]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: make an inverse() test work in trivial algebras.
[sage.d.git] / mjo / eja / eja_element.py
1 # -*- coding: utf-8 -*-
2
3 from sage.matrix.constructor import matrix
4 from sage.modules.free_module import VectorSpace
5 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
6
7 # TODO: make this unnecessary somehow.
8 from sage.misc.lazy_import import lazy_import
9 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
10 lazy_import('mjo.eja.eja_element_subalgebra',
11 'FiniteDimensionalEuclideanJordanElementSubalgebra')
12 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
13 from mjo.eja.eja_utils import _mat2vec
14
15 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
16 """
17 An element of a Euclidean Jordan algebra.
18 """
19
20 def __dir__(self):
21 """
22 Oh man, I should not be doing this. This hides the "disabled"
23 methods ``left_matrix`` and ``matrix`` from introspection;
24 in particular it removes them from tab-completion.
25 """
26 return filter(lambda s: s not in ['left_matrix', 'matrix'],
27 dir(self.__class__) )
28
29
30
31
32 def __pow__(self, n):
33 """
34 Return ``self`` raised to the power ``n``.
35
36 Jordan algebras are always power-associative; see for
37 example Faraut and Korányi, Proposition II.1.2 (ii).
38
39 We have to override this because our superclass uses row
40 vectors instead of column vectors! We, on the other hand,
41 assume column vectors everywhere.
42
43 SETUP::
44
45 sage: from mjo.eja.eja_algebra import random_eja
46
47 TESTS:
48
49 The definition of `x^2` is the unambiguous `x*x`::
50
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
53 sage: x*x == (x^2)
54 True
55
56 A few examples of power-associativity::
57
58 sage: set_random_seed()
59 sage: x = random_eja().random_element()
60 sage: x*(x*x)*(x*x) == x^5
61 True
62 sage: (x*x)*(x*x*x) == x^5
63 True
64
65 We also know that powers operator-commute (Koecher, Chapter
66 III, Corollary 1)::
67
68 sage: set_random_seed()
69 sage: x = random_eja().random_element()
70 sage: m = ZZ.random_element(0,10)
71 sage: n = ZZ.random_element(0,10)
72 sage: Lxm = (x^m).operator()
73 sage: Lxn = (x^n).operator()
74 sage: Lxm*Lxn == Lxn*Lxm
75 True
76
77 """
78 if n == 0:
79 return self.parent().one()
80 elif n == 1:
81 return self
82 else:
83 return (self**(n-1))*self
84
85
86 def apply_univariate_polynomial(self, p):
87 """
88 Apply the univariate polynomial ``p`` to this element.
89
90 A priori, SageMath won't allow us to apply a univariate
91 polynomial to an element of an EJA, because we don't know
92 that EJAs are rings (they are usually not associative). Of
93 course, we know that EJAs are power-associative, so the
94 operation is ultimately kosher. This function sidesteps
95 the CAS to get the answer we want and expect.
96
97 SETUP::
98
99 sage: from mjo.eja.eja_algebra import (HadamardEJA,
100 ....: random_eja)
101
102 EXAMPLES::
103
104 sage: R = PolynomialRing(QQ, 't')
105 sage: t = R.gen(0)
106 sage: p = t^4 - t^3 + 5*t - 2
107 sage: J = HadamardEJA(5)
108 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
109 True
110
111 TESTS:
112
113 We should always get back an element of the algebra::
114
115 sage: set_random_seed()
116 sage: p = PolynomialRing(AA, 't').random_element()
117 sage: J = random_eja()
118 sage: x = J.random_element()
119 sage: x.apply_univariate_polynomial(p) in J
120 True
121
122 """
123 if len(p.variables()) > 1:
124 raise ValueError("not a univariate polynomial")
125 P = self.parent()
126 R = P.base_ring()
127 # Convert the coeficcients to the parent's base ring,
128 # because a priori they might live in an (unnecessarily)
129 # larger ring for which P.sum() would fail below.
130 cs = [ R(c) for c in p.coefficients(sparse=False) ]
131 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
132
133
134 def characteristic_polynomial(self):
135 """
136 Return the characteristic polynomial of this element.
137
138 SETUP::
139
140 sage: from mjo.eja.eja_algebra import HadamardEJA
141
142 EXAMPLES:
143
144 The rank of `R^3` is three, and the minimal polynomial of
145 the identity element is `(t-1)` from which it follows that
146 the characteristic polynomial should be `(t-1)^3`::
147
148 sage: J = HadamardEJA(3)
149 sage: J.one().characteristic_polynomial()
150 t^3 - 3*t^2 + 3*t - 1
151
152 Likewise, the characteristic of the zero element in the
153 rank-three algebra `R^{n}` should be `t^{3}`::
154
155 sage: J = HadamardEJA(3)
156 sage: J.zero().characteristic_polynomial()
157 t^3
158
159 TESTS:
160
161 The characteristic polynomial of an element should evaluate
162 to zero on that element::
163
164 sage: set_random_seed()
165 sage: x = HadamardEJA(3).random_element()
166 sage: p = x.characteristic_polynomial()
167 sage: x.apply_univariate_polynomial(p)
168 0
169
170 The characteristic polynomials of the zero and unit elements
171 should be what we think they are in a subalgebra, too::
172
173 sage: J = HadamardEJA(3)
174 sage: p1 = J.one().characteristic_polynomial()
175 sage: q1 = J.zero().characteristic_polynomial()
176 sage: e0,e1,e2 = J.gens()
177 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
178 sage: p2 = A.one().characteristic_polynomial()
179 sage: q2 = A.zero().characteristic_polynomial()
180 sage: p1 == p2
181 True
182 sage: q1 == q2
183 True
184
185 """
186 p = self.parent().characteristic_polynomial()
187 return p(*self.to_vector())
188
189
190 def inner_product(self, other):
191 """
