]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: use peirce_decomposition() method to get the Peirce decomposition.
[sage.d.git] / mjo / eja / eja_element.py
1 # -*- coding: utf-8 -*-
2
3 from itertools import izip
4
5 from sage.matrix.constructor import matrix
6 from sage.modules.free_module import VectorSpace
7 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
8
9 # TODO: make this unnecessary somehow.
10 from sage.misc.lazy_import import lazy_import
11 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
12 lazy_import('mjo.eja.eja_element_subalgebra',
13 'FiniteDimensionalEuclideanJordanElementSubalgebra')
14 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
15 from mjo.eja.eja_utils import _mat2vec
16
17 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
18 """
19 An element of a Euclidean Jordan algebra.
20 """
21
22 def __dir__(self):
23 """
24 Oh man, I should not be doing this. This hides the "disabled"
25 methods ``left_matrix`` and ``matrix`` from introspection;
26 in particular it removes them from tab-completion.
27 """
28 return filter(lambda s: s not in ['left_matrix', 'matrix'],
29 dir(self.__class__) )
30
31
32
33
34 def __pow__(self, n):
35 """
36 Return ``self`` raised to the power ``n``.
37
38 Jordan algebras are always power-associative; see for
39 example Faraut and Korányi, Proposition II.1.2 (ii).
40
41 We have to override this because our superclass uses row
42 vectors instead of column vectors! We, on the other hand,
43 assume column vectors everywhere.
44
45 SETUP::
46
47 sage: from mjo.eja.eja_algebra import random_eja
48
49 TESTS:
50
51 The definition of `x^2` is the unambiguous `x*x`::
52
53 sage: set_random_seed()
54 sage: x = random_eja().random_element()
55 sage: x*x == (x^2)
56 True
57
58 A few examples of power-associativity::
59
60 sage: set_random_seed()
61 sage: x = random_eja().random_element()
62 sage: x*(x*x)*(x*x) == x^5
63 True
64 sage: (x*x)*(x*x*x) == x^5
65 True
66
67 We also know that powers operator-commute (Koecher, Chapter
68 III, Corollary 1)::
69
70 sage: set_random_seed()
71 sage: x = random_eja().random_element()
72 sage: m = ZZ.random_element(0,10)
73 sage: n = ZZ.random_element(0,10)
74 sage: Lxm = (x^m).operator()
75 sage: Lxn = (x^n).operator()
76 sage: Lxm*Lxn == Lxn*Lxm
77 True
78
79 """
80 if n == 0:
81 return self.parent().one()
82 elif n == 1:
83 return self
84 else:
85 return (self**(n-1))*self
86
87
88 def apply_univariate_polynomial(self, p):
89 """
90 Apply the univariate polynomial ``p`` to this element.
91
92 A priori, SageMath won't allow us to apply a univariate
93 polynomial to an element of an EJA, because we don't know
94 that EJAs are rings (they are usually not associative). Of
95 course, we know that EJAs are power-associative, so the
96 operation is ultimately kosher. This function sidesteps
97 the CAS to get the answer we want and expect.
98
99 SETUP::
100
101 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
102 ....: random_eja)
103
104 EXAMPLES::
105
106 sage: R = PolynomialRing(QQ, 't')
107 sage: t = R.gen(0)
108 sage: p = t^4 - t^3 + 5*t - 2
109 sage: J = RealCartesianProductEJA(5)
110 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
111 True
112
113 TESTS:
114
115 We should always get back an element of the algebra::
116
117 sage: set_random_seed()
118 sage: p = PolynomialRing(QQ, 't').random_element()
119 sage: J = random_eja()
120 sage: x = J.random_element()
121 sage: x.apply_univariate_polynomial(p) in J
122 True
123
124 """
125 if len(p.variables()) > 1:
126 raise ValueError("not a univariate polynomial")
127 P = self.parent()
128 R = P.base_ring()
129 # Convert the coeficcients to the parent's base ring,
130 # because a priori they might live in an (unnecessarily)
131 # larger ring for which P.sum() would fail below.
132 cs = [ R(c) for c in p.coefficients(sparse=False) ]
133 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
134
135
136 def characteristic_polynomial(self):
137 """
138 Return the characteristic polynomial of this element.
139
140 SETUP::
141
142 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
143
144 EXAMPLES:
145
146 The rank of `R^3` is three, and the minimal polynomial of
147 the identity element is `(t-1)` from which it follows that
148 the characteristic polynomial should be `(t-1)^3`::
149
150 sage: J = RealCartesianProductEJA(3)
151 sage: J.one().characteristic_polynomial()
152 t^3 - 3*t^2 + 3*t - 1
153
154 Likewise, the characteristic of the zero element in the
155 rank-three algebra `R^{n}` should be `t^{3}`::
156
157 sage: J = RealCartesianProductEJA(3)
158 sage: J.zero().characteristic_polynomial()
159 t^3
160
161 TESTS:
162
163 The characteristic polynomial of an element should evaluate
164 to zero on that element::
165
166 sage: set_random_seed()
167 sage: x = RealCartesianProductEJA(3).random_element()
168 sage: p = x.characteristic_polynomial()
169 sage: x.apply_univariate_polynomial(p)
170 0
171
172 The characteristic polynomials of the zero and unit elements
173 should be what we think they are in a subalgebra, too::
174
175 sage: J = RealCartesianProductEJA(3)
176 sage: p1 = J.one().characteristic_polynomial()
177 sage: q1 = J.zero().characteristic_polynomial()
178 sage: e0,e1,e2 = J.gens()
179 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
180 sage: p2 = A.one().characteristic_polynomial()
181 sage: q2 = A.zero().characteristic_polynomial()
182 sage: p1 == p2
183 True
184 sage: q1 == q2
185 True
186
187 """
188 p = self.parent().characteristic_polynomial()
189 return p(*self.to_vector())
190
191
192 def inner_product(self, other):
193 """
