]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_element.py
eja: add subalgebra() method.
[sage.d.git] / mjo / eja / eja_element.py
1 from sage.matrix.constructor import matrix
2 from sage.misc.cachefunc import cached_method
3 from sage.modules.free_module import VectorSpace
4 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
5
6 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
7 from mjo.eja.eja_utils import _mat2vec
8
9 class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
10 """
11 An element of a Euclidean Jordan algebra.
12 """
13
14 def __dir__(self):
15 """
16 Oh man, I should not be doing this. This hides the "disabled"
17 methods ``left_matrix`` and ``matrix`` from introspection;
18 in particular it removes them from tab-completion.
19 """
20 return filter(lambda s: s not in ['left_matrix', 'matrix'],
21 dir(self.__class__) )
22
23
24
25
26 def __pow__(self, n):
27 """
28 Return ``self`` raised to the power ``n``.
29
30 Jordan algebras are always power-associative; see for
31 example Faraut and Korányi, Proposition II.1.2 (ii).
32
33 We have to override this because our superclass uses row
34 vectors instead of column vectors! We, on the other hand,
35 assume column vectors everywhere.
36
37 SETUP::
38
39 sage: from mjo.eja.eja_algebra import random_eja
40
41 TESTS:
42
43 The definition of `x^2` is the unambiguous `x*x`::
44
45 sage: set_random_seed()
46 sage: x = random_eja().random_element()
47 sage: x*x == (x^2)
48 True
49
50 A few examples of power-associativity::
51
52 sage: set_random_seed()
53 sage: x = random_eja().random_element()
54 sage: x*(x*x)*(x*x) == x^5
55 True
56 sage: (x*x)*(x*x*x) == x^5
57 True
58
59 We also know that powers operator-commute (Koecher, Chapter
60 III, Corollary 1)::
61
62 sage: set_random_seed()
63 sage: x = random_eja().random_element()
64 sage: m = ZZ.random_element(0,10)
65 sage: n = ZZ.random_element(0,10)
66 sage: Lxm = (x^m).operator()
67 sage: Lxn = (x^n).operator()
68 sage: Lxm*Lxn == Lxn*Lxm
69 True
70
71 """
72 if n == 0:
73 return self.parent().one()
74 elif n == 1:
75 return self
76 else:
77 return (self**(n-1))*self
78
79
80 def apply_univariate_polynomial(self, p):
81 """
82 Apply the univariate polynomial ``p`` to this element.
83
84 A priori, SageMath won't allow us to apply a univariate
85 polynomial to an element of an EJA, because we don't know
86 that EJAs are rings (they are usually not associative). Of
87 course, we know that EJAs are power-associative, so the
88 operation is ultimately kosher. This function sidesteps
89 the CAS to get the answer we want and expect.
90
91 SETUP::
92
93 sage: from mjo.eja.eja_algebra import (HadamardEJA,
94 ....: random_eja)
95
96 EXAMPLES::
97
98 sage: R = PolynomialRing(QQ, 't')
99 sage: t = R.gen(0)
100 sage: p = t^4 - t^3 + 5*t - 2
101 sage: J = HadamardEJA(5)
102 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
103 True
104
105 TESTS:
106
107 We should always get back an element of the algebra::
108
109 sage: set_random_seed()
110 sage: p = PolynomialRing(AA, 't').random_element()
111 sage: J = random_eja()
112 sage: x = J.random_element()
113 sage: x.apply_univariate_polynomial(p) in J
114 True
115
116 """
117 if len(p.variables()) > 1:
118 raise ValueError("not a univariate polynomial")
119 P = self.parent()
120 R = P.base_ring()
121 # Convert the coeficcients to the parent's base ring,
122 # because a priori they might live in an (unnecessarily)
123 # larger ring for which P.sum() would fail below.
124 cs = [ R(c) for c in p.coefficients(sparse=False) ]
125 return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
126
127
128 def characteristic_polynomial(self):
129 """
130 Return the characteristic polynomial of this element.
131
132 SETUP::
133
134 sage: from mjo.eja.eja_algebra import HadamardEJA
135
136 EXAMPLES:
137
138 The rank of `R^3` is three, and the minimal polynomial of
139 the identity element is `(t-1)` from which it follows that
140 the characteristic polynomial should be `(t-1)^3`::
141
142 sage: J = HadamardEJA(3)
143 sage: J.one().characteristic_polynomial()
144 t^3 - 3*t^2 + 3*t - 1
145
146 Likewise, the characteristic of the zero element in the
147 rank-three algebra `R^{n}` should be `t^{3}`::
148
149 sage: J = HadamardEJA(3)
150 sage: J.zero().characteristic_polynomial()
151 t^3
152
153 TESTS:
154
155 The characteristic polynomial of an element should evaluate
156 to zero on that element::
157
158 sage: set_random_seed()
159 sage: x = HadamardEJA(3).random_element()
160 sage: p = x.characteristic_polynomial()
161 sage: x.apply_univariate_polynomial(p)
162 0
163
164 The characteristic polynomials of the zero and unit elements
165 should be what we think they are in a subalgebra, too::
166
167 sage: J = HadamardEJA(3)
168 sage: p1 = J.one().characteristic_polynomial()
169 sage: q1 = J.zero().characteristic_polynomial()
170 sage: e0,e1,e2 = J.gens()
171 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
172 sage: p2 = A.one().characteristic_polynomial()
173 sage: q2 = A.zero().characteristic_polynomial()
174 sage: p1 == p2
175 True
176 sage: q1 == q2
177 True
178
179 """
180 p = self.parent().characteristic_polynomial_of()
181 return p(*self.to_vector())
182
183
184 def inner_product(self, other):
185 """
