]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: fix one more positional "field" argument.
[sage.d.git] / mjo / eja / eja_element.py
1 from sage.matrix.constructor import matrix
2 from sage.modules.free_module import VectorSpace
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4
5 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
6 from mjo.eja.eja_utils import _mat2vec
7
8 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
9 """
10 An element of a Euclidean Jordan algebra.
11 """
12
13 def __dir__(self):
14 """
15 Oh man, I should not be doing this. This hides the "disabled"
16 methods ``left_matrix`` and ``matrix`` from introspection;
17 in particular it removes them from tab-completion.
18 """
19 return filter(lambda s: s not in ['left_matrix', 'matrix'],
20 dir(self.__class__) )
21
22
23
24
25 def __pow__(self, n):
26 """
27 Return ``self`` raised to the power ``n``.
28
29 Jordan algebras are always power-associative; see for
30 example Faraut and Korányi, Proposition II.1.2 (ii).
31
32 We have to override this because our superclass uses row
33 vectors instead of column vectors! We, on the other hand,
34 assume column vectors everywhere.
35
36 SETUP::
37
38 sage: from mjo.eja.eja_algebra import random_eja
39
40 TESTS:
41
42 The definition of `x^2` is the unambiguous `x*x`::
43
44 sage: set_random_seed()
45 sage: x = random_eja().random_element()
46 sage: x*x == (x^2)
47 True
48
49 A few examples of power-associativity::
50
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
53 sage: x*(x*x)*(x*x) == x^5
54 True
55 sage: (x*x)*(x*x*x) == x^5
56 True
57
58 We also know that powers operator-commute (Koecher, Chapter
59 III, Corollary 1)::
60
61 sage: set_random_seed()
62 sage: x = random_eja().random_element()
63 sage: m = ZZ.random_element(0,10)
64 sage: n = ZZ.random_element(0,10)
65 sage: Lxm = (x^m).operator()
66 sage: Lxn = (x^n).operator()
67 sage: Lxm*Lxn == Lxn*Lxm
68 True
69
70 """
71 if n == 0:
72 return self.parent().one()
73 elif n == 1:
74 return self
75 else:
76 return (self**(n-1))*self
77
78
79 def apply_univariate_polynomial(self, p):
80 """
81 Apply the univariate polynomial ``p`` to this element.
82
83 A priori, SageMath won't allow us to apply a univariate
84 polynomial to an element of an EJA, because we don't know
85 that EJAs are rings (they are usually not associative). Of
86 course, we know that EJAs are power-associative, so the
87 operation is ultimately kosher. This function sidesteps
88 the CAS to get the answer we want and expect.
89
90 SETUP::
91
92 sage: from mjo.eja.eja_algebra import (HadamardEJA,
93 ....: random_eja)
94
95 EXAMPLES::
96
97 sage: R = PolynomialRing(QQ, 't')
98 sage: t = R.gen(0)
99 sage: p = t^4 - t^3 + 5*t - 2
100 sage: J = HadamardEJA(5)
101 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
102 True
103
104 TESTS:
105
106 We should always get back an element of the algebra::
107
108 sage: set_random_seed()
109 sage: p = PolynomialRing(AA, 't').random_element()
110 sage: J = random_eja()
111 sage: x = J.random_element()
112 sage: x.apply_univariate_polynomial(p) in J
113 True
114
115 """
116 if len(p.variables()) > 1:
117 raise ValueError("not a univariate polynomial")
118 P = self.parent()
119 R = P.base_ring()
120 # Convert the coeficcients to the parent's base ring,
121 # because a priori they might live in an (unnecessarily)
122 # larger ring for which P.sum() would fail below.
123 cs = [ R(c) for c in p.coefficients(sparse=False) ]
124 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
125
126
127 def characteristic_polynomial(self):
128 """
129 Return the characteristic polynomial of this element.
130
131 SETUP::
132
133 sage: from mjo.eja.eja_algebra import HadamardEJA
134
135 EXAMPLES:
136
137 The rank of `R^3` is three, and the minimal polynomial of
138 the identity element is `(t-1)` from which it follows that
139 the characteristic polynomial should be `(t-1)^3`::
140
141 sage: J = HadamardEJA(3)
142 sage: J.one().characteristic_polynomial()
143 t^3 - 3*t^2 + 3*t - 1
144
145 Likewise, the characteristic of the zero element in the
146 rank-three algebra `R^{n}` should be `t^{3}`::
147
148 sage: J = HadamardEJA(3)
149 sage: J.zero().characteristic_polynomial()
150 t^3
151
152 TESTS:
153
154 The characteristic polynomial of an element should evaluate
155 to zero on that element::
156
157 sage: set_random_seed()
158 sage: x = HadamardEJA(3).random_element()
159 sage: p = x.characteristic_polynomial()
160 sage: x.apply_univariate_polynomial(p)
161 0
162
163 The characteristic polynomials of the zero and unit elements
164 should be what we think they are in a subalgebra, too::
165
166 sage: J = HadamardEJA(3)
167 sage: p1 = J.one().characteristic_polynomial()
168 sage: q1 = J.zero().characteristic_polynomial()
169 sage: e0,e1,e2 = J.gens()
170 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
171 sage: p2 = A.one().characteristic_polynomial()
172 sage: q2 = A.zero().characteristic_polynomial()
173 sage: p1 == p2
174 True
175 sage: q1 == q2
176 True
177
178 """
179 p = self.parent().characteristic_polynomial_of()
180 return p(*self.to_vector())
181
182
183 def inner_product(self, other):
184 """
