]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/hurwitz.py
hurwitz: add ComplexMatrixAlgebra.
[sage.d.git] / mjo / hurwitz.py
1 from sage.misc.cachefunc import cached_method
2 from sage.combinat.free_module import CombinatorialFreeModule
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4 from sage.rings.all import AA
5
6 from mjo.matrix_algebra import MatrixAlgebra, MatrixAlgebraElement
7
8 class Octonion(IndexedFreeModuleElement):
9 def conjugate(self):
10 r"""
11 SETUP::
12
13 sage: from mjo.hurwitz import Octonions
14
15 EXAMPLES::
16
17 sage: O = Octonions()
18 sage: x = sum(O.gens())
19 sage: x.conjugate()
20 e0 - e1 - e2 - e3 - e4 - e5 - e6 - e7
21
22 TESTS::
23
24 Conjugating twice gets you the original element::
25
26 sage: set_random_seed()
27 sage: O = Octonions()
28 sage: x = O.random_element()
29 sage: x.conjugate().conjugate() == x
30 True
31
32 """
33 from sage.rings.all import ZZ
34 from sage.matrix.matrix_space import MatrixSpace
35 C = MatrixSpace(ZZ,8).diagonal_matrix((1,-1,-1,-1,-1,-1,-1,-1))
36 return self.parent().from_vector(C*self.to_vector())
37
38 def real(self):
39 r"""
40 Return the real part of this octonion.
41
42 The real part of an octonion is its projection onto the span
43 of the first generator. In other words, the "first dimension"
44 is real and the others are imaginary.
45
46 SETUP::
47
48 sage: from mjo.hurwitz import Octonions
49
50 EXAMPLES::
51
52 sage: O = Octonions()
53 sage: x = sum(O.gens())
54 sage: x.real()
55 e0
56
57 TESTS:
58
59 This method is idempotent::
60
61 sage: set_random_seed()
62 sage: O = Octonions()
63 sage: x = O.random_element()
64 sage: x.real().real() == x.real()
65 True
66
67 """
68 return (self + self.conjugate())/2
69
70 def imag(self):
71 r"""
72 Return the imaginary part of this octonion.
73
74 The imaginary part of an octonion is its projection onto the
75 orthogonal complement of the span of the first generator. In
76 other words, the "first dimension" is real and the others are
77 imaginary.
78
79 SETUP::
80
81 sage: from mjo.hurwitz import Octonions
82
83 EXAMPLES::
84
85 sage: O = Octonions()
86 sage: x = sum(O.gens())
87 sage: x.imag()
88 e1 + e2 + e3 + e4 + e5 + e6 + e7
89
90 TESTS:
91
92 This method is idempotent::
93
94 sage: set_random_seed()
95 sage: O = Octonions()
96 sage: x = O.random_element()
97 sage: x.imag().imag() == x.imag()
98 True
99
100 """
101 return (self - self.conjugate())/2
102
103 def _norm_squared(self):
104 return (self*self.conjugate()).coefficient(0)
105
106 def norm(self):
107 r"""
108 Return the norm of this octonion.
109
110 SETUP::
111
112 sage: from mjo.hurwitz import Octonions
113
114 EXAMPLES::
115
116 sage: O = Octonions()
117 sage: O.one().norm()
118 1
119
120 TESTS:
121
122 The norm is nonnegative and belongs to the base field::
123
124 sage: set_random_seed()
125 sage: O = Octonions()
126 sage: n = O.random_element().norm()
127 sage: n >= 0 and n in O.base_ring()
128 True
129
130 The norm is homogeneous::
131
132 sage: set_random_seed()
133 sage: O = Octonions()
134 sage: x = O.random_element()
135 sage: alpha = O.base_ring().random_element()
136 sage: (alpha*x).norm() == alpha.abs()*x.norm()
137 True
138
139 """
140 return self._norm_squared().sqrt()
141
142 # The absolute value notation is typically used for complex numbers...
143 # and norm() isn't supported in AA, so this lets us use abs() in all
144 # of the division algebras we need.
