]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_operator.py
eja: listify map/zip results for python-3.x compatibility.
[sage.d.git] / mjo / eja / eja_operator.py
1 from sage.matrix.constructor import matrix
2 from sage.categories.all import FreeModules
3 from sage.categories.map import Map
4
5 class FiniteDimensionalEuclideanJordanAlgebraOperator(Map):
6 def __init__(self, domain_eja, codomain_eja, mat):
7 # if not (
8 # isinstance(domain_eja, FiniteDimensionalEuclideanJordanAlgebra) and
9 # isinstance(codomain_eja, FiniteDimensionalEuclideanJordanAlgebra) ):
10 # raise ValueError('(co)domains must be finite-dimensional Euclidean '
11 # 'Jordan algebras')
12
13 F = domain_eja.base_ring()
14 if not (F == codomain_eja.base_ring()):
15 raise ValueError("domain and codomain must have the same base ring")
16 if not (F == mat.base_ring()):
17 raise ValueError("domain and matrix must have the same base ring")
18
19 # We need to supply something here to avoid getting the
20 # default Homset of the parent FiniteDimensionalAlgebra class,
21 # which messes up e.g. equality testing. We use FreeModules(F)
22 # instead of VectorSpaces(F) because our characteristic polynomial
23 # algorithm will need to F to be a polynomial ring at some point.
24 # When F is a field, FreeModules(F) returns VectorSpaces(F) anyway.
25 parent = domain_eja.Hom(codomain_eja, FreeModules(F))
26
27 # The Map initializer will set our parent to a homset, which
28 # is explicitly NOT what we want, because these ain't algebra
29 # homomorphisms.
30 super(FiniteDimensionalEuclideanJordanAlgebraOperator,self).__init__(parent)
31
32 # Keep a matrix around to do all of the real work. It would
33 # be nice if we could use a VectorSpaceMorphism instead, but
34 # those use row vectors that we don't want to accidentally
35 # expose to our users.
36 self._matrix = mat
37
38
39 def _call_(self, x):
40 """
41 Allow this operator to be called only on elements of an EJA.
42
43 SETUP::
44
45 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
46 sage: from mjo.eja.eja_algebra import JordanSpinEJA
47
48 EXAMPLES::
49
50 sage: J = JordanSpinEJA(3)
51 sage: x = J.linear_combination(zip(J.gens(),range(len(J.gens()))))
52 sage: id = identity_matrix(J.base_ring(), J.dimension())
53 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
54 sage: f(x) == x
55 True
56
57 """
58 return self.codomain().from_vector(self.matrix()*x.to_vector())
59
60
61 def _add_(self, other):
62 """
63 Add the ``other`` EJA operator to this one.
64
65 SETUP::
66
67 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
68 sage: from mjo.eja.eja_algebra import (
69 ....: JordanSpinEJA,
70 ....: RealSymmetricEJA )
71
72 EXAMPLES:
73
74 When we add two EJA operators, we get another one back::
75
76 sage: J = RealSymmetricEJA(2)
77 sage: id = identity_matrix(J.base_ring(), J.dimension())
78 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
79 sage: g = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
80 sage: f + g
81 Linear operator between finite-dimensional Euclidean Jordan
82 algebras represented by the matrix:
83 [2 0 0]
84 [0 2 0]
85 [0 0 2]
86 Domain: Euclidean Jordan algebra of dimension 3 over...
87 Codomain: Euclidean Jordan algebra of dimension 3 over...
88
89 If you try to add two identical vector space operators but on
90 different EJAs, that should blow up::
91
92 sage: J1 = RealSymmetricEJA(2)
93 sage: id1 = identity_matrix(J1.base_ring(), 3)
94 sage: J2 = JordanSpinEJA(3)
95 sage: id2 = identity_matrix(J2.base_ring(), 3)
96 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,J1,id1)
97 sage: g = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,J2,id2)
98 sage: f + g
99 Traceback (most recent call last):
100 ...
101 TypeError: unsupported operand parent(s) for +: ...
102
103 """
104 return FiniteDimensionalEuclideanJordanAlgebraOperator(
105 self.domain(),
106 self.codomain(),
107 self.matrix() + other.matrix())
108
109
110 def _composition_(self, other, homset):
111 """
112 Compose two EJA operators to get another one (and NOT a formal
113 composite object) back.