185 Return the parent algebra's inner product of myself and ``other``.
186
187 SETUP::
188
189 sage: from mjo.eja.eja_algebra import (
190 ....: ComplexHermitianEJA,
191 ....: JordanSpinEJA,
192 ....: QuaternionHermitianEJA,
193 ....: RealSymmetricEJA,
194 ....: random_eja)
195
196 EXAMPLES:
197
198 The inner product in the Jordan spin algebra is the usual
199 inner product on `R^n` (this example only works because the
200 basis for the Jordan algebra is the standard basis in `R^n`)::
201
202 sage: J = JordanSpinEJA(3)
203 sage: x = vector(QQ,[1,2,3])
204 sage: y = vector(QQ,[4,5,6])
205 sage: x.inner_product(y)
206 32
207 sage: J.from_vector(x).inner_product(J.from_vector(y))
208 32
209
210 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
211 multiplication is the usual matrix multiplication in `S^n`,
212 so the inner product of the identity matrix with itself
213 should be the `n`::
214
215 sage: J = RealSymmetricEJA(3)
216 sage: J.one().inner_product(J.one())
217 3
218
219 Likewise, the inner product on `C^n` is `<X,Y> =
220 Re(trace(X*Y))`, where we must necessarily take the real
221 part because the product of Hermitian matrices may not be
222 Hermitian::
223
224 sage: J = ComplexHermitianEJA(3)
225 sage: J.one().inner_product(J.one())
226 3
227
228 Ditto for the quaternions::
229
230 sage: J = QuaternionHermitianEJA(3)
231 sage: J.one().inner_product(J.one())
232 3
233
234 TESTS:
235
236 Ensure that we can always compute an inner product, and that
237 it gives us back a real number::
238
239 sage: set_random_seed()
240 sage: J = random_eja()
241 sage: x,y = J.random_elements(2)
242 sage: x.inner_product(y) in RLF
243 True
244
245 """
246 P = self.parent()
247 if not other in P:
248 raise TypeError("'other' must live in the same algebra")
249
250 return P.inner_product(self, other)
251
252
253 def operator_commutes_with(self, other):
254 """
255 Return whether or not this element operator-commutes
256 with ``other``.
257
258 SETUP::
259
260 sage: from mjo.eja.eja_algebra import random_eja
261
262 EXAMPLES:
263
264 The definition of a Jordan algebra says that any element
265 operator-commutes with its square::
266
267 sage: set_random_seed()
268 sage: x = random_eja().random_element()
269 sage: x.operator_commutes_with(x^2)
270 True
271
272 TESTS:
273
274 Test Lemma 1 from Chapter III of Koecher::
275
276 sage: set_random_seed()
277 sage: u,v = random_eja().random_elements(2)
278 sage: lhs = u.operator_commutes_with(u*v)
279 sage: rhs = v.operator_commutes_with(u^2)
280 sage: lhs == rhs
281 True
282
283 Test the first polarization identity from my notes, Koecher
284 Chapter III, or from Baes (2.3)::
285
286 sage: set_random_seed()
287 sage: x,y = random_eja().random_elements(2)
288 sage: Lx = x.operator()
289 sage: Ly = y.operator()
290 sage: Lxx = (x*x).operator()
291 sage: Lxy = (x*y).operator()
292 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
293 True
294
295 Test the second polarization identity from my notes or from
296 Baes (2.4)::
297
298 sage: set_random_seed()
299 sage: x,y,z = random_eja().random_elements(3)
300 sage: Lx = x.operator()
301 sage: Ly = y.operator()
302 sage: Lz = z.operator()
303 sage: Lzy = (z*y).operator()
304 sage: Lxy = (x*y).operator()
305 sage: Lxz = (x*z).operator()
306 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
307 True
308
309 Test the third polarization identity from my notes or from
310 Baes (2.5)::
311
312 sage: set_random_seed()
313 sage: u,y,z = random_eja().random_elements(3)
314 sage: Lu = u.operator()
315 sage: Ly = y.operator()
316 sage: Lz = z.operator()
317 sage: Lzy = (z*y).operator()
318 sage: Luy = (u*y).operator()
319 sage: Luz = (u*z).operator()
320 sage: Luyz = (u*(y*z)).operator()
321 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
322 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
323 sage: bool(lhs == rhs)
324 True
325
326 """
327 if not other in self.parent():
328 raise TypeError("'other' must live in the same algebra")
329
330 A = self.operator()
331 B = other.operator()
332 return (A*B == B*A)
333
334
335 def det(self):
336 """
337 Return my determinant, the product of my eigenvalues.
338
339 SETUP::
340
341 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
342 ....: TrivialEJA,
343 ....: RealSymmetricEJA,
344 ....: ComplexHermitianEJA,
345 ....: random_eja)
346
347 EXAMPLES::
348
349 sage: J = JordanSpinEJA(2)
350 sage: e0,e1 = J.gens()
351 sage: x = sum( J.gens() )
352 sage: x.det()
353 0
354
355 ::
356
357 sage: J = JordanSpinEJA(3)
358 sage: e0,e1,e2 = J.gens()
359 sage: x = sum( J.gens() )
360 sage: x.det()
361 -1
362
363 The determinant of the sole element in the rank-zero trivial
364 algebra is ``1``, by three paths of reasoning. First, its
365 characteristic polynomial is a constant ``1``, so the constant
366 term in that polynomial is ``1``. Second, the characteristic
367 polynomial evaluated at zero is again ``1``. And finally, the
368 (empty) product of its eigenvalues is likewise just unity::
369
370 sage: J = TrivialEJA()
371 sage: J.zero().det()
372 1
373
374 TESTS:
375
376 An element is invertible if and only if its determinant is
377 non-zero::
378
379 sage: set_random_seed()
380 sage: x = random_eja().random_element()
381 sage: x.is_invertible() == (x.det() != 0)
382 True
383
384 Ensure that the determinant is multiplicative on an associative
385 subalgebra as in Faraut and Korányi's Proposition II.2.2::
386
387 sage: set_random_seed()
388 sage: J = random_eja().random_element().subalgebra_generated_by()
389 sage: x,y = J.random_elements(2)
390 sage: (x*y).det() == x.det()*y.det()
391 True
392
393 The determinant in matrix algebras is just the usual determinant::
394
395 sage: set_random_seed()
396 sage: X = matrix.random(QQ,3)
397 sage: X = X + X.T
398 sage: J1 = RealSymmetricEJA(3)
399 sage: J2 = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
400 sage: expected = X.det()
401 sage: actual1 = J1(X).det()
402 sage: actual2 = J2(X).det()
403 sage: actual1 == expected
404 True
405 sage: actual2 == expected
406 True
407
408 ::
409
410 sage: set_random_seed()
411 sage: J1 = ComplexHermitianEJA(3)
412 sage: J2 = ComplexHermitianEJA(3,field=QQ,orthonormalize=False)
413 sage: X = matrix.random(GaussianIntegers(),3)
414 sage: X = X + X.H
415 sage: expected = AA(X.det())
416 sage: actual1 = J1(J1.real_embed(X)).det()
417 sage: actual2 = J2(J2.real_embed(X)).det()
418 sage: expected == actual1
419 True
420 sage: expected == actual2
421 True
422
423 """
424 P = self.parent()
425 r = P.rank()
426
427 if r == 0:
428 # Special case, since we don't get the a0=1
429 # coefficient when the rank of the algebra
430 # is zero.