145 abs = norm
146
147 def inverse(self):
148 r"""
149 Return the inverse of this element if it exists.
150
151 SETUP::
152
153 sage: from mjo.hurwitz import Octonions
154
155 EXAMPLES::
156
157 sage: O = Octonions()
158 sage: x = sum(O.gens())
159 sage: x*x.inverse() == O.one()
160 True
161
162 ::
163
164 sage: O = Octonions()
165 sage: O.one().inverse() == O.one()
166 True
167
168 TESTS::
169
170 sage: set_random_seed()
171 sage: O = Octonions()
172 sage: x = O.random_element()
173 sage: x.is_zero() or ( x*x.inverse() == O.one() )
174 True
175
176 """
177 if self.is_zero():
178 raise ValueError("zero is not invertible")
179 return self.conjugate()/self._norm_squared()
180
181
182
183 class Octonions(CombinatorialFreeModule):
184 r"""
185 SETUP::
186
187 sage: from mjo.hurwitz import Octonions
188
189 EXAMPLES::
190
191 sage: Octonions()
192 Octonion algebra with base ring Algebraic Real Field
193 sage: Octonions(field=QQ)
194 Octonion algebra with base ring Rational Field
195
196 """
197 def __init__(self,
198 field=AA,
199 prefix="e"):
200
201 # Not associative, not commutative
202 from sage.categories.magmatic_algebras import MagmaticAlgebras
203 category = MagmaticAlgebras(field).FiniteDimensional()
204 category = category.WithBasis().Unital()
205
206 super().__init__(field,
207 range(8),
208 element_class=Octonion,
209 category=category,
210 prefix=prefix,
211 bracket=False)
212
213 # The product of each basis element is plus/minus another
214 # basis element that can simply be looked up on
215 # https://en.wikipedia.org/wiki/Octonion
216 e0, e1, e2, e3, e4, e5, e6, e7 = self.gens()
217 self._multiplication_table = (
218 (e0, e1, e2, e3, e4, e5, e6, e7),
219 (e1,-e0, e3,-e2, e5,-e4,-e7, e6),
220 (e2,-e3,-e0, e1, e6, e7,-e4,-e5),
221 (e3, e2,-e1,-e0, e7,-e6, e5,-e4),
222 (e4,-e5,-e6,-e7,-e0, e1, e2, e3),
223 (e5, e4,-e7, e6,-e1,-e0,-e3, e2),
224 (e6, e7, e4,-e5,-e2, e3,-e0,-e1),
225 (e7,-e6, e5, e4,-e3,-e2, e1,-e0),
226 )
227
228 def product_on_basis(self, i, j):
229 return self._multiplication_table[i][j]
230
231 def one_basis(self):
232 r"""
233 Return the monomial index (basis element) corresponding to the
234 octonion unit element.
235
236 SETUP::
237
238 sage: from mjo.hurwitz import Octonions
239
240 TESTS:
241
242 This gives the correct unit element::
243
244 sage: set_random_seed()
245 sage: O = Octonions()
246 sage: x = O.random_element()
247 sage: x*O.one() == x and O.one()*x == x
248 True
249
250 """
251 return 0
252
253 def _repr_(self):
254 return ("Octonion algebra with base ring %s" % self.base_ring())
255
256 def multiplication_table(self):
257 """
258 Return a visual representation of this algebra's multiplication
259 table (on basis elements).