194 Return the parent algebra's inner product of myself and ``other``.
195
196 SETUP::
197
198 sage: from mjo.eja.eja_algebra import (
199 ....: ComplexHermitianEJA,
200 ....: JordanSpinEJA,
201 ....: QuaternionHermitianEJA,
202 ....: RealSymmetricEJA,
203 ....: random_eja)
204
205 EXAMPLES:
206
207 The inner product in the Jordan spin algebra is the usual
208 inner product on `R^n` (this example only works because the
209 basis for the Jordan algebra is the standard basis in `R^n`)::
210
211 sage: J = JordanSpinEJA(3)
212 sage: x = vector(QQ,[1,2,3])
213 sage: y = vector(QQ,[4,5,6])
214 sage: x.inner_product(y)
215 32
216 sage: J.from_vector(x).inner_product(J.from_vector(y))
217 32
218
219 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
220 multiplication is the usual matrix multiplication in `S^n`,
221 so the inner product of the identity matrix with itself
222 should be the `n`::
223
224 sage: J = RealSymmetricEJA(3)
225 sage: J.one().inner_product(J.one())
226 3
227
228 Likewise, the inner product on `C^n` is `<X,Y> =
229 Re(trace(X*Y))`, where we must necessarily take the real
230 part because the product of Hermitian matrices may not be
231 Hermitian::
232
233 sage: J = ComplexHermitianEJA(3)
234 sage: J.one().inner_product(J.one())
235 3
236
237 Ditto for the quaternions::
238
239 sage: J = QuaternionHermitianEJA(3)
240 sage: J.one().inner_product(J.one())
241 3
242
243 TESTS:
244
245 Ensure that we can always compute an inner product, and that
246 it gives us back a real number::
247
248 sage: set_random_seed()
249 sage: J = random_eja()
250 sage: x,y = J.random_elements(2)
251 sage: x.inner_product(y) in RLF
252 True
253
254 """
255 P = self.parent()
256 if not other in P:
257 raise TypeError("'other' must live in the same algebra")
258
259 return P.inner_product(self, other)
260
261
262 def operator_commutes_with(self, other):
263 """
264 Return whether or not this element operator-commutes
265 with ``other``.
266
267 SETUP::
268
269 sage: from mjo.eja.eja_algebra import random_eja
270
271 EXAMPLES:
272
273 The definition of a Jordan algebra says that any element
274 operator-commutes with its square::
275
276 sage: set_random_seed()
277 sage: x = random_eja().random_element()
278 sage: x.operator_commutes_with(x^2)
279 True
280
281 TESTS:
282
283 Test Lemma 1 from Chapter III of Koecher::
284
285 sage: set_random_seed()
286 sage: u,v = random_eja().random_elements(2)
287 sage: lhs = u.operator_commutes_with(u*v)
288 sage: rhs = v.operator_commutes_with(u^2)
289 sage: lhs == rhs
290 True
291
292 Test the first polarization identity from my notes, Koecher
293 Chapter III, or from Baes (2.3)::
294
295 sage: set_random_seed()
296 sage: x,y = random_eja().random_elements(2)
297 sage: Lx = x.operator()
298 sage: Ly = y.operator()
299 sage: Lxx = (x*x).operator()
300 sage: Lxy = (x*y).operator()
301 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
302 True
303
304 Test the second polarization identity from my notes or from
305 Baes (2.4)::
306
307 sage: set_random_seed()
308 sage: x,y,z = random_eja().random_elements(3)
309 sage: Lx = x.operator()
310 sage: Ly = y.operator()
311 sage: Lz = z.operator()
312 sage: Lzy = (z*y).operator()
313 sage: Lxy = (x*y).operator()
314 sage: Lxz = (x*z).operator()
315 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
316 True
317
318 Test the third polarization identity from my notes or from
319 Baes (2.5)::
320
321 sage: set_random_seed()
322 sage: u,y,z = random_eja().random_elements(3)
323 sage: Lu = u.operator()
324 sage: Ly = y.operator()
325 sage: Lz = z.operator()
326 sage: Lzy = (z*y).operator()
327 sage: Luy = (u*y).operator()
328 sage: Luz = (u*z).operator()
329 sage: Luyz = (u*(y*z)).operator()
330 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
331 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
332 sage: bool(lhs == rhs)
333 True
334
335 """
336 if not other in self.parent():
337 raise TypeError("'other' must live in the same algebra")
338
339 A = self.operator()
340 B = other.operator()
341 return (A*B == B*A)
342
343
344 def det(self):
345 """
