]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: remove wayward utf-8 comment.
[sage.d.git] / mjo / eja / eja_element.py
1 from sage.matrix.constructor import matrix
2 from sage.modules.free_module import VectorSpace
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4
5 # TODO: make this unnecessary somehow.
6 from sage.misc.lazy_import import lazy_import
7 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
8 lazy_import('mjo.eja.eja_element_subalgebra',
9 'FiniteDimensionalEuclideanJordanElementSubalgebra')
10 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
11 from mjo.eja.eja_utils import _mat2vec
12
13 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
14 """
15 An element of a Euclidean Jordan algebra.
16 """
17
18 def __dir__(self):
19 """
20 Oh man, I should not be doing this. This hides the "disabled"
21 methods ``left_matrix`` and ``matrix`` from introspection;
22 in particular it removes them from tab-completion.
23 """
24 return filter(lambda s: s not in ['left_matrix', 'matrix'],
25 dir(self.__class__) )
26
27
28
29
30 def __pow__(self, n):
31 """
32 Return ``self`` raised to the power ``n``.
33
34 Jordan algebras are always power-associative; see for
35 example Faraut and Korányi, Proposition II.1.2 (ii).
36
37 We have to override this because our superclass uses row
38 vectors instead of column vectors! We, on the other hand,
39 assume column vectors everywhere.
40
41 SETUP::
42
43 sage: from mjo.eja.eja_algebra import random_eja
44
45 TESTS:
46
47 The definition of `x^2` is the unambiguous `x*x`::
48
49 sage: set_random_seed()
50 sage: x = random_eja().random_element()
51 sage: x*x == (x^2)
52 True
53
54 A few examples of power-associativity::
55
56 sage: set_random_seed()
57 sage: x = random_eja().random_element()
58 sage: x*(x*x)*(x*x) == x^5
59 True
60 sage: (x*x)*(x*x*x) == x^5
61 True
62
63 We also know that powers operator-commute (Koecher, Chapter
64 III, Corollary 1)::
65
66 sage: set_random_seed()
67 sage: x = random_eja().random_element()
68 sage: m = ZZ.random_element(0,10)
69 sage: n = ZZ.random_element(0,10)
70 sage: Lxm = (x^m).operator()
71 sage: Lxn = (x^n).operator()
72 sage: Lxm*Lxn == Lxn*Lxm
73 True
74
75 """
76 if n == 0:
77 return self.parent().one()
78 elif n == 1:
79 return self
80 else:
81 return (self**(n-1))*self
82
83
84 def apply_univariate_polynomial(self, p):
85 """
86 Apply the univariate polynomial ``p`` to this element.
87
88 A priori, SageMath won't allow us to apply a univariate
89 polynomial to an element of an EJA, because we don't know
90 that EJAs are rings (they are usually not associative). Of
91 course, we know that EJAs are power-associative, so the
92 operation is ultimately kosher. This function sidesteps
93 the CAS to get the answer we want and expect.
94
95 SETUP::
96
97 sage: from mjo.eja.eja_algebra import (HadamardEJA,
98 ....: random_eja)
99
100 EXAMPLES::
101
102 sage: R = PolynomialRing(QQ, 't')
103 sage: t = R.gen(0)
104 sage: p = t^4 - t^3 + 5*t - 2
105 sage: J = HadamardEJA(5)
106 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
107 True
108
109 TESTS:
110
111 We should always get back an element of the algebra::
112
113 sage: set_random_seed()
114 sage: p = PolynomialRing(AA, 't').random_element()
115 sage: J = random_eja()
116 sage: x = J.random_element()
117 sage: x.apply_univariate_polynomial(p) in J
118 True
119
120 """
121 if len(p.variables()) > 1:
122 raise ValueError("not a univariate polynomial")
123 P = self.parent()
124 R = P.base_ring()
125 # Convert the coeficcients to the parent's base ring,
126 # because a priori they might live in an (unnecessarily)
127 # larger ring for which P.sum() would fail below.
128 cs = [ R(c) for c in p.coefficients(sparse=False) ]
129 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
130
131
132 def characteristic_polynomial(self):
133 """
134 Return the characteristic polynomial of this element.
135
136 SETUP::
137
138 sage: from mjo.eja.eja_algebra import HadamardEJA
139
140 EXAMPLES:
141
142 The rank of `R^3` is three, and the minimal polynomial of
143 the identity element is `(t-1)` from which it follows that
144 the characteristic polynomial should be `(t-1)^3`::
145
146 sage: J = HadamardEJA(3)
147 sage: J.one().characteristic_polynomial()
148 t^3 - 3*t^2 + 3*t - 1
149
150 Likewise, the characteristic of the zero element in the
151 rank-three algebra `R^{n}` should be `t^{3}`::
152
153 sage: J = HadamardEJA(3)
154 sage: J.zero().characteristic_polynomial()
155 t^3
156
157 TESTS:
158
159 The characteristic polynomial of an element should evaluate
160 to zero on that element::
161
162 sage: set_random_seed()
163 sage: x = HadamardEJA(3).random_element()
164 sage: p = x.characteristic_polynomial()
165 sage: x.apply_univariate_polynomial(p)
166 0
167
168 The characteristic polynomials of the zero and unit elements
169 should be what we think they are in a subalgebra, too::
170
171 sage: J = HadamardEJA(3)
172 sage: p1 = J.one().characteristic_polynomial()
173 sage: q1 = J.zero().characteristic_polynomial()
174 sage: e0,e1,e2 = J.gens()
175 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
176 sage: p2 = A.one().characteristic_polynomial()
177 sage: q2 = A.zero().characteristic_polynomial()
178 sage: p1 == p2
179 True
180 sage: q1 == q2
181 True
182
183 """
184 p = self.parent().characteristic_polynomial()
185 return p(*self.to_vector())
186
187
188 def inner_product(self, other):
189 """