260
261 SETUP::
262
263 sage: from mjo.hurwitz import Octonions
264
265 EXAMPLES:
266
267 The multiplication table is what Wikipedia says it is::
268
269 sage: Octonions().multiplication_table()
270 +----++----+-----+-----+-----+-----+-----+-----+-----+
271 | * || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
272 +====++====+=====+=====+=====+=====+=====+=====+=====+
273 | e0 || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
274 +----++----+-----+-----+-----+-----+-----+-----+-----+
275 | e1 || e1 | -e0 | e3 | -e2 | e5 | -e4 | -e7 | e6 |
276 +----++----+-----+-----+-----+-----+-----+-----+-----+
277 | e2 || e2 | -e3 | -e0 | e1 | e6 | e7 | -e4 | -e5 |
278 +----++----+-----+-----+-----+-----+-----+-----+-----+
279 | e3 || e3 | e2 | -e1 | -e0 | e7 | -e6 | e5 | -e4 |
280 +----++----+-----+-----+-----+-----+-----+-----+-----+
281 | e4 || e4 | -e5 | -e6 | -e7 | -e0 | e1 | e2 | e3 |
282 +----++----+-----+-----+-----+-----+-----+-----+-----+
283 | e5 || e5 | e4 | -e7 | e6 | -e1 | -e0 | -e3 | e2 |
284 +----++----+-----+-----+-----+-----+-----+-----+-----+
285 | e6 || e6 | e7 | e4 | -e5 | -e2 | e3 | -e0 | -e1 |
286 +----++----+-----+-----+-----+-----+-----+-----+-----+
287 | e7 || e7 | -e6 | e5 | e4 | -e3 | -e2 | e1 | -e0 |
288 +----++----+-----+-----+-----+-----+-----+-----+-----+
289
290 """
291 n = self.dimension()
292 # Prepend the header row.
293 M = [["*"] + list(self.gens())]
294
295 # And to each subsequent row, prepend an entry that belongs to
296 # the left-side "header column."
297 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
298 for j in range(n) ]
299 for i in range(n) ]
300
301 from sage.misc.table import table
302 return table(M, header_row=True, header_column=True, frame=True)
303
304
305
306
307
308 class HurwitzMatrixAlgebraElement(MatrixAlgebraElement):
309 def is_hermitian(self):
310 r"""
311
312 SETUP::
313
314 sage: from mjo.hurwitz import HurwitzMatrixAlgebra
315
316 EXAMPLES::
317
318 sage: A = HurwitzMatrixAlgebra(QQbar, ZZ, 2)
319 sage: M = A([ [ 0,I],
320 ....: [-I,0] ])
321 sage: M.is_hermitian()
322 True
323
324 """
325 return all( self[i,j] == self[j,i].conjugate()
326 for i in range(self.nrows())
327 for j in range(self.ncols()) )
328
329
330 class HurwitzMatrixAlgebra(MatrixAlgebra):
331 r"""
332 A class of matrix algebras whose entries come from a Hurwitz
333 algebra.
334
335 For our purposes, we consider "a Hurwitz" algebra to be the real
336 or complex numbers, the quaternions, or the octonions. These are
337 typically also referred to as the Euclidean Hurwitz algebras, or
338 the normed division algebras.
339
340 By the Cayley-Dickson construction, each Hurwitz algebra is an
341 algebra over the real numbers, so we restrict the scalar field in
342 this case to be real. This also allows us to more accurately
343 produce the generators of the matrix algebra.
344 """
345 Element = HurwitzMatrixAlgebraElement
346
347 def __init__(self, entry_algebra, scalars, n, **kwargs):
348 from sage.rings.all import RR
349 if not scalars.is_subring(RR):
350 # Not perfect, but it's what we're using.
351 raise ValueError("scalar field is not real")
352
353 super().__init__(entry_algebra, scalars, n, **kwargs)
354
355 def entry_algebra_gens(self):
356 r"""
357 Return a tuple of the generators of (that is, a basis for) the
358 entries of this matrix algebra.
359
360 This works around the inconsistency in the ``gens()`` methods
361 of the real/complex numbers, quaternions, and octonions.
