]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: fix the natural representation in trivial subalgebras.
[sage.d.git] / mjo / eja / eja_element.py
1 from sage.matrix.constructor import matrix
2 from sage.modules.free_module import VectorSpace
3 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
4
5 # TODO: make this unnecessary somehow.
6 from sage.misc.lazy_import import lazy_import
7 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
8 lazy_import('mjo.eja.eja_subalgebra',
9 'FiniteDimensionalEuclideanJordanElementSubalgebra')
10 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
11 from mjo.eja.eja_utils import _mat2vec
12
13 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
14 """
15 An element of a Euclidean Jordan algebra.
16 """
17
18 def __dir__(self):
19 """
20 Oh man, I should not be doing this. This hides the "disabled"
21 methods ``left_matrix`` and ``matrix`` from introspection;
22 in particular it removes them from tab-completion.
23 """
24 return filter(lambda s: s not in ['left_matrix', 'matrix'],
25 dir(self.__class__) )
26
27
28
29
30 def __pow__(self, n):
31 """
32 Return ``self`` raised to the power ``n``.
33
34 Jordan algebras are always power-associative; see for
35 example Faraut and Koranyi, Proposition II.1.2 (ii).
36
37 We have to override this because our superclass uses row
38 vectors instead of column vectors! We, on the other hand,
39 assume column vectors everywhere.
40
41 SETUP::
42
43 sage: from mjo.eja.eja_algebra import random_eja
44
45 TESTS:
46
47 The definition of `x^2` is the unambiguous `x*x`::
48
49 sage: set_random_seed()
50 sage: x = random_eja().random_element()
51 sage: x*x == (x^2)
52 True
53
54 A few examples of power-associativity::
55
56 sage: set_random_seed()
57 sage: x = random_eja().random_element()
58 sage: x*(x*x)*(x*x) == x^5
59 True
60 sage: (x*x)*(x*x*x) == x^5
61 True
62
63 We also know that powers operator-commute (Koecher, Chapter
64 III, Corollary 1)::
65
66 sage: set_random_seed()
67 sage: x = random_eja().random_element()
68 sage: m = ZZ.random_element(0,10)
69 sage: n = ZZ.random_element(0,10)
70 sage: Lxm = (x^m).operator()
71 sage: Lxn = (x^n).operator()
72 sage: Lxm*Lxn == Lxn*Lxm
73 True
74
75 """
76 if n == 0:
77 return self.parent().one()
78 elif n == 1:
79 return self
80 else:
81 return (self.operator()**(n-1))(self)
82
83
84 def apply_univariate_polynomial(self, p):
85 """
86 Apply the univariate polynomial ``p`` to this element.
87
88 A priori, SageMath won't allow us to apply a univariate
89 polynomial to an element of an EJA, because we don't know
90 that EJAs are rings (they are usually not associative). Of
91 course, we know that EJAs are power-associative, so the
92 operation is ultimately kosher. This function sidesteps
93 the CAS to get the answer we want and expect.
94
95 SETUP::
96
97 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
98 ....: random_eja)
99
100 EXAMPLES::
101
102 sage: R = PolynomialRing(QQ, 't')
103 sage: t = R.gen(0)
104 sage: p = t^4 - t^3 + 5*t - 2
105 sage: J = RealCartesianProductEJA(5)
106 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
107 True
108
109 TESTS:
110
111 We should always get back an element of the algebra::
112
113 sage: set_random_seed()
114 sage: p = PolynomialRing(QQ, 't').random_element()
115 sage: J = random_eja()
116 sage: x = J.random_element()
117 sage: x.apply_univariate_polynomial(p) in J
118 True
119
120 """
121 if len(p.variables()) > 1:
122 raise ValueError("not a univariate polynomial")
123 P = self.parent()
124 R = P.base_ring()
125 # Convert the coeficcients to the parent's base ring,
126 # because a priori they might live in an (unnecessarily)
127 # larger ring for which P.sum() would fail below.
