 where
814 t0 = tetrahedron cube 0
815 t3 = tetrahedron cube 3
816
817
818 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See
819 -- 'prop_c0120_identity1'.
820 prop_c1110_identity :: Cube -> Bool
821 prop_c1110_identity cube =
822 c t0 1 1 1 0 ~= (c t0 1 0 1 1 + c t3 1 0 1 1) / 2
823 where
824 t0 = tetrahedron cube 0
825 t3 = tetrahedron cube 3
826
827
828 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See
829 -- 'prop_c0120_identity1'.
830 prop_c1200_identity1 :: Cube -> Bool
831 prop_c1200_identity1 cube =
832 c t0 1 2 0 0 ~= (c t0 1 1 0 1 + c t3 1 1 1 0) / 2
833 where
834 t0 = tetrahedron cube 0
835 t3 = tetrahedron cube 3
836
837
838 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See
839 -- 'prop_c0120_identity1'.
840 prop_c2100_identity1 :: Cube -> Bool
841 prop_c2100_identity1 cube =
842 c t0 2 1 0 0 ~= (c t0 2 0 0 1 + c t3 2 0 1 0) / 2
843 where
844 t0 = tetrahedron cube 0
845 t3 = tetrahedron cube 3
846
847
848
849 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). Note that the
850 -- third and fourth indices of c-t3 have been switched. This is
851 -- because we store the triangles oriented such that their volume is
852 -- positive. If T and T-tilde share \<v0,v1,v2\> and v3,v3-tilde
853 -- point in opposite directions, one of them has to have negative
854 -- volume!
855 prop_c0102_identity1 :: Cube -> Bool
856 prop_c0102_identity1 cube =
857 c t0 0 1 0 2 ~= (c t0 0 0 1 2 + c t1 0 0 2 1) / 2
858 where
859 t0 = tetrahedron cube 0
860 t1 = tetrahedron cube 1
861
862
863 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See
864 -- 'prop_c0102_identity1'.
865 prop_c0201_identity1 :: Cube -> Bool
866 prop_c0201_identity1 cube =
867 c t0 0 2 0 1 ~= (c t0 0 1 1 1 + c t1 0 1 1 1) / 2
868 where
869 t0 = tetrahedron cube 0
870 t1 = tetrahedron cube 1
871
872
873 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See
874 -- 'prop_c0102_identity1'.
875 prop_c0300_identity2 :: Cube -> Bool
876 prop_c0300_identity2 cube =
877 c t0 0 3 0 0 ~= (c t0 0 2 1 0 + c t1 0 2 0 1) / 2
878 where
879 t0 = tetrahedron cube 0
880 t1 = tetrahedron cube 1
881
882
883 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See
884 -- 'prop_c0102_identity1'.
885 prop_c1101_identity :: Cube -> Bool
886 prop_c1101_identity cube =
887 c t0 1 1 0 1 ~= (c t0 1 0 1 1 + c t1 1 0 1 1) / 2
888 where
889 t0 = tetrahedron cube 0
890 t1 = tetrahedron cube 1
891
892
893 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See
894 -- 'prop_c0102_identity1'.
895 prop_c1200_identity2 :: Cube -> Bool
896 prop_c1200_identity2 cube =
897 c t0 1 2 0 0 ~= (c t0 1 1 1 0 + c t1 1 1 0 1) / 2
898 where
899 t0 = tetrahedron cube 0
900 t1 = tetrahedron cube 1
901
902
903 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See
904 -- 'prop_c0102_identity1'.
905 prop_c2100_identity2 :: Cube -> Bool
906 prop_c2100_identity2 cube =
907 c t0 2 1 0 0 ~= (c t0 2 0 1 0 + c t1 2 0 0 1) / 2
908 where
909 t0 = tetrahedron cube 0
910 t1 = tetrahedron cube 1
911
912
913 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). The third and
914 -- fourth indices of c-t6 have been switched. This is because we
915 -- store the triangles oriented such that their volume is
916 -- positive. If T and T-tilde share \<v0,v1,v2\> and v3,v3-tilde
917 -- point in opposite directions, one of them has to have negative
918 -- volume!