346 Return my determinant, the product of my eigenvalues.
347
348 SETUP::
349
350 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
351 ....: random_eja)
352
353 EXAMPLES::
354
355 sage: J = JordanSpinEJA(2)
356 sage: e0,e1 = J.gens()
357 sage: x = sum( J.gens() )
358 sage: x.det()
359 0
360
361 ::
362
363 sage: J = JordanSpinEJA(3)
364 sage: e0,e1,e2 = J.gens()
365 sage: x = sum( J.gens() )
366 sage: x.det()
367 -1
368
369 TESTS:
370
371 An element is invertible if and only if its determinant is
372 non-zero::
373
374 sage: set_random_seed()
375 sage: x = random_eja().random_element()
376 sage: x.is_invertible() == (x.det() != 0)
377 True
378
379 Ensure that the determinant is multiplicative on an associative
380 subalgebra as in Faraut and Korányi's Proposition II.2.2::
381
382 sage: set_random_seed()
383 sage: J = random_eja().random_element().subalgebra_generated_by()
384 sage: x,y = J.random_elements(2)
385 sage: (x*y).det() == x.det()*y.det()
386 True
387
388 """
389 P = self.parent()
390 r = P.rank()
391 p = P._charpoly_coeff(0)
392 # The _charpoly_coeff function already adds the factor of
393 # -1 to ensure that _charpoly_coeff(0) is really what
394 # appears in front of t^{0} in the charpoly. However,
395 # we want (-1)^r times THAT for the determinant.
396 return ((-1)**r)*p(*self.to_vector())
397
398
399 def inverse(self):
400 """
401 Return the Jordan-multiplicative inverse of this element.
402
403 ALGORITHM:
404
405 We appeal to the quadratic representation as in Koecher's
406 Theorem 12 in Chapter III, Section 5.
407
408 SETUP::
409
410 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
411 ....: JordanSpinEJA,
412 ....: random_eja)
413
414 EXAMPLES:
415
416 The inverse in the spin factor algebra is given in Alizadeh's
417 Example 11.11::
418
419 sage: set_random_seed()
420 sage: J = JordanSpinEJA.random_instance()
421 sage: x = J.random_element()
422 sage: while not x.is_invertible():
423 ....: x = J.random_element()
424 sage: x_vec = x.to_vector()
425 sage: x0 = x_vec[0]
426 sage: x_bar = x_vec[1:]
427 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
428 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
429 sage: x_inverse = coeff*inv_vec
430 sage: x.inverse() == J.from_vector(x_inverse)
431 True
432
433 Trying to invert a non-invertible element throws an error:
434
435 sage: JordanSpinEJA(3).zero().inverse()
436 Traceback (most recent call last):
437 ...
438 ValueError: element is not invertible
439
440 TESTS:
441
442 The identity element is its own inverse::
443
444 sage: set_random_seed()
445 sage: J = random_eja()
446 sage: J.one().inverse() == J.one()
447 True
448
449 If an element has an inverse, it acts like one::
450
451 sage: set_random_seed()
452 sage: J = random_eja()
453 sage: x = J.random_element()
454 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
455 True
456
457 The inverse of the inverse is what we started with::
458
459 sage: set_random_seed()
460 sage: J = random_eja()
461 sage: x = J.random_element()
462 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
463 True
464
465 Proposition II.2.3 in Faraut and Korányi says that the inverse
466 of an element is the inverse of its left-multiplication operator
467 applied to the algebra's identity, when that inverse exists::
468
469 sage: set_random_seed()
470 sage: J = random_eja()
471 sage: x = J.random_element()
472 sage: (not x.operator().is_invertible()) or (
473 ....: x.operator().inverse()(J.one()) == x.inverse() )
474 True
475
476 Proposition II.2.4 in Faraut and Korányi gives a formula for
477 the inverse based on the characteristic polynomial and the
478 Cayley-Hamilton theorem for Euclidean Jordan algebras::
479
480 sage: set_random_seed()
481 sage: J = ComplexHermitianEJA(3)
482 sage: x = J.random_element()
483 sage: while not x.is_invertible():
484 ....: x = J.random_element()
485 sage: r = J.rank()
486 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
487 sage: expected = (-1)^(r+1)/x.det()
488 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
489 sage: x.inverse() == expected
490 True
491
492 """
493 if not self.is_invertible():
494 raise ValueError("element is not invertible")
495
496 return (~self.quadratic_representation())(self)
497
498
499 def is_invertible(self):
500 """
501 Return whether or not this element is invertible.
502
503 ALGORITHM:
504
505 The usual way to do this is to check if the determinant is
506 zero, but we need the characteristic polynomial for the
507 determinant. The minimal polynomial is a lot easier to get,
508 so we use Corollary 2 in Chapter V of Koecher to check
509 whether or not the paren't algebra's zero element is a root
510 of this element's minimal polynomial.
511
512 Beware that we can't use the superclass method, because it
513 relies on the algebra being associative.
514
515 SETUP::
516
517 sage: from mjo.eja.eja_algebra import random_eja
518
519 TESTS:
520
521 The identity element is always invertible::
522
523 sage: set_random_seed()
524 sage: J = random_eja()
525 sage: J.one().is_invertible()
526 True
527
528 The zero element is never invertible in a non-trivial algebra::
529
530 sage: set_random_seed()
531 sage: J = random_eja()
532 sage: (not J.is_trivial()) and J.zero().is_invertible()
533 False
534
535 """
536 if self.is_zero():
537 if self.parent().is_trivial():
538 return True
539 else:
540 return False
541
542 # In fact, we only need to know if the constant term is non-zero,
543 # so we can pass in the field's zero element instead.
