]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: combine several slow trace_inner_product() tests.
[sage.d.git] / mjo / eja / eja_element.py
1 from sage.matrix.constructor import matrix
2 from sage.modules.free_module import VectorSpace
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4
5 # TODO: make this unnecessary somehow.
6 from sage.misc.lazy_import import lazy_import
7 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
8 lazy_import('mjo.eja.eja_subalgebra',
9 'FiniteDimensionalEuclideanJordanElementSubalgebra')
10 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
11 from mjo.eja.eja_utils import _mat2vec
12
13 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
14 """
15 An element of a Euclidean Jordan algebra.
16 """
17
18 def __dir__(self):
19 """
20 Oh man, I should not be doing this. This hides the "disabled"
21 methods ``left_matrix`` and ``matrix`` from introspection;
22 in particular it removes them from tab-completion.
23 """
24 return filter(lambda s: s not in ['left_matrix', 'matrix'],
25 dir(self.__class__) )
26
27
28
29
30 def __pow__(self, n):
31 """
32 Return ``self`` raised to the power ``n``.
33
34 Jordan algebras are always power-associative; see for
35 example Faraut and Koranyi, Proposition II.1.2 (ii).
36
37 We have to override this because our superclass uses row
38 vectors instead of column vectors! We, on the other hand,
39 assume column vectors everywhere.
40
41 SETUP::
42
43 sage: from mjo.eja.eja_algebra import random_eja
44
45 TESTS:
46
47 The definition of `x^2` is the unambiguous `x*x`::
48
49 sage: set_random_seed()
50 sage: x = random_eja().random_element()
51 sage: x*x == (x^2)
52 True
53
54 A few examples of power-associativity::
55
56 sage: set_random_seed()
57 sage: x = random_eja().random_element()
58 sage: x*(x*x)*(x*x) == x^5
59 True
60 sage: (x*x)*(x*x*x) == x^5
61 True
62
63 We also know that powers operator-commute (Koecher, Chapter
64 III, Corollary 1)::
65
66 sage: set_random_seed()
67 sage: x = random_eja().random_element()
68 sage: m = ZZ.random_element(0,10)
69 sage: n = ZZ.random_element(0,10)
70 sage: Lxm = (x^m).operator()
71 sage: Lxn = (x^n).operator()
72 sage: Lxm*Lxn == Lxn*Lxm
73 True
74
75 """
76 if n == 0:
77 return self.parent().one()
78 elif n == 1:
79 return self
80 else:
81 return (self.operator()**(n-1))(self)
82
83
84 def apply_univariate_polynomial(self, p):
85 """
86 Apply the univariate polynomial ``p`` to this element.
87
88 A priori, SageMath won't allow us to apply a univariate
89 polynomial to an element of an EJA, because we don't know
90 that EJAs are rings (they are usually not associative). Of
91 course, we know that EJAs are power-associative, so the
92 operation is ultimately kosher. This function sidesteps
93 the CAS to get the answer we want and expect.
94
95 SETUP::
96
97 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
98 ....: random_eja)
99
100 EXAMPLES::
101
102 sage: R = PolynomialRing(QQ, 't')
103 sage: t = R.gen(0)
104 sage: p = t^4 - t^3 + 5*t - 2
105 sage: J = RealCartesianProductEJA(5)
106 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
107 True
108
109 TESTS:
110
111 We should always get back an element of the algebra::
112
113 sage: set_random_seed()
114 sage: p = PolynomialRing(QQ, 't').random_element()
115 sage: J = random_eja()
116 sage: x = J.random_element()
117 sage: x.apply_univariate_polynomial(p) in J
118 True
119
120 """
121 if len(p.variables()) > 1:
122 raise ValueError("not a univariate polynomial")
123 P = self.parent()
124 R = P.base_ring()
125 # Convert the coeficcients to the parent's base ring,
126 # because a priori they might live in an (unnecessarily)
127 # larger ring for which P.sum() would fail below.