192 Return the parent algebra's inner product of myself and ``other``.
193
194 SETUP::
195
196 sage: from mjo.eja.eja_algebra import (
197 ....: ComplexHermitianEJA,
198 ....: JordanSpinEJA,
199 ....: QuaternionHermitianEJA,
200 ....: RealSymmetricEJA,
201 ....: random_eja)
202
203 EXAMPLES:
204
205 The inner product in the Jordan spin algebra is the usual
206 inner product on `R^n` (this example only works because the
207 basis for the Jordan algebra is the standard basis in `R^n`)::
208
209 sage: J = JordanSpinEJA(3)
210 sage: x = vector(QQ,[1,2,3])
211 sage: y = vector(QQ,[4,5,6])
212 sage: x.inner_product(y)
213 32
214 sage: J.from_vector(x).inner_product(J.from_vector(y))
215 32
216
217 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
218 multiplication is the usual matrix multiplication in `S^n`,
219 so the inner product of the identity matrix with itself
220 should be the `n`::
221
222 sage: J = RealSymmetricEJA(3)
223 sage: J.one().inner_product(J.one())
224 3
225
226 Likewise, the inner product on `C^n` is `<X,Y> =
227 Re(trace(X*Y))`, where we must necessarily take the real
228 part because the product of Hermitian matrices may not be
229 Hermitian::
230
231 sage: J = ComplexHermitianEJA(3)
232 sage: J.one().inner_product(J.one())
233 3
234
235 Ditto for the quaternions::
236
237 sage: J = QuaternionHermitianEJA(3)
238 sage: J.one().inner_product(J.one())
239 3
240
241 TESTS:
242
243 Ensure that we can always compute an inner product, and that
244 it gives us back a real number::
245
246 sage: set_random_seed()
247 sage: J = random_eja()
248 sage: x,y = J.random_elements(2)
249 sage: x.inner_product(y) in RLF
250 True
251
252 """
253 P = self.parent()
254 if not other in P:
255 raise TypeError("'other' must live in the same algebra")
256
257 return P.inner_product(self, other)
258
259
260 def operator_commutes_with(self, other):
261 """
262 Return whether or not this element operator-commutes
263 with ``other``.
264
265 SETUP::
266
267 sage: from mjo.eja.eja_algebra import random_eja
268
269 EXAMPLES:
270
271 The definition of a Jordan algebra says that any element
272 operator-commutes with its square::
273
274 sage: set_random_seed()
275 sage: x = random_eja().random_element()
276 sage: x.operator_commutes_with(x^2)
277 True
278
279 TESTS:
280
281 Test Lemma 1 from Chapter III of Koecher::
282
283 sage: set_random_seed()
284 sage: u,v = random_eja().random_elements(2)
285 sage: lhs = u.operator_commutes_with(u*v)
286 sage: rhs = v.operator_commutes_with(u^2)
287 sage: lhs == rhs
288 True
289
290 Test the first polarization identity from my notes, Koecher
291 Chapter III, or from Baes (2.3)::
292
293 sage: set_random_seed()
294 sage: x,y = random_eja().random_elements(2)
295 sage: Lx = x.operator()
296 sage: Ly = y.operator()
297 sage: Lxx = (x*x).operator()
298 sage: Lxy = (x*y).operator()
299 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
300 True
301
302 Test the second polarization identity from my notes or from
303 Baes (2.4)::
304
305 sage: set_random_seed()
306 sage: x,y,z = random_eja().random_elements(3)
307 sage: Lx = x.operator()
308 sage: Ly = y.operator()
309 sage: Lz = z.operator()
310 sage: Lzy = (z*y).operator()
311 sage: Lxy = (x*y).operator()
312 sage: Lxz = (x*z).operator()
313 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
314 True
315
316 Test the third polarization identity from my notes or from
317 Baes (2.5)::
318
319 sage: set_random_seed()
320 sage: u,y,z = random_eja().random_elements(3)
321 sage: Lu = u.operator()
322 sage: Ly = y.operator()
323 sage: Lz = z.operator()
324 sage: Lzy = (z*y).operator()
325 sage: Luy = (u*y).operator()
326 sage: Luz = (u*z).operator()
327 sage: Luyz = (u*(y*z)).operator()
328 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
329 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
330 sage: bool(lhs == rhs)
331 True
332
333 """
334 if not other in self.parent():
335 raise TypeError("'other' must live in the same algebra")
336
337 A = self.operator()
338 B = other.operator()
339 return (A*B == B*A)
340
341
342 def det(self):
343 """
344 Return my determinant, the product of my eigenvalues.
345
346 SETUP::
347
348 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
349 ....: TrivialEJA,
350 ....: random_eja)
351
352 EXAMPLES::
353
354 sage: J = JordanSpinEJA(2)
355 sage: e0,e1 = J.gens()
356 sage: x = sum( J.gens() )
357 sage: x.det()
358 0
359
360 ::
361
362 sage: J = JordanSpinEJA(3)
363 sage: e0,e1,e2 = J.gens()
364 sage: x = sum( J.gens() )
365 sage: x.det()
366 -1
367
368 The determinant of the sole element in the rank-zero trivial
369 algebra is ``1``, by three paths of reasoning. First, its
370 characteristic polynomial is a constant ``1``, so the constant
371 term in that polynomial is ``1``. Second, the characteristic
372 polynomial evaluated at zero is again ``1``. And finally, the
373 (empty) product of its eigenvalues is likewise just unity::
374
375 sage: J = TrivialEJA()
376 sage: J.zero().det()
377 1
378
379 TESTS:
380
381 An element is invertible if and only if its determinant is
382 non-zero::
383
384 sage: set_random_seed()
385 sage: x = random_eja().random_element()
386 sage: x.is_invertible() == (x.det() != 0)
387 True
388
389 Ensure that the determinant is multiplicative on an associative
390 subalgebra as in Faraut and Korányi's Proposition II.2.2::
391
392 sage: set_random_seed()
393 sage: J = random_eja().random_element().subalgebra_generated_by()
394 sage: x,y = J.random_elements(2)
395 sage: (x*y).det() == x.det()*y.det()
396 True
397 """
398 P = self.parent()
399 r = P.rank()
400
401 if r == 0:
402 # Special case, since we don't get the a0=1
403 # coefficient when the rank of the algebra
404 # is zero.
