]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: remove one use of nontrivial=True passed to random_eja().
[sage.d.git] / mjo / eja / eja_element.py
1 # -*- coding: utf-8 -*-
2
3 from sage.matrix.constructor import matrix
4 from sage.modules.free_module import VectorSpace
5 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
6
7 # TODO: make this unnecessary somehow.
8 from sage.misc.lazy_import import lazy_import
9 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
10 lazy_import('mjo.eja.eja_element_subalgebra',
11 'FiniteDimensionalEuclideanJordanElementSubalgebra')
12 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
13 from mjo.eja.eja_utils import _mat2vec
14
15 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
16 """
17 An element of a Euclidean Jordan algebra.
18 """
19
20 def __dir__(self):
21 """
22 Oh man, I should not be doing this. This hides the "disabled"
23 methods ``left_matrix`` and ``matrix`` from introspection;
24 in particular it removes them from tab-completion.
25 """
26 return filter(lambda s: s not in ['left_matrix', 'matrix'],
27 dir(self.__class__) )
28
29
30
31
32 def __pow__(self, n):
33 """
34 Return ``self`` raised to the power ``n``.
35
36 Jordan algebras are always power-associative; see for
37 example Faraut and Korányi, Proposition II.1.2 (ii).
38
39 We have to override this because our superclass uses row
40 vectors instead of column vectors! We, on the other hand,
41 assume column vectors everywhere.
42
43 SETUP::
44
45 sage: from mjo.eja.eja_algebra import random_eja
46
47 TESTS:
48
49 The definition of `x^2` is the unambiguous `x*x`::
50
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
53 sage: x*x == (x^2)
54 True
55
56 A few examples of power-associativity::
57
58 sage: set_random_seed()
59 sage: x = random_eja().random_element()
60 sage: x*(x*x)*(x*x) == x^5
61 True
62 sage: (x*x)*(x*x*x) == x^5
63 True
64
65 We also know that powers operator-commute (Koecher, Chapter
66 III, Corollary 1)::
67
68 sage: set_random_seed()
69 sage: x = random_eja().random_element()
70 sage: m = ZZ.random_element(0,10)
71 sage: n = ZZ.random_element(0,10)
72 sage: Lxm = (x^m).operator()
73 sage: Lxn = (x^n).operator()
74 sage: Lxm*Lxn == Lxn*Lxm
75 True
76
77 """
78 if n == 0:
79 return self.parent().one()
80 elif n == 1:
81 return self
82 else:
83 return (self**(n-1))*self
84
85
86 def apply_univariate_polynomial(self, p):
87 """
88 Apply the univariate polynomial ``p`` to this element.
89
90 A priori, SageMath won't allow us to apply a univariate
91 polynomial to an element of an EJA, because we don't know
92 that EJAs are rings (they are usually not associative). Of
93 course, we know that EJAs are power-associative, so the
94 operation is ultimately kosher. This function sidesteps
95 the CAS to get the answer we want and expect.
96
97 SETUP::
98
99 sage: from mjo.eja.eja_algebra import (HadamardEJA,
100 ....: random_eja)
101
102 EXAMPLES::
103
104 sage: R = PolynomialRing(QQ, 't')
105 sage: t = R.gen(0)
106 sage: p = t^4 - t^3 + 5*t - 2
107 sage: J = HadamardEJA(5)
108 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
109 True
110
111 TESTS:
112
113 We should always get back an element of the algebra::
114
115 sage: set_random_seed()
116 sage: p = PolynomialRing(AA, 't').random_element()
117 sage: J = random_eja()
118 sage: x = J.random_element()
119 sage: x.apply_univariate_polynomial(p) in J
120 True
121
122 """
123 if len(p.variables()) > 1:
124 raise ValueError("not a univariate polynomial")
125 P = self.parent()
126 R = P.base_ring()
127 # Convert the coeficcients to the parent's base ring,
128 # because a priori they might live in an (unnecessarily)
129 # larger ring for which P.sum() would fail below.
130 cs = [ R(c) for c in p.coefficients(sparse=False) ]
131 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
132
133
134 def characteristic_polynomial(self):
135 """
136 Return the characteristic polynomial of this element.
137
138 SETUP::
139
140 sage: from mjo.eja.eja_algebra import HadamardEJA
141
142 EXAMPLES:
143
144 The rank of `R^3` is three, and the minimal polynomial of
145 the identity element is `(t-1)` from which it follows that
146 the characteristic polynomial should be `(t-1)^3`::
147
148 sage: J = HadamardEJA(3)
149 sage: J.one().characteristic_polynomial()
150 t^3 - 3*t^2 + 3*t - 1
151
152 Likewise, the characteristic of the zero element in the
153 rank-three algebra `R^{n}` should be `t^{3}`::
154
155 sage: J = HadamardEJA(3)
156 sage: J.zero().characteristic_polynomial()
157 t^3
158
159 TESTS:
160
161 The characteristic polynomial of an element should evaluate
162 to zero on that element::
163
164 sage: set_random_seed()
165 sage: x = HadamardEJA(3).random_element()
166 sage: p = x.characteristic_polynomial()
167 sage: x.apply_univariate_polynomial(p)
168 0
169
170 The characteristic polynomials of the zero and unit elements
171 should be what we think they are in a subalgebra, too::
172
173 sage: J = HadamardEJA(3)
174 sage: p1 = J.one().characteristic_polynomial()
175 sage: q1 = J.zero().characteristic_polynomial()
176 sage: e0,e1,e2 = J.gens()
177 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
178 sage: p2 = A.one().characteristic_polynomial()
179 sage: q2 = A.zero().characteristic_polynomial()
180 sage: p1 == p2
181 True
182 sage: q1 == q2
183 True
184
185 """
186 p = self.parent().characteristic_polynomial()
187 return p(*self.to_vector())
188
189
190 def inner_product(self, other):
191 """