128 cs = [ R(c) for c in p.coefficients(sparse=False) ]
129 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
130
131
132 def characteristic_polynomial(self):
133 """
134 Return the characteristic polynomial of this element.
135
136 SETUP::
137
138 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
139
140 EXAMPLES:
141
142 The rank of `R^3` is three, and the minimal polynomial of
143 the identity element is `(t-1)` from which it follows that
144 the characteristic polynomial should be `(t-1)^3`::
145
146 sage: J = RealCartesianProductEJA(3)
147 sage: J.one().characteristic_polynomial()
148 t^3 - 3*t^2 + 3*t - 1
149
150 Likewise, the characteristic of the zero element in the
151 rank-three algebra `R^{n}` should be `t^{3}`::
152
153 sage: J = RealCartesianProductEJA(3)
154 sage: J.zero().characteristic_polynomial()
155 t^3
156
157 TESTS:
158
159 The characteristic polynomial of an element should evaluate
160 to zero on that element::
161
162 sage: set_random_seed()
163 sage: x = RealCartesianProductEJA(3).random_element()
164 sage: p = x.characteristic_polynomial()
165 sage: x.apply_univariate_polynomial(p)
166 0
167
168 The characteristic polynomials of the zero and unit elements
169 should be what we think they are in a subalgebra, too::
170
171 sage: J = RealCartesianProductEJA(3)
172 sage: p1 = J.one().characteristic_polynomial()
173 sage: q1 = J.zero().characteristic_polynomial()
174 sage: e0,e1,e2 = J.gens()
175 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
176 sage: p2 = A.one().characteristic_polynomial()
177 sage: q2 = A.zero().characteristic_polynomial()
178 sage: p1 == p2
179 True
180 sage: q1 == q2
181 True
182
183 """
184 p = self.parent().characteristic_polynomial()
185 return p(*self.to_vector())
186
187
188 def inner_product(self, other):
189 """
190 Return the parent algebra's inner product of myself and ``other``.
191
192 SETUP::
193
194 sage: from mjo.eja.eja_algebra import (
195 ....: ComplexHermitianEJA,
196 ....: JordanSpinEJA,
197 ....: QuaternionHermitianEJA,
198 ....: RealSymmetricEJA,
199 ....: random_eja)
200
201 EXAMPLES:
202
203 The inner product in the Jordan spin algebra is the usual
204 inner product on `R^n` (this example only works because the
205 basis for the Jordan algebra is the standard basis in `R^n`)::
206
207 sage: J = JordanSpinEJA(3)
208 sage: x = vector(QQ,[1,2,3])
209 sage: y = vector(QQ,[4,5,6])
210 sage: x.inner_product(y)
211 32
212 sage: J.from_vector(x).inner_product(J.from_vector(y))
213 32
214
215 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
216 multiplication is the usual matrix multiplication in `S^n`,
217 so the inner product of the identity matrix with itself
218 should be the `n`::
219
220 sage: J = RealSymmetricEJA(3)
221 sage: J.one().inner_product(J.one())
222 3
223
224 Likewise, the inner product on `C^n` is `<X,Y> =
225 Re(trace(X*Y))`, where we must necessarily take the real
226 part because the product of Hermitian matrices may not be
227 Hermitian::
228
229 sage: J = ComplexHermitianEJA(3)
230 sage: J.one().inner_product(J.one())
231 3
232
233 Ditto for the quaternions::
234
235 sage: J = QuaternionHermitianEJA(3)
236 sage: J.one().inner_product(J.one())
237 3
238
239 TESTS:
240
241 Ensure that we can always compute an inner product, and that
242 it gives us back a real number::
243
244 sage: set_random_seed()
245 sage: J = random_eja()
246 sage: x = J.random_element()
247 sage: y = J.random_element()
248 sage: x.inner_product(y) in RR
249 True
250
251 """
252 P = self.parent()
253 if not other in P:
254 raise TypeError("'other' must live in the same algebra")
255
256 return P.inner_product(self, other)
257
258
259 def operator_commutes_with(self, other):
260 """
261 Return whether or not this element operator-commutes
262 with ``other``.