405 return P.base_ring().one()
406
407 p = P._charpoly_coefficients()[0]
408 # The _charpoly_coeff function already adds the factor of -1
409 # to ensure that _charpoly_coefficients()[0] is really what
410 # appears in front of t^{0} in the charpoly. However, we want
411 # (-1)^r times THAT for the determinant.
412 return ((-1)**r)*p(*self.to_vector())
413
414
415 def inverse(self):
416 """
417 Return the Jordan-multiplicative inverse of this element.
418
419 ALGORITHM:
420
421 We appeal to the quadratic representation as in Koecher's
422 Theorem 12 in Chapter III, Section 5.
423
424 SETUP::
425
426 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
427 ....: JordanSpinEJA,
428 ....: random_eja)
429
430 EXAMPLES:
431
432 The inverse in the spin factor algebra is given in Alizadeh's
433 Example 11.11::
434
435 sage: set_random_seed()
436 sage: J = JordanSpinEJA.random_instance()
437 sage: x = J.random_element()
438 sage: while not x.is_invertible():
439 ....: x = J.random_element()
440 sage: x_vec = x.to_vector()
441 sage: x0 = x_vec[:1]
442 sage: x_bar = x_vec[1:]
443 sage: coeff = x0.inner_product(x0) - x_bar.inner_product(x_bar)
444 sage: x_inverse = x_vec.parent()(x0.list() + (-x_bar).list())
445 sage: if not coeff.is_zero(): x_inverse = x_inverse/coeff
446 sage: x.inverse() == J.from_vector(x_inverse)
447 True
448
449 Trying to invert a non-invertible element throws an error:
450
451 sage: JordanSpinEJA(3).zero().inverse()
452 Traceback (most recent call last):
453 ...
454 ValueError: element is not invertible
455
456 TESTS:
457
458 The identity element is its own inverse::
459
460 sage: set_random_seed()
461 sage: J = random_eja()
462 sage: J.one().inverse() == J.one()
463 True
464
465 If an element has an inverse, it acts like one::
466
467 sage: set_random_seed()
468 sage: J = random_eja()
469 sage: x = J.random_element()
470 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
471 True
472
473 The inverse of the inverse is what we started with::
474
475 sage: set_random_seed()
476 sage: J = random_eja()
477 sage: x = J.random_element()
478 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
479 True
480
481 Proposition II.2.3 in Faraut and Korányi says that the inverse
482 of an element is the inverse of its left-multiplication operator
483 applied to the algebra's identity, when that inverse exists::
484
485 sage: set_random_seed()
486 sage: J = random_eja()
487 sage: x = J.random_element()
488 sage: (not x.operator().is_invertible()) or (
489 ....: x.operator().inverse()(J.one()) == x.inverse() )
490 True
491
492 Proposition II.2.4 in Faraut and Korányi gives a formula for
493 the inverse based on the characteristic polynomial and the
494 Cayley-Hamilton theorem for Euclidean Jordan algebras::
495
496 sage: set_random_seed()
497 sage: J = ComplexHermitianEJA(3)
498 sage: x = J.random_element()
499 sage: while not x.is_invertible():
500 ....: x = J.random_element()
501 sage: r = J.rank()
502 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
503 sage: expected = (-1)^(r+1)/x.det()
504 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
505 sage: x.inverse() == expected
506 True
507
508 """
509 if not self.is_invertible():
510 raise ValueError("element is not invertible")
511
512 return (~self.quadratic_representation())(self)
513
514
515 def is_invertible(self):
516 """
517 Return whether or not this element is invertible.
518
519 ALGORITHM:
520
521 The usual way to do this is to check if the determinant is
522 zero, but we need the characteristic polynomial for the
523 determinant. The minimal polynomial is a lot easier to get,
524 so we use Corollary 2 in Chapter V of Koecher to check
525 whether or not the paren't algebra's zero element is a root
526 of this element's minimal polynomial.
527
528 Beware that we can't use the superclass method, because it
529 relies on the algebra being associative.
530
531 SETUP::
532
533 sage: from mjo.eja.eja_algebra import random_eja
534
535 TESTS:
536
537 The identity element is always invertible::
538
539 sage: set_random_seed()
540 sage: J = random_eja()
541 sage: J.one().is_invertible()
542 True
543
544 The zero element is never invertible in a non-trivial algebra::
545
546 sage: set_random_seed()
547 sage: J = random_eja()
548 sage: (not J.is_trivial()) and J.zero().is_invertible()
549 False
550
551 """
552 if self.is_zero():
553 if self.parent().is_trivial():
554 return True
555 else:
556 return False
557
558 # In fact, we only need to know if the constant term is non-zero,
559 # so we can pass in the field's zero element instead.
560 zero = self.base_ring().zero()
561 p = self.minimal_polynomial()
562 return not (p(zero) == zero)
563
564
565 def is_primitive_idempotent(self):
566 """
567 Return whether or not this element is a primitive (or minimal)
568 idempotent.