128 cs = [ R(c) for c in p.coefficients(sparse=False) ]
129 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
130
131
132 def characteristic_polynomial(self):
133 """
134 Return the characteristic polynomial of this element.
135
136 SETUP::
137
138 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
139
140 EXAMPLES:
141
142 The rank of `R^3` is three, and the minimal polynomial of
143 the identity element is `(t-1)` from which it follows that
144 the characteristic polynomial should be `(t-1)^3`::
145
146 sage: J = RealCartesianProductEJA(3)
147 sage: J.one().characteristic_polynomial()
148 t^3 - 3*t^2 + 3*t - 1
149
150 Likewise, the characteristic of the zero element in the
151 rank-three algebra `R^{n}` should be `t^{3}`::
152
153 sage: J = RealCartesianProductEJA(3)
154 sage: J.zero().characteristic_polynomial()
155 t^3
156
157 TESTS:
158
159 The characteristic polynomial of an element should evaluate
160 to zero on that element::
161
162 sage: set_random_seed()
163 sage: x = RealCartesianProductEJA(3).random_element()
164 sage: p = x.characteristic_polynomial()
165 sage: x.apply_univariate_polynomial(p)
166 0
167
168 The characteristic polynomials of the zero and unit elements
169 should be what we think they are in a subalgebra, too::
170
171 sage: J = RealCartesianProductEJA(3)
172 sage: p1 = J.one().characteristic_polynomial()
173 sage: q1 = J.zero().characteristic_polynomial()
174 sage: e0,e1,e2 = J.gens()
175 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
176 sage: p2 = A.one().characteristic_polynomial()
177 sage: q2 = A.zero().characteristic_polynomial()
178 sage: p1 == p2
179 True
180 sage: q1 == q2
181 True
182
183 """
184 p = self.parent().characteristic_polynomial()
185 return p(*self.to_vector())
186
187
188 def inner_product(self, other):
189 """
190 Return the parent algebra's inner product of myself and ``other``.
191
192 SETUP::
193
194 sage: from mjo.eja.eja_algebra import (
195 ....: ComplexHermitianEJA,
196 ....: JordanSpinEJA,
197 ....: QuaternionHermitianEJA,
198 ....: RealSymmetricEJA,
199 ....: random_eja)
200
201 EXAMPLES:
202
203 The inner product in the Jordan spin algebra is the usual
204 inner product on `R^n` (this example only works because the
205 basis for the Jordan algebra is the standard basis in `R^n`)::
206
207 sage: J = JordanSpinEJA(3)
208 sage: x = vector(QQ,[1,2,3])
209 sage: y = vector(QQ,[4,5,6])
210 sage: x.inner_product(y)
211 32
212 sage: J.from_vector(x).inner_product(J.from_vector(y))
213 32
214
215 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
216 multiplication is the usual matrix multiplication in `S^n`,
217 so the inner product of the identity matrix with itself
218 should be the `n`::
219
220 sage: J = RealSymmetricEJA(3)
221 sage: J.one().inner_product(J.one())
222 3
223
224 Likewise, the inner product on `C^n` is `<X,Y> =
225 Re(trace(X*Y))`, where we must necessarily take the real
226 part because the product of Hermitian matrices may not be
227 Hermitian::
228
229 sage: J = ComplexHermitianEJA(3)
230 sage: J.one().inner_product(J.one())
231 3
232
233 Ditto for the quaternions::
234
235 sage: J = QuaternionHermitianEJA(3)
236 sage: J.one().inner_product(J.one())
237 3
238
239 TESTS:
240
241 Ensure that we can always compute an inner product, and that
242 it gives us back a real number::
243
244 sage: set_random_seed()
245 sage: J = random_eja()
246 sage: x = J.random_element()
247 sage: y = J.random_element()
248 sage: x.inner_product(y) in RR
249 True
250
251 """
252 P = self.parent()
253 if not other in P:
254 raise TypeError("'other' must live in the same algebra")
255
256 return P.inner_product(self, other)
257
258
259 def operator_commutes_with(self, other):
260 """
261 Return whether or not this element operator-commutes
262 with ``other``.