190 Return the parent algebra's inner product of myself and ``other``.
191
192 SETUP::
193
194 sage: from mjo.eja.eja_algebra import (
195 ....: ComplexHermitianEJA,
196 ....: JordanSpinEJA,
197 ....: QuaternionHermitianEJA,
198 ....: RealSymmetricEJA,
199 ....: random_eja)
200
201 EXAMPLES:
202
203 The inner product in the Jordan spin algebra is the usual
204 inner product on `R^n` (this example only works because the
205 basis for the Jordan algebra is the standard basis in `R^n`)::
206
207 sage: J = JordanSpinEJA(3)
208 sage: x = vector(QQ,[1,2,3])
209 sage: y = vector(QQ,[4,5,6])
210 sage: x.inner_product(y)
211 32
212 sage: J.from_vector(x).inner_product(J.from_vector(y))
213 32
214
215 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
216 multiplication is the usual matrix multiplication in `S^n`,
217 so the inner product of the identity matrix with itself
218 should be the `n`::
219
220 sage: J = RealSymmetricEJA(3)
221 sage: J.one().inner_product(J.one())
222 3
223
224 Likewise, the inner product on `C^n` is `<X,Y> =
225 Re(trace(X*Y))`, where we must necessarily take the real
226 part because the product of Hermitian matrices may not be
227 Hermitian::
228
229 sage: J = ComplexHermitianEJA(3)
230 sage: J.one().inner_product(J.one())
231 3
232
233 Ditto for the quaternions::
234
235 sage: J = QuaternionHermitianEJA(3)
236 sage: J.one().inner_product(J.one())
237 3
238
239 TESTS:
240
241 Ensure that we can always compute an inner product, and that
242 it gives us back a real number::
243
244 sage: set_random_seed()
245 sage: J = random_eja()
246 sage: x,y = J.random_elements(2)
247 sage: x.inner_product(y) in RLF
248 True
249
250 """
251 P = self.parent()
252 if not other in P:
253 raise TypeError("'other' must live in the same algebra")
254
255 return P.inner_product(self, other)
256
257
258 def operator_commutes_with(self, other):
259 """
260 Return whether or not this element operator-commutes
261 with ``other``.
262
263 SETUP::
264
265 sage: from mjo.eja.eja_algebra import random_eja
266
267 EXAMPLES:
268
269 The definition of a Jordan algebra says that any element
270 operator-commutes with its square::
271
272 sage: set_random_seed()
273 sage: x = random_eja().random_element()
274 sage: x.operator_commutes_with(x^2)
275 True
276
277 TESTS:
278
279 Test Lemma 1 from Chapter III of Koecher::
280
281 sage: set_random_seed()
282 sage: u,v = random_eja().random_elements(2)
283 sage: lhs = u.operator_commutes_with(u*v)
284 sage: rhs = v.operator_commutes_with(u^2)
285 sage: lhs == rhs
286 True
287
288 Test the first polarization identity from my notes, Koecher
289 Chapter III, or from Baes (2.3)::
290
291 sage: set_random_seed()
292 sage: x,y = random_eja().random_elements(2)
293 sage: Lx = x.operator()
294 sage: Ly = y.operator()
295 sage: Lxx = (x*x).operator()
296 sage: Lxy = (x*y).operator()
297 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
298 True
299
300 Test the second polarization identity from my notes or from
301 Baes (2.4)::
302
303 sage: set_random_seed()
304 sage: x,y,z = random_eja().random_elements(3)
305 sage: Lx = x.operator()
306 sage: Ly = y.operator()
307 sage: Lz = z.operator()
308 sage: Lzy = (z*y).operator()
309 sage: Lxy = (x*y).operator()
310 sage: Lxz = (x*z).operator()
311 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
312 True
313
314 Test the third polarization identity from my notes or from
315 Baes (2.5)::
316
317 sage: set_random_seed()
318 sage: u,y,z = random_eja().random_elements(3)
319 sage: Lu = u.operator()
320 sage: Ly = y.operator()
321 sage: Lz = z.operator()
322 sage: Lzy = (z*y).operator()
323 sage: Luy = (u*y).operator()
324 sage: Luz = (u*z).operator()
325 sage: Luyz = (u*(y*z)).operator()
326 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
327 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
328 sage: bool(lhs == rhs)
329 True
330
331 """
332 if not other in self.parent():
333 raise TypeError("'other' must live in the same algebra")
334
335 A = self.operator()
336 B = other.operator()
337 return (A*B == B*A)
338
339
340 def det(self):
341 """
342 Return my determinant, the product of my eigenvalues.
343
344 SETUP::
345
346 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
347 ....: TrivialEJA,
348 ....: random_eja)
349
350 EXAMPLES::
351
352 sage: J = JordanSpinEJA(2)
353 sage: e0,e1 = J.gens()
354 sage: x = sum( J.gens() )
355 sage: x.det()
356 0
357
358 ::
359
360 sage: J = JordanSpinEJA(3)
361 sage: e0,e1,e2 = J.gens()
362 sage: x = sum( J.gens() )
363 sage: x.det()
364 -1
365
366 The determinant of the sole element in the rank-zero trivial
367 algebra is ``1``, by three paths of reasoning. First, its
368 characteristic polynomial is a constant ``1``, so the constant
369 term in that polynomial is ``1``. Second, the characteristic
370 polynomial evaluated at zero is again ``1``. And finally, the
371 (empty) product of its eigenvalues is likewise just unity::
372
373 sage: J = TrivialEJA()
374 sage: J.zero().det()
375 1
376
377 TESTS:
378
379 An element is invertible if and only if its determinant is
380 non-zero::
381
382 sage: set_random_seed()
383 sage: x = random_eja().random_element()
384 sage: x.is_invertible() == (x.det() != 0)
385 True
386
387 Ensure that the determinant is multiplicative on an associative
388 subalgebra as in Faraut and Korányi's Proposition II.2.2::
389
390 sage: set_random_seed()
391 sage: J = random_eja().random_element().subalgebra_generated_by()
392 sage: x,y = J.random_elements(2)
393 sage: (x*y).det() == x.det()*y.det()
394 True
395 """
396 P = self.parent()
397 r = P.rank()
398
399 if r == 0:
400 # Special case, since we don't get the a0=1
401 # coefficient when the rank of the algebra
402 # is zero.