569
570 A primitive idempotent is a non-zero idempotent that is not
571 the sum of two other non-zero idempotents. Remark 2.7.15 in
572 Baes shows that this is what he refers to as a "minimal
573 idempotent."
574
575 An element of a Euclidean Jordan algebra is a minimal idempotent
576 if it :meth:`is_idempotent` and if its Peirce subalgebra
577 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
578 Proposition 2.7.17).
579
580 SETUP::
581
582 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
583 ....: RealSymmetricEJA,
584 ....: TrivialEJA,
585 ....: random_eja)
586
587 WARNING::
588
589 This method is sloooooow.
590
591 EXAMPLES:
592
593 The spectral decomposition of a non-regular element should always
594 contain at least one non-minimal idempotent::
595
596 sage: J = RealSymmetricEJA(3)
597 sage: x = sum(J.gens())
598 sage: x.is_regular()
599 False
600 sage: [ c.is_primitive_idempotent()
601 ....: for (l,c) in x.spectral_decomposition() ]
602 [False, True]
603
604 On the other hand, the spectral decomposition of a regular
605 element should always be in terms of minimal idempotents::
606
607 sage: J = JordanSpinEJA(4)
608 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
609 sage: x.is_regular()
610 True
611 sage: [ c.is_primitive_idempotent()
612 ....: for (l,c) in x.spectral_decomposition() ]
613 [True, True]
614
615 TESTS:
616
617 The identity element is minimal only in an EJA of rank one::
618
619 sage: set_random_seed()
620 sage: J = random_eja()
621 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
622 True
623
624 A non-idempotent cannot be a minimal idempotent::
625
626 sage: set_random_seed()
627 sage: J = JordanSpinEJA(4)
628 sage: x = J.random_element()
629 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
630 False
631
632 Proposition 2.7.19 in Baes says that an element is a minimal
633 idempotent if and only if it's idempotent with trace equal to
634 unity::
635
636 sage: set_random_seed()
637 sage: J = JordanSpinEJA(4)
638 sage: x = J.random_element()
639 sage: expected = (x.is_idempotent() and x.trace() == 1)
640 sage: actual = x.is_primitive_idempotent()
641 sage: actual == expected
642 True
643
644 Primitive idempotents must be non-zero::
645
646 sage: set_random_seed()
647 sage: J = random_eja()
648 sage: J.zero().is_idempotent()
649 True
650 sage: J.zero().is_primitive_idempotent()
651 False
652
653 As a consequence of the fact that primitive idempotents must
654 be non-zero, there are no primitive idempotents in a trivial
655 Euclidean Jordan algebra::
656
657 sage: J = TrivialEJA()
658 sage: J.one().is_idempotent()
659 True
660 sage: J.one().is_primitive_idempotent()
661 False
662
663 """
664 if not self.is_idempotent():
665 return False
666
667 if self.is_zero():
668 return False
669
670 (_,_,J1) = self.parent().peirce_decomposition(self)
671 return (J1.dimension() == 1)
672
673
674 def is_nilpotent(self):
675 """
676 Return whether or not some power of this element is zero.
677
678 ALGORITHM:
679
680 We use Theorem 5 in Chapter III of Koecher, which says that
681 an element ``x`` is nilpotent if and only if ``x.operator()``
682 is nilpotent. And it is a basic fact of linear algebra that
683 an operator on an `n`-dimensional space is nilpotent if and
684 only if, when raised to the `n`th power, it equals the zero
685 operator (for example, see Axler Corollary 8.8).
686
687 SETUP::
688
689 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
690 ....: random_eja)
691
692 EXAMPLES::
693
694 sage: J = JordanSpinEJA(3)
695 sage: x = sum(J.gens())
696 sage: x.is_nilpotent()
697 False
698
699 TESTS:
700
701 The identity element is never nilpotent, except in a trivial EJA::
702
703 sage: set_random_seed()
704 sage: J = random_eja()
705 sage: J.one().is_nilpotent() and not J.is_trivial()
706 False
707
708 The additive identity is always nilpotent::
709
710 sage: set_random_seed()
711 sage: random_eja().zero().is_nilpotent()
712 True
713
714 """
715 P = self.parent()
716 zero_operator = P.zero().operator()
717 return self.operator()**P.dimension() == zero_operator
718
719
720 def is_regular(self):
721 """
722 Return whether or not this is a regular element.
723
724 SETUP::
725
726 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
727 ....: random_eja)
728
729 EXAMPLES:
730
731 The identity element always has degree one, but any element
732 linearly-independent from it is regular::
733
734 sage: J = JordanSpinEJA(5)
735 sage: J.one().is_regular()
736 False
737 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
738 sage: for x in J.gens():
739 ....: (J.one() + x).is_regular()
740 False
741 True
742 True
743 True
744 True
745
746 TESTS:
747
748 The zero element should never be regular, unless the parent
749 algebra has dimension less than or equal to one::
750
751 sage: set_random_seed()
752 sage: J = random_eja()
753 sage: J.dimension() <= 1 or not J.zero().is_regular()
754 True
755
756 The unit element isn't regular unless the algebra happens to
757 consist of only its scalar multiples::
758
759 sage: set_random_seed()
760 sage: J = random_eja()
761 sage: J.dimension() <= 1 or not J.one().is_regular()
762 True
763
764 """
765 return self.degree() == self.parent().rank()
766
767
768 def degree(self):
769 """
770 Return the degree of this element, which is defined to be
771 the degree of its minimal polynomial.
