]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: make some element tests work in trivial algebras.
[sage.d.git] / mjo / eja / eja_element.py
1 # -*- coding: utf-8 -*-
2
3 from itertools import izip
4
5 from sage.matrix.constructor import matrix
6 from sage.modules.free_module import VectorSpace
7 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
8
9 # TODO: make this unnecessary somehow.
10 from sage.misc.lazy_import import lazy_import
11 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
12 lazy_import('mjo.eja.eja_subalgebra',
13 'FiniteDimensionalEuclideanJordanElementSubalgebra')
14 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
15 from mjo.eja.eja_utils import _mat2vec
16
17 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
18 """
19 An element of a Euclidean Jordan algebra.
20 """
21
22 def __dir__(self):
23 """
24 Oh man, I should not be doing this. This hides the "disabled"
25 methods ``left_matrix`` and ``matrix`` from introspection;
26 in particular it removes them from tab-completion.
27 """
28 return filter(lambda s: s not in ['left_matrix', 'matrix'],
29 dir(self.__class__) )
30
31
32
33
34 def __pow__(self, n):
35 """
36 Return ``self`` raised to the power ``n``.
37
38 Jordan algebras are always power-associative; see for
39 example Faraut and Korányi, Proposition II.1.2 (ii).
40
41 We have to override this because our superclass uses row
42 vectors instead of column vectors! We, on the other hand,
43 assume column vectors everywhere.
44
45 SETUP::
46
47 sage: from mjo.eja.eja_algebra import random_eja
48
49 TESTS:
50
51 The definition of `x^2` is the unambiguous `x*x`::
52
53 sage: set_random_seed()
54 sage: x = random_eja().random_element()
55 sage: x*x == (x^2)
56 True
57
58 A few examples of power-associativity::
59
60 sage: set_random_seed()
61 sage: x = random_eja().random_element()
62 sage: x*(x*x)*(x*x) == x^5
63 True
64 sage: (x*x)*(x*x*x) == x^5
65 True
66
67 We also know that powers operator-commute (Koecher, Chapter
68 III, Corollary 1)::
69
70 sage: set_random_seed()
71 sage: x = random_eja().random_element()
72 sage: m = ZZ.random_element(0,10)
73 sage: n = ZZ.random_element(0,10)
74 sage: Lxm = (x^m).operator()
75 sage: Lxn = (x^n).operator()
76 sage: Lxm*Lxn == Lxn*Lxm
77 True
78
79 """
80 if n == 0:
81 return self.parent().one()
82 elif n == 1:
83 return self
84 else:
85 return (self**(n-1))*self
86
87
88 def apply_univariate_polynomial(self, p):
89 """
90 Apply the univariate polynomial ``p`` to this element.
91
92 A priori, SageMath won't allow us to apply a univariate
93 polynomial to an element of an EJA, because we don't know
94 that EJAs are rings (they are usually not associative). Of
95 course, we know that EJAs are power-associative, so the
96 operation is ultimately kosher. This function sidesteps
97 the CAS to get the answer we want and expect.
98
99 SETUP::
100
101 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
102 ....: random_eja)
103
104 EXAMPLES::
105
106 sage: R = PolynomialRing(QQ, 't')
107 sage: t = R.gen(0)
108 sage: p = t^4 - t^3 + 5*t - 2
109 sage: J = RealCartesianProductEJA(5)
110 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
111 True
112
113 TESTS:
114
115 We should always get back an element of the algebra::
116
117 sage: set_random_seed()
118 sage: p = PolynomialRing(QQ, 't').random_element()
119 sage: J = random_eja()
120 sage: x = J.random_element()
121 sage: x.apply_univariate_polynomial(p) in J
122 True
123
124 """
125 if len(p.variables()) > 1:
126 raise ValueError("not a univariate polynomial")
127 P = self.parent()
128 R = P.base_ring()
129 # Convert the coeficcients to the parent's base ring,
130 # because a priori they might live in an (unnecessarily)
131 # larger ring for which P.sum() would fail below.
132 cs = [ R(c) for c in p.coefficients(sparse=False) ]
133 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
134
135
136 def characteristic_polynomial(self):
137 """