192 Return the parent algebra's inner product of myself and ``other``.
193
194 SETUP::
195
196 sage: from mjo.eja.eja_algebra import (
197 ....: ComplexHermitianEJA,
198 ....: JordanSpinEJA,
199 ....: QuaternionHermitianEJA,
200 ....: RealSymmetricEJA,
201 ....: random_eja)
202
203 EXAMPLES:
204
205 The inner product in the Jordan spin algebra is the usual
206 inner product on `R^n` (this example only works because the
207 basis for the Jordan algebra is the standard basis in `R^n`)::
208
209 sage: J = JordanSpinEJA(3)
210 sage: x = vector(QQ,[1,2,3])
211 sage: y = vector(QQ,[4,5,6])
212 sage: x.inner_product(y)
213 32
214 sage: J.from_vector(x).inner_product(J.from_vector(y))
215 32
216
217 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
218 multiplication is the usual matrix multiplication in `S^n`,
219 so the inner product of the identity matrix with itself
220 should be the `n`::
221
222 sage: J = RealSymmetricEJA(3)
223 sage: J.one().inner_product(J.one())
224 3
225
226 Likewise, the inner product on `C^n` is `<X,Y> =
227 Re(trace(X*Y))`, where we must necessarily take the real
228 part because the product of Hermitian matrices may not be
229 Hermitian::
230
231 sage: J = ComplexHermitianEJA(3)
232 sage: J.one().inner_product(J.one())
233 3
234
235 Ditto for the quaternions::
236
237 sage: J = QuaternionHermitianEJA(3)
238 sage: J.one().inner_product(J.one())
239 3
240
241 TESTS:
242
243 Ensure that we can always compute an inner product, and that
244 it gives us back a real number::
245
246 sage: set_random_seed()
247 sage: J = random_eja()
248 sage: x,y = J.random_elements(2)
249 sage: x.inner_product(y) in RLF
250 True
251
252 """
253 P = self.parent()
254 if not other in P:
255 raise TypeError("'other' must live in the same algebra")
256
257 return P.inner_product(self, other)
258
259
260 def operator_commutes_with(self, other):
261 """
262 Return whether or not this element operator-commutes
263 with ``other``.
264
265 SETUP::
266
267 sage: from mjo.eja.eja_algebra import random_eja
268
269 EXAMPLES:
270
271 The definition of a Jordan algebra says that any element
272 operator-commutes with its square::
273
274 sage: set_random_seed()
275 sage: x = random_eja().random_element()
276 sage: x.operator_commutes_with(x^2)
277 True
278
279 TESTS:
280
281 Test Lemma 1 from Chapter III of Koecher::
282
283 sage: set_random_seed()
284 sage: u,v = random_eja().random_elements(2)
285 sage: lhs = u.operator_commutes_with(u*v)
286 sage: rhs = v.operator_commutes_with(u^2)
287 sage: lhs == rhs
288 True
289
290 Test the first polarization identity from my notes, Koecher
291 Chapter III, or from Baes (2.3)::
292
293 sage: set_random_seed()
294 sage: x,y = random_eja().random_elements(2)
295 sage: Lx = x.operator()
296 sage: Ly = y.operator()
297 sage: Lxx = (x*x).operator()
298 sage: Lxy = (x*y).operator()
299 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
300 True
301
302 Test the second polarization identity from my notes or from
303 Baes (2.4)::
304
305 sage: set_random_seed()
306 sage: x,y,z = random_eja().random_elements(3)
307 sage: Lx = x.operator()
308 sage: Ly = y.operator()
309 sage: Lz = z.operator()
310 sage: Lzy = (z*y).operator()
311 sage: Lxy = (x*y).operator()
312 sage: Lxz = (x*z).operator()
313 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
314 True
315
316 Test the third polarization identity from my notes or from
317 Baes (2.5)::
318
319 sage: set_random_seed()
320 sage: u,y,z = random_eja().random_elements(3)
321 sage: Lu = u.operator()
322 sage: Ly = y.operator()
323 sage: Lz = z.operator()
324 sage: Lzy = (z*y).operator()
325 sage: Luy = (u*y).operator()
326 sage: Luz = (u*z).operator()
327 sage: Luyz = (u*(y*z)).operator()
328 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
329 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
330 sage: bool(lhs == rhs)
331 True
332
333 """
334 if not other in self.parent():
335 raise TypeError("'other' must live in the same algebra")
336
337 A = self.operator()
338 B = other.operator()
339 return (A*B == B*A)
340
341
342 def det(self):
343 """