403 return P.base_ring().one()
404
405 p = P._charpoly_coefficients()[0]
406 # The _charpoly_coeff function already adds the factor of -1
407 # to ensure that _charpoly_coefficients()[0] is really what
408 # appears in front of t^{0} in the charpoly. However, we want
409 # (-1)^r times THAT for the determinant.
410 return ((-1)**r)*p(*self.to_vector())
411
412
413 def inverse(self):
414 """
415 Return the Jordan-multiplicative inverse of this element.
416
417 ALGORITHM:
418
419 We appeal to the quadratic representation as in Koecher's
420 Theorem 12 in Chapter III, Section 5.
421
422 SETUP::
423
424 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
425 ....: JordanSpinEJA,
426 ....: random_eja)
427
428 EXAMPLES:
429
430 The inverse in the spin factor algebra is given in Alizadeh's
431 Example 11.11::
432
433 sage: set_random_seed()
434 sage: J = JordanSpinEJA.random_instance()
435 sage: x = J.random_element()
436 sage: while not x.is_invertible():
437 ....: x = J.random_element()
438 sage: x_vec = x.to_vector()
439 sage: x0 = x_vec[:1]
440 sage: x_bar = x_vec[1:]
441 sage: coeff = x0.inner_product(x0) - x_bar.inner_product(x_bar)
442 sage: x_inverse = x_vec.parent()(x0.list() + (-x_bar).list())
443 sage: if not coeff.is_zero(): x_inverse = x_inverse/coeff
444 sage: x.inverse() == J.from_vector(x_inverse)
445 True
446
447 Trying to invert a non-invertible element throws an error:
448
449 sage: JordanSpinEJA(3).zero().inverse()
450 Traceback (most recent call last):
451 ...
452 ValueError: element is not invertible
453
454 TESTS:
455
456 The identity element is its own inverse::
457
458 sage: set_random_seed()
459 sage: J = random_eja()
460 sage: J.one().inverse() == J.one()
461 True
462
463 If an element has an inverse, it acts like one::
464
465 sage: set_random_seed()
466 sage: J = random_eja()
467 sage: x = J.random_element()
468 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
469 True
470
471 The inverse of the inverse is what we started with::
472
473 sage: set_random_seed()
474 sage: J = random_eja()
475 sage: x = J.random_element()
476 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
477 True
478
479 Proposition II.2.3 in Faraut and Korányi says that the inverse
480 of an element is the inverse of its left-multiplication operator
481 applied to the algebra's identity, when that inverse exists::
482
483 sage: set_random_seed()
484 sage: J = random_eja()
485 sage: x = J.random_element()
486 sage: (not x.operator().is_invertible()) or (
487 ....: x.operator().inverse()(J.one()) == x.inverse() )
488 True
489
490 Proposition II.2.4 in Faraut and Korányi gives a formula for
491 the inverse based on the characteristic polynomial and the
492 Cayley-Hamilton theorem for Euclidean Jordan algebras::
493
494 sage: set_random_seed()
495 sage: J = ComplexHermitianEJA(3)
496 sage: x = J.random_element()
497 sage: while not x.is_invertible():
498 ....: x = J.random_element()
499 sage: r = J.rank()
500 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
501 sage: expected = (-1)^(r+1)/x.det()
502 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
503 sage: x.inverse() == expected
504 True
505
506 """
507 if not self.is_invertible():
508 raise ValueError("element is not invertible")
509
510 return (~self.quadratic_representation())(self)
511
512
513 def is_invertible(self):
514 """
515 Return whether or not this element is invertible.
516
517 ALGORITHM:
518
519 The usual way to do this is to check if the determinant is
520 zero, but we need the characteristic polynomial for the
521 determinant. The minimal polynomial is a lot easier to get,
522 so we use Corollary 2 in Chapter V of Koecher to check
523 whether or not the paren't algebra's zero element is a root
524 of this element's minimal polynomial.
525
526 Beware that we can't use the superclass method, because it
527 relies on the algebra being associative.
528
529 SETUP::
530
531 sage: from mjo.eja.eja_algebra import random_eja
532
533 TESTS:
534
535 The identity element is always invertible::
536
537 sage: set_random_seed()
538 sage: J = random_eja()
539 sage: J.one().is_invertible()
540 True
541
542 The zero element is never invertible in a non-trivial algebra::
543
544 sage: set_random_seed()
545 sage: J = random_eja()
546 sage: (not J.is_trivial()) and J.zero().is_invertible()
547 False
548
549 """
550 if self.is_zero():
551 if self.parent().is_trivial():
552 return True
553 else:
554 return False
555
556 # In fact, we only need to know if the constant term is non-zero,
557 # so we can pass in the field's zero element instead.
558 zero = self.base_ring().zero()
559 p = self.minimal_polynomial()
560 return not (p(zero) == zero)
561
562
563 def is_primitive_idempotent(self):
564 """
565 Return whether or not this element is a primitive (or minimal)
566 idempotent.