772
773 ALGORITHM:
774
775 For now, we skip the messy minimal polynomial computation
776 and instead return the dimension of the vector space spanned
777 by the powers of this element. The latter is a bit more
778 straightforward to compute.
779
780 SETUP::
781
782 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
783 ....: random_eja)
784
785 EXAMPLES::
786
787 sage: J = JordanSpinEJA(4)
788 sage: J.one().degree()
789 1
790 sage: e0,e1,e2,e3 = J.gens()
791 sage: (e0 - e1).degree()
792 2
793
794 In the spin factor algebra (of rank two), all elements that
795 aren't multiples of the identity are regular::
796
797 sage: set_random_seed()
798 sage: J = JordanSpinEJA.random_instance()
799 sage: x = J.random_element()
800 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
801 True
802
803 TESTS:
804
805 The zero and unit elements are both of degree one in nontrivial
806 algebras::
807
808 sage: set_random_seed()
809 sage: J = random_eja()
810 sage: d = J.zero().degree()
811 sage: (J.is_trivial() and d == 0) or d == 1
812 True
813 sage: d = J.one().degree()
814 sage: (J.is_trivial() and d == 0) or d == 1
815 True
816
817 Our implementation agrees with the definition::
818
819 sage: set_random_seed()
820 sage: x = random_eja().random_element()
821 sage: x.degree() == x.minimal_polynomial().degree()
822 True
823
824 """
825 if self.is_zero() and not self.parent().is_trivial():
826 # The minimal polynomial of zero in a nontrivial algebra
827 # is "t"; in a trivial algebra it's "1" by convention
828 # (it's an empty product).
829 return 1
830 return self.subalgebra_generated_by().dimension()
831
832
833 def left_matrix(self):
834 """
835 Our parent class defines ``left_matrix`` and ``matrix``
836 methods whose names are misleading. We don't want them.
837 """
838 raise NotImplementedError("use operator().matrix() instead")
839
840 matrix = left_matrix
841
842
843 def minimal_polynomial(self):
844 """
845 Return the minimal polynomial of this element,
846 as a function of the variable `t`.
847
848 ALGORITHM:
849
850 We restrict ourselves to the associative subalgebra
851 generated by this element, and then return the minimal
852 polynomial of this element's operator matrix (in that
853 subalgebra). This works by Baes Proposition 2.3.16.
854
855 SETUP::
856
857 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
858 ....: RealSymmetricEJA,
859 ....: TrivialEJA,
860 ....: random_eja)
861
862 EXAMPLES:
863
864 Keeping in mind that the polynomial ``1`` evaluates the identity
865 element (also the zero element) of the trivial algebra, it is clear
866 that the polynomial ``1`` is the minimal polynomial of the only
867 element in a trivial algebra::
868
869 sage: J = TrivialEJA()
870 sage: J.one().minimal_polynomial()
871 1
872 sage: J.zero().minimal_polynomial()
873 1
874
875 TESTS:
876
877 The minimal polynomial of the identity and zero elements are
878 always the same, except in trivial algebras where the minimal
879 polynomial of the unit/zero element is ``1``::
880
881 sage: set_random_seed()
882 sage: J = random_eja()
883 sage: mu = J.one().minimal_polynomial()
884 sage: t = mu.parent().gen()
885 sage: mu + int(J.is_trivial())*(t-2)
886 t - 1
887 sage: mu = J.zero().minimal_polynomial()
888 sage: t = mu.parent().gen()
889 sage: mu + int(J.is_trivial())*(t-1)
890 t
891
892 The degree of an element is (by one definition) the degree
893 of its minimal polynomial::
894
895 sage: set_random_seed()
896 sage: x = random_eja().random_element()
897 sage: x.degree() == x.minimal_polynomial().degree()
898 True
899
900 The minimal polynomial and the characteristic polynomial coincide
901 and are known (see Alizadeh, Example 11.11) for all elements of
902 the spin factor algebra that aren't scalar multiples of the
903 identity. We require the dimension of the algebra to be at least
904 two here so that said elements actually exist::
905
906 sage: set_random_seed()
907 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
908 sage: n = ZZ.random_element(2, n_max)
909 sage: J = JordanSpinEJA(n)
910 sage: y = J.random_element()
911 sage: while y == y.coefficient(0)*J.one():
912 ....: y = J.random_element()
913 sage: y0 = y.to_vector()[0]
914 sage: y_bar = y.to_vector()[1:]
915 sage: actual = y.minimal_polynomial()
916 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
917 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
918 sage: bool(actual == expected)
919 True
920
921 The minimal polynomial should always kill its element::
922
923 sage: set_random_seed()
924 sage: x = random_eja().random_element()
925 sage: p = x.minimal_polynomial()
926 sage: x.apply_univariate_polynomial(p)
927 0
928
929 The minimal polynomial is invariant under a change of basis,
930 and in particular, a re-scaling of the basis::
931
932 sage: set_random_seed()
933 sage: n_max = RealSymmetricEJA._max_test_case_size()
934 sage: n = ZZ.random_element(1, n_max)
935 sage: J1 = RealSymmetricEJA(n)
936 sage: J2 = RealSymmetricEJA(n,normalize_basis=False)
937 sage: X = random_matrix(AA,n)
938 sage: X = X*X.transpose()
939 sage: x1 = J1(X)
940 sage: x2 = J2(X)
941 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
942 True
943
944 """
945 if self.is_zero():
946 # We would generate a zero-dimensional subalgebra
947 # where the minimal polynomial would be constant.
948 # That might be correct, but only if *this* algebra
949 # is trivial too.
950 if not self.parent().is_trivial():
951 # Pretty sure we know what the minimal polynomial of
952 # the zero operator is going to be. This ensures
953 # consistency of e.g. the polynomial variable returned
954 # in the "normal" case without us having to think about it.