263
264 SETUP::
265
266 sage: from mjo.eja.eja_algebra import random_eja
267
268 EXAMPLES:
269
270 The definition of a Jordan algebra says that any element
271 operator-commutes with its square::
272
273 sage: set_random_seed()
274 sage: x = random_eja().random_element()
275 sage: x.operator_commutes_with(x^2)
276 True
277
278 TESTS:
279
280 Test Lemma 1 from Chapter III of Koecher::
281
282 sage: set_random_seed()
283 sage: J = random_eja()
284 sage: u = J.random_element()
285 sage: v = J.random_element()
286 sage: lhs = u.operator_commutes_with(u*v)
287 sage: rhs = v.operator_commutes_with(u^2)
288 sage: lhs == rhs
289 True
290
291 Test the first polarization identity from my notes, Koecher
292 Chapter III, or from Baes (2.3)::
293
294 sage: set_random_seed()
295 sage: J = random_eja()
296 sage: x = J.random_element()
297 sage: y = J.random_element()
298 sage: Lx = x.operator()
299 sage: Ly = y.operator()
300 sage: Lxx = (x*x).operator()
301 sage: Lxy = (x*y).operator()
302 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
303 True
304
305 Test the second polarization identity from my notes or from
306 Baes (2.4)::
307
308 sage: set_random_seed()
309 sage: J = random_eja()
310 sage: x = J.random_element()
311 sage: y = J.random_element()
312 sage: z = J.random_element()
313 sage: Lx = x.operator()
314 sage: Ly = y.operator()
315 sage: Lz = z.operator()
316 sage: Lzy = (z*y).operator()
317 sage: Lxy = (x*y).operator()
318 sage: Lxz = (x*z).operator()
319 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
320 True
321
322 Test the third polarization identity from my notes or from
323 Baes (2.5)::
324
325 sage: set_random_seed()
326 sage: J = random_eja()
327 sage: u = J.random_element()
328 sage: y = J.random_element()
329 sage: z = J.random_element()
330 sage: Lu = u.operator()
331 sage: Ly = y.operator()
332 sage: Lz = z.operator()
333 sage: Lzy = (z*y).operator()
334 sage: Luy = (u*y).operator()
335 sage: Luz = (u*z).operator()
336 sage: Luyz = (u*(y*z)).operator()
337 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
338 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
339 sage: bool(lhs == rhs)
340 True
341
342 """
343 if not other in self.parent():
344 raise TypeError("'other' must live in the same algebra")
345
346 A = self.operator()
347 B = other.operator()
348 return (A*B == B*A)
349
350
351 def det(self):
352 """
353 Return my determinant, the product of my eigenvalues.
354
355 SETUP::
356
357 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
358 ....: random_eja)
359
360 EXAMPLES::
361
362 sage: J = JordanSpinEJA(2)
363 sage: e0,e1 = J.gens()
364 sage: x = sum( J.gens() )
365 sage: x.det()
366 0
367
368 ::
369
370 sage: J = JordanSpinEJA(3)
371 sage: e0,e1,e2 = J.gens()
372 sage: x = sum( J.gens() )
373 sage: x.det()
374 -1
375
376 TESTS:
377
378 An element is invertible if and only if its determinant is
379 non-zero::
380
381 sage: set_random_seed()
382 sage: x = random_eja().random_element()
383 sage: x.is_invertible() == (x.det() != 0)
384 True
385
386 Ensure that the determinant is multiplicative on an associative
387 subalgebra as in Faraut and Koranyi's Proposition II.2.2::
388
389 sage: set_random_seed()
390 sage: J = random_eja().random_element().subalgebra_generated_by()
391 sage: x = J.random_element()
392 sage: y = J.random_element()
393 sage: (x*y).det() == x.det()*y.det()
394 True
395
396 """
397 P = self.parent()
398 r = P.rank()
399 p = P._charpoly_coeff(0)
400 # The _charpoly_coeff function already adds the factor of
401 # -1 to ensure that _charpoly_coeff(0) is really what
402 # appears in front of t^{0} in the charpoly. However,
403 # we want (-1)^r times THAT for the determinant.
404 return ((-1)**r)*p(*self.to_vector())
405
406
407 def inverse(self):
408 """
409 Return the Jordan-multiplicative inverse of this element.
410
411 ALGORITHM:
412
413 We appeal to the quadratic representation as in Koecher's
414 Theorem 12 in Chapter III, Section 5.
415
416 SETUP::
417
418 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
419 ....: random_eja)
420
421 EXAMPLES:
422
423 The inverse in the spin factor algebra is given in Alizadeh's
424 Example 11.11::
425
426 sage: set_random_seed()
427 sage: n = ZZ.random_element(1,10)
428 sage: J = JordanSpinEJA(n)
429 sage: x = J.random_element()
430 sage: while not x.is_invertible():
431 ....: x = J.random_element()
432 sage: x_vec = x.to_vector()
433 sage: x0 = x_vec[0]
434 sage: x_bar = x_vec[1:]
435 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
436 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
437 sage: x_inverse = coeff*inv_vec
438 sage: x.inverse() == J.from_vector(x_inverse)
439 True
440
441 TESTS:
442
443 The identity element is its own inverse::
444
445 sage: set_random_seed()
446 sage: J = random_eja()
447 sage: J.one().inverse() == J.one()
448 True
449
450 If an element has an inverse, it acts like one::
451
452 sage: set_random_seed()
453 sage: J = random_eja()
454 sage: x = J.random_element()
455 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
456 True
457
458 The inverse of the inverse is what we started with::
459
460 sage: set_random_seed()
461 sage: J = random_eja()
462 sage: x = J.random_element()
463 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
464 True
465
466 The zero element is never invertible::
467
468 sage: set_random_seed()
469 sage: J = random_eja().zero().inverse()
470 Traceback (most recent call last):
471 ...
