]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
Implement Z-operators in terms of cross-positive ones.
authorMichael Orlitzky <michael@orlitzky.com>
Fri, 23 Sep 2016 14:08:07 +0000 (10:08 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Fri, 23 Sep 2016 14:08:07 +0000 (10:08 -0400)
mjo/cone/cone.py

index c71a24cbee0c9d0857fd3c8d8fe2ecbb0042238c..124bf5415f8841d36343e11c78ed5cd61b7ed276 100644 (file)
@@ -92,6 +92,10 @@ def positive_operator_gens(K1, K2 = None):
     an element of ``K1``. Moreover, any nonnegative linear combination of
     these matrices shares the same property.
 
+    .. SEEALSO::
+
+           :meth:`cross_positive_operator_gens`, :meth:`Z_operator_gens`,
+
     REFERENCES:
 
     .. [Orlitzky-Pi-Z]
@@ -501,19 +505,24 @@ def positive_operator_gens(K1, K2 = None):
     return [ M(v.list()) for v in pi_cone ]
 
 
-def Z_operator_gens(K):
+def cross_positive_operator_gens(K):
     r"""
-    Compute generators of the cone of Z-operators on this cone.
+    Compute generators of the cone of cross-positive operators on this
+    cone.
 
     OUTPUT:
 
     A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
     Each matrix ``L`` in the list should have the property that
-    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element of
+    ``(L*x).inner_product(s) >= 0`` whenever ``(x,s)`` is an element of
     this cone's :meth:`discrete_complementarity_set`. Moreover, any
     conic (nonnegative linear) combination of these matrices shares the
     same property.
 
+    .. SEEALSO::
+
+       :meth:`positive_operator_gens`, :meth:`Z_operator_gens`,
+
     REFERENCES:
 
     M. Orlitzky.
@@ -521,124 +530,128 @@ def Z_operator_gens(K):
 
     EXAMPLES:
 
-    Z-operators on the nonnegative orthant are just Z-matrices.
-    That is, matrices whose off-diagonal elements are nonnegative::
+    Cross-positive operators on the nonnegative orthant are negations
+    of Z-matrices; that is, matrices whose off-diagonal elements are
+    nonnegative::
 
         sage: K = Cone([(1,0),(0,1)])
-        sage: Z_operator_gens(K)
+        sage: cross_positive_operator_gens(K)
         [
-        [ 0 -1]  [ 0  0]  [-1  0]  [1 0]  [ 0  0]  [0 0]
-        [ 0  0], [-1  0], [ 0  0], [0 0], [ 0 -1], [0 1]
+        [0 1]  [0 0]  [1 0]  [-1  0]  [0 0]  [ 0  0]
+        [0 0], [1 0], [0 0], [ 0  0], [0 1], [ 0 -1]
         ]
         sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
-        sage: all([ z[i][j] <= 0 for z in Z_operator_gens(K)
-        ....:                    for i in range(z.nrows())
-        ....:                    for j in range(z.ncols())
+        sage: all([ c[i][j] >= 0 for c in cross_positive_operator_gens(K)
+        ....:                    for i in range(c.nrows())
+        ....:                    for j in range(c.ncols())
         ....:                    if i != j ])
         True
 
-    The trivial cone in a trivial space has no Z-operators::
+    The trivial cone in a trivial space has no cross-positive operators::
 
         sage: K = Cone([], ToricLattice(0))
-        sage: Z_operator_gens(K)
+        sage: cross_positive_operator_gens(K)
         []
 
-    Every operator is a Z-operator on the ambient vector space::
+    Every operator is a cross-positive operator on the ambient vector
+    space::
 
         sage: K = Cone([(1,),(-1,)])
         sage: K.is_full_space()
         True
-        sage: Z_operator_gens(K)
-        [[-1], [1]]
+        sage: cross_positive_operator_gens(K)
+        [[1], [-1]]
 
         sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
         sage: K.is_full_space()
         True
-        sage: Z_operator_gens(K)
+        sage: cross_positive_operator_gens(K)
         [
-        [-1  0]  [1 0]  [ 0 -1]  [0 1]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
-        [ 0  0], [0 0], [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        [1 0]  [-1  0]  [0 1]  [ 0 -1]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
         ]
 
-    A non-obvious application is to find the Z-operators on the
-    right half-plane::
+    A non-obvious application is to find the cross-positive operators
+    on the right half-plane::
 
         sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: Z_operator_gens(K)
+        sage: cross_positive_operator_gens(K)
         [
-        [-1  0]  [1 0]  [ 0  0]  [0 0]  [ 0  0]  [0 0]
-        [ 0  0], [0 0], [-1  0], [1 0], [ 0 -1], [0 1]
+        [1 0]  [-1  0]  [0 0]  [ 0  0]  [0 0]  [ 0  0]
+        [0 0], [ 0  0], [1 0], [-1  0], [0 1], [ 0 -1]
         ]
 
