]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_utils.py
eja: cache the charpoly coefficients for the AlbertEJA.
[sage.d.git] / mjo / eja / eja_utils.py
index b6b0a0327c19842ce654023b00bf6e0b9af539a1..3942e70811c6d69e59c9581d23f17af05c261dfa 100644 (file)
@@ -1,4 +1,334 @@
+from sage.functions.other import sqrt
+from sage.matrix.constructor import matrix
 from sage.modules.free_module_element import vector
 
+def _charpoly_sage_input(s):
+    r"""
+    Helper function that you can use on the string output from sage
+    to convert a charpoly coefficient into the corresponding input
+    to be cached.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import _charpoly_sage_input
+
+    EXAMPLES::
+
+        sage: J = JordanSpinEJA(4,QQ)
+        sage: J._charpoly_coefficients()[0]
+        X1^2 - X2^2 - X3^2 - X4^2
+        sage: _charpoly_sage_input("X1^2 - X2^2 - X3^2 - X4^2")
+        'X[0]**2 - X[1]**2 - X[2]**2 - X[3]**2'
+
+    """
+    import re
+
+    exponent_out = r"\^"
+    exponent_in = r"**"
+
+    digit_out = r"X([0-9]+)"
+
+    def replace_digit(m):
+        # m is a match object
+        return "X[" + str(int(m.group(1)) - 1) + "]"
+
+    s = re.sub(exponent_out, exponent_in, s)
+    return re.sub(digit_out, replace_digit, s)
+
+
+def _scale(x, alpha):
+    r"""
+    Scale the vector, matrix, or cartesian-product-of-those-things
+    ``x`` by ``alpha``.
+
+    This works around the inability to scale certain elements of
+    Cartesian product spaces, as reported in
+
+      https://trac.sagemath.org/ticket/31435
+
+    ..WARNING:
+
+        This will do the wrong thing if you feed it a tuple or list.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import _scale
+
+    EXAMPLES::
+
+        sage: v = vector(QQ, (1,2,3))
+        sage: _scale(v,2)
+        (2, 4, 6)
+        sage: m = matrix(QQ, [[1,2],[3,4]])
+        sage: M = cartesian_product([m.parent(), m.parent()])
+        sage: _scale(M((m,m)), 2)
+        ([2 4]
+        [6 8], [2 4]
+        [6 8])
+
+    """
+    if hasattr(x, 'cartesian_factors'):
+        P = x.parent()
+        return P(tuple( _scale(x_i, alpha)
+                        for x_i in x.cartesian_factors() ))
+    else:
+        return x*alpha
+
+
+def _all2list(x):
+    r"""
+    Flatten a vector, matrix, or cartesian product of those things
+    into a long list.
+
+    If the entries of the matrix themselves belong to a real vector
+    space (such as the complex numbers which can be thought of as
+    pairs of real numbers), they will also be expanded in vector form
+    and flattened into the list.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import _all2list
+        sage: from mjo.hurwitz import (QuaternionMatrixAlgebra,
+        ....:                          Octonions,
+        ....:                          OctonionMatrixAlgebra)
+
+    EXAMPLES::
+
+        sage: _all2list([[1]])
+        [1]
+
+    ::
+
+        sage: V1 = VectorSpace(QQ,2)
+        sage: V2 = MatrixSpace(QQ,2)
+        sage: x1 = V1([1,1])
+        sage: x2 = V1([1,-1])
+        sage: y1 = V2.one()
+        sage: y2 = V2([0,1,1,0])
+        sage: _all2list((x1,y1))
+        [1, 1, 1, 0, 0, 1]
+        sage: _all2list((x2,y2))
+        [1, -1, 0, 1, 1, 0]
+        sage: M = cartesian_product([V1,V2])
+        sage: _all2list(M((x1,y1)))
+        [1, 1, 1, 0, 0, 1]
+        sage: _all2list(M((x2,y2)))
+        [1, -1, 0, 1, 1, 0]
+
+    ::
+
+        sage: _all2list(Octonions().one())
+        [1, 0, 0, 0, 0, 0, 0, 0]
+        sage: _all2list(OctonionMatrixAlgebra(1).one())
+        [1, 0, 0, 0, 0, 0, 0, 0]
+
+    ::
+
+        sage: _all2list(QuaternionAlgebra(QQ, -1, -1).one())
+        [1, 0, 0, 0]
+        sage: _all2list(QuaternionMatrixAlgebra(1).one())
+        [1, 0, 0, 0]
+
+    ::
+
+        sage: V1 = VectorSpace(QQ,2)
+        sage: V2 = OctonionMatrixAlgebra(1,field=QQ)
+        sage: C = cartesian_product([V1,V2])
+        sage: x1 = V1([3,4])
+        sage: y1 = V2.one()
+        sage: _all2list(C( (x1,y1) ))
+        [3, 4, 1, 0, 0, 0, 0, 0, 0, 0]
+
+    """
+    if hasattr(x, 'to_vector'):
+        # This works on matrices of e.g. octonions directly, without
+        # first needing to convert them to a list of octonions and
+        # then recursing down into the list. It also avoids the wonky
+        # list(x) when x is an element of a CFM. I don't know what it
+        # returns but it aint the coordinates. This will fall through
+        # to the iterable case the next time around.
+        return _all2list(x.to_vector())
+
+    try:
+        xl = list(x)
+    except TypeError: # x is not iterable
+        return [x]
+
+    if xl == [x]:
+        # Avoid the retardation of list(QQ(1)) == [1].