472 ValueError: element is not invertible
473
474 """
475 if not self.is_invertible():
476 raise ValueError("element is not invertible")
477
478 return (~self.quadratic_representation())(self)
479
480
481 def is_invertible(self):
482 """
483 Return whether or not this element is invertible.
484
485 ALGORITHM:
486
487 The usual way to do this is to check if the determinant is
488 zero, but we need the characteristic polynomial for the
489 determinant. The minimal polynomial is a lot easier to get,
490 so we use Corollary 2 in Chapter V of Koecher to check
491 whether or not the paren't algebra's zero element is a root
492 of this element's minimal polynomial.
493
494 Beware that we can't use the superclass method, because it
495 relies on the algebra being associative.
496
497 SETUP::
498
499 sage: from mjo.eja.eja_algebra import random_eja
500
501 TESTS:
502
503 The identity element is always invertible::
504
505 sage: set_random_seed()
506 sage: J = random_eja()
507 sage: J.one().is_invertible()
508 True
509
510 The zero element is never invertible in a non-trivial algebra::
511
512 sage: set_random_seed()
513 sage: J = random_eja()
514 sage: (not J.is_trivial()) and J.zero().is_invertible()
515 False
516
517 """
518 if self.is_zero():
519 if self.parent().is_trivial():
520 return True
521 else:
522 return False
523
524 # In fact, we only need to know if the constant term is non-zero,
525 # so we can pass in the field's zero element instead.
526 zero = self.base_ring().zero()
527 p = self.minimal_polynomial()
528 return not (p(zero) == zero)
529
530
531 def is_nilpotent(self):
532 """
533 Return whether or not some power of this element is zero.
534
535 ALGORITHM:
536
537 We use Theorem 5 in Chapter III of Koecher, which says that
538 an element ``x`` is nilpotent if and only if ``x.operator()``
539 is nilpotent. And it is a basic fact of linear algebra that
540 an operator on an `n`-dimensional space is nilpotent if and
541 only if, when raised to the `n`th power, it equals the zero
542 operator (for example, see Axler Corollary 8.8).
543
544 SETUP::
545
546 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
547 ....: random_eja)
548
549 EXAMPLES::
550
551 sage: J = JordanSpinEJA(3)
552 sage: x = sum(J.gens())
553 sage: x.is_nilpotent()
554 False
555
556 TESTS:
557
558 The identity element is never nilpotent::
559
560 sage: set_random_seed()
561 sage: random_eja().one().is_nilpotent()
562 False
563
564 The additive identity is always nilpotent::
565
566 sage: set_random_seed()
567 sage: random_eja().zero().is_nilpotent()
568 True
569
570 """
571 P = self.parent()
572 zero_operator = P.zero().operator()
573 return self.operator()**P.dimension() == zero_operator
574
575
576 def is_regular(self):
577 """
578 Return whether or not this is a regular element.
579
580 SETUP::
581
582 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
583 ....: random_eja)
584
585 EXAMPLES:
586
587 The identity element always has degree one, but any element
588 linearly-independent from it is regular::
589
590 sage: J = JordanSpinEJA(5)
591 sage: J.one().is_regular()
592 False
593 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
594 sage: for x in J.gens():
595 ....: (J.one() + x).is_regular()
596 False
597 True
598 True
599 True
600 True
601
602 TESTS:
603
604 The zero element should never be regular, unless the parent
605 algebra has dimension one::
606
607 sage: set_random_seed()
608 sage: J = random_eja()
609 sage: J.dimension() == 1 or not J.zero().is_regular()
610 True
611
612 The unit element isn't regular unless the algebra happens to
613 consist of only its scalar multiples::
614
615 sage: set_random_seed()
616 sage: J = random_eja()
617 sage: J.dimension() == 1 or not J.one().is_regular()
618 True
619
620 """
621 return self.degree() == self.parent().rank()
622
623
624 def degree(self):
625 """
626 Return the degree of this element, which is defined to be
627 the degree of its minimal polynomial.
628
629 ALGORITHM:
630
631 For now, we skip the messy minimal polynomial computation
632 and instead return the dimension of the vector space spanned
633 by the powers of this element. The latter is a bit more
634 straightforward to compute.