-    Z-operators on a subspace are Lyapunov-like and vice-versa::
+    Cross-positive operators on a subspace are Lyapunov-like and
+    vice-versa::
 
         sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
         sage: K.is_full_space()
         True
         sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
-        sage: zs  = span([ vector(z.list()) for z in Z_operator_gens(K) ])
-        sage: zs == lls
+        sage: cs  = span([ vector(c.list()) for c in cross_positive_operator_gens(K) ])
+        sage: cs == lls
         True
 
     TESTS:
 
-    The Z-property is possessed by every Z-operator::
+    The cross-positive property is possessed by every cross-positive
+    operator::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
-        sage: Z_of_K = Z_operator_gens(K)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
         sage: dcs = K.discrete_complementarity_set()
-        sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
+        sage: all([(c*x).inner_product(s) >= 0 for c in Sigma_of_K
         ....:                                  for (x,s) in dcs])
         True
 
-    The lineality space of the cone of Z-operators is the space of
-    Lyapunov-like operators::
+    The lineality space of the cone of cross-positive operators is the
+    space of Lyapunov-like operators::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: Z_cone = Cone([ z.list() for z in Z_operator_gens(K) ],
-        ....:               lattice=L,
-        ....:               check=False)
+        sage: Sigma_cone = Cone([ c.list() for c in cross_positive_operator_gens(K) ],
+        ....:                     lattice=L,
+        ....:                     check=False)
         sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
         sage: lls = L.vector_space().span(ll_basis)
-        sage: Z_cone.linear_subspace() == lls
+        sage: Sigma_cone.linear_subspace() == lls
         True
 
-    The lineality of the Z-operators on a cone is the Lyapunov
-    rank of that cone::
+    The lineality of the cross-positive operators on a cone is the
+    Lyapunov rank of that cone::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
-        sage: Z_of_K = Z_operator_gens(K)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
-        sage: Z_cone  = Cone([ z.list() for z in Z_of_K ],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: Z_cone.lineality() == K.lyapunov_rank()
+        sage: Sigma_cone  = Cone([ c.list() for c in Sigma_of_K ],
+        ....:                      lattice=L,
+        ....:                      check=False)
+        sage: Sigma_cone.lineality() == K.lyapunov_rank()
         True
 
-    The lineality spaces of the duals of the positive and Z-operator
-    cones are equal. From this it follows that the dimensions of the
-    Z-operator cone and positive operator cone are equal::
+    The lineality spaces of the duals of the positive and cross-positive
+    operator cones are equal. From this it follows that the dimensions of
+    the cross-positive operator cone and positive operator cone are equal::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: pi_of_K = positive_operator_gens(K)
-        sage: Z_of_K = Z_operator_gens(K)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: pi_cone = Cone([p.list() for p in pi_of_K],
         ....:                lattice=L,
         ....:                check=False)
-        sage: Z_cone = Cone([ z.list() for z in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: pi_cone.dim() == Z_cone.dim()
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: pi_cone.dim() == Sigma_cone.dim()
         True
         sage: pi_star = pi_cone.dual()
-        sage: z_star = Z_cone.dual()
-        sage: pi_star.linear_subspace() == z_star.linear_subspace()
+        sage: sigma_star = Sigma_cone.dual()
+        sage: pi_star.linear_subspace() == sigma_star.linear_subspace()
         True
 
     The trivial cone, full space, and half-plane all give rise to the
@@ -649,49 +662,50 @@ def Z_operator_gens(K):
         sage: K.is_trivial()
         True
         sage: L = ToricLattice(n^2)
-        sage: Z_of_K = Z_operator_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: actual = Z_cone.dim()
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([c.list() for c in Sigma_of_K],
+        ....:                    lattice=L,
+        ....:                    check=False)
+        sage: actual = Sigma_cone.dim()
         sage: actual == n^2
         True
         sage: K = K.dual()
         sage: K.is_full_space()
         True
-        sage: Z_of_K = Z_operator_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K],
-        ....:                lattice=L,
-        ....:                check=False)
-        sage: actual = Z_cone.dim()
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: actual = Sigma_cone.dim()
         sage: actual == n^2
         True
         sage: K = Cone([(1,0),(0,1),(0,-1)])
-        sage: Z_of_K = Z_operator_gens(K)
-        sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
-        sage: Z_cone.dim() == 3
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_cone = Cone([ c.list() for c in Sigma_of_K ], check=False)
+        sage: Sigma_cone.dim() == 3
         True
 