431 return P.base_ring().one()
432
433 p = P._charpoly_coefficients()[0]
434 # The _charpoly_coeff function already adds the factor of -1
435 # to ensure that _charpoly_coefficients()[0] is really what
436 # appears in front of t^{0} in the charpoly. However, we want
437 # (-1)^r times THAT for the determinant.
438 return ((-1)**r)*p(*self.to_vector())
439
440
441 def inverse(self):
442 """
443 Return the Jordan-multiplicative inverse of this element.
444
445 ALGORITHM:
446
447 We appeal to the quadratic representation as in Koecher's
448 Theorem 12 in Chapter III, Section 5.
449
450 SETUP::
451
452 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
453 ....: JordanSpinEJA,
454 ....: random_eja)
455
456 EXAMPLES:
457
458 The inverse in the spin factor algebra is given in Alizadeh's
459 Example 11.11::
460
461 sage: set_random_seed()
462 sage: J = JordanSpinEJA.random_instance()
463 sage: x = J.random_element()
464 sage: while not x.is_invertible():
465 ....: x = J.random_element()
466 sage: x_vec = x.to_vector()
467 sage: x0 = x_vec[:1]
468 sage: x_bar = x_vec[1:]
469 sage: coeff = x0.inner_product(x0) - x_bar.inner_product(x_bar)
470 sage: x_inverse = x_vec.parent()(x0.list() + (-x_bar).list())
471 sage: if not coeff.is_zero(): x_inverse = x_inverse/coeff
472 sage: x.inverse() == J.from_vector(x_inverse)
473 True
474
475 Trying to invert a non-invertible element throws an error:
476
477 sage: JordanSpinEJA(3).zero().inverse()
478 Traceback (most recent call last):
479 ...
480 ValueError: element is not invertible
481
482 TESTS:
483
484 The identity element is its own inverse::
485
486 sage: set_random_seed()
487 sage: J = random_eja()
488 sage: J.one().inverse() == J.one()
489 True
490
491 If an element has an inverse, it acts like one::
492
493 sage: set_random_seed()
494 sage: J = random_eja()
495 sage: x = J.random_element()
496 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
497 True
498
499 The inverse of the inverse is what we started with::
500
501 sage: set_random_seed()
502 sage: J = random_eja()
503 sage: x = J.random_element()
504 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
505 True
506
507 Proposition II.2.3 in Faraut and Korányi says that the inverse
508 of an element is the inverse of its left-multiplication operator
509 applied to the algebra's identity, when that inverse exists::
510
511 sage: set_random_seed()
512 sage: J = random_eja()
513 sage: x = J.random_element()
514 sage: (not x.operator().is_invertible()) or (
515 ....: x.operator().inverse()(J.one()) == x.inverse() )
516 True
517
518 Proposition II.2.4 in Faraut and Korányi gives a formula for
519 the inverse based on the characteristic polynomial and the
520 Cayley-Hamilton theorem for Euclidean Jordan algebras::
521
522 sage: set_random_seed()
523 sage: J = ComplexHermitianEJA(3)
524 sage: x = J.random_element()
525 sage: while not x.is_invertible():
526 ....: x = J.random_element()
527 sage: r = J.rank()
528 sage: a = x.characteristic_polynomial().coefficients(sparse=False)
529 sage: expected = (-1)^(r+1)/x.det()
530 sage: expected *= sum( a[i+1]*x^i for i in range(r) )
531 sage: x.inverse() == expected
532 True
533
534 """
535 if not self.is_invertible():
536 raise ValueError("element is not invertible")
537
538 if self.parent()._charpoly_coefficients.is_in_cache():
539 # We can invert using our charpoly if it will be fast to
540 # compute. If the coefficients are cached, our rank had
541 # better be too!
542 r = self.parent().rank()
543 a = self.characteristic_polynomial().coefficients(sparse=False)
544 return (-1)**(r+1)*sum(a[i+1]*self**i for i in range(r))/self.det()
545
546 return (~self.quadratic_representation())(self)
547
548
549 def is_invertible(self):
550 """
551 Return whether or not this element is invertible.
552
553 ALGORITHM:
554
555 The usual way to do this is to check if the determinant is
556 zero, but we need the characteristic polynomial for the
557 determinant. The minimal polynomial is a lot easier to get,
558 so we use Corollary 2 in Chapter V of Koecher to check
559 whether or not the parent algebra's zero element is a root
560 of this element's minimal polynomial.
561
562 That is... unless the coefficients of our algebra's
563 "characteristic polynomial of" function are already cached!
564 In that case, we just use the determinant (which will be fast
565 as a result).
566
567 Beware that we can't use the superclass method, because it
568 relies on the algebra being associative.