567
568 A primitive idempotent is a non-zero idempotent that is not
569 the sum of two other non-zero idempotents. Remark 2.7.15 in
570 Baes shows that this is what he refers to as a "minimal
571 idempotent."
572
573 An element of a Euclidean Jordan algebra is a minimal idempotent
574 if it :meth:`is_idempotent` and if its Peirce subalgebra
575 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
576 Proposition 2.7.17).
577
578 SETUP::
579
580 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
581 ....: RealSymmetricEJA,
582 ....: TrivialEJA,
583 ....: random_eja)
584
585 WARNING::
586
587 This method is sloooooow.
588
589 EXAMPLES:
590
591 The spectral decomposition of a non-regular element should always
592 contain at least one non-minimal idempotent::
593
594 sage: J = RealSymmetricEJA(3)
595 sage: x = sum(J.gens())
596 sage: x.is_regular()
597 False
598 sage: [ c.is_primitive_idempotent()
599 ....: for (l,c) in x.spectral_decomposition() ]
600 [False, True]
601
602 On the other hand, the spectral decomposition of a regular
603 element should always be in terms of minimal idempotents::
604
605 sage: J = JordanSpinEJA(4)
606 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
607 sage: x.is_regular()
608 True
609 sage: [ c.is_primitive_idempotent()
610 ....: for (l,c) in x.spectral_decomposition() ]
611 [True, True]
612
613 TESTS:
614
615 The identity element is minimal only in an EJA of rank one::
616
617 sage: set_random_seed()
618 sage: J = random_eja()
619 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
620 True
621
622 A non-idempotent cannot be a minimal idempotent::
623
624 sage: set_random_seed()
625 sage: J = JordanSpinEJA(4)
626 sage: x = J.random_element()
627 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
628 False
629
630 Proposition 2.7.19 in Baes says that an element is a minimal
631 idempotent if and only if it's idempotent with trace equal to
632 unity::
633
634 sage: set_random_seed()
635 sage: J = JordanSpinEJA(4)
636 sage: x = J.random_element()
637 sage: expected = (x.is_idempotent() and x.trace() == 1)
638 sage: actual = x.is_primitive_idempotent()
639 sage: actual == expected
640 True
641
642 Primitive idempotents must be non-zero::
643
644 sage: set_random_seed()
645 sage: J = random_eja()
646 sage: J.zero().is_idempotent()
647 True
648 sage: J.zero().is_primitive_idempotent()
649 False
650
651 As a consequence of the fact that primitive idempotents must
652 be non-zero, there are no primitive idempotents in a trivial
653 Euclidean Jordan algebra::
654
655 sage: J = TrivialEJA()
656 sage: J.one().is_idempotent()
657 True
658 sage: J.one().is_primitive_idempotent()
659 False
660
661 """
662 if not self.is_idempotent():
663 return False
664
665 if self.is_zero():
666 return False
667
668 (_,_,J1) = self.parent().peirce_decomposition(self)
669 return (J1.dimension() == 1)
670
671
672 def is_nilpotent(self):
673 """
674 Return whether or not some power of this element is zero.
675
676 ALGORITHM:
677
678 We use Theorem 5 in Chapter III of Koecher, which says that
679 an element ``x`` is nilpotent if and only if ``x.operator()``
680 is nilpotent. And it is a basic fact of linear algebra that
681 an operator on an `n`-dimensional space is nilpotent if and
682 only if, when raised to the `n`th power, it equals the zero
683 operator (for example, see Axler Corollary 8.8).
684
685 SETUP::
686
687 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
688 ....: random_eja)
689
690 EXAMPLES::
691
692 sage: J = JordanSpinEJA(3)
693 sage: x = sum(J.gens())
694 sage: x.is_nilpotent()
695 False
696
697 TESTS:
698
699 The identity element is never nilpotent, except in a trivial EJA::
700
701 sage: set_random_seed()
702 sage: J = random_eja()
703 sage: J.one().is_nilpotent() and not J.is_trivial()
704 False
705
706 The additive identity is always nilpotent::
707
708 sage: set_random_seed()
709 sage: random_eja().zero().is_nilpotent()
710 True
711
712 """
713 P = self.parent()
714 zero_operator = P.zero().operator()
715 return self.operator()**P.dimension() == zero_operator
716
717
718 def is_regular(self):
719 """
720 Return whether or not this is a regular element.
721
722 SETUP::
723
724 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
725 ....: random_eja)
726
727 EXAMPLES:
728
729 The identity element always has degree one, but any element
730 linearly-independent from it is regular::
731
732 sage: J = JordanSpinEJA(5)
733 sage: J.one().is_regular()
734 False
735 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
736 sage: for x in J.gens():
737 ....: (J.one() + x).is_regular()
738 False
739 True
740 True
741 True
742 True
743
744 TESTS:
745
746 The zero element should never be regular, unless the parent
747 algebra has dimension less than or equal to one::
748
749 sage: set_random_seed()
750 sage: J = random_eja()
751 sage: J.dimension() <= 1 or not J.zero().is_regular()
752 True
753
754 The unit element isn't regular unless the algebra happens to
755 consist of only its scalar multiples::
756
757 sage: set_random_seed()
758 sage: J = random_eja()
759 sage: J.dimension() <= 1 or not J.one().is_regular()
760 True
761
762 """
763 return self.degree() == self.parent().rank()
764
765
766 def degree(self):
767 """
768 Return the degree of this element, which is defined to be
769 the degree of its minimal polynomial.
770
771 ALGORITHM:
772
773 For now, we skip the messy minimal polynomial computation
774 and instead return the dimension of the vector space spanned
775 by the powers of this element. The latter is a bit more
776 straightforward to compute.