955 return self.operator().minimal_polynomial()
956
957 A = self.subalgebra_generated_by()
958 return A(self).operator().minimal_polynomial()
959
960
961
962 def natural_representation(self):
963 """
964 Return a more-natural representation of this element.
965
966 Every finite-dimensional Euclidean Jordan Algebra is a
967 direct sum of five simple algebras, four of which comprise
968 Hermitian matrices. This method returns the original
969 "natural" representation of this element as a Hermitian
970 matrix, if it has one. If not, you get the usual representation.
971
972 SETUP::
973
974 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
975 ....: QuaternionHermitianEJA)
976
977 EXAMPLES::
978
979 sage: J = ComplexHermitianEJA(3)
980 sage: J.one()
981 e0 + e3 + e8
982 sage: J.one().natural_representation()
983 [1 0 0 0 0 0]
984 [0 1 0 0 0 0]
985 [0 0 1 0 0 0]
986 [0 0 0 1 0 0]
987 [0 0 0 0 1 0]
988 [0 0 0 0 0 1]
989
990 ::
991
992 sage: J = QuaternionHermitianEJA(3)
993 sage: J.one()
994 e0 + e5 + e14
995 sage: J.one().natural_representation()
996 [1 0 0 0 0 0 0 0 0 0 0 0]
997 [0 1 0 0 0 0 0 0 0 0 0 0]
998 [0 0 1 0 0 0 0 0 0 0 0 0]
999 [0 0 0 1 0 0 0 0 0 0 0 0]
1000 [0 0 0 0 1 0 0 0 0 0 0 0]
1001 [0 0 0 0 0 1 0 0 0 0 0 0]
1002 [0 0 0 0 0 0 1 0 0 0 0 0]
1003 [0 0 0 0 0 0 0 1 0 0 0 0]
1004 [0 0 0 0 0 0 0 0 1 0 0 0]
1005 [0 0 0 0 0 0 0 0 0 1 0 0]
1006 [0 0 0 0 0 0 0 0 0 0 1 0]
1007 [0 0 0 0 0 0 0 0 0 0 0 1]
1008
1009 """
1010 B = self.parent().natural_basis()
1011 W = self.parent().natural_basis_space()
1012 return W.linear_combination(zip(B,self.to_vector()))
1013
1014
1015 def norm(self):
1016 """
1017 The norm of this element with respect to :meth:`inner_product`.
1018
1019 SETUP::
1020
1021 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1022 ....: HadamardEJA)
1023
1024 EXAMPLES::
1025
1026 sage: J = HadamardEJA(2)
1027 sage: x = sum(J.gens())
1028 sage: x.norm()
1029 1.414213562373095?
1030
1031 ::
1032
1033 sage: J = JordanSpinEJA(4)
1034 sage: x = sum(J.gens())
1035 sage: x.norm()
1036 2
1037
1038 """
1039 return self.inner_product(self).sqrt()
1040
1041
1042 def operator(self):
1043 """
1044 Return the left-multiplication-by-this-element
1045 operator on the ambient algebra.
1046
1047 SETUP::
1048
1049 sage: from mjo.eja.eja_algebra import random_eja
1050
1051 TESTS::
1052
1053 sage: set_random_seed()
1054 sage: J = random_eja()
1055 sage: x,y = J.random_elements(2)
1056 sage: x.operator()(y) == x*y
1057 True
1058 sage: y.operator()(x) == x*y
1059 True
1060
1061 """
1062 P = self.parent()
1063 left_mult_by_self = lambda y: self*y
1064 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1065 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1066 P,
1067 P,
1068 L.matrix() )
1069
1070
1071 def quadratic_representation(self, other=None):
1072 """
1073 Return the quadratic representation of this element.
1074
1075 SETUP::
1076
1077 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1078 ....: random_eja)
1079
1080 EXAMPLES:
1081
1082 The explicit form in the spin factor algebra is given by
1083 Alizadeh's Example 11.12::
1084
1085 sage: set_random_seed()
1086 sage: x = JordanSpinEJA.random_instance().random_element()
1087 sage: x_vec = x.to_vector()
1088 sage: n = x_vec.degree()
1089 sage: x0 = x_vec[0]
1090 sage: x_bar = x_vec[1:]
1091 sage: A = matrix(AA, 1, [x_vec.inner_product(x_vec)])
1092 sage: B = 2*x0*x_bar.row()
1093 sage: C = 2*x0*x_bar.column()
1094 sage: D = matrix.identity(AA, n-1)
1095 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
1096 sage: D = D + 2*x_bar.tensor_product(x_bar)
1097 sage: Q = matrix.block(2,2,[A,B,C,D])
1098 sage: Q == x.quadratic_representation().matrix()
1099 True
1100
1101 Test all of the properties from Theorem 11.2 in Alizadeh::
1102
1103 sage: set_random_seed()
1104 sage: J = random_eja()
1105 sage: x,y = J.random_elements(2)
1106 sage: Lx = x.operator()
1107 sage: Lxx = (x*x).operator()
1108 sage: Qx = x.quadratic_representation()
1109 sage: Qy = y.quadratic_representation()
1110 sage: Qxy = x.quadratic_representation(y)
1111 sage: Qex = J.one().quadratic_representation(x)
1112 sage: n = ZZ.random_element(10)
1113 sage: Qxn = (x^n).quadratic_representation()
1114
1115 Property 1:
1116
1117 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1118 True
1119
1120 Property 2 (multiply on the right for :trac:`28272`):
1121
1122 sage: alpha = J.base_ring().random_element()
1123 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1124 True
1125
1126 Property 3:
1127
1128 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1129 True
1130
1131 sage: not x.is_invertible() or (
1132 ....: ~Qx
1133 ....: ==
1134 ....: x.inverse().quadratic_representation() )
1135 True
1136
1137 sage: Qxy(J.one()) == x*y
1138 True
1139
1140 Property 4:
1141
1142 sage: not x.is_invertible() or (
1143 ....: x.quadratic_representation(x.inverse())*Qx
1144 ....: == Qx*x.quadratic_representation(x.inverse()) )
1145 True
1146
1147 sage: not x.is_invertible() or (
1148 ....: x.quadratic_representation(x.inverse())*Qx
1149 ....: ==
1150 ....: 2*Lx*Qex - Qx )
1151 True
1152
1153 sage: 2*Lx*Qex - Qx == Lxx
1154 True
1155
1156 Property 5:
1157
1158 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1159 True
1160
1161 Property 6:
1162
1163 sage: Qxn == (Qx)^n
1164 True
1165
1166 Property 7:
1167
1168 sage: not x.is_invertible() or (
1169 ....: Qx*x.inverse().operator() == Lx )
1170 True
1171
1172 Property 8:
1173
1174 sage: not x.operator_commutes_with(y) or (
1175 ....: Qx(y)^n == Qxn(y^n) )
1176 True
1177
1178 """
1179 if other is None:
1180 other=self
1181 elif not other in self.parent():
1182 raise TypeError("'other' must live in the same algebra")
1183
1184 L = self.operator()
1185 M = other.operator()
1186 return ( L*M + M*L - (self*other).operator() )
1187
1188
1189
1190 def spectral_decomposition(self):
1191 """