344 Return my determinant, the product of my eigenvalues.
345
346 SETUP::
347
348 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
349 ....: TrivialEJA,
350 ....: random_eja)
351
352 EXAMPLES::
353
354 sage: J = JordanSpinEJA(2)
355 sage: e0,e1 = J.gens()
356 sage: x = sum( J.gens() )
357 sage: x.det()
358 0
359
360 ::
361
362 sage: J = JordanSpinEJA(3)
363 sage: e0,e1,e2 = J.gens()
364 sage: x = sum( J.gens() )
365 sage: x.det()
366 -1
367
368 The determinant of the sole element in the rank-zero trivial
369 algebra is ``1``, by three paths of reasoning. First, its
370 characteristic polynomial is a constant ``1``, so the constant
371 term in that polynomial is ``1``. Second, the characteristic
372 polynomial evaluated at zero is again ``1``. And finally, the
373 (empty) product of its eigenvalues is likewise just unity::
374
375 sage: J = TrivialEJA()
376 sage: J.zero().det()
377 1
378
379 TESTS:
380
381 An element is invertible if and only if its determinant is
382 non-zero::
383
384 sage: set_random_seed()
385 sage: x = random_eja().random_element()
386 sage: x.is_invertible() == (x.det() != 0)
387 True
388
389 Ensure that the determinant is multiplicative on an associative
390 subalgebra as in Faraut and Korányi's Proposition II.2.2::
391
392 sage: set_random_seed()
393 sage: J = random_eja().random_element().subalgebra_generated_by()
394 sage: x,y = J.random_elements(2)
395 sage: (x*y).det() == x.det()*y.det()
396 True
397 """
398 P = self.parent()
399 r = P.rank()
400
401 if r == 0:
402 # Special case, since we don't get the a0=1
403 # coefficient when the rank of the algebra
404 # is zero.
405 return P.base_ring().one()
406
407 p = P._charpoly_coefficients()[0]
408 # The _charpoly_coeff function already adds the factor of -1
409 # to ensure that _charpoly_coefficients()[0] is really what
410 # appears in front of t^{0} in the charpoly. However, we want
411 # (-1)^r times THAT for the determinant.
412 return ((-1)**r)*p(*self.to_vector())
413
414
415 def inverse(self):
416 """
417 Return the Jordan-multiplicative inverse of this element.
418
419 ALGORITHM:
420
421 We appeal to the quadratic representation as in Koecher's
422 Theorem 12 in Chapter III, Section 5.
423
424 SETUP::
425
426 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
427 ....: JordanSpinEJA,
428 ....: random_eja)
429
430 EXAMPLES:
431
432 The inverse in the spin factor algebra is given in Alizadeh's
433 Example 11.11::
434
435 sage: set_random_seed()
436 sage: J = JordanSpinEJA.random_instance()
437 sage: x = J.random_element()
438 sage: while not x.is_invertible():
439 ....: x = J.random_element()
440 sage: x_vec = x.to_vector()
441 sage: x0 = x_vec[0]
442 sage: x_bar = x_vec[1:]
443 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
444 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
445 sage: x_inverse = coeff*inv_vec
446 sage: x.inverse() == J.from_vector(x_inverse)
447 True
448
449 Trying to invert a non-invertible element throws an error:
450
451 sage: JordanSpinEJA(3).zero().inverse()
452 Traceback (most recent call last):
453 ...
454 ValueError: element is not invertible
455
456 TESTS:
457
458 The identity element is its own inverse::
459
460 sage: set_random_seed()
461 sage: J = random_eja()
462 sage: J.one().inverse() == J.one()
463 True
464
465 If an element has an inverse, it acts like one::
466
467 sage: set_random_seed()
468 sage: J = random_eja()
469 sage: x = J.random_element()
470 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
471 True
472
473 The inverse of the inverse is what we started with::
474
475 sage: set_random_seed()
476 sage: J = random_eja()
477 sage: x = J.random_element()
478 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
479 True
480
481 Proposition II.2.3 in Faraut and Korányi says that the inverse
482 of an element is the inverse of its left-multiplication operator
483 applied to the algebra's identity, when that inverse exists::
484
485 sage: set_random_seed()
486 sage: J = random_eja()
487 sage: x = J.random_element()
488 sage: (not x.operator().is_invertible()) or (
489 ....: x.operator().inverse()(J.one()) == x.inverse() )
490 True
491
492 Proposition II.2.4 in Faraut and Korányi gives a formula for
493 the inverse based on the characteristic polynomial and the
494 Cayley-Hamilton theorem for Euclidean Jordan algebras::
495
496 sage: set_random_seed()
497 sage: J = ComplexHermitianEJA(3)
498 sage: x = J.random_element()
499 sage: while not x.is_invertible():
500 ....: x = J.random_element()
501 sage: r = J.rank()
502 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
503 sage: expected = (-1)^(r+1)/x.det()
504 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
505 sage: x.inverse() == expected
506 True
507
508 """
509 if not self.is_invertible():
510 raise ValueError("element is not invertible")
511
512 return (~self.quadratic_representation())(self)
513
514
515 def is_invertible(self):
516 """
517 Return whether or not this element is invertible.
518
519 ALGORITHM:
520
521 The usual way to do this is to check if the determinant is
522 zero, but we need the characteristic polynomial for the
523 determinant. The minimal polynomial is a lot easier to get,
524 so we use Corollary 2 in Chapter V of Koecher to check
525 whether or not the paren't algebra's zero element is a root
526 of this element's minimal polynomial.
527
528 Beware that we can't use the superclass method, because it
529 relies on the algebra being associative.
530
531 SETUP::
532
533 sage: from mjo.eja.eja_algebra import random_eja
534
535 TESTS:
536
537 The identity element is always invertible::
538
539 sage: set_random_seed()
540 sage: J = random_eja()
541 sage: J.one().is_invertible()
542 True
543
544 The zero element is never invertible in a non-trivial algebra::
545
546 sage: set_random_seed()
547 sage: J = random_eja()
548 sage: (not J.is_trivial()) and J.zero().is_invertible()
549 False
550
551 """
552 if self.is_zero():
553 if self.parent().is_trivial():
554 return True
555 else:
556 return False
557
558 # In fact, we only need to know if the constant term is non-zero,
559 # so we can pass in the field's zero element instead.
560 zero = self.base_ring().zero()
561 p = self.minimal_polynomial()
562 return not (p(zero) == zero)
563
564
565 def is_primitive_idempotent(self):
566 """
567 Return whether or not this element is a primitive (or minimal)
568 idempotent.