138 Return the characteristic polynomial of this element.
139
140 SETUP::
141
142 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
143
144 EXAMPLES:
145
146 The rank of `R^3` is three, and the minimal polynomial of
147 the identity element is `(t-1)` from which it follows that
148 the characteristic polynomial should be `(t-1)^3`::
149
150 sage: J = RealCartesianProductEJA(3)
151 sage: J.one().characteristic_polynomial()
152 t^3 - 3*t^2 + 3*t - 1
153
154 Likewise, the characteristic of the zero element in the
155 rank-three algebra `R^{n}` should be `t^{3}`::
156
157 sage: J = RealCartesianProductEJA(3)
158 sage: J.zero().characteristic_polynomial()
159 t^3
160
161 TESTS:
162
163 The characteristic polynomial of an element should evaluate
164 to zero on that element::
165
166 sage: set_random_seed()
167 sage: x = RealCartesianProductEJA(3).random_element()
168 sage: p = x.characteristic_polynomial()
169 sage: x.apply_univariate_polynomial(p)
170 0
171
172 The characteristic polynomials of the zero and unit elements
173 should be what we think they are in a subalgebra, too::
174
175 sage: J = RealCartesianProductEJA(3)
176 sage: p1 = J.one().characteristic_polynomial()
177 sage: q1 = J.zero().characteristic_polynomial()
178 sage: e0,e1,e2 = J.gens()
179 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
180 sage: p2 = A.one().characteristic_polynomial()
181 sage: q2 = A.zero().characteristic_polynomial()
182 sage: p1 == p2
183 True
184 sage: q1 == q2
185 True
186
187 """
188 p = self.parent().characteristic_polynomial()
189 return p(*self.to_vector())
190
191
192 def inner_product(self, other):
193 """
194 Return the parent algebra's inner product of myself and ``other``.
195
196 SETUP::
197
198 sage: from mjo.eja.eja_algebra import (
199 ....: ComplexHermitianEJA,
200 ....: JordanSpinEJA,
201 ....: QuaternionHermitianEJA,
202 ....: RealSymmetricEJA,
203 ....: random_eja)
204
205 EXAMPLES:
206
207 The inner product in the Jordan spin algebra is the usual
208 inner product on `R^n` (this example only works because the
209 basis for the Jordan algebra is the standard basis in `R^n`)::
210
211 sage: J = JordanSpinEJA(3)
212 sage: x = vector(QQ,[1,2,3])
213 sage: y = vector(QQ,[4,5,6])
214 sage: x.inner_product(y)
215 32
216 sage: J.from_vector(x).inner_product(J.from_vector(y))
217 32
218
219 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
220 multiplication is the usual matrix multiplication in `S^n`,
221 so the inner product of the identity matrix with itself
222 should be the `n`::
223
224 sage: J = RealSymmetricEJA(3)
225 sage: J.one().inner_product(J.one())
226 3
227
228 Likewise, the inner product on `C^n` is `<X,Y> =
229 Re(trace(X*Y))`, where we must necessarily take the real
230 part because the product of Hermitian matrices may not be
231 Hermitian::
232
233 sage: J = ComplexHermitianEJA(3)
234 sage: J.one().inner_product(J.one())
235 3
236
237 Ditto for the quaternions::
238
239 sage: J = QuaternionHermitianEJA(3)
240 sage: J.one().inner_product(J.one())
241 3
242
243 TESTS:
244
245 Ensure that we can always compute an inner product, and that
246 it gives us back a real number::
247
248 sage: set_random_seed()
249 sage: J = random_eja()
250 sage: x,y = J.random_elements(2)
251 sage: x.inner_product(y) in RLF
252 True
253
254 """
255 P = self.parent()
256 if not other in P:
257 raise TypeError("'other' must live in the same algebra")
258
259 return P.inner_product(self, other)
260
261
262 def operator_commutes_with(self, other):
263 """
264 Return whether or not this element operator-commutes
265 with ``other``.
266
267 SETUP::
268
269 sage: from mjo.eja.eja_algebra import random_eja
270
271 EXAMPLES:
272
273 The definition of a Jordan algebra says that any element
274 operator-commutes with its square::
275
276 sage: set_random_seed()
277 sage: x = random_eja().random_element()
278 sage: x.operator_commutes_with(x^2)
279 True
280
281 TESTS:
282
283 Test Lemma 1 from Chapter III of Koecher::
284
285 sage: set_random_seed()
286 sage: u,v = random_eja().random_elements(2)
287 sage: lhs = u.operator_commutes_with(u*v)
288 sage: rhs = v.operator_commutes_with(u^2)
289 sage: lhs == rhs
290 True
291
292 Test the first polarization identity from my notes, Koecher
293 Chapter III, or from Baes (2.3)::
294
295 sage: set_random_seed()
296 sage: x,y = random_eja().random_elements(2)
297 sage: Lx = x.operator()
298 sage: Ly = y.operator()
299 sage: Lxx = (x*x).operator()
300 sage: Lxy = (x*y).operator()
301 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
302 True
303
304 Test the second polarization identity from my notes or from
305 Baes (2.4)::
306
307 sage: set_random_seed()
308 sage: x,y,z = random_eja().random_elements(3)
309 sage: Lx = x.operator()
310 sage: Ly = y.operator()
311 sage: Lz = z.operator()
312 sage: Lzy = (z*y).operator()
313 sage: Lxy = (x*y).operator()
314 sage: Lxz = (x*z).operator()
315 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
316 True
317
318 Test the third polarization identity from my notes or from
319 Baes (2.5)::
320
321 sage: set_random_seed()
322 sage: u,y,z = random_eja().random_elements(3)
323 sage: Lu = u.operator()
324 sage: Ly = y.operator()
325 sage: Lz = z.operator()
326 sage: Lzy = (z*y).operator()
327 sage: Luy = (u*y).operator()
328 sage: Luz = (u*z).operator()
329 sage: Luyz = (u*(y*z)).operator()
330 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
331 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
332 sage: bool(lhs == rhs)
333 True
334
335 """
336 if not other in self.parent():
337 raise TypeError("'other' must live in the same algebra")
338
339 A = self.operator()
340 B = other.operator()
341 return (A*B == B*A)
342
343
344 def det(self):
345 """
