]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/hurwitz.py
eja: refactor all matrix classes upwards (note: everything broken).
[sage.d.git] / mjo / hurwitz.py
1 from sage.misc.cachefunc import cached_method
2 from sage.combinat.free_module import CombinatorialFreeModule
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4 from sage.rings.all import AA
5
6 from mjo.matrix_algebra import MatrixAlgebra, MatrixAlgebraElement
7
8 class Octonion(IndexedFreeModuleElement):
9 def conjugate(self):
10 r"""
11 SETUP::
12
13 sage: from mjo.hurwitz import Octonions
14
15 EXAMPLES::
16
17 sage: O = Octonions()
18 sage: x = sum(O.gens())
19 sage: x.conjugate()
20 e0 - e1 - e2 - e3 - e4 - e5 - e6 - e7
21
22 TESTS::
23
24 Conjugating twice gets you the original element::
25
26 sage: set_random_seed()
27 sage: O = Octonions()
28 sage: x = O.random_element()
29 sage: x.conjugate().conjugate() == x
30 True
31
32 """
33 from sage.rings.all import ZZ
34 from sage.matrix.matrix_space import MatrixSpace
35 C = MatrixSpace(ZZ,8).diagonal_matrix((1,-1,-1,-1,-1,-1,-1,-1))
36 return self.parent().from_vector(C*self.to_vector())
37
38 def real(self):
39 r"""
40 Return the real part of this octonion.
41
42 The real part of an octonion is its projection onto the span
43 of the first generator. In other words, the "first dimension"
44 is real and the others are imaginary.
45
46 SETUP::
47
48 sage: from mjo.hurwitz import Octonions
49
50 EXAMPLES::
51
52 sage: O = Octonions()
53 sage: x = sum(O.gens())
54 sage: x.real()
55 e0
56
57 TESTS:
58
59 This method is idempotent::
60
61 sage: set_random_seed()
62 sage: O = Octonions()
63 sage: x = O.random_element()
64 sage: x.real().real() == x.real()
65 True
66
67 """
68 return (self + self.conjugate())/2
69
70 def imag(self):
71 r"""
72 Return the imaginary part of this octonion.
73
74 The imaginary part of an octonion is its projection onto the
75 orthogonal complement of the span of the first generator. In
76 other words, the "first dimension" is real and the others are
77 imaginary.
78
79 SETUP::
80
81 sage: from mjo.hurwitz import Octonions
82
83 EXAMPLES::
84
85 sage: O = Octonions()
86 sage: x = sum(O.gens())
87 sage: x.imag()
88 e1 + e2 + e3 + e4 + e5 + e6 + e7
89
90 TESTS:
91
92 This method is idempotent::
93
94 sage: set_random_seed()
95 sage: O = Octonions()
96 sage: x = O.random_element()
97 sage: x.imag().imag() == x.imag()
98 True
99
100 """
101 return (self - self.conjugate())/2
102
103 def _norm_squared(self):
104 return (self*self.conjugate()).coefficient(0)
105
106 def norm(self):
107 r"""
108 Return the norm of this octonion.
109
110 SETUP::
111
112 sage: from mjo.hurwitz import Octonions
113
114 EXAMPLES::
115
116 sage: O = Octonions()
117 sage: O.one().norm()
118 1
119
120 TESTS:
121
122 The norm is nonnegative and belongs to the base field::
123
124 sage: set_random_seed()
125 sage: O = Octonions()
126 sage: n = O.random_element().norm()
127 sage: n >= 0 and n in O.base_ring()
128 True
129
130 The norm is homogeneous::
131
132 sage: set_random_seed()
133 sage: O = Octonions()
134 sage: x = O.random_element()
135 sage: alpha = O.base_ring().random_element()
136 sage: (alpha*x).norm() == alpha.abs()*x.norm()
137 True
138
139 """
140 return self._norm_squared().sqrt()
141
142 # The absolute value notation is typically used for complex numbers...