114
115 SETUP::
116
117 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
118 sage: from mjo.eja.eja_algebra import (
119 ....: JordanSpinEJA,
120 ....: RealCartesianProductEJA,
121 ....: RealSymmetricEJA)
122
123 EXAMPLES::
124
125 sage: J1 = JordanSpinEJA(3)
126 sage: J2 = RealCartesianProductEJA(2)
127 sage: J3 = RealSymmetricEJA(1)
128 sage: mat1 = matrix(QQ, [[1,2,3],
129 ....: [4,5,6]])
130 sage: mat2 = matrix(QQ, [[7,8]])
131 sage: g = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,
132 ....: J2,
133 ....: mat1)
134 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,
135 ....: J3,
136 ....: mat2)
137 sage: f*g
138 Linear operator between finite-dimensional Euclidean Jordan
139 algebras represented by the matrix:
140 [39 54 69]
141 Domain: Euclidean Jordan algebra of dimension 3 over
142 Rational Field
143 Codomain: Euclidean Jordan algebra of dimension 1 over
144 Rational Field
145
146 """
147 return FiniteDimensionalEuclideanJordanAlgebraOperator(
148 other.domain(),
149 self.codomain(),
150 self.matrix()*other.matrix())
151
152
153 def __eq__(self, other):
154 if self.domain() != other.domain():
155 return False
156 if self.codomain() != other.codomain():
157 return False
158 if self.matrix() != other.matrix():
159 return False
160 return True
161
162
163 def __invert__(self):
164 """
165 Invert this EJA operator.
166
167 SETUP::
168
169 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
170 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
171
172 EXAMPLES::
173
174 sage: J = RealSymmetricEJA(2)
175 sage: id = identity_matrix(J.base_ring(), J.dimension())
176 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
177 sage: ~f
178 Linear operator between finite-dimensional Euclidean Jordan
179 algebras represented by the matrix:
180 [1 0 0]
181 [0 1 0]
182 [0 0 1]
183 Domain: Euclidean Jordan algebra of dimension 3 over...
184 Codomain: Euclidean Jordan algebra of dimension 3 over...
185
186 """
187 return FiniteDimensionalEuclideanJordanAlgebraOperator(
188 self.codomain(),
189 self.domain(),
190 ~self.matrix())
191
192
193 def __mul__(self, other):
194 """
195 Compose two EJA operators, or scale myself by an element of the
196 ambient vector space.
197
198 We need to override the real ``__mul__`` function to prevent the
199 coercion framework from throwing an error when it fails to convert
200 a base ring element into a morphism.
201
202 SETUP::
203
204 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
205 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
206
207 EXAMPLES:
208
209 We can scale an operator on a rational algebra by a rational number::
210
211 sage: J = RealSymmetricEJA(2)
212 sage: e0,e1,e2 = J.gens()
213 sage: x = 2*e0 + 4*e1 + 16*e2
214 sage: x.operator()
215 Linear operator between finite-dimensional Euclidean Jordan algebras
216 represented by the matrix:
217 [ 2 2 0]
218 [ 2 9 2]
219 [ 0 2 16]
220 Domain: Euclidean Jordan algebra of dimension 3 over...
221 Codomain: Euclidean Jordan algebra of dimension 3 over...
222 sage: x.operator()*(1/2)
223 Linear operator between finite-dimensional Euclidean Jordan algebras
224 represented by the matrix:
225 [ 1 1 0]
226 [ 1 9/2 1]
227 [ 0 1 8]
228 Domain: Euclidean Jordan algebra of dimension 3 over...
229 Codomain: Euclidean Jordan algebra of dimension 3 over...
230
231 """
232 try:
233 if other in self.codomain().base_ring():
234 return FiniteDimensionalEuclideanJordanAlgebraOperator(
235 self.domain(),
236 self.codomain(),
237 self.matrix()*other)
238 except NotImplementedError:
239 # This can happen with certain arguments if the base_ring()
240 # is weird and doesn't know how to test membership.
241 pass
242
243 # This should eventually delegate to _composition_ after performing
244 # some sanity checks for us.
245 mor = super(FiniteDimensionalEuclideanJordanAlgebraOperator,self)
246 return mor.__mul__(other)
247
248
249 def _neg_(self):
250 """
251 Negate this EJA operator.
252
253 SETUP::
254
255 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
256 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
257
258 EXAMPLES::
259
260 sage: J = RealSymmetricEJA(2)
261 sage: id = identity_matrix(J.base_ring(), J.dimension())
262 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
263 sage: -f
264 Linear operator between finite-dimensional Euclidean Jordan
265 algebras represented by the matrix:
266 [-1 0 0]
267 [ 0 -1 0]
268 [ 0 0 -1]