777
778 SETUP::
779
780 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
781 ....: random_eja)
782
783 EXAMPLES::
784
785 sage: J = JordanSpinEJA(4)
786 sage: J.one().degree()
787 1
788 sage: e0,e1,e2,e3 = J.gens()
789 sage: (e0 - e1).degree()
790 2
791
792 In the spin factor algebra (of rank two), all elements that
793 aren't multiples of the identity are regular::
794
795 sage: set_random_seed()
796 sage: J = JordanSpinEJA.random_instance()
797 sage: n = J.dimension()
798 sage: x = J.random_element()
799 sage: x.degree() == min(n,2) or (x == x.coefficient(0)*J.one())
800 True
801
802 TESTS:
803
804 The zero and unit elements are both of degree one in nontrivial
805 algebras::
806
807 sage: set_random_seed()
808 sage: J = random_eja()
809 sage: d = J.zero().degree()
810 sage: (J.is_trivial() and d == 0) or d == 1
811 True
812 sage: d = J.one().degree()
813 sage: (J.is_trivial() and d == 0) or d == 1
814 True
815
816 Our implementation agrees with the definition::
817
818 sage: set_random_seed()
819 sage: x = random_eja().random_element()
820 sage: x.degree() == x.minimal_polynomial().degree()
821 True
822
823 """
824 if self.is_zero() and not self.parent().is_trivial():
825 # The minimal polynomial of zero in a nontrivial algebra
826 # is "t"; in a trivial algebra it's "1" by convention
827 # (it's an empty product).
828 return 1
829 return self.subalgebra_generated_by().dimension()
830
831
832 def left_matrix(self):
833 """
834 Our parent class defines ``left_matrix`` and ``matrix``
835 methods whose names are misleading. We don't want them.
836 """
837 raise NotImplementedError("use operator().matrix() instead")
838
839 matrix = left_matrix
840
841
842 def minimal_polynomial(self):
843 """
844 Return the minimal polynomial of this element,
845 as a function of the variable `t`.
846
847 ALGORITHM:
848
849 We restrict ourselves to the associative subalgebra
850 generated by this element, and then return the minimal
851 polynomial of this element's operator matrix (in that
852 subalgebra). This works by Baes Proposition 2.3.16.
853
854 SETUP::
855
856 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
857 ....: RealSymmetricEJA,
858 ....: TrivialEJA,
859 ....: random_eja)
860
861 EXAMPLES:
862
863 Keeping in mind that the polynomial ``1`` evaluates the identity
864 element (also the zero element) of the trivial algebra, it is clear
865 that the polynomial ``1`` is the minimal polynomial of the only
866 element in a trivial algebra::
867
868 sage: J = TrivialEJA()
869 sage: J.one().minimal_polynomial()
870 1
871 sage: J.zero().minimal_polynomial()
872 1
873
874 TESTS:
875
876 The minimal polynomial of the identity and zero elements are
877 always the same, except in trivial algebras where the minimal
878 polynomial of the unit/zero element is ``1``::
879
880 sage: set_random_seed()
881 sage: J = random_eja()
882 sage: mu = J.one().minimal_polynomial()
883 sage: t = mu.parent().gen()
884 sage: mu + int(J.is_trivial())*(t-2)
885 t - 1
886 sage: mu = J.zero().minimal_polynomial()
887 sage: t = mu.parent().gen()
888 sage: mu + int(J.is_trivial())*(t-1)
889 t
890
891 The degree of an element is (by one definition) the degree
892 of its minimal polynomial::
893
894 sage: set_random_seed()
895 sage: x = random_eja().random_element()
896 sage: x.degree() == x.minimal_polynomial().degree()
897 True
898
899 The minimal polynomial and the characteristic polynomial coincide
900 and are known (see Alizadeh, Example 11.11) for all elements of
901 the spin factor algebra that aren't scalar multiples of the
902 identity. We require the dimension of the algebra to be at least
903 two here so that said elements actually exist::
904
905 sage: set_random_seed()
906 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
907 sage: n = ZZ.random_element(2, n_max)
908 sage: J = JordanSpinEJA(n)
909 sage: y = J.random_element()
910 sage: while y == y.coefficient(0)*J.one():
911 ....: y = J.random_element()
912 sage: y0 = y.to_vector()[0]
913 sage: y_bar = y.to_vector()[1:]
914 sage: actual = y.minimal_polynomial()
915 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
916 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
917 sage: bool(actual == expected)
918 True
919
920 The minimal polynomial should always kill its element::
921
922 sage: set_random_seed()
923 sage: x = random_eja().random_element()
924 sage: p = x.minimal_polynomial()
925 sage: x.apply_univariate_polynomial(p)
926 0
927
928 The minimal polynomial is invariant under a change of basis,
929 and in particular, a re-scaling of the basis::
930
931 sage: set_random_seed()
932 sage: n_max = RealSymmetricEJA._max_test_case_size()
933 sage: n = ZZ.random_element(1, n_max)
934 sage: J1 = RealSymmetricEJA(n)
935 sage: J2 = RealSymmetricEJA(n,normalize_basis=False)
936 sage: X = random_matrix(AA,n)
937 sage: X = X*X.transpose()
938 sage: x1 = J1(X)
939 sage: x2 = J2(X)
940 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
941 True
942
943 """
944 if self.is_zero():
945 # We would generate a zero-dimensional subalgebra
946 # where the minimal polynomial would be constant.
947 # That might be correct, but only if *this* algebra
948 # is trivial too.
949 if not self.parent().is_trivial():
950 # Pretty sure we know what the minimal polynomial of
951 # the zero operator is going to be. This ensures
952 # consistency of e.g. the polynomial variable returned
953 # in the "normal" case without us having to think about it.