544 zero = self.base_ring().zero()
545 p = self.minimal_polynomial()
546 return not (p(zero) == zero)
547
548
549 def is_minimal_idempotent(self):
550 """
551 Return whether or not this element is a minimal idempotent.
552
553
554 An element of a Euclidean Jordan algebra is a minimal idempotent
555 if it :meth:`is_idempotent` and if its Peirce subalgebra
556 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
557 Proposition 2.7.17).
558
559 SETUP::
560
561 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
562 ....: RealSymmetricEJA,
563 ....: random_eja)
564
565 WARNING::
566
567 This method is sloooooow.
568
569 EXAMPLES:
570
571 The spectral decomposition of a non-regular element should always
572 contain at least one non-minimal idempotent::
573
574 sage: J = RealSymmetricEJA(3, AA)
575 sage: x = sum(J.gens())
576 sage: x.is_regular()
577 False
578 sage: [ c.is_minimal_idempotent()
579 ....: for (l,c) in x.spectral_decomposition() ]
580 [False, True]
581
582 On the other hand, the spectral decomposition of a regular
583 element should always be in terms of minimal idempotents::
584
585 sage: J = JordanSpinEJA(4, AA)
586 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
587 sage: x.is_regular()
588 True
589 sage: [ c.is_minimal_idempotent()
590 ....: for (l,c) in x.spectral_decomposition() ]
591 [True, True]
592
593 TESTS:
594
595 The identity element is minimal only in an EJA of rank one::
596
597 sage: set_random_seed()
598 sage: J = random_eja()
599 sage: J.rank() == 1 or not J.one().is_minimal_idempotent()
600 True
601
602 A non-idempotent cannot be a minimal idempotent::
603
604 sage: set_random_seed()
605 sage: J = JordanSpinEJA(4)
606 sage: x = J.random_element()
607 sage: (not x.is_idempotent()) and x.is_minimal_idempotent()
608 False
609
610 Proposition 2.7.19 in Baes says that an element is a minimal
611 idempotent if and only if it's idempotent with trace equal to
612 unity::
613
614 sage: set_random_seed()
615 sage: J = JordanSpinEJA(4)
616 sage: x = J.random_element()
617 sage: expected = (x.is_idempotent() and x.trace() == 1)
618 sage: actual = x.is_minimal_idempotent()
619 sage: actual == expected
620 True
621
622 """
623 if not self.is_idempotent():
624 return False
625
626 (_,_,J1) = self.parent().peirce_decomposition(self)
627 return (J1.dimension() == 1)
628
629
630 def is_nilpotent(self):
631 """
632 Return whether or not some power of this element is zero.
633
634 ALGORITHM:
635
636 We use Theorem 5 in Chapter III of Koecher, which says that
637 an element ``x`` is nilpotent if and only if ``x.operator()``
638 is nilpotent. And it is a basic fact of linear algebra that
639 an operator on an `n`-dimensional space is nilpotent if and
640 only if, when raised to the `n`th power, it equals the zero
641 operator (for example, see Axler Corollary 8.8).
642
643 SETUP::
644
645 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
646 ....: random_eja)
647
648 EXAMPLES::
649
650 sage: J = JordanSpinEJA(3)
651 sage: x = sum(J.gens())
652 sage: x.is_nilpotent()
653 False
654
655 TESTS:
656
657 The identity element is never nilpotent, except in a trivial EJA::
658
659 sage: set_random_seed()
660 sage: J = random_eja()
661 sage: J.one().is_nilpotent() and not J.is_trivial()
662 False
663
664 The additive identity is always nilpotent::
665
666 sage: set_random_seed()
667 sage: random_eja().zero().is_nilpotent()
668 True
669
670 """
671 P = self.parent()
672 zero_operator = P.zero().operator()
673 return self.operator()**P.dimension() == zero_operator
674
675
676 def is_regular(self):
677 """
678 Return whether or not this is a regular element.
679
680 SETUP::
681
682 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
683 ....: random_eja)
684
685 EXAMPLES:
686
687 The identity element always has degree one, but any element
688 linearly-independent from it is regular::
689
690 sage: J = JordanSpinEJA(5)
691 sage: J.one().is_regular()
692 False
693 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
694 sage: for x in J.gens():
695 ....: (J.one() + x).is_regular()
696 False
697 True
698 True
699 True
700 True
701
702 TESTS:
703
704 The zero element should never be regular, unless the parent
705 algebra has dimension less than or equal to one::
706
707 sage: set_random_seed()
708 sage: J = random_eja()
709 sage: J.dimension() <= 1 or not J.zero().is_regular()
710 True
711
712 The unit element isn't regular unless the algebra happens to
713 consist of only its scalar multiples::
714
715 sage: set_random_seed()
716 sage: J = random_eja()
717 sage: J.dimension() <= 1 or not J.one().is_regular()
718 True
719
720 """
721 return self.degree() == self.parent().rank()
722
723
724 def degree(self):
725 """
726 Return the degree of this element, which is defined to be
727 the degree of its minimal polynomial.
728
729 ALGORITHM:
730
731 For now, we skip the messy minimal polynomial computation
732 and instead return the dimension of the vector space spanned
733 by the powers of this element. The latter is a bit more
734 straightforward to compute.