143 # and norm() isn't supported in AA, so this lets us use abs() in all
144 # of the division algebras we need.
145 abs = norm
146
147 def inverse(self):
148 r"""
149 Return the inverse of this element if it exists.
150
151 SETUP::
152
153 sage: from mjo.hurwitz import Octonions
154
155 EXAMPLES::
156
157 sage: O = Octonions()
158 sage: x = sum(O.gens())
159 sage: x*x.inverse() == O.one()
160 True
161
162 ::
163
164 sage: O = Octonions()
165 sage: O.one().inverse() == O.one()
166 True
167
168 TESTS::
169
170 sage: set_random_seed()
171 sage: O = Octonions()
172 sage: x = O.random_element()
173 sage: x.is_zero() or ( x*x.inverse() == O.one() )
174 True
175
176 """
177 if self.is_zero():
178 raise ValueError("zero is not invertible")
179 return self.conjugate()/self._norm_squared()
180
181
182
183 class Octonions(CombinatorialFreeModule):
184 r"""
185 SETUP::
186
187 sage: from mjo.hurwitz import Octonions
188
189 EXAMPLES::
190
191 sage: Octonions()
192 Octonion algebra with base ring Algebraic Real Field
193 sage: Octonions(field=QQ)
194 Octonion algebra with base ring Rational Field
195
196 """
197 def __init__(self,
198 field=AA,
199 prefix="e"):
200
201 # Not associative, not commutative
202 from sage.categories.magmatic_algebras import MagmaticAlgebras
203 category = MagmaticAlgebras(field).FiniteDimensional()
204 category = category.WithBasis().Unital()
205
206 super().__init__(field,
207 range(8),
208 element_class=Octonion,
209 category=category,
210 prefix=prefix,
211 bracket=False)
212
213 # The product of each basis element is plus/minus another
214 # basis element that can simply be looked up on
215 # https://en.wikipedia.org/wiki/Octonion
216 e0, e1, e2, e3, e4, e5, e6, e7 = self.gens()
217 self._multiplication_table = (
218 (e0, e1, e2, e3, e4, e5, e6, e7),
219 (e1,-e0, e3,-e2, e5,-e4,-e7, e6),
220 (e2,-e3,-e0, e1, e6, e7,-e4,-e5),
221 (e3, e2,-e1,-e0, e7,-e6, e5,-e4),
222 (e4,-e5,-e6,-e7,-e0, e1, e2, e3),
223 (e5, e4,-e7, e6,-e1,-e0,-e3, e2),
224 (e6, e7, e4,-e5,-e2, e3,-e0,-e1),
225 (e7,-e6, e5, e4,-e3,-e2, e1,-e0),
226 )
227
228 def product_on_basis(self, i, j):
229 return self._multiplication_table[i][j]
230
231 def one_basis(self):
232 r"""
233 Return the monomial index (basis element) corresponding to the
234 octonion unit element.
235
236 SETUP::
237
238 sage: from mjo.hurwitz import Octonions
239
240 TESTS:
241
242 This gives the correct unit element::
243
244 sage: set_random_seed()
245 sage: O = Octonions()
246 sage: x = O.random_element()
247 sage: x*O.one() == x and O.one()*x == x
248 True
249
250 """
251 return 0
252
253 def _repr_(self):
254 return ("Octonion algebra with base ring %s" % self.base_ring())
255
256 def multiplication_table(self):
257 """
258 Return a visual representation of this algebra's multiplication
259 table (on basis elements).