-    The Z-operators of a permuted cone can be obtained by conjugation::
+    The cross-positive operators of a permuted cone can be obtained by
+    conjugation::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
         sage: L = ToricLattice(K.lattice_dim()**2)
         sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
         sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
-        sage: Z_of_pK = Z_operator_gens(pK)
-        sage: actual = Cone([t.list() for t in Z_of_pK],
+        sage: Sigma_of_pK = cross_positive_operator_gens(pK)
+        sage: actual = Cone([t.list() for t in Sigma_of_pK],
         ....:                lattice=L,
         ....:                check=False)
-        sage: Z_of_K = Z_operator_gens(K)
-        sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: expected = Cone([ (p*t*p.inverse()).list() for t in Sigma_of_K ],
         ....:                   lattice=L,
         ....:                   check=False)
         sage: actual.is_equivalent(expected)
         True
 
-    An operator is a Z-operator on a cone if and only if its
-    adjoint is a Z-operator on the dual of that cone::
+    An operator is cross-positive on a cone if and only if its
+    adjoint is cross-positive on the dual of that cone::
 
         sage: set_random_seed()
         sage: K = random_cone(max_ambient_dim=4)
@@ -699,22 +713,22 @@ def Z_operator_gens(K):
         sage: n = K.lattice_dim()
         sage: L = ToricLattice(n**2)
         sage: W = VectorSpace(F, n**2)
-        sage: Z_of_K = Z_operator_gens(K)
-        sage: Z_of_K_star = Z_operator_gens(K.dual())
-        sage: Z_cone = Cone([p.list() for p in Z_of_K],
-        ....:               lattice=L,
-        ....:               check=False)
-        sage: Z_star = Cone([p.list() for p in Z_of_K_star],
-        ....:               lattice=L,
-        ....:               check=False)
+        sage: Sigma_of_K = cross_positive_operator_gens(K)
+        sage: Sigma_of_K_star = cross_positive_operator_gens(K.dual())
+        sage: Sigma_cone = Cone([ p.list() for p in Sigma_of_K ],
+        ....:                     lattice=L,
+        ....:                     check=False)
+        sage: Sigma_star = Cone([ p.list() for p in Sigma_of_K_star ],
+        ....:                     lattice=L,
+        ....:                     check=False)
         sage: M = MatrixSpace(F, n)
-        sage: L = M(Z_cone.random_element(ring=QQ).list())
-        sage: Z_star.contains(W(L.transpose().list()))
+        sage: L = M(Sigma_cone.random_element(ring=QQ).list())
+        sage: Sigma_star.contains(W(L.transpose().list()))
         True
 
         sage: L = W.random_element()
         sage: L_star = W(M(L.list()).transpose().list())
-        sage: Z_cone.contains(L) ==  Z_star.contains(L_star)
+        sage: Sigma_cone.contains(L) ==  Sigma_star.contains(L_star)
         True
     """
     # Matrices are not vectors in Sage, so we have to convert them
@@ -749,10 +763,49 @@ def Z_operator_gens(K):
     Sigma_cone = Sigma_dual.dual()
 
     # And finally convert its rays back to matrix representations.
-    # But first, make them negative, so we get Z-operators and
-    # not cross-positive ones.
     M = MatrixSpace(F, n)
-    return [ -M(v.list()) for v in Sigma_cone ]
+    return [ M(v.list()) for v in Sigma_cone ]
+
+
+def Z_operator_gens(K):
+    r"""
+    Compute generators of the cone of Z-operators on this cone.
+
+    The Z-operators on a cone generalize the Z-matrices over the
+    nonnegative orthant. They are simply negations of the
+    :meth:`cross_positive_operators`.
+
+    OUTPUT:
+
+    A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
+    Each matrix ``L`` in the list should have the property that
+    ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element of
+    this cone's :meth:`discrete_complementarity_set`. Moreover, any
+    conic (nonnegative linear) combination of these matrices shares the
+    same property.
+
+    .. SEEALSO::
+
+       :meth:`positive_operator_gens`, :meth:`cross_positive_operator_gens`,
+
+    REFERENCES:
+
+    M. Orlitzky.
+    Positive and Z-operators on closed convex cones.
+
+    TESTS:
+
+    The Z-property is possessed by every Z-operator::
+
+        sage: set_random_seed()
+        sage: K = random_cone(max_ambient_dim=4)
+        sage: Z_of_K = Z_operator_gens(K)
+        sage: dcs = K.discrete_complementarity_set()
+        sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
+        ....:                                  for (x,s) in dcs])
+        True
+    """
+    return [ -cp for cp in cross_positive_operator_gens(K) ]
 
 
 def LL_cone(K):
@@ -760,6 +813,11 @@ def LL_cone(K):
     L = ToricLattice(K.lattice_dim()**2)
     return Cone([ g.list() for g in gens ], lattice=L, check=False)
 
+def Sigma_cone(K):
+    gens = cross_positive_operator_gens(K)
+    L = ToricLattice(K.lattice_dim()**2)
+    return Cone([ g.list() for g in gens ], lattice=L, check=False)
+
 def Z_cone(K):
     gens = Z_operator_gens(K)
     L = ToricLattice(K.lattice_dim()**2)