569
570 A primitive idempotent is a non-zero idempotent that is not
571 the sum of two other non-zero idempotents. Remark 2.7.15 in
572 Baes shows that this is what he refers to as a "minimal
573 idempotent."
574
575 An element of a Euclidean Jordan algebra is a minimal idempotent
576 if it :meth:`is_idempotent` and if its Peirce subalgebra
577 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
578 Proposition 2.7.17).
579
580 SETUP::
581
582 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
583 ....: RealSymmetricEJA,
584 ....: TrivialEJA,
585 ....: random_eja)
586
587 WARNING::
588
589 This method is sloooooow.
590
591 EXAMPLES:
592
593 The spectral decomposition of a non-regular element should always
594 contain at least one non-minimal idempotent::
595
596 sage: J = RealSymmetricEJA(3)
597 sage: x = sum(J.gens())
598 sage: x.is_regular()
599 False
600 sage: [ c.is_primitive_idempotent()
601 ....: for (l,c) in x.spectral_decomposition() ]
602 [False, True]
603
604 On the other hand, the spectral decomposition of a regular
605 element should always be in terms of minimal idempotents::
606
607 sage: J = JordanSpinEJA(4)
608 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
609 sage: x.is_regular()
610 True
611 sage: [ c.is_primitive_idempotent()
612 ....: for (l,c) in x.spectral_decomposition() ]
613 [True, True]
614
615 TESTS:
616
617 The identity element is minimal only in an EJA of rank one::
618
619 sage: set_random_seed()
620 sage: J = random_eja()
621 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
622 True
623
624 A non-idempotent cannot be a minimal idempotent::
625
626 sage: set_random_seed()
627 sage: J = JordanSpinEJA(4)
628 sage: x = J.random_element()
629 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
630 False
631
632 Proposition 2.7.19 in Baes says that an element is a minimal
633 idempotent if and only if it's idempotent with trace equal to
634 unity::
635
636 sage: set_random_seed()
637 sage: J = JordanSpinEJA(4)
638 sage: x = J.random_element()
639 sage: expected = (x.is_idempotent() and x.trace() == 1)
640 sage: actual = x.is_primitive_idempotent()
641 sage: actual == expected
642 True
643
644 Primitive idempotents must be non-zero::
645
646 sage: set_random_seed()
647 sage: J = random_eja()
648 sage: J.zero().is_idempotent()
649 True
650 sage: J.zero().is_primitive_idempotent()
651 False
652
653 As a consequence of the fact that primitive idempotents must
654 be non-zero, there are no primitive idempotents in a trivial
655 Euclidean Jordan algebra::
656
657 sage: J = TrivialEJA()
658 sage: J.one().is_idempotent()
659 True
660 sage: J.one().is_primitive_idempotent()
661 False
662
663 """
664 if not self.is_idempotent():
665 return False
666
667 if self.is_zero():
668 return False
669
670 (_,_,J1) = self.parent().peirce_decomposition(self)
671 return (J1.dimension() == 1)
672
673
674 def is_nilpotent(self):
675 """
676 Return whether or not some power of this element is zero.
677
678 ALGORITHM:
679
680 We use Theorem 5 in Chapter III of Koecher, which says that
681 an element ``x`` is nilpotent if and only if ``x.operator()``
682 is nilpotent. And it is a basic fact of linear algebra that
683 an operator on an `n`-dimensional space is nilpotent if and
684 only if, when raised to the `n`th power, it equals the zero
685 operator (for example, see Axler Corollary 8.8).
686
687 SETUP::
688
689 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
690 ....: random_eja)
691
692 EXAMPLES::
693
694 sage: J = JordanSpinEJA(3)
695 sage: x = sum(J.gens())
696 sage: x.is_nilpotent()
697 False
698
699 TESTS:
700
701 The identity element is never nilpotent, except in a trivial EJA::
702
703 sage: set_random_seed()
704 sage: J = random_eja()
705 sage: J.one().is_nilpotent() and not J.is_trivial()
706 False
707
708 The additive identity is always nilpotent::
709
710 sage: set_random_seed()
711 sage: random_eja().zero().is_nilpotent()
712 True
713
714 """
715 P = self.parent()
716 zero_operator = P.zero().operator()
717 return self.operator()**P.dimension() == zero_operator
718
719
720 def is_regular(self):
721 """
722 Return whether or not this is a regular element.
723
724 SETUP::
725
726 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
727 ....: random_eja)
728
729 EXAMPLES:
730
731 The identity element always has degree one, but any element
732 linearly-independent from it is regular::
733
734 sage: J = JordanSpinEJA(5)
735 sage: J.one().is_regular()
736 False
737 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
738 sage: for x in J.gens():
739 ....: (J.one() + x).is_regular()
740 False
741 True
742 True
743 True
744 True
745
746 TESTS:
747
748 The zero element should never be regular, unless the parent
749 algebra has dimension less than or equal to one::
750
751 sage: set_random_seed()
752 sage: J = random_eja()
753 sage: J.dimension() <= 1 or not J.zero().is_regular()
754 True
755
756 The unit element isn't regular unless the algebra happens to
757 consist of only its scalar multiples::
758
759 sage: set_random_seed()
760 sage: J = random_eja()
761 sage: J.dimension() <= 1 or not J.one().is_regular()
762 True
763
764 """
765 return self.degree() == self.parent().rank()
766
767
768 def degree(self):
769 """
770 Return the degree of this element, which is defined to be
771 the degree of its minimal polynomial.
