]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_utils.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_utils.py
index d486b4c604723b2a3e8544c2cf2644edb733d713..a8abeff6be073b2b0aea3dd4f5af933c251666a5 100644 (file)
-from sage.modules.free_module_element import vector
-from sage.rings.number_field.number_field import NumberField
-from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
-from sage.rings.real_lazy import RLF
+from sage.structure.element import is_Matrix
 
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
+def _scale(x, alpha):
+    r"""
+    Scale the vector, matrix, or cartesian-product-of-those-things
+    ``x`` by ``alpha``.
 
-def gram_schmidt(v):
+    This works around the inability to scale certain elements of
+    Cartesian product spaces, as reported in
+
+      https://trac.sagemath.org/ticket/31435
+
+    ..WARNING:
+
+        This will do the wrong thing if you feed it a tuple or list.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import _scale
+
+    EXAMPLES::
+
+        sage: v = vector(QQ, (1,2,3))
+        sage: _scale(v,2)
+        (2, 4, 6)
+        sage: m = matrix(QQ, [[1,2],[3,4]])
+        sage: M = cartesian_product([m.parent(), m.parent()])
+        sage: _scale(M((m,m)), 2)
+        ([2 4]
+        [6 8], [2 4]
+        [6 8])
+
+    """
+    if hasattr(x, 'cartesian_factors'):
+        P = x.parent()
+        return P(tuple( _scale(x_i, alpha)
+                        for x_i in x.cartesian_factors() ))
+    else:
+        return x*alpha
+
+
+def _all2list(x):
+    r"""
+    Flatten a vector, matrix, or cartesian product of those things
+    into a long list.
+
+    If the entries of the matrix themselves belong to a real vector
+    space (such as the complex numbers which can be thought of as
+    pairs of real numbers), they will also be expanded in vector form
+    and flattened into the list.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import _all2list
+        sage: from mjo.hurwitz import (QuaternionMatrixAlgebra,
+        ....:                          Octonions,
+        ....:                          OctonionMatrixAlgebra)
+
+    EXAMPLES::
+
+        sage: _all2list([[1]])
+        [1]
+
+    ::
+
+        sage: V1 = VectorSpace(QQ,2)
+        sage: V2 = MatrixSpace(QQ,2)
+        sage: x1 = V1([1,1])
+        sage: x2 = V1([1,-1])
+        sage: y1 = V2.one()
+        sage: y2 = V2([0,1,1,0])
+        sage: _all2list((x1,y1))
+        [1, 1, 1, 0, 0, 1]
+        sage: _all2list((x2,y2))
+        [1, -1, 0, 1, 1, 0]
+        sage: M = cartesian_product([V1,V2])
+        sage: _all2list(M((x1,y1)))
+        [1, 1, 1, 0, 0, 1]
+        sage: _all2list(M((x2,y2)))
+        [1, -1, 0, 1, 1, 0]
+
+    ::
+
+        sage: _all2list(Octonions().one())
+        [1, 0, 0, 0, 0, 0, 0, 0]
+        sage: _all2list(OctonionMatrixAlgebra(1).one())
+        [1, 0, 0, 0, 0, 0, 0, 0]
+
+    ::
+
+        sage: _all2list(QuaternionAlgebra(QQ, -1, -1).one())
+        [1, 0, 0, 0]
+        sage: _all2list(QuaternionMatrixAlgebra(1).one())
+        [1, 0, 0, 0]
+
+    ::
+
+        sage: V1 = VectorSpace(QQ,2)
+        sage: V2 = OctonionMatrixAlgebra(1,field=QQ)
+        sage: C = cartesian_product([V1,V2])
+        sage: x1 = V1([3,4])
+        sage: y1 = V2.one()
+        sage: _all2list(C( (x1,y1) ))
+        [3, 4, 1, 0, 0, 0, 0, 0, 0, 0]
+
+    """
+    if hasattr(x, 'to_vector'):
+        # This works on matrices of e.g. octonions directly, without
+        # first needing to convert them to a list of octonions and
+        # then recursing down into the list. It also avoids the wonky
+        # list(x) when x is an element of a CFM. I don't know what it
+        # returns but it aint the coordinates. We don't recurse
+        # because vectors can only contain ring elements as entries.
+        return x.to_vector().list()
+
+    if is_Matrix(x):
+        # This sucks, but for performance reasons we don't want to
+        # call _all2list recursively on the contents of a matrix
+        # when we don't have to (they only contain ring elements
+        # as entries)
+        return x.list()
+
+    try:
+        xl = list(x)
+    except TypeError: # x is not iterable
+        return [x]
+
+    if xl == [x]:
+        # Avoid the retardation of list(QQ(1)) == [1].
+        return [x]
+
+    return sum( map(_all2list, xl) , [])
+
+
+def gram_schmidt(v, inner_product=None):
     """
     Perform Gram-Schmidt on the list ``v`` which are assumed to be
     vectors over the same base ring. Returns a list of orthonormalized
-    vectors over the smallest extention ring containing the necessary
-    roots.
+    vectors over the same base ring, which means that your base ring
+    needs to contain the appropriate roots.
 