269 Domain: Euclidean Jordan algebra of dimension 3 over...
270 Codomain: Euclidean Jordan algebra of dimension 3 over...
271
272 """
273 return FiniteDimensionalEuclideanJordanAlgebraOperator(
274 self.domain(),
275 self.codomain(),
276 -self.matrix())
277
278
279 def __pow__(self, n):
280 """
281 Raise this EJA operator to the power ``n``.
282
283 SETUP::
284
285 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
286 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
287
288 TESTS:
289
290 Ensure that we get back another EJA operator that can be added,
291 subtracted, et cetera::
292
293 sage: J = RealSymmetricEJA(2)
294 sage: id = identity_matrix(J.base_ring(), J.dimension())
295 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
296 sage: f^0 + f^1 + f^2
297 Linear operator between finite-dimensional Euclidean Jordan
298 algebras represented by the matrix:
299 [3 0 0]
300 [0 3 0]
301 [0 0 3]
302 Domain: Euclidean Jordan algebra of dimension 3 over...
303 Codomain: Euclidean Jordan algebra of dimension 3 over...
304
305 """
306 if (n == 1):
307 return self
308 elif (n == 0):
309 # Raising a vector space morphism to the zero power gives
310 # you back a special IdentityMorphism that is useless to us.
311 rows = self.codomain().dimension()
312 cols = self.domain().dimension()
313 mat = matrix.identity(self.base_ring(), rows, cols)
314 else:
315 mat = self.matrix()**n
316
317 return FiniteDimensionalEuclideanJordanAlgebraOperator(
318 self.domain(),
319 self.codomain(),
320 mat)
321
322
323 def _repr_(self):
324 r"""
325
326 A text representation of this linear operator on a Euclidean
327 Jordan Algebra.
328
329 SETUP::
330
331 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
332 sage: from mjo.eja.eja_algebra import JordanSpinEJA
333
334 EXAMPLES::
335
336 sage: J = JordanSpinEJA(2)
337 sage: id = identity_matrix(J.base_ring(), J.dimension())
338 sage: FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
339 Linear operator between finite-dimensional Euclidean Jordan
340 algebras represented by the matrix:
341 [1 0]
342 [0 1]
343 Domain: Euclidean Jordan algebra of dimension 2 over
344 Rational Field
345 Codomain: Euclidean Jordan algebra of dimension 2 over
346 Rational Field
347
348 """
349 msg = ("Linear operator between finite-dimensional Euclidean Jordan "
350 "algebras represented by the matrix:\n",
351 "{!r}\n",
352 "Domain: {}\n",
353 "Codomain: {}")
354 return ''.join(msg).format(self.matrix(),
355 self.domain(),
356 self.codomain())
357
358
359 def _sub_(self, other):
360 """
361 Subtract ``other`` from this EJA operator.
362
363 SETUP::
364
365 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
366 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
367
368 EXAMPLES::
369
370 sage: J = RealSymmetricEJA(2)
371 sage: id = identity_matrix(J.base_ring(),J.dimension())
372 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,id)
373 sage: f - (f*2)
374 Linear operator between finite-dimensional Euclidean Jordan
375 algebras represented by the matrix:
376 [-1 0 0]
377 [ 0 -1 0]
378 [ 0 0 -1]
379 Domain: Euclidean Jordan algebra of dimension 3 over...
380 Codomain: Euclidean Jordan algebra of dimension 3 over...
381
382 """
383 return (self + (-other))
384
385
386 def inverse(self):
387 """
388 Return the inverse of this operator, if it exists.
389
390 The reason this method is not simply an alias for the built-in
391 :meth:`__invert__` is that the built-in inversion is a bit magic
392 since it's intended to be a unary operator. If we alias ``inverse``
393 to ``__invert__``, then we wind up having to call e.g. ``A.inverse``
394 without parentheses.
395
396 SETUP::
397
398 sage: from mjo.eja.eja_algebra import RealSymmetricEJA, random_eja
399
400 EXAMPLES::
401
402 sage: J = RealSymmetricEJA(2)
403 sage: x = sum(J.gens())
404 sage: x.operator().inverse().matrix()
405 [3/2 -1 1/2]
406 [ -1 2 -1]
407 [1/2 -1 3/2]
408 sage: x.operator().matrix().inverse()
409 [3/2 -1 1/2]
410 [ -1 2 -1]
411 [1/2 -1 3/2]
412
413 TESTS:
414
415 The identity operator is its own inverse::
416
417 sage: set_random_seed()
418 sage: J = random_eja()
419 sage: idJ = J.one().operator()
420 sage: idJ.inverse() == idJ
421 True
422
423 The inverse of the inverse is the operator we started with::
424
425 sage: set_random_seed()
426 sage: x = random_eja().random_element()
427 sage: L = x.operator()
428 sage: not L.is_invertible() or (L.inverse().inverse() == L)
429 True
430
431 """
432 return ~self
433
434
435 def is_invertible(self):
436 """