1192 Return the unique spectral decomposition of this element.
1193
1194 ALGORITHM:
1195
1196 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1197 element's left-multiplication-by operator to the subalgebra it
1198 generates. We then compute the spectral decomposition of that
1199 operator, and the spectral projectors we get back must be the
1200 left-multiplication-by operators for the idempotents we
1201 seek. Thus applying them to the identity element gives us those
1202 idempotents.
1203
1204 Since the eigenvalues are required to be distinct, we take
1205 the spectral decomposition of the zero element to be zero
1206 times the identity element of the algebra (which is idempotent,
1207 obviously).
1208
1209 SETUP::
1210
1211 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1212
1213 EXAMPLES:
1214
1215 The spectral decomposition of the identity is ``1`` times itself,
1216 and the spectral decomposition of zero is ``0`` times the identity::
1217
1218 sage: J = RealSymmetricEJA(3)
1219 sage: J.one()
1220 e0 + e2 + e5
1221 sage: J.one().spectral_decomposition()
1222 [(1, e0 + e2 + e5)]
1223 sage: J.zero().spectral_decomposition()
1224 [(0, e0 + e2 + e5)]
1225
1226 TESTS::
1227
1228 sage: J = RealSymmetricEJA(4)
1229 sage: x = sum(J.gens())
1230 sage: sd = x.spectral_decomposition()
1231 sage: l0 = sd[0][0]
1232 sage: l1 = sd[1][0]
1233 sage: c0 = sd[0][1]
1234 sage: c1 = sd[1][1]
1235 sage: c0.inner_product(c1) == 0
1236 True
1237 sage: c0.is_idempotent()
1238 True
1239 sage: c1.is_idempotent()
1240 True
1241 sage: c0 + c1 == J.one()
1242 True
1243 sage: l0*c0 + l1*c1 == x
1244 True
1245
1246 The spectral decomposition should work in subalgebras, too::
1247
1248 sage: J = RealSymmetricEJA(4)
1249 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1250 sage: A = 2*e5 - 2*e8
1251 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1252 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1253 sage: (f0, f1, f2) = J1.gens()
1254 sage: f0.spectral_decomposition()
1255 [(0, 1.000000000000000?*f2), (1, 1.000000000000000?*f0)]
1256
1257 """
1258 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1259 result = []
1260 for (evalue, proj) in A(self).operator().spectral_decomposition():
1261 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1262 return result
1263
1264 def subalgebra_generated_by(self, orthonormalize_basis=False):
1265 """
1266 Return the associative subalgebra of the parent EJA generated
1267 by this element.
1268
1269 Since our parent algebra is unital, we want "subalgebra" to mean
1270 "unital subalgebra" as well; thus the subalgebra that an element
1271 generates will itself be a Euclidean Jordan algebra after
1272 restricting the algebra operations appropriately. This is the
1273 subalgebra that Faraut and Korányi work with in section II.2, for
1274 example.
1275
1276 SETUP::
1277
1278 sage: from mjo.eja.eja_algebra import random_eja
1279
1280 TESTS:
1281
1282 This subalgebra, being composed of only powers, is associative::
1283
1284 sage: set_random_seed()
1285 sage: x0 = random_eja().random_element()
1286 sage: A = x0.subalgebra_generated_by()
1287 sage: x,y,z = A.random_elements(3)
1288 sage: (x*y)*z == x*(y*z)
1289 True
1290
1291 Squaring in the subalgebra should work the same as in
1292 the superalgebra::
1293
1294 sage: set_random_seed()
1295 sage: x = random_eja().random_element()
1296 sage: A = x.subalgebra_generated_by()
1297 sage: A(x^2) == A(x)*A(x)
1298 True
1299
1300 By definition, the subalgebra generated by the zero element is
1301 the one-dimensional algebra generated by the identity
1302 element... unless the original algebra was trivial, in which
1303 case the subalgebra is trivial too::
1304
1305 sage: set_random_seed()
1306 sage: A = random_eja().zero().subalgebra_generated_by()
1307 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1308 True
1309
1310 """
1311 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1312
1313
1314 def subalgebra_idempotent(self):
1315 """
1316 Find an idempotent in the associative subalgebra I generate
1317 using Proposition 2.3.5 in Baes.