346 Return my determinant, the product of my eigenvalues.
347
348 SETUP::
349
350 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
351 ....: random_eja)
352
353 EXAMPLES::
354
355 sage: J = JordanSpinEJA(2)
356 sage: e0,e1 = J.gens()
357 sage: x = sum( J.gens() )
358 sage: x.det()
359 0
360
361 ::
362
363 sage: J = JordanSpinEJA(3)
364 sage: e0,e1,e2 = J.gens()
365 sage: x = sum( J.gens() )
366 sage: x.det()
367 -1
368
369 TESTS:
370
371 An element is invertible if and only if its determinant is
372 non-zero::
373
374 sage: set_random_seed()
375 sage: x = random_eja().random_element()
376 sage: x.is_invertible() == (x.det() != 0)
377 True
378
379 Ensure that the determinant is multiplicative on an associative
380 subalgebra as in Faraut and Korányi's Proposition II.2.2::
381
382 sage: set_random_seed()
383 sage: J = random_eja().random_element().subalgebra_generated_by()
384 sage: x,y = J.random_elements(2)
385 sage: (x*y).det() == x.det()*y.det()
386 True
387
388 """
389 P = self.parent()
390 r = P.rank()
391 p = P._charpoly_coeff(0)
392 # The _charpoly_coeff function already adds the factor of
393 # -1 to ensure that _charpoly_coeff(0) is really what
394 # appears in front of t^{0} in the charpoly. However,
395 # we want (-1)^r times THAT for the determinant.
396 return ((-1)**r)*p(*self.to_vector())
397
398
399 def inverse(self):
400 """
401 Return the Jordan-multiplicative inverse of this element.
402
403 ALGORITHM:
404
405 We appeal to the quadratic representation as in Koecher's
406 Theorem 12 in Chapter III, Section 5.
407
408 SETUP::
409
410 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
411 ....: JordanSpinEJA,
412 ....: random_eja)
413
414 EXAMPLES:
415
416 The inverse in the spin factor algebra is given in Alizadeh's
417 Example 11.11::
418
419 sage: set_random_seed()
420 sage: J = JordanSpinEJA.random_instance()
421 sage: x = J.random_element()
422 sage: while not x.is_invertible():
423 ....: x = J.random_element()
424 sage: x_vec = x.to_vector()
425 sage: x0 = x_vec[0]
426 sage: x_bar = x_vec[1:]
427 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
428 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
429 sage: x_inverse = coeff*inv_vec
430 sage: x.inverse() == J.from_vector(x_inverse)
431 True
432
433 Trying to invert a non-invertible element throws an error:
434
435 sage: JordanSpinEJA(3).zero().inverse()
436 Traceback (most recent call last):
437 ...
438 ValueError: element is not invertible
439
440 TESTS:
441
442 The identity element is its own inverse::
443
444 sage: set_random_seed()
445 sage: J = random_eja()
446 sage: J.one().inverse() == J.one()
447 True
448
449 If an element has an inverse, it acts like one::
450
451 sage: set_random_seed()
452 sage: J = random_eja()
453 sage: x = J.random_element()
454 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
455 True
456
457 The inverse of the inverse is what we started with::
458
459 sage: set_random_seed()
460 sage: J = random_eja()
461 sage: x = J.random_element()
462 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
463 True
464
465 Proposition II.2.3 in Faraut and Korányi says that the inverse
466 of an element is the inverse of its left-multiplication operator
467 applied to the algebra's identity, when that inverse exists::
468
469 sage: set_random_seed()
470 sage: J = random_eja()
471 sage: x = J.random_element()
472 sage: (not x.operator().is_invertible()) or (
473 ....: x.operator().inverse()(J.one()) == x.inverse() )
474 True
475
476 Proposition II.2.4 in Faraut and Korányi gives a formula for
477 the inverse based on the characteristic polynomial and the
478 Cayley-Hamilton theorem for Euclidean Jordan algebras::
479
480 sage: set_random_seed()
481 sage: J = ComplexHermitianEJA(3)
482 sage: x = J.random_element()
483 sage: while not x.is_invertible():
484 ....: x = J.random_element()
485 sage: r = J.rank()
486 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
487 sage: expected = (-1)^(r+1)/x.det()
488 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
489 sage: x.inverse() == expected
490 True
491
492 """
493 if not self.is_invertible():
494 raise ValueError("element is not invertible")
495
496 return (~self.quadratic_representation())(self)
497
498
499 def is_invertible(self):
500 """
501 Return whether or not this element is invertible.
502
503 ALGORITHM:
504
505 The usual way to do this is to check if the determinant is
506 zero, but we need the characteristic polynomial for the
507 determinant. The minimal polynomial is a lot easier to get,
508 so we use Corollary 2 in Chapter V of Koecher to check
509 whether or not the paren't algebra's zero element is a root
510 of this element's minimal polynomial.