954 return self.operator().minimal_polynomial()
955
956 A = self.subalgebra_generated_by()
957 return A(self).operator().minimal_polynomial()
958
959
960
961 def natural_representation(self):
962 """
963 Return a more-natural representation of this element.
964
965 Every finite-dimensional Euclidean Jordan Algebra is a
966 direct sum of five simple algebras, four of which comprise
967 Hermitian matrices. This method returns the original
968 "natural" representation of this element as a Hermitian
969 matrix, if it has one. If not, you get the usual representation.
970
971 SETUP::
972
973 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
974 ....: QuaternionHermitianEJA)
975
976 EXAMPLES::
977
978 sage: J = ComplexHermitianEJA(3)
979 sage: J.one()
980 e0 + e3 + e8
981 sage: J.one().natural_representation()
982 [1 0 0 0 0 0]
983 [0 1 0 0 0 0]
984 [0 0 1 0 0 0]
985 [0 0 0 1 0 0]
986 [0 0 0 0 1 0]
987 [0 0 0 0 0 1]
988
989 ::
990
991 sage: J = QuaternionHermitianEJA(3)
992 sage: J.one()
993 e0 + e5 + e14
994 sage: J.one().natural_representation()
995 [1 0 0 0 0 0 0 0 0 0 0 0]
996 [0 1 0 0 0 0 0 0 0 0 0 0]
997 [0 0 1 0 0 0 0 0 0 0 0 0]
998 [0 0 0 1 0 0 0 0 0 0 0 0]
999 [0 0 0 0 1 0 0 0 0 0 0 0]
1000 [0 0 0 0 0 1 0 0 0 0 0 0]
1001 [0 0 0 0 0 0 1 0 0 0 0 0]
1002 [0 0 0 0 0 0 0 1 0 0 0 0]
1003 [0 0 0 0 0 0 0 0 1 0 0 0]
1004 [0 0 0 0 0 0 0 0 0 1 0 0]
1005 [0 0 0 0 0 0 0 0 0 0 1 0]
1006 [0 0 0 0 0 0 0 0 0 0 0 1]
1007
1008 """
1009 B = self.parent().natural_basis()
1010 W = self.parent().natural_basis_space()
1011 return W.linear_combination(zip(B,self.to_vector()))
1012
1013
1014 def norm(self):
1015 """
1016 The norm of this element with respect to :meth:`inner_product`.
1017
1018 SETUP::
1019
1020 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1021 ....: HadamardEJA)
1022
1023 EXAMPLES::
1024
1025 sage: J = HadamardEJA(2)
1026 sage: x = sum(J.gens())
1027 sage: x.norm()
1028 1.414213562373095?
1029
1030 ::
1031
1032 sage: J = JordanSpinEJA(4)
1033 sage: x = sum(J.gens())
1034 sage: x.norm()
1035 2
1036
1037 """
1038 return self.inner_product(self).sqrt()
1039
1040
1041 def operator(self):
1042 """
1043 Return the left-multiplication-by-this-element
1044 operator on the ambient algebra.
1045
1046 SETUP::
1047
1048 sage: from mjo.eja.eja_algebra import random_eja
1049
1050 TESTS::
1051
1052 sage: set_random_seed()
1053 sage: J = random_eja()
1054 sage: x,y = J.random_elements(2)
1055 sage: x.operator()(y) == x*y
1056 True
1057 sage: y.operator()(x) == x*y
1058 True
1059
1060 """
1061 P = self.parent()
1062 left_mult_by_self = lambda y: self*y
1063 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1064 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1065 P,
1066 P,
1067 L.matrix() )
1068
1069
1070 def quadratic_representation(self, other=None):
1071 """
1072 Return the quadratic representation of this element.
1073
1074 SETUP::
1075
1076 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1077 ....: random_eja)
1078
1079 EXAMPLES:
1080
1081 The explicit form in the spin factor algebra is given by
1082 Alizadeh's Example 11.12::
1083
1084 sage: set_random_seed()
1085 sage: x = JordanSpinEJA.random_instance().random_element()
1086 sage: x_vec = x.to_vector()
1087 sage: Q = matrix.identity(x.base_ring(), 0)
1088 sage: n = x_vec.degree()
1089 sage: if n > 0:
1090 ....: x0 = x_vec[0]
1091 ....: x_bar = x_vec[1:]
1092 ....: A = matrix(x.base_ring(), 1, [x_vec.inner_product(x_vec)])
1093 ....: B = 2*x0*x_bar.row()
1094 ....: C = 2*x0*x_bar.column()
1095 ....: D = matrix.identity(x.base_ring(), n-1)
1096 ....: D = (x0^2 - x_bar.inner_product(x_bar))*D
1097 ....: D = D + 2*x_bar.tensor_product(x_bar)
1098 ....: Q = matrix.block(2,2,[A,B,C,D])
1099 sage: Q == x.quadratic_representation().matrix()
1100 True
1101
1102 Test all of the properties from Theorem 11.2 in Alizadeh::
1103
1104 sage: set_random_seed()
1105 sage: J = random_eja()
1106 sage: x,y = J.random_elements(2)
1107 sage: Lx = x.operator()
1108 sage: Lxx = (x*x).operator()
1109 sage: Qx = x.quadratic_representation()
1110 sage: Qy = y.quadratic_representation()
1111 sage: Qxy = x.quadratic_representation(y)
1112 sage: Qex = J.one().quadratic_representation(x)
1113 sage: n = ZZ.random_element(10)
1114 sage: Qxn = (x^n).quadratic_representation()
1115
1116 Property 1:
1117
1118 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1119 True
1120
1121 Property 2 (multiply on the right for :trac:`28272`):
1122
1123 sage: alpha = J.base_ring().random_element()
1124 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1125 True
1126
1127 Property 3:
1128
1129 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1130 True
1131
1132 sage: not x.is_invertible() or (
1133 ....: ~Qx
1134 ....: ==
1135 ....: x.inverse().quadratic_representation() )
1136 True
1137
1138 sage: Qxy(J.one()) == x*y
1139 True
1140
1141 Property 4:
1142
1143 sage: not x.is_invertible() or (
1144 ....: x.quadratic_representation(x.inverse())*Qx
1145 ....: == Qx*x.quadratic_representation(x.inverse()) )