919 prop_c3000_identity :: Cube -> Bool
920 prop_c3000_identity cube =
921 c t0 3 0 0 0 ~= c t0 2 1 0 0 + c t6 2 1 0 0
922 - ((c t0 2 0 1 0 + c t0 2 0 0 1)/ 2)
923 where
924 t0 = tetrahedron cube 0
925 t6 = tetrahedron cube 6
926
927
928 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See
929 -- 'prop_c3000_identity'.
930 prop_c2010_identity :: Cube -> Bool
931 prop_c2010_identity cube =
932 c t0 2 0 1 0 ~= c t0 1 1 1 0 + c t6 1 1 0 1
933 - ((c t0 1 0 2 0 + c t0 1 0 1 1)/ 2)
934 where
935 t0 = tetrahedron cube 0
936 t6 = tetrahedron cube 6
937
938
939 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See
940 -- 'prop_c3000_identity'.
941 prop_c2001_identity :: Cube -> Bool
942 prop_c2001_identity cube =
943 c t0 2 0 0 1 ~= c t0 1 1 0 1 + c t6 1 1 1 0
944 - ((c t0 1 0 0 2 + c t0 1 0 1 1)/ 2)
945 where
946 t0 = tetrahedron cube 0
947 t6 = tetrahedron cube 6
948
949
950 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See
951 -- 'prop_c3000_identity'.
952 prop_c1020_identity :: Cube -> Bool
953 prop_c1020_identity cube =
954 c t0 1 0 2 0 ~= c t0 0 1 2 0 + c t6 0 1 0 2
955 - ((c t0 0 0 3 0 + c t0 0 0 2 1)/ 2)
956 where
957 t0 = tetrahedron cube 0
958 t6 = tetrahedron cube 6
959
960
961 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See
962 -- 'prop_c3000_identity'.
963 prop_c1002_identity :: Cube -> Bool
964 prop_c1002_identity cube =
965 c t0 1 0 0 2 ~= c t0 0 1 0 2 + c t6 0 1 2 0
966 - ((c t0 0 0 0 3 + c t0 0 0 1 2)/ 2)
967 where
968 t0 = tetrahedron cube 0
969 t6 = tetrahedron cube 6
970
971
972 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See
973 -- 'prop_c3000_identity'.
974 prop_c1011_identity :: Cube -> Bool
975 prop_c1011_identity cube =
976 c t0 1 0 1 1 ~= c t0 0 1 1 1 + c t6 0 1 1 1 -
977 ((c t0 0 0 1 2 + c t0 0 0 2 1)/ 2)
978 where
979 t0 = tetrahedron cube 0
980 t6 = tetrahedron cube 6
981
982
983 -- | The function values at the interior should be the same for all
984 -- tetrahedra.
985 prop_interior_values_all_identical :: Cube -> Bool
986 prop_interior_values_all_identical cube =
987 all_equal [ eval (function_values tet) I | tet <- tetrahedra cube ]
988
989
990 -- | We know what (c t6 2 1 0 0) should be from Sorokina and Zeilfelder, p. 87.
991 -- This test checks the rotation works as expected.
992 prop_c_tilde_2100_rotation_correct :: Cube -> Bool
993 prop_c_tilde_2100_rotation_correct cube =
994 expr1 == expr2
995 where
996 t0 = tetrahedron cube 0
997 t6 = tetrahedron cube 6
998
999 -- What gets computed for c2100 of t6.
1000 expr1 = eval (function_values t6) $
1001 (3/8)*I +
1002 (1/12)*(T + R + L + D) +
1003 (1/64)*(FT + FR + FL + FD) +
1004 (7/48)*F +
1005 (1/48)*B +
1006 (1/96)*(RT + LD + LT + RD) +
1007 (1/192)*(BT + BR + BL + BD)
1008
1009 -- What should be computed for c2100 of t6.