735
736 SETUP::
737
738 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
739 ....: random_eja)
740
741 EXAMPLES::
742
743 sage: J = JordanSpinEJA(4)
744 sage: J.one().degree()
745 1
746 sage: e0,e1,e2,e3 = J.gens()
747 sage: (e0 - e1).degree()
748 2
749
750 In the spin factor algebra (of rank two), all elements that
751 aren't multiples of the identity are regular::
752
753 sage: set_random_seed()
754 sage: J = JordanSpinEJA.random_instance()
755 sage: x = J.random_element()
756 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
757 True
758
759 TESTS:
760
761 The zero and unit elements are both of degree one in nontrivial
762 algebras::
763
764 sage: set_random_seed()
765 sage: J = random_eja()
766 sage: d = J.zero().degree()
767 sage: (J.is_trivial() and d == 0) or d == 1
768 True
769 sage: d = J.one().degree()
770 sage: (J.is_trivial() and d == 0) or d == 1
771 True
772
773 Our implementation agrees with the definition::
774
775 sage: set_random_seed()
776 sage: x = random_eja().random_element()
777 sage: x.degree() == x.minimal_polynomial().degree()
778 True
779
780 """
781 if self.is_zero() and not self.parent().is_trivial():
782 # The minimal polynomial of zero in a nontrivial algebra
783 # is "t"; in a trivial algebra it's "1" by convention
784 # (it's an empty product).
785 return 1
786 return self.subalgebra_generated_by().dimension()
787
788
789 def left_matrix(self):
790 """
791 Our parent class defines ``left_matrix`` and ``matrix``
792 methods whose names are misleading. We don't want them.
793 """
794 raise NotImplementedError("use operator().matrix() instead")
795
796 matrix = left_matrix
797
798
799 def minimal_polynomial(self):
800 """
801 Return the minimal polynomial of this element,
802 as a function of the variable `t`.
803
804 ALGORITHM:
805
806 We restrict ourselves to the associative subalgebra
807 generated by this element, and then return the minimal
808 polynomial of this element's operator matrix (in that
809 subalgebra). This works by Baes Proposition 2.3.16.
810
811 SETUP::
812
813 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
814 ....: RealSymmetricEJA,
815 ....: TrivialEJA,
816 ....: random_eja)
817
818 EXAMPLES:
819
820 Keeping in mind that the polynomial ``1`` evaluates the identity
821 element (also the zero element) of the trivial algebra, it is clear
822 that the polynomial ``1`` is the minimal polynomial of the only
823 element in a trivial algebra::
824
825 sage: J = TrivialEJA()
826 sage: J.one().minimal_polynomial()
827 1
828 sage: J.zero().minimal_polynomial()
829 1
830
831 TESTS:
832
833 The minimal polynomial of the identity and zero elements are
834 always the same::
835
836 sage: set_random_seed()
837 sage: J = random_eja(nontrivial=True)
838 sage: J.one().minimal_polynomial()
839 t - 1
840 sage: J.zero().minimal_polynomial()
841 t
842
843 The degree of an element is (by one definition) the degree
844 of its minimal polynomial::
845
846 sage: set_random_seed()
847 sage: x = random_eja().random_element()
848 sage: x.degree() == x.minimal_polynomial().degree()
849 True
850
851 The minimal polynomial and the characteristic polynomial coincide
852 and are known (see Alizadeh, Example 11.11) for all elements of
853 the spin factor algebra that aren't scalar multiples of the
854 identity. We require the dimension of the algebra to be at least
855 two here so that said elements actually exist::
856
857 sage: set_random_seed()
858 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
859 sage: n = ZZ.random_element(2, n_max)
860 sage: J = JordanSpinEJA(n)
861 sage: y = J.random_element()
862 sage: while y == y.coefficient(0)*J.one():
863 ....: y = J.random_element()
864 sage: y0 = y.to_vector()[0]
865 sage: y_bar = y.to_vector()[1:]
866 sage: actual = y.minimal_polynomial()
867 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
868 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
869 sage: bool(actual == expected)
870 True
871
872 The minimal polynomial should always kill its element::
873
874 sage: set_random_seed()
875 sage: x = random_eja().random_element()
876 sage: p = x.minimal_polynomial()
877 sage: x.apply_univariate_polynomial(p)
878 0
879
880 The minimal polynomial is invariant under a change of basis,
881 and in particular, a re-scaling of the basis::
882
883 sage: set_random_seed()
884 sage: n_max = RealSymmetricEJA._max_test_case_size()
885 sage: n = ZZ.random_element(1, n_max)
886 sage: J1 = RealSymmetricEJA(n,QQ)
887 sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
888 sage: X = random_matrix(QQ,n)
889 sage: X = X*X.transpose()
890 sage: x1 = J1(X)
891 sage: x2 = J2(X)
892 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
893 True
894
895 """
896 if self.is_zero():
897 # We would generate a zero-dimensional subalgebra
898 # where the minimal polynomial would be constant.
899 # That might be correct, but only if *this* algebra
900 # is trivial too.
901 if not self.parent().is_trivial():
902 # Pretty sure we know what the minimal polynomial of
903 # the zero operator is going to be. This ensures
904 # consistency of e.g. the polynomial variable returned
905 # in the "normal" case without us having to think about it.
906 return self.operator().minimal_polynomial()
907
908 A = self.subalgebra_generated_by()
909 return A(self).operator().minimal_polynomial()
910
911
912
913 def natural_representation(self):
914 """
915 Return a more-natural representation of this element.
916
917 Every finite-dimensional Euclidean Jordan Algebra is a
918 direct sum of five simple algebras, four of which comprise
919 Hermitian matrices. This method returns the original
920 "natural" representation of this element as a Hermitian
921 matrix, if it has one. If not, you get the usual representation.