263
264 SETUP::
265
266 sage: from mjo.eja.eja_algebra import random_eja
267
268 EXAMPLES:
269
270 The definition of a Jordan algebra says that any element
271 operator-commutes with its square::
272
273 sage: set_random_seed()
274 sage: x = random_eja().random_element()
275 sage: x.operator_commutes_with(x^2)
276 True
277
278 TESTS:
279
280 Test Lemma 1 from Chapter III of Koecher::
281
282 sage: set_random_seed()
283 sage: J = random_eja()
284 sage: u = J.random_element()
285 sage: v = J.random_element()
286 sage: lhs = u.operator_commutes_with(u*v)
287 sage: rhs = v.operator_commutes_with(u^2)
288 sage: lhs == rhs
289 True
290
291 Test the first polarization identity from my notes, Koecher
292 Chapter III, or from Baes (2.3)::
293
294 sage: set_random_seed()
295 sage: J = random_eja()
296 sage: x = J.random_element()
297 sage: y = J.random_element()
298 sage: Lx = x.operator()
299 sage: Ly = y.operator()
300 sage: Lxx = (x*x).operator()
301 sage: Lxy = (x*y).operator()
302 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
303 True
304
305 Test the second polarization identity from my notes or from
306 Baes (2.4)::
307
308 sage: set_random_seed()
309 sage: J = random_eja()
310 sage: x = J.random_element()
311 sage: y = J.random_element()
312 sage: z = J.random_element()
313 sage: Lx = x.operator()
314 sage: Ly = y.operator()
315 sage: Lz = z.operator()
316 sage: Lzy = (z*y).operator()
317 sage: Lxy = (x*y).operator()
318 sage: Lxz = (x*z).operator()
319 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
320 True
321
322 Test the third polarization identity from my notes or from
323 Baes (2.5)::
324
325 sage: set_random_seed()
326 sage: J = random_eja()
327 sage: u = J.random_element()
328 sage: y = J.random_element()
329 sage: z = J.random_element()
330 sage: Lu = u.operator()
331 sage: Ly = y.operator()
332 sage: Lz = z.operator()
333 sage: Lzy = (z*y).operator()
334 sage: Luy = (u*y).operator()
335 sage: Luz = (u*z).operator()
336 sage: Luyz = (u*(y*z)).operator()
337 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
338 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
339 sage: bool(lhs == rhs)
340 True
341
342 """
343 if not other in self.parent():
344 raise TypeError("'other' must live in the same algebra")
345
346 A = self.operator()
347 B = other.operator()
348 return (A*B == B*A)
349
350
351 def det(self):
352 """
353 Return my determinant, the product of my eigenvalues.
354
355 SETUP::
356
357 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
358 ....: random_eja)
359
360 EXAMPLES::
361
362 sage: J = JordanSpinEJA(2)
363 sage: e0,e1 = J.gens()
364 sage: x = sum( J.gens() )
365 sage: x.det()
366 0
367
368 ::
369
370 sage: J = JordanSpinEJA(3)
371 sage: e0,e1,e2 = J.gens()
372 sage: x = sum( J.gens() )
373 sage: x.det()
374 -1
375
376 TESTS:
377
378 An element is invertible if and only if its determinant is
379 non-zero::
380
381 sage: set_random_seed()
382 sage: x = random_eja().random_element()
383 sage: x.is_invertible() == (x.det() != 0)
384 True
385
386 Ensure that the determinant is multiplicative on an associative
387 subalgebra as in Faraut and Koranyi's Proposition II.2.2::
388
389 sage: set_random_seed()
390 sage: J = random_eja().random_element().subalgebra_generated_by()
391 sage: x = J.random_element()
392 sage: y = J.random_element()
393 sage: (x*y).det() == x.det()*y.det()
394 True
395
396 """
397 P = self.parent()
398 r = P.rank()
399 p = P._charpoly_coeff(0)
400 # The _charpoly_coeff function already adds the factor of
401 # -1 to ensure that _charpoly_coeff(0) is really what
402 # appears in front of t^{0} in the charpoly. However,
403 # we want (-1)^r times THAT for the determinant.
404 return ((-1)**r)*p(*self.to_vector())
405
406
407 def inverse(self):
408 """