569
570 SETUP::
571
572 sage: from mjo.eja.eja_algebra import random_eja
573
574 TESTS:
575
576 The identity element is always invertible::
577
578 sage: set_random_seed()
579 sage: J = random_eja()
580 sage: J.one().is_invertible()
581 True
582
583 The zero element is never invertible in a non-trivial algebra::
584
585 sage: set_random_seed()
586 sage: J = random_eja()
587 sage: (not J.is_trivial()) and J.zero().is_invertible()
588 False
589
590 """
591 if self.is_zero():
592 if self.parent().is_trivial():
593 return True
594 else:
595 return False
596
597 if self.parent()._charpoly_coefficients.is_in_cache():
598 # The determinant will be quicker than computing the minimal
599 # polynomial from scratch, most likely.
600 return (not self.det().is_zero())
601
602 # In fact, we only need to know if the constant term is non-zero,
603 # so we can pass in the field's zero element instead.
604 zero = self.base_ring().zero()
605 p = self.minimal_polynomial()
606 return not (p(zero) == zero)
607
608
609 def is_primitive_idempotent(self):
610 """
611 Return whether or not this element is a primitive (or minimal)
612 idempotent.
613
614 A primitive idempotent is a non-zero idempotent that is not
615 the sum of two other non-zero idempotents. Remark 2.7.15 in
616 Baes shows that this is what he refers to as a "minimal
617 idempotent."
618
619 An element of a Euclidean Jordan algebra is a minimal idempotent
620 if it :meth:`is_idempotent` and if its Peirce subalgebra
621 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
622 Proposition 2.7.17).
623
624 SETUP::
625
626 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
627 ....: RealSymmetricEJA,
628 ....: TrivialEJA,
629 ....: random_eja)
630
631 WARNING::
632
633 This method is sloooooow.
634
635 EXAMPLES:
636
637 The spectral decomposition of a non-regular element should always
638 contain at least one non-minimal idempotent::
639
640 sage: J = RealSymmetricEJA(3)
641 sage: x = sum(J.gens())
642 sage: x.is_regular()
643 False
644 sage: [ c.is_primitive_idempotent()
645 ....: for (l,c) in x.spectral_decomposition() ]
646 [False, True]
647
648 On the other hand, the spectral decomposition of a regular
649 element should always be in terms of minimal idempotents::
650
651 sage: J = JordanSpinEJA(4)
652 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
653 sage: x.is_regular()
654 True
655 sage: [ c.is_primitive_idempotent()
656 ....: for (l,c) in x.spectral_decomposition() ]
657 [True, True]
658
659 TESTS:
660
661 The identity element is minimal only in an EJA of rank one::
662
663 sage: set_random_seed()
664 sage: J = random_eja()
665 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
666 True
667
668 A non-idempotent cannot be a minimal idempotent::
669
670 sage: set_random_seed()
671 sage: J = JordanSpinEJA(4)
672 sage: x = J.random_element()
673 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
674 False
675
676 Proposition 2.7.19 in Baes says that an element is a minimal
677 idempotent if and only if it's idempotent with trace equal to
678 unity::
679
680 sage: set_random_seed()
681 sage: J = JordanSpinEJA(4)
682 sage: x = J.random_element()
683 sage: expected = (x.is_idempotent() and x.trace() == 1)
684 sage: actual = x.is_primitive_idempotent()
685 sage: actual == expected
686 True
687
688 Primitive idempotents must be non-zero::
689
690 sage: set_random_seed()
691 sage: J = random_eja()
692 sage: J.zero().is_idempotent()
693 True
694 sage: J.zero().is_primitive_idempotent()
695 False
696
697 As a consequence of the fact that primitive idempotents must
698 be non-zero, there are no primitive idempotents in a trivial
699 Euclidean Jordan algebra::
700
701 sage: J = TrivialEJA()
702 sage: J.one().is_idempotent()
703 True
704 sage: J.one().is_primitive_idempotent()
705 False
706
707 """
708 if not self.is_idempotent():
709 return False
710
711 if self.is_zero():
712 return False
713
714 (_,_,J1) = self.parent().peirce_decomposition(self)
715 return (J1.dimension() == 1)
716
717
718 def is_nilpotent(self):
719 """
720 Return whether or not some power of this element is zero.
721
722 ALGORITHM:
723
724 We use Theorem 5 in Chapter III of Koecher, which says that
725 an element ``x`` is nilpotent if and only if ``x.operator()``
726 is nilpotent. And it is a basic fact of linear algebra that
727 an operator on an `n`-dimensional space is nilpotent if and
728 only if, when raised to the `n`th power, it equals the zero
729 operator (for example, see Axler Corollary 8.8).
730
731 SETUP::
732
733 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
734 ....: random_eja)
735
736 EXAMPLES::
737
738 sage: J = JordanSpinEJA(3)
739 sage: x = sum(J.gens())
740 sage: x.is_nilpotent()
741 False
742
743 TESTS:
744
745 The identity element is never nilpotent, except in a trivial EJA::
746
747 sage: set_random_seed()
748 sage: J = random_eja()
749 sage: J.one().is_nilpotent() and not J.is_trivial()
750 False
751
752 The additive identity is always nilpotent::
753
754 sage: set_random_seed()
755 sage: random_eja().zero().is_nilpotent()
756 True
757
758 """
759 P = self.parent()
760 zero_operator = P.zero().operator()
761 return self.operator()**P.dimension() == zero_operator
762
763
764 def is_regular(self):
765 """
766 Return whether or not this is a regular element.
767
768 SETUP::
769
770 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
771 ....: random_eja)
772
773 EXAMPLES:
774
775 The identity element always has degree one, but any element
776 linearly-independent from it is regular::
777
778 sage: J = JordanSpinEJA(5)
779 sage: J.one().is_regular()
780 False
781 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
782 sage: for x in J.gens():
783 ....: (J.one() + x).is_regular()
784 False
785 True
786 True
787 True
788 True
789
790 TESTS:
791
792 The zero element should never be regular, unless the parent
793 algebra has dimension less than or equal to one::
794
795 sage: set_random_seed()
796 sage: J = random_eja()
797 sage: J.dimension() <= 1 or not J.zero().is_regular()
798 True
799
800 The unit element isn't regular unless the algebra happens to
801 consist of only its scalar multiples::
802
803 sage: set_random_seed()
804 sage: J = random_eja()
805 sage: J.dimension() <= 1 or not J.one().is_regular()
806 True
807
808 """
809 return self.degree() == self.parent().rank()
810
811
812 def degree(self):
813 """
814 Return the degree of this element, which is defined to be
815 the degree of its minimal polynomial.