635
636 SETUP::
637
638 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
639 ....: random_eja)
640
641 EXAMPLES::
642
643 sage: J = JordanSpinEJA(4)
644 sage: J.one().degree()
645 1
646 sage: e0,e1,e2,e3 = J.gens()
647 sage: (e0 - e1).degree()
648 2
649
650 In the spin factor algebra (of rank two), all elements that
651 aren't multiples of the identity are regular::
652
653 sage: set_random_seed()
654 sage: n = ZZ.random_element(1,10)
655 sage: J = JordanSpinEJA(n)
656 sage: x = J.random_element()
657 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
658 True
659
660 TESTS:
661
662 The zero and unit elements are both of degree one::
663
664 sage: set_random_seed()
665 sage: J = random_eja()
666 sage: J.zero().degree()
667 1
668 sage: J.one().degree()
669 1
670
671 Our implementation agrees with the definition::
672
673 sage: set_random_seed()
674 sage: x = random_eja().random_element()
675 sage: x.degree() == x.minimal_polynomial().degree()
676 True
677
678 """
679 if self.is_zero() and not self.parent().is_trivial():
680 # The minimal polynomial of zero in a nontrivial algebra
681 # is "t"; in a trivial algebra it's "1" by convention
682 # (it's an empty product).
683 return 1
684 return self.subalgebra_generated_by().dimension()
685
686
687 def left_matrix(self):
688 """
689 Our parent class defines ``left_matrix`` and ``matrix``
690 methods whose names are misleading. We don't want them.
691 """
692 raise NotImplementedError("use operator().matrix() instead")
693
694 matrix = left_matrix
695
696
697 def minimal_polynomial(self):
698 """
699 Return the minimal polynomial of this element,
700 as a function of the variable `t`.
701
702 ALGORITHM:
703
704 We restrict ourselves to the associative subalgebra
705 generated by this element, and then return the minimal
706 polynomial of this element's operator matrix (in that
707 subalgebra). This works by Baes Proposition 2.3.16.
708
709 SETUP::
710
711 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
712 ....: RealSymmetricEJA,
713 ....: random_eja)
714
715 TESTS:
716
717 The minimal polynomial of the identity and zero elements are
718 always the same::
719
720 sage: set_random_seed()
721 sage: J = random_eja()
722 sage: J.one().minimal_polynomial()
723 t - 1
724 sage: J.zero().minimal_polynomial()
725 t
726
727 The degree of an element is (by one definition) the degree
728 of its minimal polynomial::
729
730 sage: set_random_seed()
731 sage: x = random_eja().random_element()
732 sage: x.degree() == x.minimal_polynomial().degree()
733 True
734
735 The minimal polynomial and the characteristic polynomial coincide
736 and are known (see Alizadeh, Example 11.11) for all elements of
737 the spin factor algebra that aren't scalar multiples of the
738 identity::
739
740 sage: set_random_seed()
741 sage: n = ZZ.random_element(2,10)
742 sage: J = JordanSpinEJA(n)
743 sage: y = J.random_element()
744 sage: while y == y.coefficient(0)*J.one():
745 ....: y = J.random_element()
746 sage: y0 = y.to_vector()[0]
747 sage: y_bar = y.to_vector()[1:]
748 sage: actual = y.minimal_polynomial()
749 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
750 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
751 sage: bool(actual == expected)
752 True
753
754 The minimal polynomial should always kill its element::
755
756 sage: set_random_seed()
757 sage: x = random_eja().random_element()
758 sage: p = x.minimal_polynomial()
759 sage: x.apply_univariate_polynomial(p)
760 0
761
762 The minimal polynomial is invariant under a change of basis,
763 and in particular, a re-scaling of the basis::
764
765 sage: set_random_seed()
766 sage: n = ZZ.random_element(1,5)
767 sage: J1 = RealSymmetricEJA(n)
768 sage: J2 = RealSymmetricEJA(n,QQ,False)
769 sage: X = random_matrix(QQ,n)
770 sage: X = X*X.transpose()
771 sage: x1 = J1(X)
772 sage: x2 = J2(X)
773 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
774 True
775
776 """
777 if self.is_zero():
778 # We would generate a zero-dimensional subalgebra
779 # where the minimal polynomial would be constant.
780 # That might be correct, but only if *this* algebra
781 # is trivial too.
782 if not self.parent().is_trivial():
783 # Pretty sure we know what the minimal polynomial of
784 # the zero operator is going to be. This ensures
785 # consistency of e.g. the polynomial variable returned
786 # in the "normal" case without us having to think about it.