1318
1319 SETUP::
1320
1321 sage: from mjo.eja.eja_algebra import random_eja
1322
1323 TESTS:
1324
1325 Ensure that we can find an idempotent in a non-trivial algebra
1326 where there are non-nilpotent elements, or that we get the dumb
1327 solution in the trivial algebra::
1328
1329 sage: set_random_seed()
1330 sage: J = random_eja()
1331 sage: x = J.random_element()
1332 sage: while x.is_nilpotent() and not J.is_trivial():
1333 ....: x = J.random_element()
1334 sage: c = x.subalgebra_idempotent()
1335 sage: c^2 == c
1336 True
1337
1338 """
1339 if self.parent().is_trivial():
1340 return self
1341
1342 if self.is_nilpotent():
1343 raise ValueError("this only works with non-nilpotent elements!")
1344
1345 J = self.subalgebra_generated_by()
1346 u = J(self)
1347
1348 # The image of the matrix of left-u^m-multiplication
1349 # will be minimal for some natural number s...
1350 s = 0
1351 minimal_dim = J.dimension()
1352 for i in range(1, minimal_dim):
1353 this_dim = (u**i).operator().matrix().image().dimension()
1354 if this_dim < minimal_dim:
1355 minimal_dim = this_dim
1356 s = i
1357
1358 # Now minimal_matrix should correspond to the smallest
1359 # non-zero subspace in Baes's (or really, Koecher's)
1360 # proposition.
1361 #
1362 # However, we need to restrict the matrix to work on the
1363 # subspace... or do we? Can't we just solve, knowing that
1364 # A(c) = u^(s+1) should have a solution in the big space,
1365 # too?
1366 #
1367 # Beware, solve_right() means that we're using COLUMN vectors.
1368 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1369 u_next = u**(s+1)
1370 A = u_next.operator().matrix()
1371 c = J.from_vector(A.solve_right(u_next.to_vector()))
1372
1373 # Now c is the idempotent we want, but it still lives in the subalgebra.
1374 return c.superalgebra_element()
1375
1376
1377 def trace(self):
1378 """
1379 Return my trace, the sum of my eigenvalues.
1380
1381 In a trivial algebra, however you want to look at it, the trace is
1382 an empty sum for which we declare the result to be zero.
1383
1384 SETUP::
1385
1386 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1387 ....: HadamardEJA,
1388 ....: TrivialEJA,
1389 ....: random_eja)
1390
1391 EXAMPLES::
1392
1393 sage: J = TrivialEJA()
1394 sage: J.zero().trace()
1395 0
1396
1397 ::
1398 sage: J = JordanSpinEJA(3)
1399 sage: x = sum(J.gens())
1400 sage: x.trace()
1401 2
1402
1403 ::
1404
1405 sage: J = HadamardEJA(5)
1406 sage: J.one().trace()
1407 5
1408
1409 TESTS:
1410
1411 The trace of an element is a real number::
1412
1413 sage: set_random_seed()
1414 sage: J = random_eja()
1415 sage: J.random_element().trace() in RLF
1416 True
1417
1418 """
1419 P = self.parent()
1420 r = P.rank()
1421
1422 if r == 0:
1423 # Special case for the trivial algebra where
1424 # the trace is an empty sum.
1425 return P.base_ring().zero()
1426
1427 p = P._charpoly_coefficients()[r-1]
1428 # The _charpoly_coeff function already adds the factor of
1429 # -1 to ensure that _charpoly_coeff(r-1) is really what
1430 # appears in front of t^{r-1} in the charpoly. However,
1431 # we want the negative of THAT for the trace.
1432 return -p(*self.to_vector())
1433
1434
1435 def trace_inner_product(self, other):
1436 """
1437 Return the trace inner product of myself and ``other``.
1438
1439 SETUP::
1440
1441 sage: from mjo.eja.eja_algebra import random_eja
1442
1443 TESTS:
1444
1445 The trace inner product is commutative, bilinear, and associative::
1446
1447 sage: set_random_seed()
1448 sage: J = random_eja()
1449 sage: x,y,z = J.random_elements(3)
1450 sage: # commutative
1451 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1452 True
1453 sage: # bilinear
1454 sage: a = J.base_ring().random_element();
1455 sage: actual = (a*(x+z)).trace_inner_product(y)
1456 sage: expected = ( a*x.trace_inner_product(y) +
1457 ....: a*z.trace_inner_product(y) )
1458 sage: actual == expected
1459 True
1460 sage: actual = x.trace_inner_product(a*(y+z))
1461 sage: expected = ( a*x.trace_inner_product(y) +
1462 ....: a*x.trace_inner_product(z) )
1463 sage: actual == expected
1464 True
1465 sage: # associative
1466 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1467 True
1468
1469 """
1470 if not other in self.parent():
1471 raise TypeError("'other' must live in the same algebra")
1472
1473 return (self*other).trace()
1474
1475
1476 def trace_norm(self):
1477 """
1478 The norm of this element with respect to :meth:`trace_inner_product`.
1479
1480 SETUP::
1481
1482 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1483 ....: HadamardEJA)
1484
1485 EXAMPLES::
1486
1487 sage: J = HadamardEJA(2)
1488 sage: x = sum(J.gens())
1489 sage: x.trace_norm()
1490 1.414213562373095?
1491
1492 ::
1493
1494 sage: J = JordanSpinEJA(4)
1495 sage: x = sum(J.gens())
1496 sage: x.trace_norm()
1497 2.828427124746190?
1498
1499 """
1500 return self.trace_inner_product(self).sqrt()