186 Return the parent algebra's inner product of myself and ``other``.
187
188 SETUP::
189
190 sage: from mjo.eja.eja_algebra import (
191 ....: ComplexHermitianEJA,
192 ....: JordanSpinEJA,
193 ....: QuaternionHermitianEJA,
194 ....: RealSymmetricEJA,
195 ....: random_eja)
196
197 EXAMPLES:
198
199 The inner product in the Jordan spin algebra is the usual
200 inner product on `R^n` (this example only works because the
201 basis for the Jordan algebra is the standard basis in `R^n`)::
202
203 sage: J = JordanSpinEJA(3)
204 sage: x = vector(QQ,[1,2,3])
205 sage: y = vector(QQ,[4,5,6])
206 sage: x.inner_product(y)
207 32
208 sage: J.from_vector(x).inner_product(J.from_vector(y))
209 32
210
211 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
212 multiplication is the usual matrix multiplication in `S^n`,
213 so the inner product of the identity matrix with itself
214 should be the `n`::
215
216 sage: J = RealSymmetricEJA(3)
217 sage: J.one().inner_product(J.one())
218 3
219
220 Likewise, the inner product on `C^n` is `<X,Y> =
221 Re(trace(X*Y))`, where we must necessarily take the real
222 part because the product of Hermitian matrices may not be
223 Hermitian::
224
225 sage: J = ComplexHermitianEJA(3)
226 sage: J.one().inner_product(J.one())
227 3
228
229 Ditto for the quaternions::
230
231 sage: J = QuaternionHermitianEJA(2)
232 sage: J.one().inner_product(J.one())
233 2
234
235 TESTS:
236
237 Ensure that we can always compute an inner product, and that
238 it gives us back a real number::
239
240 sage: set_random_seed()
241 sage: J = random_eja()
242 sage: x,y = J.random_elements(2)
243 sage: x.inner_product(y) in RLF
244 True
245
246 """
247 P = self.parent()
248 if not other in P:
249 raise TypeError("'other' must live in the same algebra")
250
251 return P.inner_product(self, other)
252
253
254 def operator_commutes_with(self, other):
255 """
256 Return whether or not this element operator-commutes
257 with ``other``.
258
259 SETUP::
260
261 sage: from mjo.eja.eja_algebra import random_eja
262
263 EXAMPLES:
264
265 The definition of a Jordan algebra says that any element
266 operator-commutes with its square::
267
268 sage: set_random_seed()
269 sage: x = random_eja().random_element()
270 sage: x.operator_commutes_with(x^2)
271 True
272
273 TESTS:
274
275 Test Lemma 1 from Chapter III of Koecher::
276
277 sage: set_random_seed()
278 sage: u,v = random_eja().random_elements(2)
279 sage: lhs = u.operator_commutes_with(u*v)
280 sage: rhs = v.operator_commutes_with(u^2)
281 sage: lhs == rhs
282 True
283
284 Test the first polarization identity from my notes, Koecher
285 Chapter III, or from Baes (2.3)::
286
287 sage: set_random_seed()
288 sage: x,y = random_eja().random_elements(2)
289 sage: Lx = x.operator()
290 sage: Ly = y.operator()
291 sage: Lxx = (x*x).operator()
292 sage: Lxy = (x*y).operator()
293 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
294 True
295
296 Test the second polarization identity from my notes or from
297 Baes (2.4)::
298
299 sage: set_random_seed()
300 sage: x,y,z = random_eja().random_elements(3)
301 sage: Lx = x.operator()
302 sage: Ly = y.operator()
303 sage: Lz = z.operator()
304 sage: Lzy = (z*y).operator()
305 sage: Lxy = (x*y).operator()
306 sage: Lxz = (x*z).operator()
307 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
308 True
309
310 Test the third polarization identity from my notes or from
311 Baes (2.5)::
312
313 sage: set_random_seed()
314 sage: u,y,z = random_eja().random_elements(3)
315 sage: Lu = u.operator()
316 sage: Ly = y.operator()
317 sage: Lz = z.operator()
318 sage: Lzy = (z*y).operator()
319 sage: Luy = (u*y).operator()
320 sage: Luz = (u*z).operator()
321 sage: Luyz = (u*(y*z)).operator()
322 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
323 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
324 sage: bool(lhs == rhs)
325 True
326
327 """
328 if not other in self.parent():
329 raise TypeError("'other' must live in the same algebra")
330
331 A = self.operator()
332 B = other.operator()
333 return (A*B == B*A)
334
335
336 def det(self):
337 """
338 Return my determinant, the product of my eigenvalues.
339
340 SETUP::
341
342 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
343 ....: TrivialEJA,
344 ....: RealSymmetricEJA,
345 ....: ComplexHermitianEJA,
346 ....: random_eja)
347
348 EXAMPLES::
349
350 sage: J = JordanSpinEJA(2)
351 sage: e0,e1 = J.gens()
352 sage: x = sum( J.gens() )
353 sage: x.det()
354 0
355
356 ::
357
358 sage: J = JordanSpinEJA(3)
359 sage: e0,e1,e2 = J.gens()
360 sage: x = sum( J.gens() )
361 sage: x.det()
362 -1
363
364 The determinant of the sole element in the rank-zero trivial
365 algebra is ``1``, by three paths of reasoning. First, its
366 characteristic polynomial is a constant ``1``, so the constant
367 term in that polynomial is ``1``. Second, the characteristic
368 polynomial evaluated at zero is again ``1``. And finally, the
369 (empty) product of its eigenvalues is likewise just unity::
370
371 sage: J = TrivialEJA()
372 sage: J.zero().det()
373 1
374
375 TESTS:
376
377 An element is invertible if and only if its determinant is
378 non-zero::
379
380 sage: set_random_seed()
381 sage: x = random_eja().random_element()
382 sage: x.is_invertible() == (x.det() != 0)
383 True
384
385 Ensure that the determinant is multiplicative on an associative
386 subalgebra as in Faraut and Korányi's Proposition II.2.2::
387
388 sage: set_random_seed()
389 sage: J = random_eja().random_element().subalgebra_generated_by()
390 sage: x,y = J.random_elements(2)
391 sage: (x*y).det() == x.det()*y.det()
392 True
393
394 The determinant in matrix algebras is just the usual determinant::
395
396 sage: set_random_seed()
397 sage: X = matrix.random(QQ,3)
398 sage: X = X + X.T
399 sage: J1 = RealSymmetricEJA(3)
400 sage: J2 = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
401 sage: expected = X.det()
402 sage: actual1 = J1(X).det()
403 sage: actual2 = J2(X).det()
404 sage: actual1 == expected
405 True
406 sage: actual2 == expected
407 True
408
409 ::
410
411 sage: set_random_seed()
412 sage: J1 = ComplexHermitianEJA(2)
413 sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
414 sage: X = matrix.random(GaussianIntegers(), 2)
415 sage: X = X + X.H
416 sage: expected = AA(X.det())
417 sage: actual1 = J1(J1.real_embed(X)).det()
418 sage: actual2 = J2(J2.real_embed(X)).det()
419 sage: expected == actual1
420 True
421 sage: expected == actual2
422 True
423
424 """
425 P = self.parent()
426 r = P.rank()
427
428 if r == 0:
429 # Special case, since we don't get the a0=1
430 # coefficient when the rank of the algebra
431 # is zero.