260
261 SETUP::
262
263 sage: from mjo.hurwitz import Octonions
264
265 EXAMPLES:
266
267 The multiplication table is what Wikipedia says it is::
268
269 sage: Octonions().multiplication_table()
270 +----++----+-----+-----+-----+-----+-----+-----+-----+
271 | * || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
272 +====++====+=====+=====+=====+=====+=====+=====+=====+
273 | e0 || e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
274 +----++----+-----+-----+-----+-----+-----+-----+-----+
275 | e1 || e1 | -e0 | e3 | -e2 | e5 | -e4 | -e7 | e6 |
276 +----++----+-----+-----+-----+-----+-----+-----+-----+
277 | e2 || e2 | -e3 | -e0 | e1 | e6 | e7 | -e4 | -e5 |
278 +----++----+-----+-----+-----+-----+-----+-----+-----+
279 | e3 || e3 | e2 | -e1 | -e0 | e7 | -e6 | e5 | -e4 |
280 +----++----+-----+-----+-----+-----+-----+-----+-----+
281 | e4 || e4 | -e5 | -e6 | -e7 | -e0 | e1 | e2 | e3 |
282 +----++----+-----+-----+-----+-----+-----+-----+-----+
283 | e5 || e5 | e4 | -e7 | e6 | -e1 | -e0 | -e3 | e2 |
284 +----++----+-----+-----+-----+-----+-----+-----+-----+
285 | e6 || e6 | e7 | e4 | -e5 | -e2 | e3 | -e0 | -e1 |
286 +----++----+-----+-----+-----+-----+-----+-----+-----+
287 | e7 || e7 | -e6 | e5 | e4 | -e3 | -e2 | e1 | -e0 |
288 +----++----+-----+-----+-----+-----+-----+-----+-----+
289
290 """
291 n = self.dimension()
292 # Prepend the header row.
293 M = [["*"] + list(self.gens())]
294
295 # And to each subsequent row, prepend an entry that belongs to
296 # the left-side "header column."
297 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
298 for j in range(n) ]
299 for i in range(n) ]
300
301 from sage.misc.table import table
302 return table(M, header_row=True, header_column=True, frame=True)
303
304
305
306
307
308 class HurwitzMatrixAlgebraElement(MatrixAlgebraElement):
309 def conjugate_transpose(self):
310 r"""
311 Return the conjugate-transpose of this matrix.
312
313 SETUP::
314
315 sage: from mjo.hurwitz import HurwitzMatrixAlgebra
316
317 EXAMPLES::
318
319 sage: A = HurwitzMatrixAlgebra(2, QQbar, ZZ)
320 sage: M = A([ [ I, 2*I],
321 ....: [ 3*I, 4*I] ])
322 +------+------+
323 | -1*I | -3*I |
324 +------+------+
325 | -2*I | -4*I |
326 +------+------+
327
328 """
329 entries = [ [ self[j,i].conjugate()
330 for j in range(self.ncols())]
331 for i in range(self.nrows()) ]
332 return self.parent()._element_constructor_(entries)
333
334 def is_hermitian(self):
335 r"""
336
337 SETUP::
338
339 sage: from mjo.hurwitz import HurwitzMatrixAlgebra
340
341 EXAMPLES::
342
343 sage: A = HurwitzMatrixAlgebra(2, QQbar, ZZ)
344 sage: M = A([ [ 0,I],
345 ....: [-I,0] ])
346 sage: M.is_hermitian()
347 True
348
349 """
350 # A tiny bit faster than checking equality with the conjugate
351 # transpose.
352 return all( self[i,j] == self[j,i].conjugate()
353 for i in range(self.nrows())
354 for j in range(self.ncols()) )
355
356
357 class HurwitzMatrixAlgebra(MatrixAlgebra):
358 r"""
359 A class of matrix algebras whose entries come from a Hurwitz
360 algebra.
361
362 For our purposes, we consider "a Hurwitz" algebra to be the real
363 or complex numbers, the quaternions, or the octonions. These are
364 typically also referred to as the Euclidean Hurwitz algebras, or
365 the normed division algebras.
366
367 By the Cayley-Dickson construction, each Hurwitz algebra is an
368 algebra over the real numbers, so we restrict the scalar field in
369 this case to be real. This also allows us to more accurately
370 produce the generators of the matrix algebra.