511
512 Beware that we can't use the superclass method, because it
513 relies on the algebra being associative.
514
515 SETUP::
516
517 sage: from mjo.eja.eja_algebra import random_eja
518
519 TESTS:
520
521 The identity element is always invertible::
522
523 sage: set_random_seed()
524 sage: J = random_eja()
525 sage: J.one().is_invertible()
526 True
527
528 The zero element is never invertible in a non-trivial algebra::
529
530 sage: set_random_seed()
531 sage: J = random_eja()
532 sage: (not J.is_trivial()) and J.zero().is_invertible()
533 False
534
535 """
536 if self.is_zero():
537 if self.parent().is_trivial():
538 return True
539 else:
540 return False
541
542 # In fact, we only need to know if the constant term is non-zero,
543 # so we can pass in the field's zero element instead.
544 zero = self.base_ring().zero()
545 p = self.minimal_polynomial()
546 return not (p(zero) == zero)
547
548
549 def is_nilpotent(self):
550 """
551 Return whether or not some power of this element is zero.
552
553 ALGORITHM:
554
555 We use Theorem 5 in Chapter III of Koecher, which says that
556 an element ``x`` is nilpotent if and only if ``x.operator()``
557 is nilpotent. And it is a basic fact of linear algebra that
558 an operator on an `n`-dimensional space is nilpotent if and
559 only if, when raised to the `n`th power, it equals the zero
560 operator (for example, see Axler Corollary 8.8).
561
562 SETUP::
563
564 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
565 ....: random_eja)
566
567 EXAMPLES::
568
569 sage: J = JordanSpinEJA(3)
570 sage: x = sum(J.gens())
571 sage: x.is_nilpotent()
572 False
573
574 TESTS:
575
576 The identity element is never nilpotent, except in a trivial EJA::
577
578 sage: set_random_seed()
579 sage: J = random_eja()
580 sage: J.one().is_nilpotent() and not J.is_trivial()
581 False
582
583 The additive identity is always nilpotent::
584
585 sage: set_random_seed()
586 sage: random_eja().zero().is_nilpotent()
587 True
588
589 """
590 P = self.parent()
591 zero_operator = P.zero().operator()
592 return self.operator()**P.dimension() == zero_operator
593
594
595 def is_regular(self):
596 """
597 Return whether or not this is a regular element.
598
599 SETUP::
600
601 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
602 ....: random_eja)
603
604 EXAMPLES:
605
606 The identity element always has degree one, but any element
607 linearly-independent from it is regular::
608
609 sage: J = JordanSpinEJA(5)
610 sage: J.one().is_regular()
611 False
612 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
613 sage: for x in J.gens():
614 ....: (J.one() + x).is_regular()
615 False
616 True
617 True
618 True
619 True
620
621 TESTS:
622
623 The zero element should never be regular, unless the parent
624 algebra has dimension less than or equal to one::
625
626 sage: set_random_seed()
627 sage: J = random_eja()
628 sage: J.dimension() <= 1 or not J.zero().is_regular()
629 True
630
631 The unit element isn't regular unless the algebra happens to
632 consist of only its scalar multiples::
633
634 sage: set_random_seed()
635 sage: J = random_eja()
636 sage: J.dimension() <= 1 or not J.one().is_regular()
637 True
638
639 """
640 return self.degree() == self.parent().rank()
641
642
643 def degree(self):
644 """
645 Return the degree of this element, which is defined to be
646 the degree of its minimal polynomial.
647
648 ALGORITHM:
649
650 For now, we skip the messy minimal polynomial computation
651 and instead return the dimension of the vector space spanned
652 by the powers of this element. The latter is a bit more
653 straightforward to compute.
654
655 SETUP::
656
657 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
658 ....: random_eja)
659
660 EXAMPLES::
661
662 sage: J = JordanSpinEJA(4)
663 sage: J.one().degree()
664 1
665 sage: e0,e1,e2,e3 = J.gens()
666 sage: (e0 - e1).degree()
667 2
668
669 In the spin factor algebra (of rank two), all elements that
670 aren't multiples of the identity are regular::
671
672 sage: set_random_seed()
673 sage: J = JordanSpinEJA.random_instance()
674 sage: x = J.random_element()
675 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
676 True
677
678 TESTS:
679
680 The zero and unit elements are both of degree one in nontrivial
681 algebras::
682
683 sage: set_random_seed()
684 sage: J = random_eja()
685 sage: d = J.zero().degree()
686 sage: (J.is_trivial() and d == 0) or d == 1
687 True
688 sage: d = J.one().degree()
689 sage: (J.is_trivial() and d == 0) or d == 1
690 True
691
692 Our implementation agrees with the definition::
693
694 sage: set_random_seed()
695 sage: x = random_eja().random_element()
696 sage: x.degree() == x.minimal_polynomial().degree()
697 True
698
699 """
700 if self.is_zero() and not self.parent().is_trivial():
701 # The minimal polynomial of zero in a nontrivial algebra
702 # is "t"; in a trivial algebra it's "1" by convention
703 # (it's an empty product).