432 return P.base_ring().one()
433
434 p = P._charpoly_coefficients()[0]
435 # The _charpoly_coeff function already adds the factor of -1
436 # to ensure that _charpoly_coefficients()[0] is really what
437 # appears in front of t^{0} in the charpoly. However, we want
438 # (-1)^r times THAT for the determinant.
439 return ((-1)**r)*p(*self.to_vector())
440
441
442 @cached_method
443 def inverse(self):
444 """
445 Return the Jordan-multiplicative inverse of this element.
446
447 ALGORITHM:
448
449 In general we appeal to the quadratic representation as in
450 Koecher's Theorem 12 in Chapter III, Section 5. But if the
451 parent algebra's "characteristic polynomial of" coefficients
452 happen to be cached, then we use Proposition II.2.4 in Faraut
453 and Korányi which gives a formula for the inverse based on the
454 characteristic polynomial and the Cayley-Hamilton theorem for
455 Euclidean Jordan algebras::
456
457 SETUP::
458
459 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
460 ....: JordanSpinEJA,
461 ....: random_eja)
462
463 EXAMPLES:
464
465 The inverse in the spin factor algebra is given in Alizadeh's
466 Example 11.11::
467
468 sage: set_random_seed()
469 sage: J = JordanSpinEJA.random_instance()
470 sage: x = J.random_element()
471 sage: while not x.is_invertible():
472 ....: x = J.random_element()
473 sage: x_vec = x.to_vector()
474 sage: x0 = x_vec[:1]
475 sage: x_bar = x_vec[1:]
476 sage: coeff = x0.inner_product(x0) - x_bar.inner_product(x_bar)
477 sage: x_inverse = x_vec.parent()(x0.list() + (-x_bar).list())
478 sage: if not coeff.is_zero(): x_inverse = x_inverse/coeff
479 sage: x.inverse() == J.from_vector(x_inverse)
480 True
481
482 Trying to invert a non-invertible element throws an error:
483
484 sage: JordanSpinEJA(3).zero().inverse()
485 Traceback (most recent call last):
486 ...
487 ZeroDivisionError: element is not invertible
488
489 TESTS:
490
491 The identity element is its own inverse::
492
493 sage: set_random_seed()
494 sage: J = random_eja()
495 sage: J.one().inverse() == J.one()
496 True
497
498 If an element has an inverse, it acts like one::
499
500 sage: set_random_seed()
501 sage: J = random_eja()
502 sage: x = J.random_element()
503 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
504 True
505
506 The inverse of the inverse is what we started with::
507
508 sage: set_random_seed()
509 sage: J = random_eja()
510 sage: x = J.random_element()
511 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
512 True
513
514 Proposition II.2.3 in Faraut and Korányi says that the inverse
515 of an element is the inverse of its left-multiplication operator
516 applied to the algebra's identity, when that inverse exists::
517
518 sage: set_random_seed()
519 sage: J = random_eja()
520 sage: x = J.random_element()
521 sage: (not x.operator().is_invertible()) or (
522 ....: x.operator().inverse()(J.one()) == x.inverse() )
523 True
524
525 Check that the fast (cached) and slow algorithms give the same
526 answer::
527
528 sage: set_random_seed() # long time
529 sage: J = random_eja(field=QQ, orthonormalize=False) # long time
530 sage: x = J.random_element() # long time
531 sage: while not x.is_invertible(): # long time
532 ....: x = J.random_element() # long time
533 sage: slow = x.inverse() # long time
534 sage: _ = J._charpoly_coefficients() # long time
535 sage: fast = x.inverse() # long time
536 sage: slow == fast # long time
537 True
538 """
539 not_invertible_msg = "element is not invertible"
540 if self.parent()._charpoly_coefficients.is_in_cache():
541 # We can invert using our charpoly if it will be fast to
542 # compute. If the coefficients are cached, our rank had
543 # better be too!
544 if self.det().is_zero():
545 raise ZeroDivisionError(not_invertible_msg)
546 r = self.parent().rank()
547 a = self.characteristic_polynomial().coefficients(sparse=False)
548 return (-1)**(r+1)*sum(a[i+1]*self**i for i in range(r))/self.det()
549
550 try:
551 inv = (~self.quadratic_representation())(self)
552 self.is_invertible.set_cache(True)
553 return inv
554 except ZeroDivisionError:
555 self.is_invertible.set_cache(False)
556 raise ZeroDivisionError(not_invertible_msg)
557
558
559 @cached_method
560 def is_invertible(self):
561 """
562 Return whether or not this element is invertible.
563
564 ALGORITHM:
565
566 If computing my determinant will be fast, we do so and compare
567 with zero (Proposition II.2.4 in Faraut and
568 Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi
569 reduces the problem to the invertibility of my quadratic
570 representation.
571
572 SETUP::
573
574 sage: from mjo.eja.eja_algebra import random_eja
575
576 TESTS:
577
578 The identity element is always invertible::
579
580 sage: set_random_seed()
581 sage: J = random_eja()
582 sage: J.one().is_invertible()
583 True
584
585 The zero element is never invertible in a non-trivial algebra::
586
587 sage: set_random_seed()
588 sage: J = random_eja()
589 sage: (not J.is_trivial()) and J.zero().is_invertible()
590 False
591
592 Test that the fast (cached) and slow algorithms give the same
593 answer::
594
595 sage: set_random_seed() # long time
596 sage: J = random_eja(field=QQ, orthonormalize=False) # long time
597 sage: x = J.random_element() # long time
598 sage: slow = x.is_invertible() # long time
599 sage: _ = J._charpoly_coefficients() # long time
600 sage: fast = x.is_invertible() # long time
601 sage: slow == fast # long time
602 True
603 """
604 if self.is_zero():
605 if self.parent().is_trivial():
606 return True
607 else:
608 return False
609
610 if self.parent()._charpoly_coefficients.is_in_cache():
611 # The determinant will be quicker than inverting the
612 # quadratic representation, most likely.
613 return (not self.det().is_zero())
614
615 # The easiest way to determine if I'm invertible is to try.
616 try:
617 inv = (~self.quadratic_representation())(self)
618 self.inverse.set_cache(inv)
619 return True
620 except ZeroDivisionError:
621 return False
622
623
624 def is_primitive_idempotent(self):
625 """
626 Return whether or not this element is a primitive (or minimal)
627 idempotent.