1010 expr2 = eval (function_values t0) $
1011 (3/8)*I +
1012 (1/12)*(F + R + L + B) +
1013 (1/64)*(FT + RT + LT + BT) +
1014 (7/48)*T +
1015 (1/48)*D +
1016 (1/96)*(FR + FL + BR + BL) +
1017 (1/192)*(FD + RD + LD + BD)
1018
1019
1020 -- | We know what (c t6 2 1 0 0) should be from Sorokina and
1021 -- Zeilfelder, p. 87. This test checks the actual value based on
1022 -- the FunctionValues of the cube.
1023 --
1024 -- If 'prop_c_tilde_2100_rotation_correct' passes, then this test is
1025 -- even meaningful!
1026 prop_c_tilde_2100_correct :: Cube -> Bool
1027 prop_c_tilde_2100_correct cube =
1028 c t6 2 1 0 0 == expected
1029 where
1030 t0 = tetrahedron cube 0
1031 t6 = tetrahedron cube 6
1032 fvs = function_values t0
1033 expected = eval fvs $
1034 (3/8)*I +
1035 (1/12)*(F + R + L + B) +
1036 (1/64)*(FT + RT + LT + BT) +
1037 (7/48)*T +
1038 (1/48)*D +
1039 (1/96)*(FR + FL + BR + BL) +
1040 (1/192)*(FD + RD + LD + BD)
1041
1042
1043 -- Tests to check that the correct edges are incidental.
1044 prop_t0_shares_edge_with_t1 :: Cube -> Bool
1045 prop_t0_shares_edge_with_t1 cube =
1046 (v1 t0) == (v1 t1) && (v3 t0) == (v2 t1)
1047 where
1048 t0 = tetrahedron cube 0
1049 t1 = tetrahedron cube 1
1050
1051 prop_t0_shares_edge_with_t3 :: Cube -> Bool
1052 prop_t0_shares_edge_with_t3 cube =
1053 (v1 t0) == (v1 t3) && (v2 t0) == (v3 t3)
1054 where
1055 t0 = tetrahedron cube 0
1056 t3 = tetrahedron cube 3
1057
1058 prop_t0_shares_edge_with_t6 :: Cube -> Bool
1059 prop_t0_shares_edge_with_t6 cube =
1060 (v2 t0) == (v3 t6) && (v3 t0) == (v2 t6)
1061 where
1062 t0 = tetrahedron cube 0
1063 t6 = tetrahedron cube 6
1064
1065 prop_t1_shares_edge_with_t2 :: Cube -> Bool
1066 prop_t1_shares_edge_with_t2 cube =
1067 (v1 t1) == (v1 t2) && (v3 t1) == (v2 t2)
1068 where
1069 t1 = tetrahedron cube 1
1070 t2 = tetrahedron cube 2
1071
1072 prop_t1_shares_edge_with_t19 :: Cube -> Bool
1073 prop_t1_shares_edge_with_t19 cube =
1074 (v2 t1) == (v3 t19) && (v3 t1) == (v2 t19)
1075 where
1076 t1 = tetrahedron cube 1
1077 t19 = tetrahedron cube 19
1078
1079 prop_t2_shares_edge_with_t3 :: Cube -> Bool
1080 prop_t2_shares_edge_with_t3 cube =
1081 (v1 t1) == (v1 t2) && (v3 t1) == (v2 t2)
1082 where
1083 t1 = tetrahedron cube 1
1084 t2 = tetrahedron cube 2
1085
1086 prop_t2_shares_edge_with_t12 :: Cube -> Bool
1087 prop_t2_shares_edge_with_t12 cube =
1088 (v2 t2) == (v3 t12) && (v3 t2) == (v2 t12)
1089 where
1090 t2 = tetrahedron cube 2
1091 t12 = tetrahedron cube 12
1092
1093 prop_t3_shares_edge_with_t21 :: Cube -> Bool
1094 prop_t3_shares_edge_with_t21 cube =
1095 (v2 t3) == (v3 t21) && (v3 t3) == (v2 t21)
1096 where
1097 t3 = tetrahedron cube 3
1098 t21 = tetrahedron cube 21
1099
1100 prop_t4_shares_edge_with_t5 :: Cube -> Bool
1101 prop_t4_shares_edge_with_t5 cube =
1102 (v1 t4) == (v1 t5) && (v3 t4) == (v2 t5)