704 return 1
705 return self.subalgebra_generated_by().dimension()
706
707
708 def left_matrix(self):
709 """
710 Our parent class defines ``left_matrix`` and ``matrix``
711 methods whose names are misleading. We don't want them.
712 """
713 raise NotImplementedError("use operator().matrix() instead")
714
715 matrix = left_matrix
716
717
718 def minimal_polynomial(self):
719 """
720 Return the minimal polynomial of this element,
721 as a function of the variable `t`.
722
723 ALGORITHM:
724
725 We restrict ourselves to the associative subalgebra
726 generated by this element, and then return the minimal
727 polynomial of this element's operator matrix (in that
728 subalgebra). This works by Baes Proposition 2.3.16.
729
730 SETUP::
731
732 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
733 ....: RealSymmetricEJA,
734 ....: random_eja)
735
736 TESTS:
737
738 The minimal polynomial of the identity and zero elements are
739 always the same::
740
741 sage: set_random_seed()
742 sage: J = random_eja()
743 sage: J.one().minimal_polynomial()
744 t - 1
745 sage: J.zero().minimal_polynomial()
746 t
747
748 The degree of an element is (by one definition) the degree
749 of its minimal polynomial::
750
751 sage: set_random_seed()
752 sage: x = random_eja().random_element()
753 sage: x.degree() == x.minimal_polynomial().degree()
754 True
755
756 The minimal polynomial and the characteristic polynomial coincide
757 and are known (see Alizadeh, Example 11.11) for all elements of
758 the spin factor algebra that aren't scalar multiples of the
759 identity. We require the dimension of the algebra to be at least
760 two here so that said elements actually exist::
761
762 sage: set_random_seed()
763 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
764 sage: n = ZZ.random_element(2, n_max)
765 sage: J = JordanSpinEJA(n)
766 sage: y = J.random_element()
767 sage: while y == y.coefficient(0)*J.one():
768 ....: y = J.random_element()
769 sage: y0 = y.to_vector()[0]
770 sage: y_bar = y.to_vector()[1:]
771 sage: actual = y.minimal_polynomial()
772 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
773 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
774 sage: bool(actual == expected)
775 True
776
777 The minimal polynomial should always kill its element::
778
779 sage: set_random_seed()
780 sage: x = random_eja().random_element()
781 sage: p = x.minimal_polynomial()
782 sage: x.apply_univariate_polynomial(p)
783 0
784
785 The minimal polynomial is invariant under a change of basis,
786 and in particular, a re-scaling of the basis::
787
788 sage: set_random_seed()
789 sage: n_max = RealSymmetricEJA._max_test_case_size()
790 sage: n = ZZ.random_element(1, n_max)
791 sage: J1 = RealSymmetricEJA(n,QQ)
792 sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
793 sage: X = random_matrix(QQ,n)
794 sage: X = X*X.transpose()
795 sage: x1 = J1(X)
796 sage: x2 = J2(X)
797 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
798 True
799
800 """
801 if self.is_zero():
802 # We would generate a zero-dimensional subalgebra
803 # where the minimal polynomial would be constant.
804 # That might be correct, but only if *this* algebra
805 # is trivial too.
806 if not self.parent().is_trivial():
807 # Pretty sure we know what the minimal polynomial of
808 # the zero operator is going to be. This ensures
809 # consistency of e.g. the polynomial variable returned
810 # in the "normal" case without us having to think about it.
811 return self.operator().minimal_polynomial()
812
813 A = self.subalgebra_generated_by()
814 return A(self).operator().minimal_polynomial()
815
816
817
818 def natural_representation(self):
819 """
820 Return a more-natural representation of this element.
821
822 Every finite-dimensional Euclidean Jordan Algebra is a
823 direct sum of five simple algebras, four of which comprise
824 Hermitian matrices. This method returns the original
825 "natural" representation of this element as a Hermitian
826 matrix, if it has one. If not, you get the usual representation.