628
629 A primitive idempotent is a non-zero idempotent that is not
630 the sum of two other non-zero idempotents. Remark 2.7.15 in
631 Baes shows that this is what he refers to as a "minimal
632 idempotent."
633
634 An element of a Euclidean Jordan algebra is a minimal idempotent
635 if it :meth:`is_idempotent` and if its Peirce subalgebra
636 corresponding to the eigenvalue ``1`` has dimension ``1`` (Baes,
637 Proposition 2.7.17).
638
639 SETUP::
640
641 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
642 ....: RealSymmetricEJA,
643 ....: TrivialEJA,
644 ....: random_eja)
645
646 WARNING::
647
648 This method is sloooooow.
649
650 EXAMPLES:
651
652 The spectral decomposition of a non-regular element should always
653 contain at least one non-minimal idempotent::
654
655 sage: J = RealSymmetricEJA(3)
656 sage: x = sum(J.gens())
657 sage: x.is_regular()
658 False
659 sage: [ c.is_primitive_idempotent()
660 ....: for (l,c) in x.spectral_decomposition() ]
661 [False, True]
662
663 On the other hand, the spectral decomposition of a regular
664 element should always be in terms of minimal idempotents::
665
666 sage: J = JordanSpinEJA(4)
667 sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
668 sage: x.is_regular()
669 True
670 sage: [ c.is_primitive_idempotent()
671 ....: for (l,c) in x.spectral_decomposition() ]
672 [True, True]
673
674 TESTS:
675
676 The identity element is minimal only in an EJA of rank one::
677
678 sage: set_random_seed()
679 sage: J = random_eja()
680 sage: J.rank() == 1 or not J.one().is_primitive_idempotent()
681 True
682
683 A non-idempotent cannot be a minimal idempotent::
684
685 sage: set_random_seed()
686 sage: J = JordanSpinEJA(4)
687 sage: x = J.random_element()
688 sage: (not x.is_idempotent()) and x.is_primitive_idempotent()
689 False
690
691 Proposition 2.7.19 in Baes says that an element is a minimal
692 idempotent if and only if it's idempotent with trace equal to
693 unity::
694
695 sage: set_random_seed()
696 sage: J = JordanSpinEJA(4)
697 sage: x = J.random_element()
698 sage: expected = (x.is_idempotent() and x.trace() == 1)
699 sage: actual = x.is_primitive_idempotent()
700 sage: actual == expected
701 True
702
703 Primitive idempotents must be non-zero::
704
705 sage: set_random_seed()
706 sage: J = random_eja()
707 sage: J.zero().is_idempotent()
708 True
709 sage: J.zero().is_primitive_idempotent()
710 False
711
712 As a consequence of the fact that primitive idempotents must
713 be non-zero, there are no primitive idempotents in a trivial
714 Euclidean Jordan algebra::
715
716 sage: J = TrivialEJA()
717 sage: J.one().is_idempotent()
718 True
719 sage: J.one().is_primitive_idempotent()
720 False
721
722 """
723 if not self.is_idempotent():
724 return False
725
726 if self.is_zero():
727 return False
728
729 (_,_,J1) = self.parent().peirce_decomposition(self)
730 return (J1.dimension() == 1)
731
732
733 def is_nilpotent(self):
734 """
735 Return whether or not some power of this element is zero.
736
737 ALGORITHM:
738
739 We use Theorem 5 in Chapter III of Koecher, which says that
740 an element ``x`` is nilpotent if and only if ``x.operator()``
741 is nilpotent. And it is a basic fact of linear algebra that
742 an operator on an `n`-dimensional space is nilpotent if and
743 only if, when raised to the `n`th power, it equals the zero
744 operator (for example, see Axler Corollary 8.8).
745
746 SETUP::
747
748 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
749 ....: random_eja)
750
751 EXAMPLES::
752
753 sage: J = JordanSpinEJA(3)
754 sage: x = sum(J.gens())
755 sage: x.is_nilpotent()
756 False
757
758 TESTS:
759
760 The identity element is never nilpotent, except in a trivial EJA::
761
762 sage: set_random_seed()
763 sage: J = random_eja()
764 sage: J.one().is_nilpotent() and not J.is_trivial()
765 False
766
767 The additive identity is always nilpotent::
768
769 sage: set_random_seed()
770 sage: random_eja().zero().is_nilpotent()
771 True
772
773 """
774 P = self.parent()
775 zero_operator = P.zero().operator()
776 return self.operator()**P.dimension() == zero_operator
777
778
779 def is_regular(self):
780 """
781 Return whether or not this is a regular element.
782
783 SETUP::
784
785 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
786 ....: random_eja)
787
788 EXAMPLES:
789
790 The identity element always has degree one, but any element
791 linearly-independent from it is regular::
792
793 sage: J = JordanSpinEJA(5)
794 sage: J.one().is_regular()
795 False
796 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
797 sage: for x in J.gens():
798 ....: (J.one() + x).is_regular()
799 False
800 True
801 True
802 True
803 True
804
805 TESTS:
806
807 The zero element should never be regular, unless the parent
808 algebra has dimension less than or equal to one::
809
810 sage: set_random_seed()
811 sage: J = random_eja()
812 sage: J.dimension() <= 1 or not J.zero().is_regular()
813 True
814
815 The unit element isn't regular unless the algebra happens to
816 consist of only its scalar multiples::
817
818 sage: set_random_seed()
819 sage: J = random_eja()
820 sage: J.dimension() <= 1 or not J.one().is_regular()
821 True
822
823 """
824 return self.degree() == self.parent().rank()
825
826
827 def degree(self):
828 """
829 Return the degree of this element, which is defined to be
830 the degree of its minimal polynomial.
831
832 ALGORITHM:
833
834 .........