371 """
372 Element = HurwitzMatrixAlgebraElement
373
374 def __init__(self, n, entry_algebra, scalars, **kwargs):
375 from sage.rings.all import RR
376 if not scalars.is_subring(RR):
377 # Not perfect, but it's what we're using.
378 raise ValueError("scalar field is not real")
379
380 super().__init__(n, entry_algebra, scalars, **kwargs)
381
382 def entry_algebra_gens(self):
383 r"""
384 Return a tuple of the generators of (that is, a basis for) the
385 entries of this matrix algebra.
386
387 This works around the inconsistency in the ``gens()`` methods
388 of the real/complex numbers, quaternions, and octonions.
389
390 SETUP::
391
392 sage: from mjo.hurwitz import Octonions, HurwitzMatrixAlgebra
393
394 EXAMPLES:
395
396 The inclusion of the unit element is inconsistent across
397 (subalgebras of) Hurwitz algebras::
398
399 sage: AA.gens()
400 (1,)
401 sage: QQbar.gens()
402 (I,)
403 sage: QuaternionAlgebra(AA,1,-1).gens()
404 [i, j, k]
405 sage: Octonions().gens()
406 (e0, e1, e2, e3, e4, e5, e6, e7)
407
408 The unit element is always returned by this method, so the
409 sets of generators have cartinality 1,2,4, and 8 as you'd
410 expect::
411
412 sage: HurwitzMatrixAlgebra(2, AA, AA).entry_algebra_gens()
413 (1,)
414 sage: HurwitzMatrixAlgebra(2, QQbar, AA).entry_algebra_gens()
415 (1, I)
416 sage: Q = QuaternionAlgebra(AA,-1,-1)
417 sage: HurwitzMatrixAlgebra(2, Q, AA).entry_algebra_gens()
418 (1, i, j, k)
419 sage: O = Octonions()
420 sage: HurwitzMatrixAlgebra(2, O, AA).entry_algebra_gens()
421 (e0, e1, e2, e3, e4, e5, e6, e7)
422
423 """
424 gs = self.entry_algebra().gens()
425 one = self.entry_algebra().one()
426 if one in gs:
427 return gs
428 else:
429 return (one,) + tuple(gs)
430
431
432
433 class OctonionMatrixAlgebra(HurwitzMatrixAlgebra):
434 r"""
435 The algebra of ``n``-by-``n`` matrices with octonion entries over
436 (a subfield of) the real numbers.
437
438 The usual matrix spaces in SageMath don't support octonion entries
439 because they assume that the entries of the matrix come from a
440 commutative and associative ring, and the octonions are neither.
441
442 SETUP::
443
444 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
445
446 EXAMPLES::
447
448 sage: OctonionMatrixAlgebra(3)
449 Module of 3 by 3 matrices with entries in Octonion algebra with base
450 ring Algebraic Real Field over the scalar ring Algebraic Real Field
451
452 ::
453
454 sage: OctonionMatrixAlgebra(3,scalars=QQ)
455 Module of 3 by 3 matrices with entries in Octonion algebra with
456 base ring Rational Field over the scalar ring Rational Field
457
458 ::
459
460 sage: O = Octonions(RR)
461 sage: A = OctonionMatrixAlgebra(1,O)
462 sage: A
463 Module of 1 by 1 matrices with entries in Octonion algebra with
464 base ring Real Field with 53 bits of precision over the scalar
465 ring Algebraic Real Field
466 sage: A.one()
467 +---------------------+
468 | 1.00000000000000*e0 |
469 +---------------------+
470 sage: A.gens()
471 (+---------------------+
472 | 1.00000000000000*e0 |
473 +---------------------+,
474 +---------------------+
475 | 1.00000000000000*e1 |
476 +---------------------+,
477 +---------------------+
478 | 1.00000000000000*e2 |
479 +---------------------+,
480 +---------------------+