787 return self.operator().minimal_polynomial()
788
789 A = self.subalgebra_generated_by()
790 return A(self).operator().minimal_polynomial()
791
792
793
794 def natural_representation(self):
795 """
796 Return a more-natural representation of this element.
797
798 Every finite-dimensional Euclidean Jordan Algebra is a
799 direct sum of five simple algebras, four of which comprise
800 Hermitian matrices. This method returns the original
801 "natural" representation of this element as a Hermitian
802 matrix, if it has one. If not, you get the usual representation.
803
804 SETUP::
805
806 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
807 ....: QuaternionHermitianEJA)
808
809 EXAMPLES::
810
811 sage: J = ComplexHermitianEJA(3)
812 sage: J.one()
813 e0 + e3 + e8
814 sage: J.one().natural_representation()
815 [1 0 0 0 0 0]
816 [0 1 0 0 0 0]
817 [0 0 1 0 0 0]
818 [0 0 0 1 0 0]
819 [0 0 0 0 1 0]
820 [0 0 0 0 0 1]
821
822 ::
823
824 sage: J = QuaternionHermitianEJA(3)
825 sage: J.one()
826 e0 + e5 + e14
827 sage: J.one().natural_representation()
828 [1 0 0 0 0 0 0 0 0 0 0 0]
829 [0 1 0 0 0 0 0 0 0 0 0 0]
830 [0 0 1 0 0 0 0 0 0 0 0 0]
831 [0 0 0 1 0 0 0 0 0 0 0 0]
832 [0 0 0 0 1 0 0 0 0 0 0 0]
833 [0 0 0 0 0 1 0 0 0 0 0 0]
834 [0 0 0 0 0 0 1 0 0 0 0 0]
835 [0 0 0 0 0 0 0 1 0 0 0 0]
836 [0 0 0 0 0 0 0 0 1 0 0 0]
837 [0 0 0 0 0 0 0 0 0 1 0 0]
838 [0 0 0 0 0 0 0 0 0 0 1 0]
839 [0 0 0 0 0 0 0 0 0 0 0 1]
840
841 """
842 B = self.parent().natural_basis()
843 W = self.parent().natural_basis_space()
844 return W.linear_combination(zip(B,self.to_vector()))
845
846
847 def norm(self):
848 """
849 The norm of this element with respect to :meth:`inner_product`.
850
851 SETUP::
852
853 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
854 ....: RealCartesianProductEJA)
855
856 EXAMPLES::
857
858 sage: J = RealCartesianProductEJA(2)
859 sage: x = sum(J.gens())
860 sage: x.norm()
861 sqrt(2)
862
863 ::
864
865 sage: J = JordanSpinEJA(4)
866 sage: x = sum(J.gens())
867 sage: x.norm()
868 2
869
870 """
871 return self.inner_product(self).sqrt()
872
873
874 def operator(self):
875 """
876 Return the left-multiplication-by-this-element
877 operator on the ambient algebra.
878
879 SETUP::
880
881 sage: from mjo.eja.eja_algebra import random_eja
882
883 TESTS::
884
885 sage: set_random_seed()
886 sage: J = random_eja()
887 sage: x = J.random_element()
888 sage: y = J.random_element()
889 sage: x.operator()(y) == x*y
890 True
891 sage: y.operator()(x) == x*y
892 True
893
894 """
895 P = self.parent()
896 left_mult_by_self = lambda y: self*y
897 L = P.module_morphism(function=left_mult_by_self, codomain=P)
898 return FiniteDimensionalEuclideanJordanAlgebraOperator(
899 P,
900 P,
901 L.matrix() )
902
903
904 def quadratic_representation(self, other=None):
905 """