835
836 SETUP::
837
838 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
839 ....: random_eja)
840
841 EXAMPLES::
842
843 sage: J = JordanSpinEJA(4)
844 sage: J.one().degree()
845 1
846 sage: e0,e1,e2,e3 = J.gens()
847 sage: (e0 - e1).degree()
848 2
849
850 In the spin factor algebra (of rank two), all elements that
851 aren't multiples of the identity are regular::
852
853 sage: set_random_seed()
854 sage: J = JordanSpinEJA.random_instance()
855 sage: n = J.dimension()
856 sage: x = J.random_element()
857 sage: x.degree() == min(n,2) or (x == x.coefficient(0)*J.one())
858 True
859
860 TESTS:
861
862 The zero and unit elements are both of degree one in nontrivial
863 algebras::
864
865 sage: set_random_seed()
866 sage: J = random_eja()
867 sage: d = J.zero().degree()
868 sage: (J.is_trivial() and d == 0) or d == 1
869 True
870 sage: d = J.one().degree()
871 sage: (J.is_trivial() and d == 0) or d == 1
872 True
873
874 Our implementation agrees with the definition::
875
876 sage: set_random_seed()
877 sage: x = random_eja().random_element()
878 sage: x.degree() == x.minimal_polynomial().degree()
879 True
880
881 """
882 n = self.parent().dimension()
883
884 if n == 0:
885 # The minimal polynomial is an empty product, i.e. the
886 # constant polynomial "1" having degree zero.
887 return 0
888 elif self.is_zero():
889 # The minimal polynomial of zero in a nontrivial algebra
890 # is "t", and is of degree one.
891 return 1
892 elif n == 1:
893 # If this is a nonzero element of a nontrivial algebra, it
894 # has degree at least one. It follows that, in an algebra
895 # of dimension one, the degree must be actually one.
896 return 1
897
898 # BEWARE: The subalgebra_generated_by() method uses the result
899 # of this method to construct a basis for the subalgebra. That
900 # means, in particular, that we cannot implement this method
901 # as ``self.subalgebra_generated_by().dimension()``.
902
903 # Algorithm: keep appending (vector representations of) powers
904 # self as rows to a matrix and echelonizing it. When its rank
905 # stops increasing, we've reached a redundancy.
906
907 # Given the special cases above, we can assume that "self" is
908 # nonzero, the algebra is nontrivial, and that its dimension
909 # is at least two.
910 M = matrix([(self.parent().one()).to_vector()])
911 old_rank = 1
912
913 # Specifying the row-reduction algorithm can e.g. help over
914 # AA because it avoids the RecursionError that gets thrown
915 # when we have to look too hard for a root.
916 #
917 # Beware: QQ supports an entirely different set of "algorithm"
918 # keywords than do AA and RR.
919 algo = None
920 from sage.rings.all import QQ
921 if self.parent().base_ring() is not QQ:
922 algo = "scaled_partial_pivoting"
923
924 for d in range(1,n):
925 M = matrix(M.rows() + [(self**d).to_vector()])
926 M.echelonize(algo)
927 new_rank = M.rank()
928 if new_rank == old_rank:
929 return new_rank
930 else:
931 old_rank = new_rank
932
933 return n
934
935
936
937 def left_matrix(self):
938 """
939 Our parent class defines ``left_matrix`` and ``matrix``
940 methods whose names are misleading. We don't want them.
941 """
942 raise NotImplementedError("use operator().matrix() instead")
943
944 matrix = left_matrix
945
946
947 def minimal_polynomial(self):
948 """
949 Return the minimal polynomial of this element,
950 as a function of the variable `t`.
951
952 ALGORITHM:
953
954 We restrict ourselves to the associative subalgebra
955 generated by this element, and then return the minimal
956 polynomial of this element's operator matrix (in that
957 subalgebra). This works by Baes Proposition 2.3.16.
958
959 SETUP::
960
961 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
962 ....: RealSymmetricEJA,
963 ....: TrivialEJA,
964 ....: random_eja)
965
966 EXAMPLES:
967
968 Keeping in mind that the polynomial ``1`` evaluates the identity
969 element (also the zero element) of the trivial algebra, it is clear
970 that the polynomial ``1`` is the minimal polynomial of the only
971 element in a trivial algebra::
972
973 sage: J = TrivialEJA()
974 sage: J.one().minimal_polynomial()
975 1
976 sage: J.zero().minimal_polynomial()
977 1
978
979 TESTS:
980
981 The minimal polynomial of the identity and zero elements are
982 always the same, except in trivial algebras where the minimal
983 polynomial of the unit/zero element is ``1``::
984
985 sage: set_random_seed()
986 sage: J = random_eja()
987 sage: mu = J.one().minimal_polynomial()
988 sage: t = mu.parent().gen()
989 sage: mu + int(J.is_trivial())*(t-2)
990 t - 1
991 sage: mu = J.zero().minimal_polynomial()
992 sage: t = mu.parent().gen()
993 sage: mu + int(J.is_trivial())*(t-1)
994 t
995
996 The degree of an element is (by one definition) the degree
997 of its minimal polynomial::
998
999 sage: set_random_seed()
1000 sage: x = random_eja().random_element()
1001 sage: x.degree() == x.minimal_polynomial().degree()
1002 True
1003
1004 The minimal polynomial and the characteristic polynomial coincide
1005 and are known (see Alizadeh, Example 11.11) for all elements of
1006 the spin factor algebra that aren't scalar multiples of the
1007 identity. We require the dimension of the algebra to be at least
1008 two here so that said elements actually exist::
1009
1010 sage: set_random_seed()
1011 sage: n_max = max(2, JordanSpinEJA._max_random_instance_size())
1012 sage: n = ZZ.random_element(2, n_max)
1013 sage: J = JordanSpinEJA(n)
1014 sage: y = J.random_element()
1015 sage: while y == y.coefficient(0)*J.one():
1016 ....: y = J.random_element()
1017 sage: y0 = y.to_vector()[0]
1018 sage: y_bar = y.to_vector()[1:]
1019 sage: actual = y.minimal_polynomial()
1020 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
1021 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
1022 sage: bool(actual == expected)
1023 True
1024
1025 The minimal polynomial should always kill its element::
1026
1027 sage: set_random_seed()
1028 sage: x = random_eja().random_element()
1029 sage: p = x.minimal_polynomial()
1030 sage: x.apply_univariate_polynomial(p)
1031 0
1032
1033 The minimal polynomial is invariant under a change of basis,
1034 and in particular, a re-scaling of the basis::
1035
1036 sage: set_random_seed()
1037 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1038 sage: n = ZZ.random_element(1, n_max)
1039 sage: J1 = RealSymmetricEJA(n)
1040 sage: J2 = RealSymmetricEJA(n,orthonormalize=False)
1041 sage: X = random_matrix(AA,n)
1042 sage: X = X*X.transpose()
1043 sage: x1 = J1(X)
1044 sage: x2 = J2(X)
1045 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
1046 True
1047
1048 """
1049 if self.is_zero():
1050 # We would generate a zero-dimensional subalgebra
1051 # where the minimal polynomial would be constant.