409 Return the Jordan-multiplicative inverse of this element.
410
411 ALGORITHM:
412
413 We appeal to the quadratic representation as in Koecher's
414 Theorem 12 in Chapter III, Section 5.
415
416 SETUP::
417
418 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
419 ....: random_eja)
420
421 EXAMPLES:
422
423 The inverse in the spin factor algebra is given in Alizadeh's
424 Example 11.11::
425
426 sage: set_random_seed()
427 sage: n = ZZ.random_element(1,10)
428 sage: J = JordanSpinEJA(n)
429 sage: x = J.random_element()
430 sage: while not x.is_invertible():
431 ....: x = J.random_element()
432 sage: x_vec = x.to_vector()
433 sage: x0 = x_vec[0]
434 sage: x_bar = x_vec[1:]
435 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
436 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
437 sage: x_inverse = coeff*inv_vec
438 sage: x.inverse() == J.from_vector(x_inverse)
439 True
440
441 TESTS:
442
443 The identity element is its own inverse::
444
445 sage: set_random_seed()
446 sage: J = random_eja()
447 sage: J.one().inverse() == J.one()
448 True
449
450 If an element has an inverse, it acts like one::
451
452 sage: set_random_seed()
453 sage: J = random_eja()
454 sage: x = J.random_element()
455 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
456 True
457
458 The inverse of the inverse is what we started with::
459
460 sage: set_random_seed()
461 sage: J = random_eja()
462 sage: x = J.random_element()
463 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
464 True
465
466 The zero element is never invertible::
467
468 sage: set_random_seed()
469 sage: J = random_eja().zero().inverse()
470 Traceback (most recent call last):
471 ...
472 ValueError: element is not invertible
473
474 """
475 if not self.is_invertible():
476 raise ValueError("element is not invertible")
477
478 return (~self.quadratic_representation())(self)
479
480
481 def is_invertible(self):
482 """
483 Return whether or not this element is invertible.
484
485 ALGORITHM:
486
487 The usual way to do this is to check if the determinant is
488 zero, but we need the characteristic polynomial for the
489 determinant. The minimal polynomial is a lot easier to get,
490 so we use Corollary 2 in Chapter V of Koecher to check
491 whether or not the paren't algebra's zero element is a root
492 of this element's minimal polynomial.
493
494 Beware that we can't use the superclass method, because it
495 relies on the algebra being associative.
496
497 SETUP::
498
499 sage: from mjo.eja.eja_algebra import random_eja
500
501 TESTS:
502
503 The identity element is always invertible::
504
505 sage: set_random_seed()
506 sage: J = random_eja()
507 sage: J.one().is_invertible()
508 True
509
510 The zero element is never invertible in a non-trivial algebra::
511
512 sage: set_random_seed()
513 sage: J = random_eja()
514 sage: (not J.is_trivial()) and J.zero().is_invertible()
515 False
516
517 """
518 if self.is_zero():
519 if self.parent().is_trivial():
520 return True
521 else:
522 return False
523
524 # In fact, we only need to know if the constant term is non-zero,
525 # so we can pass in the field's zero element instead.
526 zero = self.base_ring().zero()
527 p = self.minimal_polynomial()
528 return not (p(zero) == zero)
529
530
531 def is_nilpotent(self):
532 """
533 Return whether or not some power of this element is zero.
534
535 ALGORITHM:
536
537 We use Theorem 5 in Chapter III of Koecher, which says that
538 an element ``x`` is nilpotent if and only if ``x.operator()``
539 is nilpotent. And it is a basic fact of linear algebra that
540 an operator on an `n`-dimensional space is nilpotent if and
541 only if, when raised to the `n`th power, it equals the zero
542 operator (for example, see Axler Corollary 8.8).
543
544 SETUP::
545
546 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
547 ....: random_eja)
548
549 EXAMPLES::
550
551 sage: J = JordanSpinEJA(3)
552 sage: x = sum(J.gens())
553 sage: x.is_nilpotent()
554 False
555
556 TESTS:
557
558 The identity element is never nilpotent::
559
560 sage: set_random_seed()
561 sage: random_eja().one().is_nilpotent()
562 False
563
564 The additive identity is always nilpotent::
565
566 sage: set_random_seed()
567 sage: random_eja().zero().is_nilpotent()
568 True
569
570 """
571 P = self.parent()
572 zero_operator = P.zero().operator()
573 return self.operator()**P.dimension() == zero_operator
574
575
576 def is_regular(self):
577 """
578 Return whether or not this is a regular element.
579
580 SETUP::
581
582 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
583 ....: random_eja)
584
585 EXAMPLES:
586
587 The identity element always has degree one, but any element
588 linearly-independent from it is regular::
589
590 sage: J = JordanSpinEJA(5)
591 sage: J.one().is_regular()
592 False
593 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
594 sage: for x in J.gens():
595 ....: (J.one() + x).is_regular()
596 False
597 True
598 True
599 True
600 True
601
602 TESTS:
603
604 The zero element should never be regular, unless the parent
605 algebra has dimension one::
606
607 sage: set_random_seed()
608 sage: J = random_eja()
609 sage: J.dimension() == 1 or not J.zero().is_regular()
610 True
611
612 The unit element isn't regular unless the algebra happens to
613 consist of only its scalar multiples::
614
615 sage: set_random_seed()
616 sage: J = random_eja()
617 sage: J.dimension() == 1 or not J.one().is_regular()
618 True
619
620 """
621 return self.degree() == self.parent().rank()
622
623
624 def degree(self):
625 """
626 Return the degree of this element, which is defined to be
627 the degree of its minimal polynomial.