772
773 ALGORITHM:
774
775 For now, we skip the messy minimal polynomial computation
776 and instead return the dimension of the vector space spanned
777 by the powers of this element. The latter is a bit more
778 straightforward to compute.
779
780 SETUP::
781
782 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
783 ....: random_eja)
784
785 EXAMPLES::
786
787 sage: J = JordanSpinEJA(4)
788 sage: J.one().degree()
789 1
790 sage: e0,e1,e2,e3 = J.gens()
791 sage: (e0 - e1).degree()
792 2
793
794 In the spin factor algebra (of rank two), all elements that
795 aren't multiples of the identity are regular::
796
797 sage: set_random_seed()
798 sage: J = JordanSpinEJA.random_instance()
799 sage: x = J.random_element()
800 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
801 True
802
803 TESTS:
804
805 The zero and unit elements are both of degree one in nontrivial
806 algebras::
807
808 sage: set_random_seed()
809 sage: J = random_eja()
810 sage: d = J.zero().degree()
811 sage: (J.is_trivial() and d == 0) or d == 1
812 True
813 sage: d = J.one().degree()
814 sage: (J.is_trivial() and d == 0) or d == 1
815 True
816
817 Our implementation agrees with the definition::
818
819 sage: set_random_seed()
820 sage: x = random_eja().random_element()
821 sage: x.degree() == x.minimal_polynomial().degree()
822 True
823
824 """
825 if self.is_zero() and not self.parent().is_trivial():
826 # The minimal polynomial of zero in a nontrivial algebra
827 # is "t"; in a trivial algebra it's "1" by convention
828 # (it's an empty product).
829 return 1
830 return self.subalgebra_generated_by().dimension()
831
832
833 def left_matrix(self):
834 """
835 Our parent class defines ``left_matrix`` and ``matrix``
836 methods whose names are misleading. We don't want them.
837 """
838 raise NotImplementedError("use operator().matrix() instead")
839
840 matrix = left_matrix
841
842
843 def minimal_polynomial(self):
844 """
845 Return the minimal polynomial of this element,
846 as a function of the variable `t`.
847
848 ALGORITHM:
849
850 We restrict ourselves to the associative subalgebra
851 generated by this element, and then return the minimal
852 polynomial of this element's operator matrix (in that
853 subalgebra). This works by Baes Proposition 2.3.16.
854
855 SETUP::
856
857 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
858 ....: RealSymmetricEJA,
859 ....: TrivialEJA,
860 ....: random_eja)
861
862 EXAMPLES:
863
864 Keeping in mind that the polynomial ``1`` evaluates the identity
865 element (also the zero element) of the trivial algebra, it is clear
866 that the polynomial ``1`` is the minimal polynomial of the only
867 element in a trivial algebra::
868
869 sage: J = TrivialEJA()
870 sage: J.one().minimal_polynomial()
871 1
872 sage: J.zero().minimal_polynomial()
873 1
874
875 TESTS:
876
877 The minimal polynomial of the identity and zero elements are
878 always the same::
879
880 sage: set_random_seed()
881 sage: J = random_eja(nontrivial=True)
882 sage: J.one().minimal_polynomial()
883 t - 1
884 sage: J.zero().minimal_polynomial()
885 t
886
887 The degree of an element is (by one definition) the degree
888 of its minimal polynomial::
889
890 sage: set_random_seed()
891 sage: x = random_eja().random_element()
892 sage: x.degree() == x.minimal_polynomial().degree()
893 True
894
895 The minimal polynomial and the characteristic polynomial coincide
896 and are known (see Alizadeh, Example 11.11) for all elements of
897 the spin factor algebra that aren't scalar multiples of the
898 identity. We require the dimension of the algebra to be at least
899 two here so that said elements actually exist::
900
901 sage: set_random_seed()
902 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
903 sage: n = ZZ.random_element(2, n_max)
904 sage: J = JordanSpinEJA(n)
905 sage: y = J.random_element()
906 sage: while y == y.coefficient(0)*J.one():
907 ....: y = J.random_element()
908 sage: y0 = y.to_vector()[0]
909 sage: y_bar = y.to_vector()[1:]
910 sage: actual = y.minimal_polynomial()
911 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
912 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
913 sage: bool(actual == expected)
914 True
915
916 The minimal polynomial should always kill its element::
917
918 sage: set_random_seed()
919 sage: x = random_eja().random_element()
920 sage: p = x.minimal_polynomial()
921 sage: x.apply_univariate_polynomial(p)
922 0
923
924 The minimal polynomial is invariant under a change of basis,
925 and in particular, a re-scaling of the basis::
926
927 sage: set_random_seed()
928 sage: n_max = RealSymmetricEJA._max_test_case_size()
929 sage: n = ZZ.random_element(1, n_max)
930 sage: J1 = RealSymmetricEJA(n)
931 sage: J2 = RealSymmetricEJA(n,normalize_basis=False)
932 sage: X = random_matrix(AA,n)
933 sage: X = X*X.transpose()
934 sage: x1 = J1(X)
935 sage: x2 = J2(X)
936 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
937 True
938
939 """
940 if self.is_zero():
941 # We would generate a zero-dimensional subalgebra
942 # where the minimal polynomial would be constant.
943 # That might be correct, but only if *this* algebra
944 # is trivial too.
945 if not self.parent().is_trivial():
946 # Pretty sure we know what the minimal polynomial of
947 # the zero operator is going to be. This ensures
948 # consistency of e.g. the polynomial variable returned
949 # in the "normal" case without us having to think about it.