827
828 SETUP::
829
830 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
831 ....: QuaternionHermitianEJA)
832
833 EXAMPLES::
834
835 sage: J = ComplexHermitianEJA(3)
836 sage: J.one()
837 e0 + e3 + e8
838 sage: J.one().natural_representation()
839 [1 0 0 0 0 0]
840 [0 1 0 0 0 0]
841 [0 0 1 0 0 0]
842 [0 0 0 1 0 0]
843 [0 0 0 0 1 0]
844 [0 0 0 0 0 1]
845
846 ::
847
848 sage: J = QuaternionHermitianEJA(3)
849 sage: J.one()
850 e0 + e5 + e14
851 sage: J.one().natural_representation()
852 [1 0 0 0 0 0 0 0 0 0 0 0]
853 [0 1 0 0 0 0 0 0 0 0 0 0]
854 [0 0 1 0 0 0 0 0 0 0 0 0]
855 [0 0 0 1 0 0 0 0 0 0 0 0]
856 [0 0 0 0 1 0 0 0 0 0 0 0]
857 [0 0 0 0 0 1 0 0 0 0 0 0]
858 [0 0 0 0 0 0 1 0 0 0 0 0]
859 [0 0 0 0 0 0 0 1 0 0 0 0]
860 [0 0 0 0 0 0 0 0 1 0 0 0]
861 [0 0 0 0 0 0 0 0 0 1 0 0]
862 [0 0 0 0 0 0 0 0 0 0 1 0]
863 [0 0 0 0 0 0 0 0 0 0 0 1]
864
865 """
866 B = self.parent().natural_basis()
867 W = self.parent().natural_basis_space()
868 return W.linear_combination(izip(B,self.to_vector()))
869
870
871 def norm(self):
872 """
873 The norm of this element with respect to :meth:`inner_product`.
874
875 SETUP::
876
877 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
878 ....: RealCartesianProductEJA)
879
880 EXAMPLES::
881
882 sage: J = RealCartesianProductEJA(2)
883 sage: x = sum(J.gens())
884 sage: x.norm()
885 sqrt(2)
886
887 ::
888
889 sage: J = JordanSpinEJA(4)
890 sage: x = sum(J.gens())
891 sage: x.norm()
892 2
893
894 """
895 return self.inner_product(self).sqrt()
896
897
898 def operator(self):
899 """
900 Return the left-multiplication-by-this-element
901 operator on the ambient algebra.
902
903 SETUP::
904
905 sage: from mjo.eja.eja_algebra import random_eja
906
907 TESTS::
908
909 sage: set_random_seed()
910 sage: J = random_eja()
911 sage: x,y = J.random_elements(2)
912 sage: x.operator()(y) == x*y
913 True
914 sage: y.operator()(x) == x*y
915 True
916
917 """
918 P = self.parent()
919 left_mult_by_self = lambda y: self*y
920 L = P.module_morphism(function=left_mult_by_self, codomain=P)
921 return FiniteDimensionalEuclideanJordanAlgebraOperator(
922 P,
923 P,
924 L.matrix() )
925
926
927 def quadratic_representation(self, other=None):
928 """
929 Return the quadratic representation of this element.
930
931 SETUP::
932
933 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
934 ....: random_eja)
935
936 EXAMPLES:
937
938 The explicit form in the spin factor algebra is given by
939 Alizadeh's Example 11.12::
940
941 sage: set_random_seed()
942 sage: x = JordanSpinEJA.random_instance().random_element()
943 sage: x_vec = x.to_vector()
944 sage: n = x_vec.degree()
945 sage: x0 = x_vec[0]
946 sage: x_bar = x_vec[1:]
947 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
948 sage: B = 2*x0*x_bar.row()
949 sage: C = 2*x0*x_bar.column()
950 sage: D = matrix.identity(QQ, n-1)
951 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
952 sage: D = D + 2*x_bar.tensor_product(x_bar)
953 sage: Q = matrix.block(2,2,[A,B,C,D])
954 sage: Q == x.quadratic_representation().matrix()
955 True
956
957 Test all of the properties from Theorem 11.2 in Alizadeh::
958
959 sage: set_random_seed()
960 sage: J = random_eja()
961 sage: x,y = J.random_elements(2)
962 sage: Lx = x.operator()
963 sage: Lxx = (x*x).operator()
964 sage: Qx = x.quadratic_representation()
965 sage: Qy = y.quadratic_representation()
966 sage: Qxy = x.quadratic_representation(y)
967 sage: Qex = J.one().quadratic_representation(x)
968 sage: n = ZZ.random_element(10)
969 sage: Qxn = (x^n).quadratic_representation()
970
971 Property 1:
972
973 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
974 True
975
976 Property 2 (multiply on the right for :trac:`28272`):
977
978 sage: alpha = J.base_ring().random_element()
979 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
980 True
981
982 Property 3:
983
984 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
985 True
986
987 sage: not x.is_invertible() or (
988 ....: ~Qx
989 ....: ==
990 ....: x.inverse().quadratic_representation() )
991 True
992
993 sage: Qxy(J.one()) == x*y
994 True
995
996 Property 4:
997
998 sage: not x.is_invertible() or (
999 ....: x.quadratic_representation(x.inverse())*Qx
1000 ....: == Qx*x.quadratic_representation(x.inverse()) )
1001 True
1002
1003 sage: not x.is_invertible() or (
1004 ....: x.quadratic_representation(x.inverse())*Qx
1005 ....: ==
1006 ....: 2*Lx*Qex - Qx )
1007 True
1008
1009 sage: 2*Lx*Qex - Qx == Lxx
1010 True
1011
1012 Property 5:
1013
1014 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1015 True
1016
1017 Property 6:
1018
1019 sage: Qxn == (Qx)^n
1020 True
1021
1022 Property 7:
1023
1024 sage: not x.is_invertible() or (
1025 ....: Qx*x.inverse().operator() == Lx )
1026 True
1027
1028 Property 8:
1029
1030 sage: not x.operator_commutes_with(y) or (
1031 ....: Qx(y)^n == Qxn(y^n) )
1032 True
1033
1034 """
1035 if other is None:
1036 other=self
1037 elif not other in self.parent():
1038 raise TypeError("'other' must live in the same algebra")
1039
1040 L = self.operator()
1041 M = other.operator()
1042 return ( L*M + M*L - (self*other).operator() )
1043
1044
1045
1046 def spectral_decomposition(self):
1047 """