628
629 ALGORITHM:
630
631 For now, we skip the messy minimal polynomial computation
632 and instead return the dimension of the vector space spanned
633 by the powers of this element. The latter is a bit more
634 straightforward to compute.
635
636 SETUP::
637
638 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
639 ....: random_eja)
640
641 EXAMPLES::
642
643 sage: J = JordanSpinEJA(4)
644 sage: J.one().degree()
645 1
646 sage: e0,e1,e2,e3 = J.gens()
647 sage: (e0 - e1).degree()
648 2
649
650 In the spin factor algebra (of rank two), all elements that
651 aren't multiples of the identity are regular::
652
653 sage: set_random_seed()
654 sage: n = ZZ.random_element(1,10)
655 sage: J = JordanSpinEJA(n)
656 sage: x = J.random_element()
657 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
658 True
659
660 TESTS:
661
662 The zero and unit elements are both of degree one::
663
664 sage: set_random_seed()
665 sage: J = random_eja()
666 sage: J.zero().degree()
667 1
668 sage: J.one().degree()
669 1
670
671 Our implementation agrees with the definition::
672
673 sage: set_random_seed()
674 sage: x = random_eja().random_element()
675 sage: x.degree() == x.minimal_polynomial().degree()
676 True
677
678 """
679 if self.is_zero() and not self.parent().is_trivial():
680 # The minimal polynomial of zero in a nontrivial algebra
681 # is "t"; in a trivial algebra it's "1" by convention
682 # (it's an empty product).
683 return 1
684 return self.subalgebra_generated_by().dimension()
685
686
687 def left_matrix(self):
688 """
689 Our parent class defines ``left_matrix`` and ``matrix``
690 methods whose names are misleading. We don't want them.
691 """
692 raise NotImplementedError("use operator().matrix() instead")
693
694 matrix = left_matrix
695
696
697 def minimal_polynomial(self):
698 """
699 Return the minimal polynomial of this element,
700 as a function of the variable `t`.
701
702 ALGORITHM:
703
704 We restrict ourselves to the associative subalgebra
705 generated by this element, and then return the minimal
706 polynomial of this element's operator matrix (in that
707 subalgebra). This works by Baes Proposition 2.3.16.
708
709 SETUP::
710
711 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
712 ....: random_eja)
713
714 TESTS:
715
716 The minimal polynomial of the identity and zero elements are
717 always the same::
718
719 sage: set_random_seed()
720 sage: J = random_eja()
721 sage: J.one().minimal_polynomial()
722 t - 1
723 sage: J.zero().minimal_polynomial()
724 t
725
726 The degree of an element is (by one definition) the degree
727 of its minimal polynomial::
728
729 sage: set_random_seed()
730 sage: x = random_eja().random_element()
731 sage: x.degree() == x.minimal_polynomial().degree()
732 True
733
734 The minimal polynomial and the characteristic polynomial coincide
735 and are known (see Alizadeh, Example 11.11) for all elements of
736 the spin factor algebra that aren't scalar multiples of the
737 identity::
738
739 sage: set_random_seed()
740 sage: n = ZZ.random_element(2,10)
741 sage: J = JordanSpinEJA(n)
742 sage: y = J.random_element()
743 sage: while y == y.coefficient(0)*J.one():
744 ....: y = J.random_element()
745 sage: y0 = y.to_vector()[0]
746 sage: y_bar = y.to_vector()[1:]
747 sage: actual = y.minimal_polynomial()
748 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
749 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
750 sage: bool(actual == expected)
751 True
752
753 The minimal polynomial should always kill its element::
754
755 sage: set_random_seed()
756 sage: x = random_eja().random_element()
757 sage: p = x.minimal_polynomial()
758 sage: x.apply_univariate_polynomial(p)
759 0
760
761 """
762 if self.is_zero():
763 # We would generate a zero-dimensional subalgebra
764 # where the minimal polynomial would be constant.