816
817 ALGORITHM:
818
819 For now, we skip the messy minimal polynomial computation
820 and instead return the dimension of the vector space spanned
821 by the powers of this element. The latter is a bit more
822 straightforward to compute.
823
824 SETUP::
825
826 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
827 ....: random_eja)
828
829 EXAMPLES::
830
831 sage: J = JordanSpinEJA(4)
832 sage: J.one().degree()
833 1
834 sage: e0,e1,e2,e3 = J.gens()
835 sage: (e0 - e1).degree()
836 2
837
838 In the spin factor algebra (of rank two), all elements that
839 aren't multiples of the identity are regular::
840
841 sage: set_random_seed()
842 sage: J = JordanSpinEJA.random_instance()
843 sage: n = J.dimension()
844 sage: x = J.random_element()
845 sage: x.degree() == min(n,2) or (x == x.coefficient(0)*J.one())
846 True
847
848 TESTS:
849
850 The zero and unit elements are both of degree one in nontrivial
851 algebras::
852
853 sage: set_random_seed()
854 sage: J = random_eja()
855 sage: d = J.zero().degree()
856 sage: (J.is_trivial() and d == 0) or d == 1
857 True
858 sage: d = J.one().degree()
859 sage: (J.is_trivial() and d == 0) or d == 1
860 True
861
862 Our implementation agrees with the definition::
863
864 sage: set_random_seed()
865 sage: x = random_eja().random_element()
866 sage: x.degree() == x.minimal_polynomial().degree()
867 True
868
869 """
870 if self.is_zero() and not self.parent().is_trivial():
871 # The minimal polynomial of zero in a nontrivial algebra
872 # is "t"; in a trivial algebra it's "1" by convention
873 # (it's an empty product).
874 return 1
875 return self.subalgebra_generated_by().dimension()
876
877
878 def left_matrix(self):
879 """
880 Our parent class defines ``left_matrix`` and ``matrix``
881 methods whose names are misleading. We don't want them.
882 """
883 raise NotImplementedError("use operator().matrix() instead")
884
885 matrix = left_matrix
886
887
888 def minimal_polynomial(self):
889 """
890 Return the minimal polynomial of this element,
891 as a function of the variable `t`.
892
893 ALGORITHM:
894
895 We restrict ourselves to the associative subalgebra
896 generated by this element, and then return the minimal
897 polynomial of this element's operator matrix (in that
898 subalgebra). This works by Baes Proposition 2.3.16.
899
900 SETUP::
901
902 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
903 ....: RealSymmetricEJA,
904 ....: TrivialEJA,
905 ....: random_eja)
906
907 EXAMPLES:
908
909 Keeping in mind that the polynomial ``1`` evaluates the identity
910 element (also the zero element) of the trivial algebra, it is clear
911 that the polynomial ``1`` is the minimal polynomial of the only
912 element in a trivial algebra::
913
914 sage: J = TrivialEJA()
915 sage: J.one().minimal_polynomial()
916 1
917 sage: J.zero().minimal_polynomial()
918 1
919
920 TESTS:
921
922 The minimal polynomial of the identity and zero elements are
923 always the same, except in trivial algebras where the minimal
924 polynomial of the unit/zero element is ``1``::
925
926 sage: set_random_seed()
927 sage: J = random_eja()
928 sage: mu = J.one().minimal_polynomial()
929 sage: t = mu.parent().gen()
930 sage: mu + int(J.is_trivial())*(t-2)
931 t - 1
932 sage: mu = J.zero().minimal_polynomial()
933 sage: t = mu.parent().gen()
934 sage: mu + int(J.is_trivial())*(t-1)
935 t
936
937 The degree of an element is (by one definition) the degree
938 of its minimal polynomial::
939
940 sage: set_random_seed()
941 sage: x = random_eja().random_element()
942 sage: x.degree() == x.minimal_polynomial().degree()
943 True
944
945 The minimal polynomial and the characteristic polynomial coincide
946 and are known (see Alizadeh, Example 11.11) for all elements of
947 the spin factor algebra that aren't scalar multiples of the
948 identity. We require the dimension of the algebra to be at least
949 two here so that said elements actually exist::
950
951 sage: set_random_seed()
952 sage: n_max = max(2, JordanSpinEJA._max_random_instance_size())
953 sage: n = ZZ.random_element(2, n_max)
954 sage: J = JordanSpinEJA(n)
955 sage: y = J.random_element()
956 sage: while y == y.coefficient(0)*J.one():
957 ....: y = J.random_element()
958 sage: y0 = y.to_vector()[0]
959 sage: y_bar = y.to_vector()[1:]
960 sage: actual = y.minimal_polynomial()
961 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
962 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
963 sage: bool(actual == expected)
964 True
965
966 The minimal polynomial should always kill its element::
967
968 sage: set_random_seed()
969 sage: x = random_eja().random_element()
970 sage: p = x.minimal_polynomial()
971 sage: x.apply_univariate_polynomial(p)
972 0
973
974 The minimal polynomial is invariant under a change of basis,
975 and in particular, a re-scaling of the basis::
976
977 sage: set_random_seed()
978 sage: n_max = RealSymmetricEJA._max_random_instance_size()
979 sage: n = ZZ.random_element(1, n_max)
980 sage: J1 = RealSymmetricEJA(n)
981 sage: J2 = RealSymmetricEJA(n,orthonormalize=False)
982 sage: X = random_matrix(AA,n)
983 sage: X = X*X.transpose()
984 sage: x1 = J1(X)
985 sage: x2 = J2(X)
986 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
987 True
988
989 """
990 if self.is_zero():
991 # We would generate a zero-dimensional subalgebra
992 # where the minimal polynomial would be constant.