362
363 SETUP::
364
365 sage: from mjo.hurwitz import Octonions, HurwitzMatrixAlgebra
366
367 EXAMPLES:
368
369 The inclusion of the unit element is inconsistent across
370 (subalgebras of) Hurwitz algebras::
371
372 sage: AA.gens()
373 (1,)
374 sage: QQbar.gens()
375 (I,)
376 sage: QuaternionAlgebra(AA,1,-1).gens()
377 [i, j, k]
378 sage: Octonions().gens()
379 (e0, e1, e2, e3, e4, e5, e6, e7)
380
381 The unit element is always returned by this method, so the
382 sets of generators have cartinality 1,2,4, and 8 as you'd
383 expect::
384
385 sage: HurwitzMatrixAlgebra(AA, AA, 2).entry_algebra_gens()
386 (1,)
387 sage: HurwitzMatrixAlgebra(QQbar, AA, 2).entry_algebra_gens()
388 (1, I)
389 sage: Q = QuaternionAlgebra(AA,-1,-1)
390 sage: HurwitzMatrixAlgebra(Q, AA, 2).entry_algebra_gens()
391 (1, i, j, k)
392 sage: O = Octonions()
393 sage: HurwitzMatrixAlgebra(O, AA, 2).entry_algebra_gens()
394 (e0, e1, e2, e3, e4, e5, e6, e7)
395
396 """
397 gs = self.entry_algebra().gens()
398 one = self.entry_algebra().one()
399 if one in gs:
400 return gs
401 else:
402 return (one,) + tuple(gs)
403
404
405
406 class OctonionMatrixAlgebra(HurwitzMatrixAlgebra):
407 r"""
408 The algebra of ``n``-by-``n`` matrices with octonion entries over
409 (a subfield of) the real numbers.
410
411 The usual matrix spaces in SageMath don't support octonion entries
412 because they assume that the entries of the matrix come from a
413 commutative and associative ring, and the octonions are neither.
414
415 SETUP::
416
417 sage: from mjo.hurwitz import OctonionMatrixAlgebra
418
419 EXAMPLES::
420
421 sage: OctonionMatrixAlgebra(3)
422 Module of 3 by 3 matrices with entries in Octonion algebra with base
423 ring Algebraic Real Field over the scalar ring Algebraic Real Field
424 sage: OctonionMatrixAlgebra(3,QQ)
425 Module of 3 by 3 matrices with entries in Octonion algebra with base
426 ring Rational Field over the scalar ring Rational Field
427
428 ::
429
430 sage: A = OctonionMatrixAlgebra(2)
431 sage: e0,e1,e2,e3,e4,e5,e6,e7 = A.entry_algebra().gens()
432 sage: A([ [e0+e4, e1+e5],
433 ....: [e2-e6, e3-e7] ])
434 +---------+---------+
435 | e0 + e4 | e1 + e5 |
436 +---------+---------+
437 | e2 - e6 | e3 - e7 |
438 +---------+---------+
439
440 ::
441
442 sage: A1 = OctonionMatrixAlgebra(1,QQ)
443 sage: A2 = OctonionMatrixAlgebra(1,QQ)
444 sage: cartesian_product([A1,A2])
445 Module of 1 by 1 matrices with entries in Octonion algebra with
446 base ring Rational Field over the scalar ring Rational Field (+)
447 Module of 1 by 1 matrices with entries in Octonion algebra with
448 base ring Rational Field over the scalar ring Rational Field
449
450 TESTS::
451
452 sage: set_random_seed()
453 sage: A = OctonionMatrixAlgebra(ZZ.random_element(10))
454 sage: x = A.random_element()
455 sage: x*A.one() == x and A.one()*x == x
456 True
457
458 """
459 def __init__(self, n, scalars=AA, prefix="E", **kwargs):
460 super().__init__(Octonions(field=scalars),
461 scalars,
462 n,
463 prefix=prefix,
464 **kwargs)
465
466 class QuaternionMatrixAlgebra(HurwitzMatrixAlgebra):
467 r"""
468 The algebra of ``n``-by-``n`` matrices with quaternion entries over
469 (a subfield of) the real numbers.
470
471 The usual matrix spaces in SageMath don't support quaternion entries
472 because they assume that the entries of the matrix come from a
473 commutative ring, and the quaternions are not commutative.