765 # That might be correct, but only if *this* algebra
766 # is trivial too.
767 if not self.parent().is_trivial():
768 # Pretty sure we know what the minimal polynomial of
769 # the zero operator is going to be. This ensures
770 # consistency of e.g. the polynomial variable returned
771 # in the "normal" case without us having to think about it.
772 return self.operator().minimal_polynomial()
773
774 A = self.subalgebra_generated_by()
775 return A(self).operator().minimal_polynomial()
776
777
778
779 def natural_representation(self):
780 """
781 Return a more-natural representation of this element.
782
783 Every finite-dimensional Euclidean Jordan Algebra is a
784 direct sum of five simple algebras, four of which comprise
785 Hermitian matrices. This method returns the original
786 "natural" representation of this element as a Hermitian
787 matrix, if it has one. If not, you get the usual representation.
788
789 SETUP::
790
791 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
792 ....: QuaternionHermitianEJA)
793
794 EXAMPLES::
795
796 sage: J = ComplexHermitianEJA(3)
797 sage: J.one()
798 e0 + e3 + e8
799 sage: J.one().natural_representation()
800 [1 0 0 0 0 0]
801 [0 1 0 0 0 0]
802 [0 0 1 0 0 0]
803 [0 0 0 1 0 0]
804 [0 0 0 0 1 0]
805 [0 0 0 0 0 1]
806
807 ::
808
809 sage: J = QuaternionHermitianEJA(3)
810 sage: J.one()
811 e0 + e5 + e14
812 sage: J.one().natural_representation()
813 [1 0 0 0 0 0 0 0 0 0 0 0]
814 [0 1 0 0 0 0 0 0 0 0 0 0]
815 [0 0 1 0 0 0 0 0 0 0 0 0]
816 [0 0 0 1 0 0 0 0 0 0 0 0]
817 [0 0 0 0 1 0 0 0 0 0 0 0]
818 [0 0 0 0 0 1 0 0 0 0 0 0]
819 [0 0 0 0 0 0 1 0 0 0 0 0]
820 [0 0 0 0 0 0 0 1 0 0 0 0]
821 [0 0 0 0 0 0 0 0 1 0 0 0]
822 [0 0 0 0 0 0 0 0 0 1 0 0]
823 [0 0 0 0 0 0 0 0 0 0 1 0]
824 [0 0 0 0 0 0 0 0 0 0 0 1]
825
826 """
827 B = self.parent().natural_basis()
828 W = self.parent().natural_basis_space()
829 return W.linear_combination(zip(B,self.to_vector()))
830
831
832 def operator(self):
833 """
834 Return the left-multiplication-by-this-element
835 operator on the ambient algebra.
836
837 SETUP::
838
839 sage: from mjo.eja.eja_algebra import random_eja
840
841 TESTS::
842
843 sage: set_random_seed()
844 sage: J = random_eja()
845 sage: x = J.random_element()
846 sage: y = J.random_element()
847 sage: x.operator()(y) == x*y
848 True
849 sage: y.operator()(x) == x*y
850 True
851
852 """
853 P = self.parent()
854 left_mult_by_self = lambda y: self*y
855 L = P.module_morphism(function=left_mult_by_self, codomain=P)
856 return FiniteDimensionalEuclideanJordanAlgebraOperator(
857 P,
858 P,
859 L.matrix() )
860
861
862 def quadratic_representation(self, other=None):
863 """