922
923 SETUP::
924
925 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
926 ....: QuaternionHermitianEJA)
927
928 EXAMPLES::
929
930 sage: J = ComplexHermitianEJA(3)
931 sage: J.one()
932 e0 + e3 + e8
933 sage: J.one().natural_representation()
934 [1 0 0 0 0 0]
935 [0 1 0 0 0 0]
936 [0 0 1 0 0 0]
937 [0 0 0 1 0 0]
938 [0 0 0 0 1 0]
939 [0 0 0 0 0 1]
940
941 ::
942
943 sage: J = QuaternionHermitianEJA(3)
944 sage: J.one()
945 e0 + e5 + e14
946 sage: J.one().natural_representation()
947 [1 0 0 0 0 0 0 0 0 0 0 0]
948 [0 1 0 0 0 0 0 0 0 0 0 0]
949 [0 0 1 0 0 0 0 0 0 0 0 0]
950 [0 0 0 1 0 0 0 0 0 0 0 0]
951 [0 0 0 0 1 0 0 0 0 0 0 0]
952 [0 0 0 0 0 1 0 0 0 0 0 0]
953 [0 0 0 0 0 0 1 0 0 0 0 0]
954 [0 0 0 0 0 0 0 1 0 0 0 0]
955 [0 0 0 0 0 0 0 0 1 0 0 0]
956 [0 0 0 0 0 0 0 0 0 1 0 0]
957 [0 0 0 0 0 0 0 0 0 0 1 0]
958 [0 0 0 0 0 0 0 0 0 0 0 1]
959
960 """
961 B = self.parent().natural_basis()
962 W = self.parent().natural_basis_space()
963 return W.linear_combination(izip(B,self.to_vector()))
964
965
966 def norm(self):
967 """
968 The norm of this element with respect to :meth:`inner_product`.
969
970 SETUP::
971
972 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
973 ....: RealCartesianProductEJA)
974
975 EXAMPLES::
976
977 sage: J = RealCartesianProductEJA(2)
978 sage: x = sum(J.gens())
979 sage: x.norm()
980 sqrt(2)
981
982 ::
983
984 sage: J = JordanSpinEJA(4)
985 sage: x = sum(J.gens())
986 sage: x.norm()
987 2
988
989 """
990 return self.inner_product(self).sqrt()
991
992
993 def operator(self):
994 """
995 Return the left-multiplication-by-this-element
996 operator on the ambient algebra.
997
998 SETUP::
999
1000 sage: from mjo.eja.eja_algebra import random_eja
1001
1002 TESTS::
1003
1004 sage: set_random_seed()
1005 sage: J = random_eja()
1006 sage: x,y = J.random_elements(2)
1007 sage: x.operator()(y) == x*y
1008 True
1009 sage: y.operator()(x) == x*y
1010 True
1011
1012 """
1013 P = self.parent()
1014 left_mult_by_self = lambda y: self*y
1015 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1016 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1017 P,
1018 P,
1019 L.matrix() )
1020
1021
1022 def quadratic_representation(self, other=None):
1023 """
1024 Return the quadratic representation of this element.
1025
1026 SETUP::
1027
1028 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1029 ....: random_eja)
1030
1031 EXAMPLES:
1032
1033 The explicit form in the spin factor algebra is given by
1034 Alizadeh's Example 11.12::
1035
1036 sage: set_random_seed()
1037 sage: x = JordanSpinEJA.random_instance().random_element()
1038 sage: x_vec = x.to_vector()
1039 sage: n = x_vec.degree()
1040 sage: x0 = x_vec[0]
1041 sage: x_bar = x_vec[1:]
1042 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
1043 sage: B = 2*x0*x_bar.row()
1044 sage: C = 2*x0*x_bar.column()
1045 sage: D = matrix.identity(QQ, n-1)
1046 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
1047 sage: D = D + 2*x_bar.tensor_product(x_bar)
1048 sage: Q = matrix.block(2,2,[A,B,C,D])
1049 sage: Q == x.quadratic_representation().matrix()
1050 True
1051
1052 Test all of the properties from Theorem 11.2 in Alizadeh::
1053
1054 sage: set_random_seed()
1055 sage: J = random_eja()
1056 sage: x,y = J.random_elements(2)
1057 sage: Lx = x.operator()
1058 sage: Lxx = (x*x).operator()
1059 sage: Qx = x.quadratic_representation()
1060 sage: Qy = y.quadratic_representation()
1061 sage: Qxy = x.quadratic_representation(y)
1062 sage: Qex = J.one().quadratic_representation(x)
1063 sage: n = ZZ.random_element(10)
1064 sage: Qxn = (x^n).quadratic_representation()
1065
1066 Property 1:
1067
1068 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1069 True
1070
1071 Property 2 (multiply on the right for :trac:`28272`):
1072
1073 sage: alpha = J.base_ring().random_element()
1074 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1075 True
1076
1077 Property 3:
1078
1079 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1080 True
1081
1082 sage: not x.is_invertible() or (
1083 ....: ~Qx
1084 ....: ==
1085 ....: x.inverse().quadratic_representation() )
1086 True
1087
1088 sage: Qxy(J.one()) == x*y
1089 True
1090
1091 Property 4:
1092
1093 sage: not x.is_invertible() or (
1094 ....: x.quadratic_representation(x.inverse())*Qx
1095 ....: == Qx*x.quadratic_representation(x.inverse()) )
1096 True
1097
1098 sage: not x.is_invertible() or (
1099 ....: x.quadratic_representation(x.inverse())*Qx
1100 ....: ==
1101 ....: 2*Lx*Qex - Qx )
1102 True
1103
1104 sage: 2*Lx*Qex - Qx == Lxx
1105 True
1106
1107 Property 5:
1108
1109 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1110 True
1111
1112 Property 6:
1113
1114 sage: Qxn == (Qx)^n
1115 True
1116
1117 Property 7:
1118
1119 sage: not x.is_invertible() or (
1120 ....: Qx*x.inverse().operator() == Lx )
1121 True
1122
1123 Property 8:
1124
1125 sage: not x.operator_commutes_with(y) or (
1126 ....: Qx(y)^n == Qxn(y^n) )
1127 True
1128
1129 """
1130 if other is None:
1131 other=self
1132 elif not other in self.parent():
1133 raise TypeError("'other' must live in the same algebra")
1134
1135 L = self.operator()
1136 M = other.operator()
1137 return ( L*M + M*L - (self*other).operator() )
1138
1139
1140
1141 def spectral_decomposition(self):
1142 """