1048 Return the unique spectral decomposition of this element.
1049
1050 ALGORITHM:
1051
1052 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1053 element's left-multiplication-by operator to the subalgebra it
1054 generates. We then compute the spectral decomposition of that
1055 operator, and the spectral projectors we get back must be the
1056 left-multiplication-by operators for the idempotents we
1057 seek. Thus applying them to the identity element gives us those
1058 idempotents.
1059
1060 Since the eigenvalues are required to be distinct, we take
1061 the spectral decomposition of the zero element to be zero
1062 times the identity element of the algebra (which is idempotent,
1063 obviously).
1064
1065 SETUP::
1066
1067 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1068
1069 EXAMPLES:
1070
1071 The spectral decomposition of the identity is ``1`` times itself,
1072 and the spectral decomposition of zero is ``0`` times the identity::
1073
1074 sage: J = RealSymmetricEJA(3,AA)
1075 sage: J.one()
1076 e0 + e2 + e5
1077 sage: J.one().spectral_decomposition()
1078 [(1, e0 + e2 + e5)]
1079 sage: J.zero().spectral_decomposition()
1080 [(0, e0 + e2 + e5)]
1081
1082 TESTS::
1083
1084 sage: J = RealSymmetricEJA(4,AA)
1085 sage: x = sum(J.gens())
1086 sage: sd = x.spectral_decomposition()
1087 sage: l0 = sd[0][0]
1088 sage: l1 = sd[1][0]
1089 sage: c0 = sd[0][1]
1090 sage: c1 = sd[1][1]
1091 sage: c0.inner_product(c1) == 0
1092 True
1093 sage: c0.is_idempotent()
1094 True
1095 sage: c1.is_idempotent()
1096 True
1097 sage: c0 + c1 == J.one()
1098 True
1099 sage: l0*c0 + l1*c1 == x
1100 True
1101
1102 """
1103 P = self.parent()
1104 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1105 result = []
1106 for (evalue, proj) in A(self).operator().spectral_decomposition():
1107 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1108 return result
1109
1110 def subalgebra_generated_by(self, orthonormalize_basis=False):
1111 """
1112 Return the associative subalgebra of the parent EJA generated
1113 by this element.
1114
1115 Since our parent algebra is unital, we want "subalgebra" to mean
1116 "unital subalgebra" as well; thus the subalgebra that an element
1117 generates will itself be a Euclidean Jordan algebra after
1118 restricting the algebra operations appropriately. This is the
1119 subalgebra that Faraut and Korányi work with in section II.2, for
1120 example.
1121
1122 SETUP::
1123
1124 sage: from mjo.eja.eja_algebra import random_eja
1125
1126 TESTS:
1127
1128 This subalgebra, being composed of only powers, is associative::
1129
1130 sage: set_random_seed()
1131 sage: x0 = random_eja().random_element()
1132 sage: A = x0.subalgebra_generated_by()
1133 sage: x,y,z = A.random_elements(3)
1134 sage: (x*y)*z == x*(y*z)
1135 True
1136
1137 Squaring in the subalgebra should work the same as in
1138 the superalgebra::
1139
1140 sage: set_random_seed()
1141 sage: x = random_eja().random_element()
1142 sage: A = x.subalgebra_generated_by()
1143 sage: A(x^2) == A(x)*A(x)
1144 True
1145
1146 By definition, the subalgebra generated by the zero element is
1147 the one-dimensional algebra generated by the identity
1148 element... unless the original algebra was trivial, in which
1149 case the subalgebra is trivial too::
1150
1151 sage: set_random_seed()
1152 sage: A = random_eja().zero().subalgebra_generated_by()
1153 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1154 True
1155
1156 """
1157 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1158
1159
1160 def subalgebra_idempotent(self):
1161 """
1162 Find an idempotent in the associative subalgebra I generate
1163 using Proposition 2.3.5 in Baes.