1146 True
1147
1148 sage: not x.is_invertible() or (
1149 ....: x.quadratic_representation(x.inverse())*Qx
1150 ....: ==
1151 ....: 2*Lx*Qex - Qx )
1152 True
1153
1154 sage: 2*Lx*Qex - Qx == Lxx
1155 True
1156
1157 Property 5:
1158
1159 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1160 True
1161
1162 Property 6:
1163
1164 sage: Qxn == (Qx)^n
1165 True
1166
1167 Property 7:
1168
1169 sage: not x.is_invertible() or (
1170 ....: Qx*x.inverse().operator() == Lx )
1171 True
1172
1173 Property 8:
1174
1175 sage: not x.operator_commutes_with(y) or (
1176 ....: Qx(y)^n == Qxn(y^n) )
1177 True
1178
1179 """
1180 if other is None:
1181 other=self
1182 elif not other in self.parent():
1183 raise TypeError("'other' must live in the same algebra")
1184
1185 L = self.operator()
1186 M = other.operator()
1187 return ( L*M + M*L - (self*other).operator() )
1188
1189
1190
1191 def spectral_decomposition(self):
1192 """
1193 Return the unique spectral decomposition of this element.
1194
1195 ALGORITHM:
1196
1197 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1198 element's left-multiplication-by operator to the subalgebra it
1199 generates. We then compute the spectral decomposition of that
1200 operator, and the spectral projectors we get back must be the
1201 left-multiplication-by operators for the idempotents we
1202 seek. Thus applying them to the identity element gives us those
1203 idempotents.
1204
1205 Since the eigenvalues are required to be distinct, we take
1206 the spectral decomposition of the zero element to be zero
1207 times the identity element of the algebra (which is idempotent,
1208 obviously).
1209
1210 SETUP::
1211
1212 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1213
1214 EXAMPLES:
1215
1216 The spectral decomposition of the identity is ``1`` times itself,
1217 and the spectral decomposition of zero is ``0`` times the identity::
1218
1219 sage: J = RealSymmetricEJA(3)
1220 sage: J.one()
1221 e0 + e2 + e5
1222 sage: J.one().spectral_decomposition()
1223 [(1, e0 + e2 + e5)]
1224 sage: J.zero().spectral_decomposition()
1225 [(0, e0 + e2 + e5)]
1226
1227 TESTS::
1228
1229 sage: J = RealSymmetricEJA(4)
1230 sage: x = sum(J.gens())
1231 sage: sd = x.spectral_decomposition()
1232 sage: l0 = sd[0][0]
1233 sage: l1 = sd[1][0]
1234 sage: c0 = sd[0][1]
1235 sage: c1 = sd[1][1]
1236 sage: c0.inner_product(c1) == 0
1237 True
1238 sage: c0.is_idempotent()
1239 True
1240 sage: c1.is_idempotent()
1241 True
1242 sage: c0 + c1 == J.one()
1243 True
1244 sage: l0*c0 + l1*c1 == x
1245 True
1246
1247 The spectral decomposition should work in subalgebras, too::
1248
1249 sage: J = RealSymmetricEJA(4)
1250 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1251 sage: A = 2*e5 - 2*e8
1252 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1253 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1254 sage: (f0, f1, f2) = J1.gens()
1255 sage: f0.spectral_decomposition()
1256 [(0, 1.000000000000000?*f2), (1, 1.000000000000000?*f0)]
1257
1258 """
1259 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1260 result = []
1261 for (evalue, proj) in A(self).operator().spectral_decomposition():
1262 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1263 return result
1264
1265 def subalgebra_generated_by(self, orthonormalize_basis=False):
1266 """
1267 Return the associative subalgebra of the parent EJA generated
1268 by this element.
1269
1270 Since our parent algebra is unital, we want "subalgebra" to mean
1271 "unital subalgebra" as well; thus the subalgebra that an element
1272 generates will itself be a Euclidean Jordan algebra after
1273 restricting the algebra operations appropriately. This is the
1274 subalgebra that Faraut and Korányi work with in section II.2, for
1275 example.
1276
1277 SETUP::
1278
1279 sage: from mjo.eja.eja_algebra import random_eja
1280
1281 TESTS:
1282
1283 This subalgebra, being composed of only powers, is associative::
1284
1285 sage: set_random_seed()
1286 sage: x0 = random_eja().random_element()
1287 sage: A = x0.subalgebra_generated_by()
1288 sage: x,y,z = A.random_elements(3)
1289 sage: (x*y)*z == x*(y*z)
1290 True
1291
1292 Squaring in the subalgebra should work the same as in
1293 the superalgebra::
1294
1295 sage: set_random_seed()
1296 sage: x = random_eja().random_element()
1297 sage: A = x.subalgebra_generated_by()
1298 sage: A(x^2) == A(x)*A(x)
1299 True
1300
1301 By definition, the subalgebra generated by the zero element is
1302 the one-dimensional algebra generated by the identity
1303 element... unless the original algebra was trivial, in which
1304 case the subalgebra is trivial too::
1305
1306 sage: set_random_seed()
1307 sage: A = random_eja().zero().subalgebra_generated_by()
1308 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1309 True
1310
1311 """
1312 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1313
1314
1315 def subalgebra_idempotent(self):
1316 """
1317 Find an idempotent in the associative subalgebra I generate
1318 using Proposition 2.3.5 in Baes.