1143 Return the unique spectral decomposition of this element.
1144
1145 ALGORITHM:
1146
1147 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1148 element's left-multiplication-by operator to the subalgebra it
1149 generates. We then compute the spectral decomposition of that
1150 operator, and the spectral projectors we get back must be the
1151 left-multiplication-by operators for the idempotents we
1152 seek. Thus applying them to the identity element gives us those
1153 idempotents.
1154
1155 Since the eigenvalues are required to be distinct, we take
1156 the spectral decomposition of the zero element to be zero
1157 times the identity element of the algebra (which is idempotent,
1158 obviously).
1159
1160 SETUP::
1161
1162 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1163
1164 EXAMPLES:
1165
1166 The spectral decomposition of the identity is ``1`` times itself,
1167 and the spectral decomposition of zero is ``0`` times the identity::
1168
1169 sage: J = RealSymmetricEJA(3,AA)
1170 sage: J.one()
1171 e0 + e2 + e5
1172 sage: J.one().spectral_decomposition()
1173 [(1, e0 + e2 + e5)]
1174 sage: J.zero().spectral_decomposition()
1175 [(0, e0 + e2 + e5)]
1176
1177 TESTS::
1178
1179 sage: J = RealSymmetricEJA(4,AA)
1180 sage: x = sum(J.gens())
1181 sage: sd = x.spectral_decomposition()
1182 sage: l0 = sd[0][0]
1183 sage: l1 = sd[1][0]
1184 sage: c0 = sd[0][1]
1185 sage: c1 = sd[1][1]
1186 sage: c0.inner_product(c1) == 0
1187 True
1188 sage: c0.is_idempotent()
1189 True
1190 sage: c1.is_idempotent()
1191 True
1192 sage: c0 + c1 == J.one()
1193 True
1194 sage: l0*c0 + l1*c1 == x
1195 True
1196
1197 """
1198 P = self.parent()
1199 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1200 result = []
1201 for (evalue, proj) in A(self).operator().spectral_decomposition():
1202 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1203 return result
1204
1205 def subalgebra_generated_by(self, orthonormalize_basis=False):
1206 """
1207 Return the associative subalgebra of the parent EJA generated
1208 by this element.
1209
1210 Since our parent algebra is unital, we want "subalgebra" to mean
1211 "unital subalgebra" as well; thus the subalgebra that an element
1212 generates will itself be a Euclidean Jordan algebra after
1213 restricting the algebra operations appropriately. This is the
1214 subalgebra that Faraut and Korányi work with in section II.2, for
1215 example.
1216
1217 SETUP::
1218
1219 sage: from mjo.eja.eja_algebra import random_eja
1220
1221 TESTS:
1222
1223 This subalgebra, being composed of only powers, is associative::
1224
1225 sage: set_random_seed()
1226 sage: x0 = random_eja().random_element()
1227 sage: A = x0.subalgebra_generated_by()
1228 sage: x,y,z = A.random_elements(3)
1229 sage: (x*y)*z == x*(y*z)
1230 True
1231
1232 Squaring in the subalgebra should work the same as in
1233 the superalgebra::
1234
1235 sage: set_random_seed()
1236 sage: x = random_eja().random_element()
1237 sage: A = x.subalgebra_generated_by()
1238 sage: A(x^2) == A(x)*A(x)
1239 True
1240
1241 By definition, the subalgebra generated by the zero element is
1242 the one-dimensional algebra generated by the identity
1243 element... unless the original algebra was trivial, in which
1244 case the subalgebra is trivial too::
1245
1246 sage: set_random_seed()
1247 sage: A = random_eja().zero().subalgebra_generated_by()
1248 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1249 True
1250
1251 """
1252 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1253
1254
1255 def subalgebra_idempotent(self):
1256 """
1257 Find an idempotent in the associative subalgebra I generate
1258 using Proposition 2.3.5 in Baes.