1103 where
1104 t4 = tetrahedron cube 4
1105 t5 = tetrahedron cube 5
1106
1107 prop_t4_shares_edge_with_t7 :: Cube -> Bool
1108 prop_t4_shares_edge_with_t7 cube =
1109 (v1 t4) == (v1 t7) && (v2 t4) == (v3 t7)
1110 where
1111 t4 = tetrahedron cube 4
1112 t7 = tetrahedron cube 7
1113
1114 prop_t4_shares_edge_with_t10 :: Cube -> Bool
1115 prop_t4_shares_edge_with_t10 cube =
1116 (v2 t4) == (v3 t10) && (v3 t4) == (v2 t10)
1117 where
1118 t4 = tetrahedron cube 4
1119 t10 = tetrahedron cube 10
1120
1121 prop_t5_shares_edge_with_t6 :: Cube -> Bool
1122 prop_t5_shares_edge_with_t6 cube =
1123 (v1 t5) == (v1 t6) && (v3 t5) == (v2 t6)
1124 where
1125 t5 = tetrahedron cube 5
1126 t6 = tetrahedron cube 6
1127
1128 prop_t5_shares_edge_with_t16 :: Cube -> Bool
1129 prop_t5_shares_edge_with_t16 cube =
1130 (v2 t5) == (v3 t16) && (v3 t5) == (v2 t16)
1131 where
1132 t5 = tetrahedron cube 5
1133 t16 = tetrahedron cube 16
1134
1135 prop_t6_shares_edge_with_t7 :: Cube -> Bool
1136 prop_t6_shares_edge_with_t7 cube =
1137 (v1 t6) == (v1 t7) && (v3 t6) == (v2 t7)
1138 where
1139 t6 = tetrahedron cube 6
1140 t7 = tetrahedron cube 7
1141
1142 prop_t7_shares_edge_with_t20 :: Cube -> Bool
1143 prop_t7_shares_edge_with_t20 cube =
1144 (v2 t7) == (v3 t20) && (v2 t7) == (v3 t20)
1145 where
1146 t7 = tetrahedron cube 7
1147 t20 = tetrahedron cube 20
1148
1149
1150 p79_26_properties :: Test.Framework.Test
1151 p79_26_properties =
1152 testGroup "p. 79, Section (2.6) Properties" [
1153 testProperty "c0120 identity1" prop_c0120_identity1,
1154 testProperty "c0120 identity2" prop_c0120_identity2,
1155 testProperty "c0120 identity3" prop_c0120_identity3,
1156 testProperty "c0120 identity4" prop_c0120_identity4,
1157 testProperty "c0120 identity5" prop_c0120_identity5,
1158 testProperty "c0120 identity6" prop_c0120_identity6,
1159 testProperty "c0120 identity7" prop_c0120_identity7,
1160 testProperty "c0210 identity1" prop_c0210_identity1,
1161 testProperty "c0300 identity1" prop_c0300_identity1,
1162 testProperty "c1110 identity" prop_c1110_identity,
1163 testProperty "c1200 identity1" prop_c1200_identity1,
1164 testProperty "c2100 identity1" prop_c2100_identity1]
1165
1166 p79_27_properties :: Test.Framework.Test
1167 p79_27_properties =
1168 testGroup "p. 79, Section (2.7) Properties" [
1169 testProperty "c0102 identity1" prop_c0102_identity1,
1170 testProperty "c0201 identity1" prop_c0201_identity1,
1171 testProperty "c0300 identity2" prop_c0300_identity2,
1172 testProperty "c1101 identity" prop_c1101_identity,
1173 testProperty "c1200 identity2" prop_c1200_identity2,
1174 testProperty "c2100 identity2" prop_c2100_identity2 ]
1175
1176
1177 p79_28_properties :: Test.Framework.Test
1178 p79_28_properties =
1179 testGroup "p. 79, Section (2.8) Properties" [
1180 testProperty "c3000 identity" prop_c3000_identity,