993 # That might be correct, but only if *this* algebra
994 # is trivial too.
995 if not self.parent().is_trivial():
996 # Pretty sure we know what the minimal polynomial of
997 # the zero operator is going to be. This ensures
998 # consistency of e.g. the polynomial variable returned
999 # in the "normal" case without us having to think about it.
1000 return self.operator().minimal_polynomial()
1001
1002 A = self.subalgebra_generated_by(orthonormalize_basis=False)
1003 return A(self).operator().minimal_polynomial()
1004
1005
1006
1007 def to_matrix(self):
1008 """
1009 Return an (often more natural) representation of this element as a
1010 matrix.
1011
1012 Every finite-dimensional Euclidean Jordan Algebra is a direct
1013 sum of five simple algebras, four of which comprise Hermitian
1014 matrices. This method returns a "natural" matrix
1015 representation of this element as either a Hermitian matrix or
1016 column vector.
1017
1018 SETUP::
1019
1020 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1021 ....: QuaternionHermitianEJA)
1022
1023 EXAMPLES::
1024
1025 sage: J = ComplexHermitianEJA(3)
1026 sage: J.one()
1027 e0 + e3 + e8
1028 sage: J.one().to_matrix()
1029 [1 0 0 0 0 0]
1030 [0 1 0 0 0 0]
1031 [0 0 1 0 0 0]
1032 [0 0 0 1 0 0]
1033 [0 0 0 0 1 0]
1034 [0 0 0 0 0 1]
1035
1036 ::
1037
1038 sage: J = QuaternionHermitianEJA(3)
1039 sage: J.one()
1040 e0 + e5 + e14
1041 sage: J.one().to_matrix()
1042 [1 0 0 0 0 0 0 0 0 0 0 0]
1043 [0 1 0 0 0 0 0 0 0 0 0 0]
1044 [0 0 1 0 0 0 0 0 0 0 0 0]
1045 [0 0 0 1 0 0 0 0 0 0 0 0]
1046 [0 0 0 0 1 0 0 0 0 0 0 0]
1047 [0 0 0 0 0 1 0 0 0 0 0 0]
1048 [0 0 0 0 0 0 1 0 0 0 0 0]
1049 [0 0 0 0 0 0 0 1 0 0 0 0]
1050 [0 0 0 0 0 0 0 0 1 0 0 0]
1051 [0 0 0 0 0 0 0 0 0 1 0 0]
1052 [0 0 0 0 0 0 0 0 0 0 1 0]
1053 [0 0 0 0 0 0 0 0 0 0 0 1]
1054 """
1055 B = self.parent().matrix_basis()
1056 W = self.parent().matrix_space()
1057
1058 # This is just a manual "from_vector()", but of course
1059 # matrix spaces aren't vector spaces in sage, so they
1060 # don't have a from_vector() method.
1061 return W.linear_combination( zip(B, self.to_vector()) )
1062
1063
1064 def norm(self):
1065 """
1066 The norm of this element with respect to :meth:`inner_product`.
1067
1068 SETUP::
1069
1070 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1071 ....: HadamardEJA)
1072
1073 EXAMPLES::
1074
1075 sage: J = HadamardEJA(2)
1076 sage: x = sum(J.gens())
1077 sage: x.norm()
1078 1.414213562373095?
1079
1080 ::
1081
1082 sage: J = JordanSpinEJA(4)
1083 sage: x = sum(J.gens())
1084 sage: x.norm()
1085 2
1086
1087 """
1088 return self.inner_product(self).sqrt()
1089
1090
1091 def operator(self):
1092 """
1093 Return the left-multiplication-by-this-element
1094 operator on the ambient algebra.
1095
1096 SETUP::
1097
1098 sage: from mjo.eja.eja_algebra import random_eja
1099
1100 TESTS::
1101
1102 sage: set_random_seed()
1103 sage: J = random_eja()
1104 sage: x,y = J.random_elements(2)
1105 sage: x.operator()(y) == x*y
1106 True
1107 sage: y.operator()(x) == x*y
1108 True
1109
1110 """
1111 P = self.parent()
1112 left_mult_by_self = lambda y: self*y
1113 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1114 return FiniteDimensionalEuclideanJordanAlgebraOperator(
1115 P,
1116 P,
1117 L.matrix() )
1118
1119
1120 def quadratic_representation(self, other=None):
1121 """