1052 # That might be correct, but only if *this* algebra
1053 # is trivial too.
1054 if not self.parent().is_trivial():
1055 # Pretty sure we know what the minimal polynomial of
1056 # the zero operator is going to be. This ensures
1057 # consistency of e.g. the polynomial variable returned
1058 # in the "normal" case without us having to think about it.
1059 return self.operator().minimal_polynomial()
1060
1061 A = self.subalgebra_generated_by(orthonormalize=False)
1062 return A(self).operator().minimal_polynomial()
1063
1064
1065
1066 def to_matrix(self):
1067 """
1068 Return an (often more natural) representation of this element as a
1069 matrix.
1070
1071 Every finite-dimensional Euclidean Jordan Algebra is a direct
1072 sum of five simple algebras, four of which comprise Hermitian
1073 matrices. This method returns a "natural" matrix
1074 representation of this element as either a Hermitian matrix or
1075 column vector.
1076
1077 SETUP::
1078
1079 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1080 ....: QuaternionHermitianEJA)
1081
1082 EXAMPLES::
1083
1084 sage: J = ComplexHermitianEJA(3)
1085 sage: J.one()
1086 e0 + e3 + e8
1087 sage: J.one().to_matrix()
1088 [1 0 0 0 0 0]
1089 [0 1 0 0 0 0]
1090 [0 0 1 0 0 0]
1091 [0 0 0 1 0 0]
1092 [0 0 0 0 1 0]
1093 [0 0 0 0 0 1]
1094
1095 ::
1096
1097 sage: J = QuaternionHermitianEJA(2)
1098 sage: J.one()
1099 e0 + e5
1100 sage: J.one().to_matrix()
1101 [1 0 0 0 0 0 0 0]
1102 [0 1 0 0 0 0 0 0]
1103 [0 0 1 0 0 0 0 0]
1104 [0 0 0 1 0 0 0 0]
1105 [0 0 0 0 1 0 0 0]
1106 [0 0 0 0 0 1 0 0]
1107 [0 0 0 0 0 0 1 0]
1108 [0 0 0 0 0 0 0 1]
1109
1110 """
1111 B = self.parent().matrix_basis()
1112 W = self.parent().matrix_space()
1113
1114 # This is just a manual "from_vector()", but of course
1115 # matrix spaces aren't vector spaces in sage, so they
1116 # don't have a from_vector() method.
1117 return W.linear_combination( zip(B, self.to_vector()) )
1118
1119
1120
1121 def norm(self):
1122 """
1123 The norm of this element with respect to :meth:`inner_product`.
1124
1125 SETUP::
1126
1127 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1128 ....: HadamardEJA)
1129
1130 EXAMPLES::
1131
1132 sage: J = HadamardEJA(2)
1133 sage: x = sum(J.gens())
1134 sage: x.norm()
1135 1.414213562373095?
1136
1137 ::
1138
1139 sage: J = JordanSpinEJA(4)
1140 sage: x = sum(J.gens())
1141 sage: x.norm()
1142 2
1143
1144 """
1145 return self.inner_product(self).sqrt()
1146
1147
1148 def operator(self):
1149 """
1150 Return the left-multiplication-by-this-element
1151 operator on the ambient algebra.
1152
1153 SETUP::
1154
1155 sage: from mjo.eja.eja_algebra import random_eja
1156
1157 TESTS::
1158
1159 sage: set_random_seed()
1160 sage: J = random_eja()
1161 sage: x,y = J.random_elements(2)
1162 sage: x.operator()(y) == x*y
1163 True
1164 sage: y.operator()(x) == x*y
1165 True
1166
1167 """
1168 P = self.parent()
1169 left_mult_by_self = lambda y: self*y
1170 L = P.module_morphism(function=left_mult_by_self, codomain=P)
1171 return FiniteDimensionalEJAOperator(P, P, L.matrix() )
1172
1173
1174 def quadratic_representation(self, other=None):
1175 """
1176 Return the quadratic representation of this element.
1177
1178 SETUP::
1179
1180 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1181 ....: random_eja)
1182
1183 EXAMPLES:
1184
1185 The explicit form in the spin factor algebra is given by
1186 Alizadeh's Example 11.12::
1187
1188 sage: set_random_seed()
1189 sage: x = JordanSpinEJA.random_instance().random_element()
1190 sage: x_vec = x.to_vector()
1191 sage: Q = matrix.identity(x.base_ring(), 0)
1192 sage: n = x_vec.degree()
1193 sage: if n > 0:
1194 ....: x0 = x_vec[0]
1195 ....: x_bar = x_vec[1:]
1196 ....: A = matrix(x.base_ring(), 1, [x_vec.inner_product(x_vec)])
1197 ....: B = 2*x0*x_bar.row()
1198 ....: C = 2*x0*x_bar.column()
1199 ....: D = matrix.identity(x.base_ring(), n-1)
1200 ....: D = (x0^2 - x_bar.inner_product(x_bar))*D
1201 ....: D = D + 2*x_bar.tensor_product(x_bar)
1202 ....: Q = matrix.block(2,2,[A,B,C,D])
1203 sage: Q == x.quadratic_representation().matrix()
1204 True
1205
1206 Test all of the properties from Theorem 11.2 in Alizadeh::
1207
1208 sage: set_random_seed()
1209 sage: J = random_eja()
1210 sage: x,y = J.random_elements(2)
1211 sage: Lx = x.operator()
1212 sage: Lxx = (x*x).operator()
1213 sage: Qx = x.quadratic_representation()
1214 sage: Qy = y.quadratic_representation()
1215 sage: Qxy = x.quadratic_representation(y)
1216 sage: Qex = J.one().quadratic_representation(x)
1217 sage: n = ZZ.random_element(10)
1218 sage: Qxn = (x^n).quadratic_representation()
1219
1220 Property 1:
1221
1222 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
1223 True
1224
1225 Property 2 (multiply on the right for :trac:`28272`):
1226
1227 sage: alpha = J.base_ring().random_element()
1228 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
1229 True
1230
1231 Property 3:
1232
1233 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
1234 True
1235
1236 sage: not x.is_invertible() or (
1237 ....: ~Qx
1238 ....: ==
1239 ....: x.inverse().quadratic_representation() )
1240 True
1241
1242 sage: Qxy(J.one()) == x*y
1243 True
1244
1245 Property 4:
1246
1247 sage: not x.is_invertible() or (
1248 ....: x.quadratic_representation(x.inverse())*Qx
1249 ....: == Qx*x.quadratic_representation(x.inverse()) )
1250 True
1251
1252 sage: not x.is_invertible() or (
1253 ....: x.quadratic_representation(x.inverse())*Qx
1254 ....: ==
1255 ....: 2*Lx*Qex - Qx )
1256 True
1257
1258 sage: 2*Lx*Qex - Qx == Lxx
1259 True
1260
1261 Property 5:
1262
1263 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
1264 True
1265
1266 Property 6:
1267
1268 sage: Qxn == (Qx)^n
1269 True
1270
1271 Property 7:
1272
1273 sage: not x.is_invertible() or (
1274 ....: Qx*x.inverse().operator() == Lx )
1275 True
1276
1277 Property 8:
1278
1279 sage: not x.operator_commutes_with(y) or (
1280 ....: Qx(y)^n == Qxn(y^n) )
1281 True
1282
1283 """
1284 if other is None:
1285 other=self
1286 elif not other in self.parent():
1287 raise TypeError("'other' must live in the same algebra")
1288
1289 L = self.operator()
1290 M = other.operator()
1291 return ( L*M + M*L - (self*other).operator() )
1292
1293
1294
1295 def spectral_decomposition(self):
1296 """