1259
1260 SETUP::
1261
1262 sage: from mjo.eja.eja_algebra import random_eja
1263
1264 TESTS:
1265
1266 Ensure that we can find an idempotent in a non-trivial algebra
1267 where there are non-nilpotent elements::
1268
1269 sage: set_random_seed()
1270 sage: J = random_eja(nontrivial=True)
1271 sage: x = J.random_element()
1272 sage: while x.is_nilpotent():
1273 ....: x = J.random_element()
1274 sage: c = x.subalgebra_idempotent()
1275 sage: c^2 == c
1276 True
1277
1278 """
1279 if self.parent().is_trivial():
1280 return self
1281
1282 if self.is_nilpotent():
1283 raise ValueError("this only works with non-nilpotent elements!")
1284
1285 J = self.subalgebra_generated_by()
1286 u = J(self)
1287
1288 # The image of the matrix of left-u^m-multiplication
1289 # will be minimal for some natural number s...
1290 s = 0
1291 minimal_dim = J.dimension()
1292 for i in xrange(1, minimal_dim):
1293 this_dim = (u**i).operator().matrix().image().dimension()
1294 if this_dim < minimal_dim:
1295 minimal_dim = this_dim
1296 s = i
1297
1298 # Now minimal_matrix should correspond to the smallest
1299 # non-zero subspace in Baes's (or really, Koecher's)
1300 # proposition.
1301 #
1302 # However, we need to restrict the matrix to work on the
1303 # subspace... or do we? Can't we just solve, knowing that
1304 # A(c) = u^(s+1) should have a solution in the big space,
1305 # too?
1306 #
1307 # Beware, solve_right() means that we're using COLUMN vectors.
1308 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1309 u_next = u**(s+1)
1310 A = u_next.operator().matrix()
1311 c = J.from_vector(A.solve_right(u_next.to_vector()))
1312
1313 # Now c is the idempotent we want, but it still lives in the subalgebra.
1314 return c.superalgebra_element()
1315
1316
1317 def trace(self):
1318 """
1319 Return my trace, the sum of my eigenvalues.
1320
1321 In a trivial algebra, however you want to look at it, the trace is
1322 an empty sum for which we declare the result to be zero.
1323
1324 SETUP::
1325
1326 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1327 ....: RealCartesianProductEJA,
1328 ....: TrivialEJA,
1329 ....: random_eja)
1330
1331 EXAMPLES::
1332
1333 sage: J = TrivialEJA()
1334 sage: J.zero().trace()
1335 0
1336
1337 ::
1338 sage: J = JordanSpinEJA(3)
1339 sage: x = sum(J.gens())
1340 sage: x.trace()
1341 2
1342
1343 ::
1344
1345 sage: J = RealCartesianProductEJA(5)
1346 sage: J.one().trace()
1347 5
1348
1349 TESTS:
1350
1351 The trace of an element is a real number::
1352
1353 sage: set_random_seed()
1354 sage: J = random_eja()
1355 sage: J.random_element().trace() in RLF
1356 True
1357
1358 """
1359 P = self.parent()
1360 r = P.rank()
1361
1362 if r == 0:
1363 # Special case for the trivial algebra where
1364 # the trace is an empty sum.
1365 return P.base_ring().zero()
1366
1367 p = P._charpoly_coeff(r-1)
1368 # The _charpoly_coeff function already adds the factor of
1369 # -1 to ensure that _charpoly_coeff(r-1) is really what
1370 # appears in front of t^{r-1} in the charpoly. However,
1371 # we want the negative of THAT for the trace.
1372 return -p(*self.to_vector())
1373
1374
1375 def trace_inner_product(self, other):
1376 """
1377 Return the trace inner product of myself and ``other``.
1378
1379 SETUP::
1380
1381 sage: from mjo.eja.eja_algebra import random_eja
1382
1383 TESTS:
1384
1385 The trace inner product is commutative, bilinear, and associative::
1386
1387 sage: set_random_seed()
1388 sage: J = random_eja()
1389 sage: x,y,z = J.random_elements(3)
1390 sage: # commutative
1391 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1392 True
1393 sage: # bilinear
1394 sage: a = J.base_ring().random_element();
1395 sage: actual = (a*(x+z)).trace_inner_product(y)
1396 sage: expected = ( a*x.trace_inner_product(y) +
1397 ....: a*z.trace_inner_product(y) )
1398 sage: actual == expected
1399 True
1400 sage: actual = x.trace_inner_product(a*(y+z))
1401 sage: expected = ( a*x.trace_inner_product(y) +
1402 ....: a*x.trace_inner_product(z) )
1403 sage: actual == expected
1404 True
1405 sage: # associative
1406 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1407 True
1408
1409 """
1410 if not other in self.parent():
1411 raise TypeError("'other' must live in the same algebra")
1412
1413 return (self*other).trace()
1414
1415
1416 def trace_norm(self):
1417 """
1418 The norm of this element with respect to :meth:`trace_inner_product`.
1419
1420 SETUP::
1421
1422 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1423 ....: RealCartesianProductEJA)
1424
1425 EXAMPLES::
1426
1427 sage: J = RealCartesianProductEJA(2)
1428 sage: x = sum(J.gens())
1429 sage: x.trace_norm()
1430 sqrt(2)
1431
1432 ::
1433
1434 sage: J = JordanSpinEJA(4)
1435 sage: x = sum(J.gens())
1436 sage: x.trace_norm()
1437 2*sqrt(2)
1438
1439 """
1440 return self.trace_inner_product(self).sqrt()