1181 testProperty "c2010 identity" prop_c2010_identity,
1182 testProperty "c2001 identity" prop_c2001_identity,
1183 testProperty "c1020 identity" prop_c1020_identity,
1184 testProperty "c1002 identity" prop_c1002_identity,
1185 testProperty "c1011 identity" prop_c1011_identity ]
1186
1187
1188 edge_incidence_tests :: Test.Framework.Test
1189 edge_incidence_tests =
1190 testGroup "Edge Incidence Tests" [
1191 testProperty "t0 shares edge with t6" prop_t0_shares_edge_with_t6,
1192 testProperty "t0 shares edge with t1" prop_t0_shares_edge_with_t1,
1193 testProperty "t0 shares edge with t3" prop_t0_shares_edge_with_t3,
1194 testProperty "t1 shares edge with t2" prop_t1_shares_edge_with_t2,
1195 testProperty "t1 shares edge with t19" prop_t1_shares_edge_with_t19,
1196 testProperty "t2 shares edge with t3" prop_t2_shares_edge_with_t3,
1197 testProperty "t2 shares edge with t12" prop_t2_shares_edge_with_t12,
1198 testProperty "t3 shares edge with t21" prop_t3_shares_edge_with_t21,
1199 testProperty "t4 shares edge with t5" prop_t4_shares_edge_with_t5,
1200 testProperty "t4 shares edge with t7" prop_t4_shares_edge_with_t7,
1201 testProperty "t4 shares edge with t10" prop_t4_shares_edge_with_t10,
1202 testProperty "t5 shares edge with t6" prop_t5_shares_edge_with_t6,
1203 testProperty "t5 shares edge with t16" prop_t5_shares_edge_with_t16,
1204 testProperty "t6 shares edge with t7" prop_t6_shares_edge_with_t7,
1205 testProperty "t7 shares edge with t20" prop_t7_shares_edge_with_t20 ]
1206
1207 cube_properties :: Test.Framework.Test
1208 cube_properties =
1209 testGroup "Cube Properties" [
1210 p79_26_properties,
1211 p79_27_properties,
1212 p79_28_properties,
1213 edge_incidence_tests,
1214 testProperty "opposite octant tetrahedra are disjoint (1)"
1215 prop_opposite_octant_tetrahedra_disjoint1,
1216 testProperty "opposite octant tetrahedra are disjoint (2)"
1217 prop_opposite_octant_tetrahedra_disjoint2,
1218 testProperty "opposite octant tetrahedra are disjoint (3)"
1219 prop_opposite_octant_tetrahedra_disjoint3,
1220 testProperty "opposite octant tetrahedra are disjoint (4)"
1221 prop_opposite_octant_tetrahedra_disjoint4,
1222 testProperty "opposite octant tetrahedra are disjoint (5)"
1223 prop_opposite_octant_tetrahedra_disjoint5,
1224 testProperty "opposite octant tetrahedra are disjoint (6)"
1225 prop_opposite_octant_tetrahedra_disjoint6,
1226 testProperty "all volumes positive" prop_all_volumes_positive,
1227 testProperty "all volumes exact" prop_all_volumes_exact,
1228 testProperty "v0 all equal" prop_v0_all_equal,
1229 testProperty "interior values all identical"
1230 prop_interior_values_all_identical,
1231 testProperty "c-tilde_2100 rotation correct"
1232 prop_c_tilde_2100_rotation_correct,
1233 testProperty "c-tilde_2100 correct"
1234 prop_c_tilde_2100_correct ]