1122 Return the quadratic representation of this element.
1123
1124 SETUP::
1125
1126 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1127 ....: random_eja)
1128
1129 EXAMPLES:
1130
1131 The explicit form in the spin factor algebra is given by
1132 Alizadeh's Example 11.12::
1133
1134 sage: set_random_seed()
1135 sage: x = JordanSpinEJA.random_instance().random_element()
1136 sage: x_vec = x.to_vector()
1137 sage: Q = matrix.identity(x.base_ring(), 0)
1138 sage: n = x_vec.degree()
1139 sage: if n > 0:
1140 ....: x0 = x_vec[0]
1141 ....: x_bar = x_vec[1:]
1142 ....: A = matrix(x.base_ring(), 1, [x_vec.inner_product(x_vec)])
1143 ....: B = 2*x0*x_bar.row()
1144 ....: C = 2*x0*x_bar.column()
1145 ....: D = matrix.identity(x.base_ring(), n-1)
1146 ....: D = (x0^2 - x_bar.inner_product(x_bar))*D
1147 ....: D = D + 2*x_bar.tensor_product(x_bar)
1148 ....: Q = matrix.block(2,2,[A,B,C,D])
1149 sage: Q == x.quadratic_representation().matrix()
1150 True
1151
1152 Test all of the properties from Theorem 11.2 in Alizadeh::
1153
1154 sage: set_random_seed()
1155 sage: J = random_eja()
1156 sage: x,y = J.random_elements(2)
1157 sage: Lx = x.operator()
1158 sage: Lxx = (x*x).operator()
1159 sage: Qx = x.quadratic_representation()
1160 sage: Qy = y.quadratic_representation()
1161 sage: Qxy = x.quadratic_representation(y)
1162 sage: Qex = J.one().quadratic_representation(x)
1163 sage: n = ZZ.random_element(10)
1164 sage: Qxn = (x^n).quadratic_representation()
1165
1166 Property 1:
1167
1168 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1169 True
1170
1171 Property 2 (multiply on the right for :trac:`28272`):
1172
1173 sage: alpha = J.base_ring().random_element()
1174 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1175 True
1176
1177 Property 3:
1178
1179 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1180 True
1181
1182 sage: not x.is_invertible() or (
1183 ....: ~Qx
1184 ....: ==
1185 ....: x.inverse().quadratic_representation() )
1186 True
1187
1188 sage: Qxy(J.one()) == x*y
1189 True
1190
1191 Property 4:
1192
1193 sage: not x.is_invertible() or (
1194 ....: x.quadratic_representation(x.inverse())*Qx
1195 ....: == Qx*x.quadratic_representation(x.inverse()) )
1196 True
1197
1198 sage: not x.is_invertible() or (
1199 ....: x.quadratic_representation(x.inverse())*Qx
1200 ....: ==
1201 ....: 2*Lx*Qex - Qx )
1202 True
1203
1204 sage: 2*Lx*Qex - Qx == Lxx
1205 True
1206
1207 Property 5:
1208
1209 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1210 True
1211
1212 Property 6:
1213
1214 sage: Qxn == (Qx)^n
1215 True
1216
1217 Property 7:
1218
1219 sage: not x.is_invertible() or (
1220 ....: Qx*x.inverse().operator() == Lx )
1221 True
1222
1223 Property 8:
1224
1225 sage: not x.operator_commutes_with(y) or (
1226 ....: Qx(y)^n == Qxn(y^n) )
1227 True
1228
1229 """
1230 if other is None:
1231 other=self
1232 elif not other in self.parent():
1233 raise TypeError("'other' must live in the same algebra")
1234
1235 L = self.operator()
1236 M = other.operator()
1237 return ( L*M + M*L - (self*other).operator() )
1238
1239
1240
1241 def spectral_decomposition(self):
1242 """
1243 Return the unique spectral decomposition of this element.
1244
1245 ALGORITHM:
1246
1247 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1248 element's left-multiplication-by operator to the subalgebra it
1249 generates. We then compute the spectral decomposition of that
1250 operator, and the spectral projectors we get back must be the
1251 left-multiplication-by operators for the idempotents we
1252 seek. Thus applying them to the identity element gives us those
1253 idempotents.
1254
1255 Since the eigenvalues are required to be distinct, we take
1256 the spectral decomposition of the zero element to be zero
1257 times the identity element of the algebra (which is idempotent,
1258 obviously).
1259
1260 SETUP::
1261
1262 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1263
1264 EXAMPLES:
1265
1266 The spectral decomposition of the identity is ``1`` times itself,
1267 and the spectral decomposition of zero is ``0`` times the identity::
1268
1269 sage: J = RealSymmetricEJA(3)
1270 sage: J.one()
1271 e0 + e2 + e5
1272 sage: J.one().spectral_decomposition()
1273 [(1, e0 + e2 + e5)]
1274 sage: J.zero().spectral_decomposition()
1275 [(0, e0 + e2 + e5)]
1276
1277 TESTS::
1278
1279 sage: J = RealSymmetricEJA(4)
1280 sage: x = sum(J.gens())
1281 sage: sd = x.spectral_decomposition()
1282 sage: l0 = sd[0][0]
1283 sage: l1 = sd[1][0]
1284 sage: c0 = sd[0][1]
1285 sage: c1 = sd[1][1]
1286 sage: c0.inner_product(c1) == 0
1287 True
1288 sage: c0.is_idempotent()
1289 True
1290 sage: c1.is_idempotent()
1291 True
1292 sage: c0 + c1 == J.one()
1293 True
1294 sage: l0*c0 + l1*c1 == x
1295 True
1296
1297 The spectral decomposition should work in subalgebras, too::
1298
1299 sage: J = RealSymmetricEJA(4)
1300 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1301 sage: A = 2*e5 - 2*e8
1302 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1303 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1304 sage: (f0, f1, f2) = J1.gens()
1305 sage: f0.spectral_decomposition()
1306 [(0, f2), (1, f0)]
1307
1308 """
1309 A = self.subalgebra_generated_by(orthonormalize_basis=True)
1310 result = []
1311 for (evalue, proj) in A(self).operator().spectral_decomposition():
1312 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1313 return result
1314
1315 def subalgebra_generated_by(self, orthonormalize_basis=False):
1316 """
1317 Return the associative subalgebra of the parent EJA generated
1318 by this element.
1319
1320 Since our parent algebra is unital, we want "subalgebra" to mean
1321 "unital subalgebra" as well; thus the subalgebra that an element
1322 generates will itself be a Euclidean Jordan algebra after
1323 restricting the algebra operations appropriately. This is the
1324 subalgebra that Faraut and Korányi work with in section II.2, for
1325 example.
1326
1327 SETUP::
1328
1329 sage: from mjo.eja.eja_algebra import random_eja
1330
1331 TESTS:
1332
1333 This subalgebra, being composed of only powers, is associative::
1334
1335 sage: set_random_seed()
1336 sage: x0 = random_eja().random_element()
1337 sage: A = x0.subalgebra_generated_by()
1338 sage: x,y,z = A.random_elements(3)
1339 sage: (x*y)*z == x*(y*z)
1340 True
1341
1342 Squaring in the subalgebra should work the same as in
1343 the superalgebra::
1344
1345 sage: set_random_seed()
1346 sage: x = random_eja().random_element()
1347 sage: A = x.subalgebra_generated_by()
1348 sage: A(x^2) == A(x)*A(x)
1349 True
1350
1351 By definition, the subalgebra generated by the zero element is
1352 the one-dimensional algebra generated by the identity
1353 element... unless the original algebra was trivial, in which
1354 case the subalgebra is trivial too::
1355
1356 sage: set_random_seed()
1357 sage: A = random_eja().zero().subalgebra_generated_by()
1358 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1359 True
1360
1361 """
1362 from mjo.eja.eja_element_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
1363 return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
1364
1365
1366 def subalgebra_idempotent(self):
1367 """
1368 Find an idempotent in the associative subalgebra I generate
1369 using Proposition 2.3.5 in Baes.