481 | 1.00000000000000*e3 |
482 +---------------------+,
483 +---------------------+
484 | 1.00000000000000*e4 |
485 +---------------------+,
486 +---------------------+
487 | 1.00000000000000*e5 |
488 +---------------------+,
489 +---------------------+
490 | 1.00000000000000*e6 |
491 +---------------------+,
492 +---------------------+
493 | 1.00000000000000*e7 |
494 +---------------------+)
495
496 ::
497
498 sage: A = OctonionMatrixAlgebra(2)
499 sage: e0,e1,e2,e3,e4,e5,e6,e7 = A.entry_algebra().gens()
500 sage: A([ [e0+e4, e1+e5],
501 ....: [e2-e6, e3-e7] ])
502 +---------+---------+
503 | e0 + e4 | e1 + e5 |
504 +---------+---------+
505 | e2 - e6 | e3 - e7 |
506 +---------+---------+
507
508 ::
509
510 sage: A1 = OctonionMatrixAlgebra(1,scalars=QQ)
511 sage: A2 = OctonionMatrixAlgebra(1,scalars=QQ)
512 sage: cartesian_product([A1,A2])
513 Module of 1 by 1 matrices with entries in Octonion algebra with
514 base ring Rational Field over the scalar ring Rational Field (+)
515 Module of 1 by 1 matrices with entries in Octonion algebra with
516 base ring Rational Field over the scalar ring Rational Field
517
518 TESTS::
519
520 sage: set_random_seed()
521 sage: A = OctonionMatrixAlgebra(ZZ.random_element(10))
522 sage: x = A.random_element()
523 sage: x*A.one() == x and A.one()*x == x
524 True
525
526 """
527 def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
528 if entry_algebra is None:
529 entry_algebra = Octonions(field=scalars)
530 super().__init__(n,
531 entry_algebra,
532 scalars,
533 **kwargs)
534
535 class QuaternionMatrixAlgebra(HurwitzMatrixAlgebra):
536 r"""
537 The algebra of ``n``-by-``n`` matrices with quaternion entries over
538 (a subfield of) the real numbers.
539
540 The usual matrix spaces in SageMath don't support quaternion entries
541 because they assume that the entries of the matrix come from a
542 commutative ring, and the quaternions are not commutative.
543
544 SETUP::
545
546 sage: from mjo.hurwitz import QuaternionMatrixAlgebra
547
548 EXAMPLES::
549
550 sage: QuaternionMatrixAlgebra(3)
551 Module of 3 by 3 matrices with entries in Quaternion
552 Algebra (-1, -1) with base ring Algebraic Real Field
553 over the scalar ring Algebraic Real Field
554
555 ::
556
557 sage: QuaternionMatrixAlgebra(3,scalars=QQ)
558 Module of 3 by 3 matrices with entries in Quaternion
559 Algebra (-1, -1) with base ring Rational Field over
560 the scalar ring Rational Field
561
562 ::
563
564 sage: Q = QuaternionAlgebra(RDF, -1, -1)
565 sage: A = QuaternionMatrixAlgebra(1,Q)
566 sage: A
567 Module of 1 by 1 matrices with entries in Quaternion Algebra
568 (-1.0, -1.0) with base ring Real Double Field over the scalar
569 ring Algebraic Real Field
570 sage: A.one()
571 +-----+
572 | 1.0 |
573 +-----+
574 sage: A.gens()
575 (+-----+
576 | 1.0 |
577 +-----+,
578 +---+
579 | i |
580 +---+,
581 +---+
582 | j |
583 +---+,
584 +---+
585 | k |
586 +---+)
587
588 ::
589
590 sage: A = QuaternionMatrixAlgebra(2)
591 sage: i,j,k = A.entry_algebra().gens()
592 sage: A([ [1+i, j-2],
593 ....: [k, k+j] ])
594 +-------+--------+
595 | 1 + i | -2 + j |
596 +-------+--------+
597 | k | j + k |
598 +-------+--------+
599
600 ::
601
602 sage: A1 = QuaternionMatrixAlgebra(1,scalars=QQ)