950 return self.operator().minimal_polynomial()
951
952 A = self.subalgebra_generated_by()
953 return A(self).operator().minimal_polynomial()
954
955
956
957 def natural_representation(self):
958 """
959 Return a more-natural representation of this element.
960
961 Every finite-dimensional Euclidean Jordan Algebra is a
962 direct sum of five simple algebras, four of which comprise
963 Hermitian matrices. This method returns the original
964 "natural" representation of this element as a Hermitian
965 matrix, if it has one. If not, you get the usual representation.
966
967 SETUP::
968
969 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
970 ....: QuaternionHermitianEJA)
971
972 EXAMPLES::
973
974 sage: J = ComplexHermitianEJA(3)
975 sage: J.one()
976 e0 + e3 + e8
977 sage: J.one().natural_representation()
978 [1 0 0 0 0 0]
979 [0 1 0 0 0 0]
980 [0 0 1 0 0 0]
981 [0 0 0 1 0 0]
982 [0 0 0 0 1 0]
983 [0 0 0 0 0 1]
984
985 ::
986
987 sage: J = QuaternionHermitianEJA(3)
988 sage: J.one()
989 e0 + e5 + e14
990 sage: J.one().natural_representation()
991 [1 0 0 0 0 0 0 0 0 0 0 0]
992 [0 1 0 0 0 0 0 0 0 0 0 0]
993 [0 0 1 0 0 0 0 0 0 0 0 0]
994 [0 0 0 1 0 0 0 0 0 0 0 0]
995 [0 0 0 0 1 0 0 0 0 0 0 0]
996 [0 0 0 0 0 1 0 0 0 0 0 0]
997 [0 0 0 0 0 0 1 0 0 0 0 0]
998 [0 0 0 0 0 0 0 1 0 0 0 0]
999 [0 0 0 0 0 0 0 0 1 0 0 0]
1000 [0 0 0 0 0 0 0 0 0 1 0 0]
1001 [0 0 0 0 0 0 0 0 0 0 1 0]
1002 [0 0 0 0 0 0 0 0 0 0 0 1]
1003
1004 """
1005 B = self.parent().natural_basis()
1006 W = self.parent().natural_basis_space()
1007 return W.linear_combination(zip(B,self.to_vector()))
1008
1009
1010 def norm(self):
1011 """
1012 The norm of this element with respect to :meth:`inner_product`.
1013
1014 SETUP::
1015
1016 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1017 ....: HadamardEJA)
1018
1019 EXAMPLES::
1020
1021 sage: J = HadamardEJA(2)
1022 sage: x = sum(J.gens())
1023 sage: x.norm()
1024 1.414213562373095?
1025
1026 ::
1027
1028 sage: J = JordanSpinEJA(4)
1029 sage: x = sum(J.gens())
1030 sage: x.norm()
1031 2
1032
1033 """
1034 return self.inner_product(self).sqrt()
1035
1036
1037 def operator(self):
1038 """
1039 Return the left-multiplication-by-this-element
1040 operator on the ambient algebra.
1041
1042 SETUP::
1043
1044 sage: from mjo.eja.eja_algebra import random_eja
1045
1046 TESTS::
1047
1048 sage: set_random_seed()
1049 sage: J = random_eja()
1050 sage: x,y = J.random_elements(2)
1051 sage: x.operator()(y) == x*y
1052 True
1053 sage: y.operator()(x) == x*y
1054 True
1055
1056 """
1057 P = self.parent()
1058 left_mult_by_self = lambda y: self*y
1059 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1060 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1061 P,
1062 P,
1063 L.matrix() )
1064
1065
1066 def quadratic_representation(self, other=None):
1067 """
1068 Return the quadratic representation of this element.
1069
1070 SETUP::
1071
1072 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1073 ....: random_eja)
1074
1075 EXAMPLES:
1076
1077 The explicit form in the spin factor algebra is given by
1078 Alizadeh's Example 11.12::
1079
1080 sage: set_random_seed()
1081 sage: x = JordanSpinEJA.random_instance().random_element()
1082 sage: x_vec = x.to_vector()
1083 sage: n = x_vec.degree()
1084 sage: x0 = x_vec[0]
1085 sage: x_bar = x_vec[1:]
1086 sage: A = matrix(AA, 1, [x_vec.inner_product(x_vec)])
1087 sage: B = 2*x0*x_bar.row()
1088 sage: C = 2*x0*x_bar.column()
1089 sage: D = matrix.identity(AA, n-1)
1090 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
1091 sage: D = D + 2*x_bar.tensor_product(x_bar)
1092 sage: Q = matrix.block(2,2,[A,B,C,D])
1093 sage: Q == x.quadratic_representation().matrix()
1094 True
1095
1096 Test all of the properties from Theorem 11.2 in Alizadeh::
1097
1098 sage: set_random_seed()
1099 sage: J = random_eja()
1100 sage: x,y = J.random_elements(2)
1101 sage: Lx = x.operator()
1102 sage: Lxx = (x*x).operator()
1103 sage: Qx = x.quadratic_representation()
1104 sage: Qy = y.quadratic_representation()
1105 sage: Qxy = x.quadratic_representation(y)
1106 sage: Qex = J.one().quadratic_representation(x)
1107 sage: n = ZZ.random_element(10)
1108 sage: Qxn = (x^n).quadratic_representation()
1109
1110 Property 1:
1111
1112 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1113 True
1114
1115 Property 2 (multiply on the right for :trac:`28272`):
1116
1117 sage: alpha = J.base_ring().random_element()
1118 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1119 True
1120
1121 Property 3:
1122
1123 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1124 True
1125
1126 sage: not x.is_invertible() or (
1127 ....: ~Qx
1128 ....: ==
1129 ....: x.inverse().quadratic_representation() )
1130 True
1131
1132 sage: Qxy(J.one()) == x*y
1133 True
1134
1135 Property 4:
1136
1137 sage: not x.is_invertible() or (
1138 ....: x.quadratic_representation(x.inverse())*Qx
1139 ....: == Qx*x.quadratic_representation(x.inverse()) )
1140 True
1141
1142 sage: not x.is_invertible() or (
1143 ....: x.quadratic_representation(x.inverse())*Qx
1144 ....: ==
1145 ....: 2*Lx*Qex - Qx )
1146 True
1147
1148 sage: 2*Lx*Qex - Qx == Lxx
1149 True
1150
1151 Property 5:
1152
1153 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1154 True
1155
1156 Property 6:
1157
1158 sage: Qxn == (Qx)^n
1159 True
1160
1161 Property 7:
1162
1163 sage: not x.is_invertible() or (
1164 ....: Qx*x.inverse().operator() == Lx )
1165 True
1166
1167 Property 8:
1168
1169 sage: not x.operator_commutes_with(y) or (
1170 ....: Qx(y)^n == Qxn(y^n) )
1171 True
1172
1173 """
1174 if other is None:
1175 other=self
1176 elif not other in self.parent():
1177 raise TypeError("'other' must live in the same algebra")
1178
1179 L = self.operator()
1180 M = other.operator()
1181 return ( L*M + M*L - (self*other).operator() )
1182
1183
1184
1185 def spectral_decomposition(self):
1186 """