1370
1371 SETUP::
1372
1373 sage: from mjo.eja.eja_algebra import random_eja
1374
1375 TESTS:
1376
1377 Ensure that we can find an idempotent in a non-trivial algebra
1378 where there are non-nilpotent elements, or that we get the dumb
1379 solution in the trivial algebra::
1380
1381 sage: set_random_seed()
1382 sage: J = random_eja()
1383 sage: x = J.random_element()
1384 sage: while x.is_nilpotent() and not J.is_trivial():
1385 ....: x = J.random_element()
1386 sage: c = x.subalgebra_idempotent()
1387 sage: c^2 == c
1388 True
1389
1390 """
1391 if self.parent().is_trivial():
1392 return self
1393
1394 if self.is_nilpotent():
1395 raise ValueError("this only works with non-nilpotent elements!")
1396
1397 J = self.subalgebra_generated_by()
1398 u = J(self)
1399
1400 # The image of the matrix of left-u^m-multiplication
1401 # will be minimal for some natural number s...
1402 s = 0
1403 minimal_dim = J.dimension()
1404 for i in range(1, minimal_dim):
1405 this_dim = (u**i).operator().matrix().image().dimension()
1406 if this_dim < minimal_dim:
1407 minimal_dim = this_dim
1408 s = i
1409
1410 # Now minimal_matrix should correspond to the smallest
1411 # non-zero subspace in Baes's (or really, Koecher's)
1412 # proposition.
1413 #
1414 # However, we need to restrict the matrix to work on the
1415 # subspace... or do we? Can't we just solve, knowing that
1416 # A(c) = u^(s+1) should have a solution in the big space,
1417 # too?
1418 #
1419 # Beware, solve_right() means that we're using COLUMN vectors.
1420 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1421 u_next = u**(s+1)
1422 A = u_next.operator().matrix()
1423 c = J.from_vector(A.solve_right(u_next.to_vector()))
1424
1425 # Now c is the idempotent we want, but it still lives in the subalgebra.
1426 return c.superalgebra_element()
1427
1428
1429 def trace(self):
1430 """
1431 Return my trace, the sum of my eigenvalues.
1432
1433 In a trivial algebra, however you want to look at it, the trace is
1434 an empty sum for which we declare the result to be zero.
1435
1436 SETUP::
1437
1438 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1439 ....: HadamardEJA,
1440 ....: TrivialEJA,
1441 ....: random_eja)
1442
1443 EXAMPLES::
1444
1445 sage: J = TrivialEJA()
1446 sage: J.zero().trace()
1447 0
1448
1449 ::
1450 sage: J = JordanSpinEJA(3)
1451 sage: x = sum(J.gens())
1452 sage: x.trace()
1453 2
1454
1455 ::
1456
1457 sage: J = HadamardEJA(5)
1458 sage: J.one().trace()
1459 5
1460
1461 TESTS:
1462
1463 The trace of an element is a real number::
1464
1465 sage: set_random_seed()
1466 sage: J = random_eja()
1467 sage: J.random_element().trace() in RLF
1468 True
1469
1470 """
1471 P = self.parent()
1472 r = P.rank()
1473
1474 if r == 0:
1475 # Special case for the trivial algebra where
1476 # the trace is an empty sum.
1477 return P.base_ring().zero()
1478
1479 p = P._charpoly_coefficients()[r-1]
1480 # The _charpoly_coeff function already adds the factor of
1481 # -1 to ensure that _charpoly_coeff(r-1) is really what
1482 # appears in front of t^{r-1} in the charpoly. However,
1483 # we want the negative of THAT for the trace.
1484 return -p(*self.to_vector())
1485
1486
1487 def trace_inner_product(self, other):
1488 """
1489 Return the trace inner product of myself and ``other``.
1490
1491 SETUP::
1492
1493 sage: from mjo.eja.eja_algebra import random_eja
1494
1495 TESTS:
1496
1497 The trace inner product is commutative, bilinear, and associative::
1498
1499 sage: set_random_seed()
1500 sage: J = random_eja()
1501 sage: x,y,z = J.random_elements(3)
1502 sage: # commutative
1503 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1504 True
1505 sage: # bilinear
1506 sage: a = J.base_ring().random_element();
1507 sage: actual = (a*(x+z)).trace_inner_product(y)
1508 sage: expected = ( a*x.trace_inner_product(y) +
1509 ....: a*z.trace_inner_product(y) )
1510 sage: actual == expected
1511 True
1512 sage: actual = x.trace_inner_product(a*(y+z))
1513 sage: expected = ( a*x.trace_inner_product(y) +
1514 ....: a*x.trace_inner_product(z) )
1515 sage: actual == expected
1516 True
1517 sage: # associative
1518 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1519 True
1520
1521 """
1522 if not other in self.parent():
1523 raise TypeError("'other' must live in the same algebra")
1524
1525 return (self*other).trace()
1526
1527
1528 def trace_norm(self):
1529 """
1530 The norm of this element with respect to :meth:`trace_inner_product`.
1531
1532 SETUP::
1533
1534 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1535 ....: HadamardEJA)
1536
1537 EXAMPLES::
1538
1539 sage: J = HadamardEJA(2)
1540 sage: x = sum(J.gens())
1541 sage: x.trace_norm()
1542 1.414213562373095?
1543
1544 ::
1545
1546 sage: J = JordanSpinEJA(4)
1547 sage: x = sum(J.gens())
1548 sage: x.trace_norm()
1549 2.828427124746190?
1550
1551 """
1552 return self.trace_inner_product(self).sqrt()