906 Return the quadratic representation of this element.
907
908 SETUP::
909
910 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
911 ....: random_eja)
912
913 EXAMPLES:
914
915 The explicit form in the spin factor algebra is given by
916 Alizadeh's Example 11.12::
917
918 sage: set_random_seed()
919 sage: n = ZZ.random_element(1,10)
920 sage: J = JordanSpinEJA(n)
921 sage: x = J.random_element()
922 sage: x_vec = x.to_vector()
923 sage: x0 = x_vec[0]
924 sage: x_bar = x_vec[1:]
925 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
926 sage: B = 2*x0*x_bar.row()
927 sage: C = 2*x0*x_bar.column()
928 sage: D = matrix.identity(QQ, n-1)
929 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
930 sage: D = D + 2*x_bar.tensor_product(x_bar)
931 sage: Q = matrix.block(2,2,[A,B,C,D])
932 sage: Q == x.quadratic_representation().matrix()
933 True
934
935 Test all of the properties from Theorem 11.2 in Alizadeh::
936
937 sage: set_random_seed()
938 sage: J = random_eja()
939 sage: x = J.random_element()
940 sage: y = J.random_element()
941 sage: Lx = x.operator()
942 sage: Lxx = (x*x).operator()
943 sage: Qx = x.quadratic_representation()
944 sage: Qy = y.quadratic_representation()
945 sage: Qxy = x.quadratic_representation(y)
946 sage: Qex = J.one().quadratic_representation(x)
947 sage: n = ZZ.random_element(10)
948 sage: Qxn = (x^n).quadratic_representation()
949
950 Property 1:
951
952 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
953 True
954
955 Property 2 (multiply on the right for :trac:`28272`):
956
957 sage: alpha = J.base_ring().random_element()
958 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
959 True
960
961 Property 3:
962
963 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
964 True
965
966 sage: not x.is_invertible() or (
967 ....: ~Qx
968 ....: ==
969 ....: x.inverse().quadratic_representation() )
970 True
971
972 sage: Qxy(J.one()) == x*y
973 True
974
975 Property 4:
976
977 sage: not x.is_invertible() or (
978 ....: x.quadratic_representation(x.inverse())*Qx
979 ....: == Qx*x.quadratic_representation(x.inverse()) )
980 True
981
982 sage: not x.is_invertible() or (
983 ....: x.quadratic_representation(x.inverse())*Qx
984 ....: ==
985 ....: 2*x.operator()*Qex - Qx )
986 True
987
988 sage: 2*x.operator()*Qex - Qx == Lxx
989 True
990
991 Property 5:
992
993 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
994 True
995
996 Property 6:
997
998 sage: Qxn == (Qx)^n
999 True
1000
1001 Property 7:
1002
1003 sage: not x.is_invertible() or (
1004 ....: Qx*x.inverse().operator() == Lx )
1005 True
1006
1007 Property 8:
1008
1009 sage: not x.operator_commutes_with(y) or (
1010 ....: Qx(y)^n == Qxn(y^n) )
1011 True
1012
1013 """
1014 if other is None:
1015 other=self
1016 elif not other in self.parent():
1017 raise TypeError("'other' must live in the same algebra")
1018
1019 L = self.operator()
1020 M = other.operator()
1021 return ( L*M + M*L - (self*other).operator() )
1022
1023
1024
1025
1026 def subalgebra_generated_by(self):
1027 """
1028 Return the associative subalgebra of the parent EJA generated
1029 by this element.
1030
1031 SETUP::
1032
1033 sage: from mjo.eja.eja_algebra import random_eja
1034
1035 TESTS:
1036
1037 This subalgebra, being composed of only powers, is associative::
1038
1039 sage: set_random_seed()
1040 sage: x0 = random_eja().random_element()
1041 sage: A = x0.subalgebra_generated_by()
1042 sage: x = A.random_element()
1043 sage: y = A.random_element()
1044 sage: z = A.random_element()
1045 sage: (x*y)*z == x*(y*z)
1046 True
1047
1048 Squaring in the subalgebra should work the same as in
1049 the superalgebra::
1050
1051 sage: set_random_seed()
1052 sage: x = random_eja().random_element()
1053 sage: A = x.subalgebra_generated_by()
1054 sage: A(x^2) == A(x)*A(x)
1055 True
1056
1057 The subalgebra generated by the zero element is trivial::
1058
1059 sage: set_random_seed()
1060 sage: A = random_eja().zero().subalgebra_generated_by()
1061 sage: A
1062 Euclidean Jordan algebra of dimension 0 over...
1063 sage: A.one()
1064 0
1065
1066 """
1067 return FiniteDimensionalEuclideanJordanElementSubalgebra(self)
1068
1069
1070 def subalgebra_idempotent(self):
1071 """
1072 Find an idempotent in the associative subalgebra I generate
1073 using Proposition 2.3.5 in Baes.
1074
1075 SETUP::
1076
1077 sage: from mjo.eja.eja_algebra import random_eja
1078
1079 TESTS::
1080
1081 sage: set_random_seed()
1082 sage: J = random_eja()
1083 sage: x = J.random_element()
1084 sage: while x.is_nilpotent():
1085 ....: x = J.random_element()
1086 sage: c = x.subalgebra_idempotent()
1087 sage: c^2 == c
1088 True
1089
1090 """
1091 if self.is_nilpotent():
1092 raise ValueError("this only works with non-nilpotent elements!")