1297 Return the unique spectral decomposition of this element.
1298
1299 ALGORITHM:
1300
1301 Following Faraut and Korányi's Theorem III.1.1, we restrict this
1302 element's left-multiplication-by operator to the subalgebra it
1303 generates. We then compute the spectral decomposition of that
1304 operator, and the spectral projectors we get back must be the
1305 left-multiplication-by operators for the idempotents we
1306 seek. Thus applying them to the identity element gives us those
1307 idempotents.
1308
1309 Since the eigenvalues are required to be distinct, we take
1310 the spectral decomposition of the zero element to be zero
1311 times the identity element of the algebra (which is idempotent,
1312 obviously).
1313
1314 SETUP::
1315
1316 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1317
1318 EXAMPLES:
1319
1320 The spectral decomposition of the identity is ``1`` times itself,
1321 and the spectral decomposition of zero is ``0`` times the identity::
1322
1323 sage: J = RealSymmetricEJA(3)
1324 sage: J.one()
1325 e0 + e2 + e5
1326 sage: J.one().spectral_decomposition()
1327 [(1, e0 + e2 + e5)]
1328 sage: J.zero().spectral_decomposition()
1329 [(0, e0 + e2 + e5)]
1330
1331 TESTS::
1332
1333 sage: J = RealSymmetricEJA(4)
1334 sage: x = sum(J.gens())
1335 sage: sd = x.spectral_decomposition()
1336 sage: l0 = sd[0][0]
1337 sage: l1 = sd[1][0]
1338 sage: c0 = sd[0][1]
1339 sage: c1 = sd[1][1]
1340 sage: c0.inner_product(c1) == 0
1341 True
1342 sage: c0.is_idempotent()
1343 True
1344 sage: c1.is_idempotent()
1345 True
1346 sage: c0 + c1 == J.one()
1347 True
1348 sage: l0*c0 + l1*c1 == x
1349 True
1350
1351 The spectral decomposition should work in subalgebras, too::
1352
1353 sage: J = RealSymmetricEJA(4)
1354 sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
1355 sage: A = 2*e5 - 2*e8
1356 sage: (lambda1, c1) = A.spectral_decomposition()[1]
1357 sage: (J0, J5, J1) = J.peirce_decomposition(c1)
1358 sage: (f0, f1, f2) = J1.gens()
1359 sage: f0.spectral_decomposition()
1360 [(0, f2), (1, f0)]
1361
1362 """
1363 A = self.subalgebra_generated_by(orthonormalize=True)
1364 result = []
1365 for (evalue, proj) in A(self).operator().spectral_decomposition():
1366 result.append( (evalue, proj(A.one()).superalgebra_element()) )
1367 return result
1368
1369 def subalgebra_generated_by(self, **kwargs):
1370 """
1371 Return the associative subalgebra of the parent EJA generated
1372 by this element.
1373
1374 Since our parent algebra is unital, we want "subalgebra" to mean
1375 "unital subalgebra" as well; thus the subalgebra that an element
1376 generates will itself be a Euclidean Jordan algebra after
1377 restricting the algebra operations appropriately. This is the
1378 subalgebra that Faraut and Korányi work with in section II.2, for
1379 example.
1380
1381 SETUP::
1382
1383 sage: from mjo.eja.eja_algebra import random_eja
1384
1385 TESTS:
1386
1387 This subalgebra, being composed of only powers, is associative::
1388
1389 sage: set_random_seed()
1390 sage: x0 = random_eja().random_element()
1391 sage: A = x0.subalgebra_generated_by()
1392 sage: x,y,z = A.random_elements(3)
1393 sage: (x*y)*z == x*(y*z)
1394 True
1395
1396 Squaring in the subalgebra should work the same as in
1397 the superalgebra::
1398
1399 sage: set_random_seed()
1400 sage: x = random_eja().random_element()
1401 sage: A = x.subalgebra_generated_by()
1402 sage: A(x^2) == A(x)*A(x)
1403 True
1404
1405 By definition, the subalgebra generated by the zero element is
1406 the one-dimensional algebra generated by the identity
1407 element... unless the original algebra was trivial, in which
1408 case the subalgebra is trivial too::
1409
1410 sage: set_random_seed()
1411 sage: A = random_eja().zero().subalgebra_generated_by()
1412 sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1
1413 True
1414
1415 """
1416 powers = tuple( self**k for k in range(self.degree()) )
1417 A = self.parent().subalgebra(powers, associative=True, **kwargs)
1418 A.one.set_cache(A(self.parent().one()))
1419 return A
1420
1421
1422 def subalgebra_idempotent(self):
1423 """
1424 Find an idempotent in the associative subalgebra I generate
1425 using Proposition 2.3.5 in Baes.
1426
1427 SETUP::
1428
1429 sage: from mjo.eja.eja_algebra import random_eja
1430
1431 TESTS:
1432
1433 Ensure that we can find an idempotent in a non-trivial algebra
1434 where there are non-nilpotent elements, or that we get the dumb
1435 solution in the trivial algebra::
1436
1437 sage: set_random_seed()
1438 sage: J = random_eja()
1439 sage: x = J.random_element()
1440 sage: while x.is_nilpotent() and not J.is_trivial():
1441 ....: x = J.random_element()
1442 sage: c = x.subalgebra_idempotent()
1443 sage: c^2 == c
1444 True
1445
1446 """
1447 if self.parent().is_trivial():
1448 return self
1449
1450 if self.is_nilpotent():
1451 raise ValueError("this only works with non-nilpotent elements!")