603 sage: A2 = QuaternionMatrixAlgebra(2,scalars=QQ)
604 sage: cartesian_product([A1,A2])
605 Module of 1 by 1 matrices with entries in Quaternion Algebra
606 (-1, -1) with base ring Rational Field over the scalar ring
607 Rational Field (+) Module of 2 by 2 matrices with entries in
608 Quaternion Algebra (-1, -1) with base ring Rational Field over
609 the scalar ring Rational Field
610
611 TESTS::
612
613 sage: set_random_seed()
614 sage: A = QuaternionMatrixAlgebra(ZZ.random_element(10))
615 sage: x = A.random_element()
616 sage: x*A.one() == x and A.one()*x == x
617 True
618
619 """
620 def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
621 if entry_algebra is None:
622 # The -1,-1 gives us the "usual" definition of quaternion
623 from sage.algebras.quatalg.quaternion_algebra import (
624 QuaternionAlgebra
625 )
626 entry_algebra = QuaternionAlgebra(scalars,-1,-1)
627 super().__init__(n, entry_algebra, scalars, **kwargs)
628
629
630 class ComplexMatrixAlgebra(HurwitzMatrixAlgebra):
631 r"""
632 The algebra of ``n``-by-``n`` matrices with complex entries over
633 (a subfield of) the real numbers.
634
635 These differ from the usual complex matrix spaces in SageMath
636 because the scalar field is real (and not assumed to be the same
637 as the space from which the entries are drawn). The space of
638 `1`-by-`1` complex matrices will have dimension two, for example.
639
640 SETUP::
641
642 sage: from mjo.hurwitz import ComplexMatrixAlgebra
643
644 EXAMPLES::
645
646 sage: ComplexMatrixAlgebra(3)
647 Module of 3 by 3 matrices with entries in Algebraic Field
648 over the scalar ring Algebraic Real Field
649
650 ::
651
652 sage: ComplexMatrixAlgebra(3,scalars=QQ)
653 Module of 3 by 3 matrices with entries in Algebraic Field
654 over the scalar ring Rational Field
655
656 ::
657
658 sage: A = ComplexMatrixAlgebra(1,CC)
659 sage: A
660 Module of 1 by 1 matrices with entries in Complex Field with
661 53 bits of precision over the scalar ring Algebraic Real Field
662 sage: A.one()
663 +------------------+
664 | 1.00000000000000 |
665 +------------------+
666 sage: A.gens()
667 (+------------------+
668 | 1.00000000000000 |
669 +------------------+,
670 +--------------------+
671 | 1.00000000000000*I |
672 +--------------------+)
673
674 ::
675
676 sage: A = ComplexMatrixAlgebra(2)
677 sage: (I,) = A.entry_algebra().gens()
678 sage: A([ [1+I, 1],
679 ....: [-1, -I] ])
680 +-------+----+
681 | I + 1 | 1 |
682 +-------+----+
683 | -1 | -I |
684 +-------+----+
685
686 ::
687
688 sage: A1 = ComplexMatrixAlgebra(1,scalars=QQ)
689 sage: A2 = ComplexMatrixAlgebra(2,scalars=QQ)
690 sage: cartesian_product([A1,A2])
691 Module of 1 by 1 matrices with entries in Algebraic Field over
692 the scalar ring Rational Field (+) Module of 2 by 2 matrices with
693 entries in Algebraic Field over the scalar ring Rational Field
694
695 TESTS::
696
697 sage: set_random_seed()
698 sage: A = ComplexMatrixAlgebra(ZZ.random_element(10))
699 sage: x = A.random_element()
700 sage: x*A.one() == x and A.one()*x == x
701 True
702
703 """
704 def __init__(self, n, entry_algebra=None, scalars=AA, **kwargs):
705 if entry_algebra is None:
706 from sage.rings.all import QQbar
707 entry_algebra = QQbar
708 super().__init__(n, entry_algebra, scalars, **kwargs)