     SETUP::
 
         sage: from mjo.eja.eja_utils import gram_schmidt
 
-    EXAMPLES::
+    EXAMPLES:
+
+    If you start with an orthonormal set, you get it back. We can use
+    the rationals here because we don't need any square roots::
+
+        sage: v1 = vector(QQ, (1,0,0))
+        sage: v2 = vector(QQ, (0,1,0))
+        sage: v3 = vector(QQ, (0,0,1))
+        sage: v = [v1,v2,v3]
+        sage: gram_schmidt(v) == v
+        True
+
+    The usual inner-product and norm are default::
 
-        sage: v1 = vector(QQ,(1,2,3))
-        sage: v2 = vector(QQ,(1,-1,6))
-        sage: v3 = vector(QQ,(2,1,-1))
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(2,1,-1))
         sage: v = [v1,v2,v3]
         sage: u = gram_schmidt(v)
         sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
         True
-        sage: u[0].inner_product(u[1]) == 0
+        sage: bool(u[0].inner_product(u[1]) == 0)
+        True
+        sage: bool(u[0].inner_product(u[2]) == 0)
+        True
+        sage: bool(u[1].inner_product(u[2]) == 0)
+        True
+
+
+    But if you supply a custom inner product, the result is
+    orthonormal with respect to that (and not the usual inner
+    product)::
+
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(2,1,-1))
+        sage: v = [v1,v2,v3]
+        sage: B = matrix(AA, [ [6, 4, 2],
+        ....:                  [4, 5, 4],
+        ....:                  [2, 4, 9] ])
+        sage: ip = lambda x,y: (B*x).inner_product(y)
+        sage: norm = lambda x: ip(x,x)
+        sage: u = gram_schmidt(v,ip)
+        sage: all( norm(u_i) == 1 for u_i in u )
+        True
+        sage: ip(u[0],u[1]).is_zero()
         True
-        sage: u[0].inner_product(u[2]) == 0
+        sage: ip(u[0],u[2]).is_zero()
         True
-        sage: u[1].inner_product(u[2]) == 0
+        sage: ip(u[1],u[2]).is_zero()
         True
 