1452
1453 J = self.subalgebra_generated_by()
1454 u = J(self)
1455
1456 # The image of the matrix of left-u^m-multiplication
1457 # will be minimal for some natural number s...
1458 s = 0
1459 minimal_dim = J.dimension()
1460 for i in range(1, minimal_dim):
1461 this_dim = (u**i).operator().matrix().image().dimension()
1462 if this_dim < minimal_dim:
1463 minimal_dim = this_dim
1464 s = i
1465
1466 # Now minimal_matrix should correspond to the smallest
1467 # non-zero subspace in Baes's (or really, Koecher's)
1468 # proposition.
1469 #
1470 # However, we need to restrict the matrix to work on the
1471 # subspace... or do we? Can't we just solve, knowing that
1472 # A(c) = u^(s+1) should have a solution in the big space,
1473 # too?
1474 #
1475 # Beware, solve_right() means that we're using COLUMN vectors.
1476 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1477 u_next = u**(s+1)
1478 A = u_next.operator().matrix()
1479 c = J.from_vector(A.solve_right(u_next.to_vector()))
1480
1481 # Now c is the idempotent we want, but it still lives in the subalgebra.
1482 return c.superalgebra_element()
1483
1484
1485 def trace(self):
1486 """
1487 Return my trace, the sum of my eigenvalues.
1488
1489 In a trivial algebra, however you want to look at it, the trace is
1490 an empty sum for which we declare the result to be zero.
1491
1492 SETUP::
1493
1494 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1495 ....: HadamardEJA,
1496 ....: TrivialEJA,
1497 ....: random_eja)
1498
1499 EXAMPLES::
1500
1501 sage: J = TrivialEJA()
1502 sage: J.zero().trace()
1503 0
1504
1505 ::
1506 sage: J = JordanSpinEJA(3)
1507 sage: x = sum(J.gens())
1508 sage: x.trace()
1509 2
1510
1511 ::
1512
1513 sage: J = HadamardEJA(5)
1514 sage: J.one().trace()
1515 5
1516
1517 TESTS:
1518
1519 The trace of an element is a real number::
1520
1521 sage: set_random_seed()
1522 sage: J = random_eja()
1523 sage: J.random_element().trace() in RLF
1524 True
1525
1526 The trace is linear::
1527
1528 sage: set_random_seed()
1529 sage: J = random_eja()
1530 sage: x,y = J.random_elements(2)
1531 sage: alpha = J.base_ring().random_element()
1532 sage: (alpha*x + y).trace() == alpha*x.trace() + y.trace()
1533 True
1534
1535 """
1536 P = self.parent()
1537 r = P.rank()
1538
1539 if r == 0:
1540 # Special case for the trivial algebra where
1541 # the trace is an empty sum.
1542 return P.base_ring().zero()
1543
1544 p = P._charpoly_coefficients()[r-1]
1545 # The _charpoly_coeff function already adds the factor of
1546 # -1 to ensure that _charpoly_coeff(r-1) is really what
1547 # appears in front of t^{r-1} in the charpoly. However,
1548 # we want the negative of THAT for the trace.
1549 return -p(*self.to_vector())
1550
1551
1552 def trace_inner_product(self, other):
1553 """
1554 Return the trace inner product of myself and ``other``.
1555
1556 SETUP::
1557
1558 sage: from mjo.eja.eja_algebra import random_eja
1559
1560 TESTS:
1561
1562 The trace inner product is commutative, bilinear, and associative::
1563
1564 sage: set_random_seed()
1565 sage: J = random_eja()
1566 sage: x,y,z = J.random_elements(3)
1567 sage: # commutative
1568 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1569 True
1570 sage: # bilinear
1571 sage: a = J.base_ring().random_element();
1572 sage: actual = (a*(x+z)).trace_inner_product(y)
1573 sage: expected = ( a*x.trace_inner_product(y) +
1574 ....: a*z.trace_inner_product(y) )
1575 sage: actual == expected
1576 True
1577 sage: actual = x.trace_inner_product(a*(y+z))
1578 sage: expected = ( a*x.trace_inner_product(y) +
1579 ....: a*x.trace_inner_product(z) )
1580 sage: actual == expected
1581 True
1582 sage: # associative
1583 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1584 True
1585
1586 """
1587 if not other in self.parent():
1588 raise TypeError("'other' must live in the same algebra")
1589
1590 return (self*other).trace()
1591
1592
1593 def trace_norm(self):
1594 """
1595 The norm of this element with respect to :meth:`trace_inner_product`.
1596
1597 SETUP::
1598
1599 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1600 ....: HadamardEJA)
1601
1602 EXAMPLES::
1603
1604 sage: J = HadamardEJA(2)
1605 sage: x = sum(J.gens())
1606 sage: x.trace_norm()
1607 1.414213562373095?
1608
1609 ::
1610
1611 sage: J = JordanSpinEJA(4)
1612 sage: x = sum(J.gens())
1613 sage: x.trace_norm()
1614 2.828427124746190?
1615
1616 """
1617 return self.trace_inner_product(self).sqrt()
1618
1619
1620
1621 class CartesianProductEJAElement(FiniteDimensionalEJAElement):
1622
1623 def to_matrix(self):
1624 r"""
1625 SETUP::
1626
1627 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1628 ....: RealSymmetricEJA)
1629
1630 EXAMPLES::
1631
1632 sage: J1 = HadamardEJA(1)
1633 sage: J2 = RealSymmetricEJA(2)
1634 sage: J = cartesian_product([J1,J2])
1635 sage: x = sum(J.gens())
1636 sage: x.to_matrix()[0]
1637 [1]
1638 sage: x.to_matrix()[1]
1639 [ 1 0.7071067811865475?]
1640 [0.7071067811865475? 1]
1641
1642 """
1643 B = self.parent().matrix_basis()
1644 W = self.parent().matrix_space()
1645
1646 # Aaaaand linear combinations don't work in Cartesian
1647 # product spaces, even though they provide a method
1648 # with that name.
1649 pairs = zip(B, self.to_vector())
1650 return sum( ( W(tuple(alpha*b_i for b_i in b))
1651 for (b,alpha) in pairs ),
1652 W.zero())