864 Return the quadratic representation of this element.
865
866 SETUP::
867
868 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
869 ....: random_eja)
870
871 EXAMPLES:
872
873 The explicit form in the spin factor algebra is given by
874 Alizadeh's Example 11.12::
875
876 sage: set_random_seed()
877 sage: n = ZZ.random_element(1,10)
878 sage: J = JordanSpinEJA(n)
879 sage: x = J.random_element()
880 sage: x_vec = x.to_vector()
881 sage: x0 = x_vec[0]
882 sage: x_bar = x_vec[1:]
883 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
884 sage: B = 2*x0*x_bar.row()
885 sage: C = 2*x0*x_bar.column()
886 sage: D = matrix.identity(QQ, n-1)
887 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
888 sage: D = D + 2*x_bar.tensor_product(x_bar)
889 sage: Q = matrix.block(2,2,[A,B,C,D])
890 sage: Q == x.quadratic_representation().matrix()
891 True
892
893 Test all of the properties from Theorem 11.2 in Alizadeh::
894
895 sage: set_random_seed()
896 sage: J = random_eja()
897 sage: x = J.random_element()
898 sage: y = J.random_element()
899 sage: Lx = x.operator()
900 sage: Lxx = (x*x).operator()
901 sage: Qx = x.quadratic_representation()
902 sage: Qy = y.quadratic_representation()
903 sage: Qxy = x.quadratic_representation(y)
904 sage: Qex = J.one().quadratic_representation(x)
905 sage: n = ZZ.random_element(10)
906 sage: Qxn = (x^n).quadratic_representation()
907
908 Property 1:
909
910 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
911 True
912
913 Property 2 (multiply on the right for :trac:`28272`):
914
915 sage: alpha = QQ.random_element()
916 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
917 True
918
919 Property 3:
920
921 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
922 True
923
924 sage: not x.is_invertible() or (
925 ....: ~Qx
926 ....: ==
927 ....: x.inverse().quadratic_representation() )
928 True
929
930 sage: Qxy(J.one()) == x*y
931 True
932
933 Property 4:
934
935 sage: not x.is_invertible() or (
936 ....: x.quadratic_representation(x.inverse())*Qx
937 ....: == Qx*x.quadratic_representation(x.inverse()) )
938 True
939
940 sage: not x.is_invertible() or (
941 ....: x.quadratic_representation(x.inverse())*Qx
942 ....: ==
943 ....: 2*x.operator()*Qex - Qx )
944 True
945
946 sage: 2*x.operator()*Qex - Qx == Lxx
947 True
948
949 Property 5:
950
951 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
952 True
953
954 Property 6:
955
956 sage: Qxn == (Qx)^n
957 True
958
959 Property 7:
960
961 sage: not x.is_invertible() or (
962 ....: Qx*x.inverse().operator() == Lx )
963 True
964
965 Property 8:
966
967 sage: not x.operator_commutes_with(y) or (
968 ....: Qx(y)^n == Qxn(y^n) )
969 True
970
971 """
972 if other is None:
973 other=self
974 elif not other in self.parent():
975 raise TypeError("'other' must live in the same algebra")
976
977 L = self.operator()
978 M = other.operator()
979 return ( L*M + M*L - (self*other).operator() )
980
981
982
983
984 def subalgebra_generated_by(self):
985 """
986 Return the associative subalgebra of the parent EJA generated
987 by this element.
988
989 SETUP::
990
991 sage: from mjo.eja.eja_algebra import random_eja
992
993 TESTS:
994
995 This subalgebra, being composed of only powers, is associative::
996
997 sage: set_random_seed()
998 sage: x0 = random_eja().random_element()
999 sage: A = x0.subalgebra_generated_by()
1000 sage: x = A.random_element()
1001 sage: y = A.random_element()
1002 sage: z = A.random_element()
1003 sage: (x*y)*z == x*(y*z)
1004 True
1005
1006 Squaring in the subalgebra should work the same as in
1007 the superalgebra::
1008
1009 sage: set_random_seed()
1010 sage: x = random_eja().random_element()
1011 sage: A = x.subalgebra_generated_by()
1012 sage: A(x^2) == A(x)*A(x)
1013 True
1014
1015 The subalgebra generated by the zero element is trivial::
1016
1017 sage: set_random_seed()
1018 sage: A = random_eja().zero().subalgebra_generated_by()
1019 sage: A
1020 Euclidean Jordan algebra of dimension 0 over Rational Field
1021 sage: A.one()
1022 0
1023
1024 """
1025 return FiniteDimensionalEuclideanJordanElementSubalgebra(self)
1026
1027
1028 def subalgebra_idempotent(self):
1029 """
1030 Find an idempotent in the associative subalgebra I generate
1031 using Proposition 2.3.5 in Baes.
1032
1033 SETUP::
1034
1035 sage: from mjo.eja.eja_algebra import random_eja
1036
1037 TESTS::
1038
1039 sage: set_random_seed()
1040 sage: J = random_eja()
1041 sage: x = J.random_element()
1042 sage: while x.is_nilpotent():
1043 ....: x = J.random_element()
1044 sage: c = x.subalgebra_idempotent()
1045 sage: c^2 == c
1046 True
1047
1048 """
1049 if self.is_nilpotent():
1050 raise ValueError("this only works with non-nilpotent elements!")