1093
1094 J = self.subalgebra_generated_by()
1095 u = J(self)
1096
1097 # The image of the matrix of left-u^m-multiplication
1098 # will be minimal for some natural number s...
1099 s = 0
1100 minimal_dim = J.dimension()
1101 for i in xrange(1, minimal_dim):
1102 this_dim = (u**i).operator().matrix().image().dimension()
1103 if this_dim < minimal_dim:
1104 minimal_dim = this_dim
1105 s = i
1106
1107 # Now minimal_matrix should correspond to the smallest
1108 # non-zero subspace in Baes's (or really, Koecher's)
1109 # proposition.
1110 #
1111 # However, we need to restrict the matrix to work on the
1112 # subspace... or do we? Can't we just solve, knowing that
1113 # A(c) = u^(s+1) should have a solution in the big space,
1114 # too?
1115 #
1116 # Beware, solve_right() means that we're using COLUMN vectors.
1117 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1118 u_next = u**(s+1)
1119 A = u_next.operator().matrix()
1120 c = J.from_vector(A.solve_right(u_next.to_vector()))
1121
1122 # Now c is the idempotent we want, but it still lives in the subalgebra.
1123 return c.superalgebra_element()
1124
1125
1126 def trace(self):
1127 """
1128 Return my trace, the sum of my eigenvalues.
1129
1130 SETUP::
1131
1132 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1133 ....: RealCartesianProductEJA,
1134 ....: random_eja)
1135
1136 EXAMPLES::
1137
1138 sage: J = JordanSpinEJA(3)
1139 sage: x = sum(J.gens())
1140 sage: x.trace()
1141 2
1142
1143 ::
1144
1145 sage: J = RealCartesianProductEJA(5)
1146 sage: J.one().trace()
1147 5
1148
1149 TESTS:
1150
1151 The trace of an element is a real number::
1152
1153 sage: set_random_seed()
1154 sage: J = random_eja()
1155 sage: J.random_element().trace() in J.base_ring()
1156 True
1157
1158 """
1159 P = self.parent()
1160 r = P.rank()
1161 p = P._charpoly_coeff(r-1)
1162 # The _charpoly_coeff function already adds the factor of
1163 # -1 to ensure that _charpoly_coeff(r-1) is really what
1164 # appears in front of t^{r-1} in the charpoly. However,
1165 # we want the negative of THAT for the trace.
1166 return -p(*self.to_vector())
1167
1168
1169 def trace_inner_product(self, other):
1170 """
1171 Return the trace inner product of myself and ``other``.
1172
1173 SETUP::
1174
1175 sage: from mjo.eja.eja_algebra import random_eja
1176
1177 TESTS:
1178
1179 The trace inner product is commutative, bilinear, and satisfies
1180 the Jordan axiom:
1181
1182 sage: set_random_seed()
1183 sage: J = random_eja()
1184 sage: x = J.random_element();
1185 sage: y = J.random_element()
1186 sage: z = J.random_element()
1187 sage: # commutative
1188 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1189 True
1190 sage: # bilinear
1191 sage: a = J.base_ring().random_element();
1192 sage: actual = (a*(x+z)).trace_inner_product(y)
1193 sage: expected = ( a*x.trace_inner_product(y) +
1194 ....: a*z.trace_inner_product(y) )
1195 sage: actual == expected
1196 True
1197 sage: actual = x.trace_inner_product(a*(y+z))
1198 sage: expected = ( a*x.trace_inner_product(y) +
1199 ....: a*x.trace_inner_product(z) )
1200 sage: actual == expected
1201 True
1202 sage: # jordan axiom
1203 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1204 True
1205
1206 """
1207 if not other in self.parent():
1208 raise TypeError("'other' must live in the same algebra")
1209
1210 return (self*other).trace()
1211
1212
1213 def trace_norm(self):
1214 """
1215 The norm of this element with respect to :meth:`trace_inner_product`.
1216
1217 SETUP::
1218
1219 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1220 ....: RealCartesianProductEJA)
1221
1222 EXAMPLES::
1223
1224 sage: J = RealCartesianProductEJA(2)
1225 sage: x = sum(J.gens())
1226 sage: x.trace_norm()
1227 sqrt(2)
1228
1229 ::
1230
1231 sage: J = JordanSpinEJA(4)
1232 sage: x = sum(J.gens())
1233 sage: x.trace_norm()
1234 2*sqrt(2)
1235
1236 """
1237 return self.trace_inner_product(self).sqrt()