1164
1165 SETUP::
1166
1167 sage: from mjo.eja.eja_algebra import random_eja
1168
1169 TESTS::
1170
1171 sage: set_random_seed()
1172 sage: J = random_eja()
1173 sage: x = J.random_element()
1174 sage: while x.is_nilpotent():
1175 ....: x = J.random_element()
1176 sage: c = x.subalgebra_idempotent()
1177 sage: c^2 == c
1178 True
1179
1180 """
1181 if self.is_nilpotent():
1182 raise ValueError("this only works with non-nilpotent elements!")
1183
1184 J = self.subalgebra_generated_by()
1185 u = J(self)
1186
1187 # The image of the matrix of left-u^m-multiplication
1188 # will be minimal for some natural number s...
1189 s = 0
1190 minimal_dim = J.dimension()
1191 for i in xrange(1, minimal_dim):
1192 this_dim = (u**i).operator().matrix().image().dimension()
1193 if this_dim < minimal_dim:
1194 minimal_dim = this_dim
1195 s = i
1196
1197 # Now minimal_matrix should correspond to the smallest
1198 # non-zero subspace in Baes's (or really, Koecher's)
1199 # proposition.
1200 #
1201 # However, we need to restrict the matrix to work on the
1202 # subspace... or do we? Can't we just solve, knowing that
1203 # A(c) = u^(s+1) should have a solution in the big space,
1204 # too?
1205 #
1206 # Beware, solve_right() means that we're using COLUMN vectors.
1207 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1208 u_next = u**(s+1)
1209 A = u_next.operator().matrix()
1210 c = J.from_vector(A.solve_right(u_next.to_vector()))
1211
1212 # Now c is the idempotent we want, but it still lives in the subalgebra.
1213 return c.superalgebra_element()
1214
1215
1216 def trace(self):
1217 """
1218 Return my trace, the sum of my eigenvalues.
1219
1220 SETUP::
1221
1222 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1223 ....: RealCartesianProductEJA,
1224 ....: random_eja)
1225
1226 EXAMPLES::
1227
1228 sage: J = JordanSpinEJA(3)
1229 sage: x = sum(J.gens())
1230 sage: x.trace()
1231 2
1232
1233 ::
1234
1235 sage: J = RealCartesianProductEJA(5)
1236 sage: J.one().trace()
1237 5
1238
1239 TESTS:
1240
1241 The trace of an element is a real number::
1242
1243 sage: set_random_seed()
1244 sage: J = random_eja()
1245 sage: J.random_element().trace() in RLF
1246 True
1247
1248 """
1249 P = self.parent()
1250 r = P.rank()
1251 p = P._charpoly_coeff(r-1)
1252 # The _charpoly_coeff function already adds the factor of
1253 # -1 to ensure that _charpoly_coeff(r-1) is really what
1254 # appears in front of t^{r-1} in the charpoly. However,
1255 # we want the negative of THAT for the trace.
1256 return -p(*self.to_vector())
1257
1258
1259 def trace_inner_product(self, other):
1260 """
1261 Return the trace inner product of myself and ``other``.
1262
1263 SETUP::
1264
1265 sage: from mjo.eja.eja_algebra import random_eja
1266
1267 TESTS:
1268
1269 The trace inner product is commutative, bilinear, and associative::
1270
1271 sage: set_random_seed()
1272 sage: J = random_eja()
1273 sage: x,y,z = J.random_elements(3)
1274 sage: # commutative
1275 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1276 True
1277 sage: # bilinear
1278 sage: a = J.base_ring().random_element();
1279 sage: actual = (a*(x+z)).trace_inner_product(y)
1280 sage: expected = ( a*x.trace_inner_product(y) +
1281 ....: a*z.trace_inner_product(y) )
1282 sage: actual == expected
1283 True
1284 sage: actual = x.trace_inner_product(a*(y+z))
1285 sage: expected = ( a*x.trace_inner_product(y) +
1286 ....: a*x.trace_inner_product(z) )
1287 sage: actual == expected
1288 True
1289 sage: # associative
1290 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1291 True
1292
1293 """
1294 if not other in self.parent():
1295 raise TypeError("'other' must live in the same algebra")
1296
1297 return (self*other).trace()
1298
1299
1300 def trace_norm(self):
1301 """
1302 The norm of this element with respect to :meth:`trace_inner_product`.
1303
1304 SETUP::
1305
1306 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1307 ....: RealCartesianProductEJA)
1308
1309 EXAMPLES::
1310
1311 sage: J = RealCartesianProductEJA(2)
1312 sage: x = sum(J.gens())
1313 sage: x.trace_norm()
1314 sqrt(2)
1315
1316 ::
1317
1318 sage: J = JordanSpinEJA(4)
1319 sage: x = sum(J.gens())
1320 sage: x.trace_norm()
1321 2*sqrt(2)
1322
1323 """
1324 return self.trace_inner_product(self).sqrt()