437 Return whether or not this operator is invertible.
438
439 SETUP::
440
441 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
442 ....: TrivialEJA,
443 ....: random_eja)
444
445 EXAMPLES::
446
447 sage: J = RealSymmetricEJA(2)
448 sage: x = sum(J.gens())
449 sage: x.operator().matrix()
450 [ 1 1/2 0]
451 [1/2 1 1/2]
452 [ 0 1/2 1]
453 sage: x.operator().matrix().is_invertible()
454 True
455 sage: x.operator().is_invertible()
456 True
457
458 The zero operator is invertible in a trivial algebra::
459
460 sage: J = TrivialEJA()
461 sage: J.zero().operator().is_invertible()
462 True
463
464 TESTS:
465
466 The identity operator is always invertible::
467
468 sage: set_random_seed()
469 sage: J = random_eja()
470 sage: J.one().operator().is_invertible()
471 True
472
473 The zero operator is never invertible in a nontrivial algebra::
474
475 sage: set_random_seed()
476 sage: J = random_eja()
477 sage: not J.is_trivial() and J.zero().operator().is_invertible()
478 False
479
480 """
481 return self.matrix().is_invertible()
482
483
484 def matrix(self):
485 """
486 Return the matrix representation of this operator with respect
487 to the default bases of its (co)domain.
488
489 SETUP::
490
491 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
492 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
493
494 EXAMPLES::
495
496 sage: J = RealSymmetricEJA(2)
497 sage: mat = matrix(J.base_ring(), J.dimension(), range(9))
498 sage: f = FiniteDimensionalEuclideanJordanAlgebraOperator(J,J,mat)
499 sage: f.matrix()
500 [0 1 2]
501 [3 4 5]
502 [6 7 8]
503
504 """
505 return self._matrix
506
507
508 def minimal_polynomial(self):
509 """
510 Return the minimal polynomial of this linear operator,
511 in the variable ``t``.
512
513 SETUP::
514
515 sage: from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
516 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
517
518 EXAMPLES::
519
520 sage: J = RealSymmetricEJA(3)
521 sage: J.one().operator().minimal_polynomial()
522 t - 1
523
524 """
525 # The matrix method returns a polynomial in 'x' but want one in 't'.
526 return self.matrix().minimal_polynomial().change_variable_name('t')
527
528
529 def spectral_decomposition(self):
530 """
531 Return the spectral decomposition of this operator as a list of
532 (eigenvalue, orthogonal projector) pairs.
533
534 This is the unique spectral decomposition, up to the order of
535 the projection operators, with distinct eigenvalues. So, the
536 projections are generally onto subspaces of dimension greater
537 than one.
538
539 SETUP::
540
541 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
542
543 EXAMPLES::
544
545 sage: J = RealSymmetricEJA(4,AA)
546 sage: x = sum(J.gens())
547 sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
548 sage: L0x = A(x).operator()
549 sage: sd = L0x.spectral_decomposition()
550 sage: l0 = sd[0][0]
551 sage: l1 = sd[1][0]
552 sage: P0 = sd[0][1]
553 sage: P1 = sd[1][1]
554 sage: P0*l0 + P1*l1 == L0x
555 True
556 sage: P0 + P1 == P0^0 # the identity
557 True
558 sage: P0^2 == P0
559 True
560 sage: P1^2 == P1
561 True
562 sage: P0*P1 == A.zero().operator()
563 True
564 sage: P1*P0 == A.zero().operator()
565 True
566
567 """
568 if not self.matrix().is_symmetric():
569 raise ValueError('algebra basis is not orthonormal')
570
571 D,P = self.matrix().jordan_form(subdivide=False,transformation=True)
572 eigenvalues = D.diagonal()
573 us = P.columns()
574 projectors = []
575 for i in range(len(us)):
576 # they won't be normalized, but they have to be
577 # for the spectral theorem to work.
578 us[i] = us[i]/us[i].norm()
579 mat = us[i].column()*us[i].row()
580 Pi = FiniteDimensionalEuclideanJordanAlgebraOperator(
581 self.domain(),
582 self.codomain(),
583 mat)
584 projectors.append(Pi)
585 return list(zip(eigenvalues, projectors))