1187 Return the unique spectral decomposition of this element.
1188
1189 ALGORITHM:
1190
1191 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1192 element's left-multiplication-by operator to the subalgebra it
1193 generates. We then compute the spectral decomposition of that
1194 operator, and the spectral projectors we get back must be the
1195 left-multiplication-by operators for the idempotents we
1196 seek. Thus applying them to the identity element gives us those
1197 idempotents.
1198
1199 Since the eigenvalues are required to be distinct, we take
1200 the spectral decomposition of the zero element to be zero
1201 times the identity element of the algebra (which is idempotent,
1202 obviously).
1203
1204 SETUP::
1205
1206 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1207
1208 EXAMPLES:
1209
1210 The spectral decomposition of the identity is ``1`` times itself,
1211 and the spectral decomposition of zero is ``0`` times the identity::
1212
1213 sage: J = RealSymmetricEJA(3)
1214 sage: J.one()
1215 e0 + e2 + e5
1216 sage: J.one().spectral_decomposition()
1217 [(1, e0 + e2 + e5)]
1218 sage: J.zero().spectral_decomposition()
1219 [(0, e0 + e2 + e5)]
1220
1221 TESTS::
1222
1223 sage: J = RealSymmetricEJA(4)
1224 sage: x = sum(J.gens())
1225 sage: sd = x.spectral_decomposition()
1226 sage: l0 = sd[0][0]
1227 sage: l1 = sd[1][0]
1228 sage: c0 = sd[0][1]
1229 sage: c1 = sd[1][1]
1230 sage: c0.inner_product(c1) == 0
1231 True
1232 sage: c0.is_idempotent()
1233 True
1234 sage: c1.is_idempotent()
1235 True
1236 sage: c0 + c1 == J.one()
1237 True
1238 sage: l0*c0 + l1*c1 == x
1239 True
1240
1241 The spectral decomposition should work in subalgebras, too::
1242
1243 sage: J = RealSymmetricEJA(4)
1244 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1245 sage: A = 2*e5 - 2*e8
1246 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1247 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1248 sage: (f0, f1, f2) = J1.gens()
1249 sage: f0.spectral_decomposition()
1250 [(0, 1.000000000000000?*f2), (1, 1.000000000000000?*f0)]
1251
1252 """
1253 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1254 result = []
1255 for (evalue, proj) in A(self).operator().spectral_decomposition():
1256 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1257 return result
1258
1259 def subalgebra_generated_by(self, orthonormalize_basis=False):
1260 """
1261 Return the associative subalgebra of the parent EJA generated
1262 by this element.
1263
1264 Since our parent algebra is unital, we want "subalgebra" to mean
1265 "unital subalgebra" as well; thus the subalgebra that an element
1266 generates will itself be a Euclidean Jordan algebra after
1267 restricting the algebra operations appropriately. This is the
1268 subalgebra that Faraut and Korányi work with in section II.2, for
1269 example.
1270
1271 SETUP::
1272
1273 sage: from mjo.eja.eja_algebra import random_eja
1274
1275 TESTS:
1276
1277 This subalgebra, being composed of only powers, is associative::
1278
1279 sage: set_random_seed()
1280 sage: x0 = random_eja().random_element()
1281 sage: A = x0.subalgebra_generated_by()
1282 sage: x,y,z = A.random_elements(3)
1283 sage: (x*y)*z == x*(y*z)
1284 True
1285
1286 Squaring in the subalgebra should work the same as in
1287 the superalgebra::
1288
1289 sage: set_random_seed()
1290 sage: x = random_eja().random_element()
1291 sage: A = x.subalgebra_generated_by()
1292 sage: A(x^2) == A(x)*A(x)
1293 True
1294
1295 By definition, the subalgebra generated by the zero element is
1296 the one-dimensional algebra generated by the identity
1297 element... unless the original algebra was trivial, in which
1298 case the subalgebra is trivial too::
1299
1300 sage: set_random_seed()
1301 sage: A = random_eja().zero().subalgebra_generated_by()
1302 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1303 True
1304
1305 """
1306 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1307
1308
1309 def subalgebra_idempotent(self):
1310 """
1311 Find an idempotent in the associative subalgebra I generate
1312 using Proposition 2.3.5 in Baes.