+        return [x]
+
+    return sum(list( map(_all2list, xl) ), [])
+
+
+
 def _mat2vec(m):
         return vector(m.base_ring(), m.list())
+
+def _vec2mat(v):
+        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
+
+def gram_schmidt(v, inner_product=None):
+    """
+    Perform Gram-Schmidt on the list ``v`` which are assumed to be
+    vectors over the same base ring. Returns a list of orthonormalized
+    vectors over the same base ring, which means that your base ring
+    needs to contain the appropriate roots.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_utils import gram_schmidt
+
+    EXAMPLES:
+
+    If you start with an orthonormal set, you get it back. We can use
+    the rationals here because we don't need any square roots::
+
+        sage: v1 = vector(QQ, (1,0,0))
+        sage: v2 = vector(QQ, (0,1,0))
+        sage: v3 = vector(QQ, (0,0,1))
+        sage: v = [v1,v2,v3]
+        sage: gram_schmidt(v) == v
+        True
+
+    The usual inner-product and norm are default::
+
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(2,1,-1))
+        sage: v = [v1,v2,v3]
+        sage: u = gram_schmidt(v)
+        sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
+        True
+        sage: bool(u[0].inner_product(u[1]) == 0)
+        True
+        sage: bool(u[0].inner_product(u[2]) == 0)
+        True
+        sage: bool(u[1].inner_product(u[2]) == 0)
+        True
+
+
+    But if you supply a custom inner product, the result is
+    orthonormal with respect to that (and not the usual inner
+    product)::
+
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(2,1,-1))
+        sage: v = [v1,v2,v3]
+        sage: B = matrix(AA, [ [6, 4, 2],
+        ....:                  [4, 5, 4],
+        ....:                  [2, 4, 9] ])
+        sage: ip = lambda x,y: (B*x).inner_product(y)
+        sage: norm = lambda x: ip(x,x)
+        sage: u = gram_schmidt(v,ip)
+        sage: all( norm(u_i) == 1 for u_i in u )
+        True
+        sage: ip(u[0],u[1]).is_zero()
+        True
+        sage: ip(u[0],u[2]).is_zero()
+        True
+        sage: ip(u[1],u[2]).is_zero()
+        True
+
+    This Gram-Schmidt routine can be used on matrices as well, so long
+    as an appropriate inner-product is provided::
+
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E12 = matrix(AA, [ [0,1],
+        ....:                    [1,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: I = matrix.identity(AA,2)
+        sage: trace_ip = lambda X,Y: (X*Y).trace()
+        sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip)
+        [
+        [1 0]  [                  0 0.7071067811865475?]  [0 0]
+        [0 0], [0.7071067811865475?                   0], [0 1]
+        ]
+
+    It even works on Cartesian product spaces whose factors are vector
+    or matrix spaces::
+
+        sage: V1 = VectorSpace(AA,2)
+        sage: V2 = MatrixSpace(AA,2)
+        sage: M = cartesian_product([V1,V2])
+        sage: x1 = V1([1,1])
+        sage: x2 = V1([1,-1])
+        sage: y1 = V2.one()
+        sage: y2 = V2([0,1,1,0])
+        sage: z1 = M((x1,y1))
+        sage: z2 = M((x2,y2))
+        sage: def ip(a,b):
+        ....:     return a[0].inner_product(b[0]) + (a[1]*b[1]).trace()
+        sage: U = gram_schmidt([z1,z2], inner_product=ip)
+        sage: ip(U[0],U[1])
+        0
+        sage: ip(U[0],U[0])
+        1
+        sage: ip(U[1],U[1])
+        1
+
+    TESTS:
+
+    Ensure that zero vectors don't get in the way::
+
+        sage: v1 = vector(AA,(1,2,3))
+        sage: v2 = vector(AA,(1,-1,6))
+        sage: v3 = vector(AA,(0,0,0))
+        sage: v = [v1,v2,v3]
+        sage: len(gram_schmidt(v)) == 2
+        True
+    """
+    if inner_product is None:
+        inner_product = lambda x,y: x.inner_product(y)
+    def norm(x):
+        ip = inner_product(x,x)
+        # Don't expand the given field; the inner-product's codomain
+        # is already correct. For example QQ(2).sqrt() returns sqrt(2)
+        # in SR, and that will give you weird errors about symbolics
+        # when what's really going wrong is that you're trying to
+        # orthonormalize in QQ.
+        return ip.parent()(ip.sqrt())
+
+    v = list(v) # make a copy, don't clobber the input
+
+    # Drop all zero vectors before we start.
+    v = [ v_i for v_i in v if not v_i.is_zero() ]
+
+    if len(v) == 0:
+        # cool
+        return v
+
+    R = v[0].base_ring()
+
+    # Our "zero" needs to belong to the right space for sum() to work.
+    zero = v[0].parent().zero()
+
+    sc = lambda x,a: a*x
+    if hasattr(v[0], 'cartesian_factors'):
+        # Only use the slow implementation if necessary.
+        sc = _scale
+
+    def proj(x,y):
+        return sc(x, (inner_product(x,y)/inner_product(x,x)))
+
+    # First orthogonalize...
+    for i in range(1,len(v)):
+        # Earlier vectors can be made into zero so we have to ignore them.
+        v[i] -= sum( (proj(v[j],v[i])
+                      for j in range(i)
+                      if not v[j].is_zero() ),
+                     zero )
+
+    # And now drop all zero vectors again if they were "orthogonalized out."
+    v = [ v_i for v_i in v if not v_i.is_zero() ]
+
+    # Just normalize. If the algebra is missing the roots, we can't add
+    # them here because then our subalgebra would have a bigger field
+    # than the superalgebra.
+    for i in range(len(v)):
+        v[i] = sc(v[i], ~norm(v[i]))
+
+    return v