1319
1320 SETUP::
1321
1322 sage: from mjo.eja.eja_algebra import random_eja
1323
1324 TESTS:
1325
1326 Ensure that we can find an idempotent in a non-trivial algebra
1327 where there are non-nilpotent elements, or that we get the dumb
1328 solution in the trivial algebra::
1329
1330 sage: set_random_seed()
1331 sage: J = random_eja()
1332 sage: x = J.random_element()
1333 sage: while x.is_nilpotent() and not J.is_trivial():
1334 ....: x = J.random_element()
1335 sage: c = x.subalgebra_idempotent()
1336 sage: c^2 == c
1337 True
1338
1339 """
1340 if self.parent().is_trivial():
1341 return self
1342
1343 if self.is_nilpotent():
1344 raise ValueError("this only works with non-nilpotent elements!")
1345
1346 J = self.subalgebra_generated_by()
1347 u = J(self)
1348
1349 # The image of the matrix of left-u^m-multiplication
1350 # will be minimal for some natural number s...
1351 s = 0
1352 minimal_dim = J.dimension()
1353 for i in range(1, minimal_dim):
1354 this_dim = (u**i).operator().matrix().image().dimension()
1355 if this_dim < minimal_dim:
1356 minimal_dim = this_dim
1357 s = i
1358
1359 # Now minimal_matrix should correspond to the smallest
1360 # non-zero subspace in Baes's (or really, Koecher's)
1361 # proposition.
1362 #
1363 # However, we need to restrict the matrix to work on the
1364 # subspace... or do we? Can't we just solve, knowing that
1365 # A(c) = u^(s+1) should have a solution in the big space,
1366 # too?
1367 #
1368 # Beware, solve_right() means that we're using COLUMN vectors.
1369 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1370 u_next = u**(s+1)
1371 A = u_next.operator().matrix()
1372 c = J.from_vector(A.solve_right(u_next.to_vector()))
1373
1374 # Now c is the idempotent we want, but it still lives in the subalgebra.
1375 return c.superalgebra_element()
1376
1377
1378 def trace(self):
1379 """
1380 Return my trace, the sum of my eigenvalues.
1381
1382 In a trivial algebra, however you want to look at it, the trace is
1383 an empty sum for which we declare the result to be zero.
1384
1385 SETUP::
1386
1387 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1388 ....: HadamardEJA,
1389 ....: TrivialEJA,
1390 ....: random_eja)
1391
1392 EXAMPLES::
1393
1394 sage: J = TrivialEJA()
1395 sage: J.zero().trace()
1396 0
1397
1398 ::
1399 sage: J = JordanSpinEJA(3)
1400 sage: x = sum(J.gens())
1401 sage: x.trace()
1402 2
1403
1404 ::
1405
1406 sage: J = HadamardEJA(5)
1407 sage: J.one().trace()
1408 5
1409
1410 TESTS:
1411
1412 The trace of an element is a real number::
1413
1414 sage: set_random_seed()
1415 sage: J = random_eja()
1416 sage: J.random_element().trace() in RLF
1417 True
1418
1419 """
1420 P = self.parent()
1421 r = P.rank()
1422
1423 if r == 0:
1424 # Special case for the trivial algebra where
1425 # the trace is an empty sum.
1426 return P.base_ring().zero()
1427
1428 p = P._charpoly_coefficients()[r-1]
1429 # The _charpoly_coeff function already adds the factor of
1430 # -1 to ensure that _charpoly_coeff(r-1) is really what
1431 # appears in front of t^{r-1} in the charpoly. However,
1432 # we want the negative of THAT for the trace.
1433 return -p(*self.to_vector())
1434
1435
1436 def trace_inner_product(self, other):
1437 """
1438 Return the trace inner product of myself and ``other``.
1439
1440 SETUP::
1441
1442 sage: from mjo.eja.eja_algebra import random_eja
1443
1444 TESTS:
1445
1446 The trace inner product is commutative, bilinear, and associative::
1447
1448 sage: set_random_seed()
1449 sage: J = random_eja()
1450 sage: x,y,z = J.random_elements(3)
1451 sage: # commutative
1452 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1453 True
1454 sage: # bilinear
1455 sage: a = J.base_ring().random_element();
1456 sage: actual = (a*(x+z)).trace_inner_product(y)
1457 sage: expected = ( a*x.trace_inner_product(y) +
1458 ....: a*z.trace_inner_product(y) )
1459 sage: actual == expected
1460 True
1461 sage: actual = x.trace_inner_product(a*(y+z))
1462 sage: expected = ( a*x.trace_inner_product(y) +
1463 ....: a*x.trace_inner_product(z) )
1464 sage: actual == expected
1465 True
1466 sage: # associative
1467 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1468 True
1469
1470 """
1471 if not other in self.parent():
1472 raise TypeError("'other' must live in the same algebra")
1473
1474 return (self*other).trace()
1475
1476
1477 def trace_norm(self):
1478 """
1479 The norm of this element with respect to :meth:`trace_inner_product`.
1480
1481 SETUP::
1482
1483 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1484 ....: HadamardEJA)
1485
1486 EXAMPLES::
1487
1488 sage: J = HadamardEJA(2)
1489 sage: x = sum(J.gens())
1490 sage: x.trace_norm()
1491 1.414213562373095?
1492
1493 ::
1494
1495 sage: J = JordanSpinEJA(4)
1496 sage: x = sum(J.gens())
1497 sage: x.trace_norm()
1498 2.828427124746190?
1499
1500 """
1501 return self.trace_inner_product(self).sqrt()