1313
1314 SETUP::
1315
1316 sage: from mjo.eja.eja_algebra import random_eja
1317
1318 TESTS:
1319
1320 Ensure that we can find an idempotent in a non-trivial algebra
1321 where there are non-nilpotent elements, or that we get the dumb
1322 solution in the trivial algebra::
1323
1324 sage: set_random_seed()
1325 sage: J = random_eja()
1326 sage: x = J.random_element()
1327 sage: while x.is_nilpotent() and not J.is_trivial():
1328 ....: x = J.random_element()
1329 sage: c = x.subalgebra_idempotent()
1330 sage: c^2 == c
1331 True
1332
1333 """
1334 if self.parent().is_trivial():
1335 return self
1336
1337 if self.is_nilpotent():
1338 raise ValueError("this only works with non-nilpotent elements!")
1339
1340 J = self.subalgebra_generated_by()
1341 u = J(self)
1342
1343 # The image of the matrix of left-u^m-multiplication
1344 # will be minimal for some natural number s...
1345 s = 0
1346 minimal_dim = J.dimension()
1347 for i in range(1, minimal_dim):
1348 this_dim = (u**i).operator().matrix().image().dimension()
1349 if this_dim < minimal_dim:
1350 minimal_dim = this_dim
1351 s = i
1352
1353 # Now minimal_matrix should correspond to the smallest
1354 # non-zero subspace in Baes's (or really, Koecher's)
1355 # proposition.
1356 #
1357 # However, we need to restrict the matrix to work on the
1358 # subspace... or do we? Can't we just solve, knowing that
1359 # A(c) = u^(s+1) should have a solution in the big space,
1360 # too?
1361 #
1362 # Beware, solve_right() means that we're using COLUMN vectors.
1363 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1364 u_next = u**(s+1)
1365 A = u_next.operator().matrix()
1366 c = J.from_vector(A.solve_right(u_next.to_vector()))
1367
1368 # Now c is the idempotent we want, but it still lives in the subalgebra.
1369 return c.superalgebra_element()
1370
1371
1372 def trace(self):
1373 """
1374 Return my trace, the sum of my eigenvalues.
1375
1376 In a trivial algebra, however you want to look at it, the trace is
1377 an empty sum for which we declare the result to be zero.
1378
1379 SETUP::
1380
1381 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1382 ....: HadamardEJA,
1383 ....: TrivialEJA,
1384 ....: random_eja)
1385
1386 EXAMPLES::
1387
1388 sage: J = TrivialEJA()
1389 sage: J.zero().trace()
1390 0
1391
1392 ::
1393 sage: J = JordanSpinEJA(3)
1394 sage: x = sum(J.gens())
1395 sage: x.trace()
1396 2
1397
1398 ::
1399
1400 sage: J = HadamardEJA(5)
1401 sage: J.one().trace()
1402 5
1403
1404 TESTS:
1405
1406 The trace of an element is a real number::
1407
1408 sage: set_random_seed()
1409 sage: J = random_eja()
1410 sage: J.random_element().trace() in RLF
1411 True
1412
1413 """
1414 P = self.parent()
1415 r = P.rank()
1416
1417 if r == 0:
1418 # Special case for the trivial algebra where
1419 # the trace is an empty sum.
1420 return P.base_ring().zero()
1421
1422 p = P._charpoly_coefficients()[r-1]
1423 # The _charpoly_coeff function already adds the factor of
1424 # -1 to ensure that _charpoly_coeff(r-1) is really what
1425 # appears in front of t^{r-1} in the charpoly. However,
1426 # we want the negative of THAT for the trace.
1427 return -p(*self.to_vector())
1428
1429
1430 def trace_inner_product(self, other):
1431 """
1432 Return the trace inner product of myself and ``other``.
1433
1434 SETUP::
1435
1436 sage: from mjo.eja.eja_algebra import random_eja
1437
1438 TESTS:
1439
1440 The trace inner product is commutative, bilinear, and associative::
1441
1442 sage: set_random_seed()
1443 sage: J = random_eja()
1444 sage: x,y,z = J.random_elements(3)
1445 sage: # commutative
1446 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1447 True
1448 sage: # bilinear
1449 sage: a = J.base_ring().random_element();
1450 sage: actual = (a*(x+z)).trace_inner_product(y)
1451 sage: expected = ( a*x.trace_inner_product(y) +
1452 ....: a*z.trace_inner_product(y) )
1453 sage: actual == expected
1454 True
1455 sage: actual = x.trace_inner_product(a*(y+z))
1456 sage: expected = ( a*x.trace_inner_product(y) +
1457 ....: a*x.trace_inner_product(z) )
1458 sage: actual == expected
1459 True
1460 sage: # associative
1461 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1462 True
1463
1464 """
1465 if not other in self.parent():
1466 raise TypeError("'other' must live in the same algebra")
1467
1468 return (self*other).trace()
1469
1470
1471 def trace_norm(self):
1472 """
1473 The norm of this element with respect to :meth:`trace_inner_product`.
1474
1475 SETUP::
1476
1477 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1478 ....: HadamardEJA)
1479
1480 EXAMPLES::
1481
1482 sage: J = HadamardEJA(2)
1483 sage: x = sum(J.gens())
1484 sage: x.trace_norm()
1485 1.414213562373095?
1486
1487 ::
1488
1489 sage: J = JordanSpinEJA(4)
1490 sage: x = sum(J.gens())
1491 sage: x.trace_norm()
1492 2.828427124746190?
1493
1494 """
1495 return self.trace_inner_product(self).sqrt()