474
475 SETUP::
476
477 sage: from mjo.hurwitz import QuaternionMatrixAlgebra
478
479 EXAMPLES::
480
481 sage: QuaternionMatrixAlgebra(3)
482 Module of 3 by 3 matrices with entries in Quaternion
483 Algebra (-1, -1) with base ring Algebraic Real Field
484 over the scalar ring Algebraic Real Field
485 sage: QuaternionMatrixAlgebra(3,QQ)
486 Module of 3 by 3 matrices with entries in Quaternion
487 Algebra (-1, -1) with base ring Rational Field over
488 the scalar ring Rational Field
489
490 ::
491
492 sage: A = QuaternionMatrixAlgebra(2)
493 sage: i,j,k = A.entry_algebra().gens()
494 sage: A([ [1+i, j-2],
495 ....: [k, k+j] ])
496 +-------+--------+
497 | 1 + i | -2 + j |
498 +-------+--------+
499 | k | j + k |
500 +-------+--------+
501
502 ::
503
504 sage: A1 = QuaternionMatrixAlgebra(1,QQ)
505 sage: A2 = QuaternionMatrixAlgebra(2,QQ)
506 sage: cartesian_product([A1,A2])
507 Module of 1 by 1 matrices with entries in Quaternion Algebra
508 (-1, -1) with base ring Rational Field over the scalar ring
509 Rational Field (+) Module of 2 by 2 matrices with entries in
510 Quaternion Algebra (-1, -1) with base ring Rational Field over
511 the scalar ring Rational Field
512
513 TESTS::
514
515 sage: set_random_seed()
516 sage: A = QuaternionMatrixAlgebra(ZZ.random_element(10))
517 sage: x = A.random_element()
518 sage: x*A.one() == x and A.one()*x == x
519 True
520
521 """
522 def __init__(self, n, scalars=AA, **kwargs):
523 # The -1,-1 gives us the "usual" definition of quaternion
524 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
525 Q = QuaternionAlgebra(scalars,-1,-1)
526 super().__init__(Q, scalars, n, **kwargs)
527
528
529 class ComplexMatrixAlgebra(HurwitzMatrixAlgebra):
530 r"""
531 The algebra of ``n``-by-``n`` matrices with complex entries over
532 (a subfield of) the real numbers.
533
534 These differ from the usual complex matrix spaces in SageMath
535 because the scalar field is real (and not assumed to be the same
536 as the space from which the entries are drawn). The space of
537 `1`-by-`1` complex matrices will have dimension two, for example.
538
539 SETUP::
540
541 sage: from mjo.hurwitz import ComplexMatrixAlgebra
542
543 EXAMPLES::
544
545 sage: ComplexMatrixAlgebra(3)
546 Module of 3 by 3 matrices with entries in Algebraic Field
547 over the scalar ring Algebraic Real Field
548 sage: ComplexMatrixAlgebra(3,QQ)
549 Module of 3 by 3 matrices with entries in Algebraic Field
550 over the scalar ring Rational Field
551
552 ::
553
554 sage: A = ComplexMatrixAlgebra(2)
555 sage: (I,) = A.entry_algebra().gens()
556 sage: A([ [1+I, 1],
557 ....: [-1, -I] ])
558 +-------+----+
559 | I + 1 | 1 |
560 +-------+----+
561 | -1 | -I |
562 +-------+----+
563
564 ::
565
566 sage: A1 = ComplexMatrixAlgebra(1,QQ)
567 sage: A2 = ComplexMatrixAlgebra(2,QQ)
568 sage: cartesian_product([A1,A2])
569 Module of 1 by 1 matrices with entries in Algebraic Field over
570 the scalar ring Rational Field (+) Module of 2 by 2 matrices with
571 entries in Algebraic Field over the scalar ring Rational Field
572
573 TESTS::
574
575 sage: set_random_seed()
576 sage: A = ComplexMatrixAlgebra(ZZ.random_element(10))
577 sage: x = A.random_element()
578 sage: x*A.one() == x and A.one()*x == x
579 True
580
581 """
582 def __init__(self, n, scalars=AA, **kwargs):
583 from sage.rings.all import QQbar
584 super().__init__(QQbar, scalars, n, **kwargs)