1051
1052 J = self.subalgebra_generated_by()
1053 u = J(self)
1054
1055 # The image of the matrix of left-u^m-multiplication
1056 # will be minimal for some natural number s...
1057 s = 0
1058 minimal_dim = J.dimension()
1059 for i in xrange(1, minimal_dim):
1060 this_dim = (u**i).operator().matrix().image().dimension()
1061 if this_dim < minimal_dim:
1062 minimal_dim = this_dim
1063 s = i
1064
1065 # Now minimal_matrix should correspond to the smallest
1066 # non-zero subspace in Baes's (or really, Koecher's)
1067 # proposition.
1068 #
1069 # However, we need to restrict the matrix to work on the
1070 # subspace... or do we? Can't we just solve, knowing that
1071 # A(c) = u^(s+1) should have a solution in the big space,
1072 # too?
1073 #
1074 # Beware, solve_right() means that we're using COLUMN vectors.
1075 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1076 u_next = u**(s+1)
1077 A = u_next.operator().matrix()
1078 c = J.from_vector(A.solve_right(u_next.to_vector()))
1079
1080 # Now c is the idempotent we want, but it still lives in the subalgebra.
1081 return c.superalgebra_element()
1082
1083
1084 def trace(self):
1085 """
1086 Return my trace, the sum of my eigenvalues.
1087
1088 SETUP::
1089
1090 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1091 ....: RealCartesianProductEJA,
1092 ....: random_eja)
1093
1094 EXAMPLES::
1095
1096 sage: J = JordanSpinEJA(3)
1097 sage: x = sum(J.gens())
1098 sage: x.trace()
1099 2
1100
1101 ::
1102
1103 sage: J = RealCartesianProductEJA(5)
1104 sage: J.one().trace()
1105 5
1106
1107 TESTS:
1108
1109 The trace of an element is a real number::
1110
1111 sage: set_random_seed()
1112 sage: J = random_eja()
1113 sage: J.random_element().trace() in J.base_ring()
1114 True
1115
1116 """
1117 P = self.parent()
1118 r = P.rank()
1119 p = P._charpoly_coeff(r-1)
1120 # The _charpoly_coeff function already adds the factor of
1121 # -1 to ensure that _charpoly_coeff(r-1) is really what
1122 # appears in front of t^{r-1} in the charpoly. However,
1123 # we want the negative of THAT for the trace.
1124 return -p(*self.to_vector())
1125
1126
1127 def trace_inner_product(self, other):
1128 """
1129 Return the trace inner product of myself and ``other``.
1130
1131 SETUP::
1132
1133 sage: from mjo.eja.eja_algebra import random_eja
1134
1135 TESTS:
1136
1137 The trace inner product is commutative::
1138
1139 sage: set_random_seed()
1140 sage: J = random_eja()
1141 sage: x = J.random_element(); y = J.random_element()
1142 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1143 True
1144
1145 The trace inner product is bilinear::
1146
1147 sage: set_random_seed()
1148 sage: J = random_eja()
1149 sage: x = J.random_element()
1150 sage: y = J.random_element()
1151 sage: z = J.random_element()
1152 sage: a = QQ.random_element();
1153 sage: actual = (a*(x+z)).trace_inner_product(y)
1154 sage: expected = ( a*x.trace_inner_product(y) +
1155 ....: a*z.trace_inner_product(y) )
1156 sage: actual == expected
1157 True
1158 sage: actual = x.trace_inner_product(a*(y+z))
1159 sage: expected = ( a*x.trace_inner_product(y) +
1160 ....: a*x.trace_inner_product(z) )
1161 sage: actual == expected
1162 True
1163
1164 The trace inner product satisfies the compatibility
1165 condition in the definition of a Euclidean Jordan algebra::
1166
1167 sage: set_random_seed()
1168 sage: J = random_eja()
1169 sage: x = J.random_element()
1170 sage: y = J.random_element()
1171 sage: z = J.random_element()
1172 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1173 True
1174
1175 """
1176 if not other in self.parent():
1177 raise TypeError("'other' must live in the same algebra")
1178
1179 return (self*other).trace()