+    This Gram-Schmidt routine can be used on matrices as well, so long
+    as an appropriate inner-product is provided::
+
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E12 = matrix(AA, [ [0,1],
+        ....:                    [1,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: I = matrix.identity(AA,2)
+        sage: trace_ip = lambda X,Y: (X*Y).trace()
+        sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip)
+        [
+        [1 0]  [                  0 0.7071067811865475?]  [0 0]
+        [0 0], [0.7071067811865475?                   0], [0 1]
+        ]
+
+    It even works on Cartesian product spaces whose factors are vector
+    or matrix spaces::
+
+        sage: V1 = VectorSpace(AA,2)
+        sage: V2 = MatrixSpace(AA,2)
+        sage: M = cartesian_product([V1,V2])
+        sage: x1 = V1([1,1])
+        sage: x2 = V1([1,-1])
+        sage: y1 = V2.one()
+        sage: y2 = V2([0,1,1,0])
+        sage: z1 = M((x1,y1))
+        sage: z2 = M((x2,y2))
+        sage: def ip(a,b):
+        ....:     return a[0].inner_product(b[0]) + (a[1]*b[1]).trace()
+        sage: U = gram_schmidt([z1,z2], inner_product=ip)
+        sage: ip(U[0],U[1])
+        0
+        sage: ip(U[0],U[0])
+        1
+        sage: ip(U[1],U[1])
+        1
+
     TESTS:
 
     Ensure that zero vectors don't get in the way::
 
-        sage: v1 = vector(QQ,(1,2,3))
-        sage: v2 = vector(QQ,(1,-1,6))
-        sage: v3 = vector(QQ,(0,0,0))
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(0,0,0))
         sage: v = [v1,v2,v3]
         sage: len(gram_schmidt(v)) == 2
         True
 
     """
+    if len(v) == 0:
+        # cool
+        return v
+
+    V = v[0].parent()
+
+    if inner_product is None:
+        inner_product = lambda x,y: x.inner_product(y)
+
+    sc = lambda x,a: a*x
+    if hasattr(V, 'cartesian_factors'):
+        # Only use the slow implementation if necessary.
+        sc = _scale
+
     def proj(x,y):
-        return (y.inner_product(x)/x.inner_product(x))*x
+        # project y onto the span of {x}
+        return sc(x, (inner_product(x,y)/inner_product(x,x)))
 
-    v = list(v) # make a copy, don't clobber the input
+    def normalize(x):
+        # Don't extend the given field with the necessary
+        # square roots. This will probably throw weird
+        # errors about the symbolic ring if you e.g. try
+        # to use it on a set of rational vectors that isn't
+        # already orthonormalized.
+        return sc(x, ~inner_product(x,x).sqrt())
 
-    # Drop all zero vectors before we start.
-    v = [ v_i for v_i in v if not v_i.is_zero() ]
+    v_out = [] # make a copy, don't clobber the input
 
-    if len(v) == 0:
-        # cool
-        return v
+    for (i, v_i) in enumerate(v):
+        ortho_v_i = v_i - V.sum( proj(v_out[j],v_i) for j in range(i) )
+        if not ortho_v_i.is_zero():
+            v_out.append(normalize(ortho_v_i))
 
-    R = v[0].base_ring()
-
-    # First orthogonalize...
-    for i in xrange(1,len(v)):
-        # Earlier vectors can be made into zero so we have to ignore them.
-        v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() )
-
-    # And now drop all zero vectors again if they were "orthogonalized out."
-    v = [ v_i for v_i in v if not v_i.is_zero() ]
-
-    # Now pretend to normalize, building a new ring R that contains
-    # all of the necessary square roots.
-    norms_squared = [0]*len(v)
-
-    for i in xrange(len(v)):
-        norms_squared[i] = v[i].inner_product(v[i])
-        ns = [norms_squared[i].numerator(), norms_squared[i].denominator()]
-
-        # Do the numerator and denominator separately so that we
-        # adjoin e.g. sqrt(2) and sqrt(3) instead of sqrt(2/3).
-        for j in xrange(len(ns)):
-            PR = PolynomialRing(R, 'z')
-            z = PR.gen()
-            p = z**2 - ns[j]
-            if p.is_irreducible():
-                R = NumberField(p,
-                                'sqrt' + str(ns[j]),
-                                embedding=RLF(ns[j]).sqrt())
-
-    # When we're done, we have to change every element's ring to the
-    # extension that we wound up with, and then normalize it (which
-    # should work, since "R" contains its norm now).
-    for i in xrange(len(v)):
-        v[i] = v[i].change_ring(R) / R(norms_squared[i]).sqrt()
-
-    return v
+    return v_out