]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: use fuzzy equality test with inexact base rings.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (
65 ....: FiniteDimensionalEuclideanJordanAlgebra,
66 ....: JordanSpinEJA,
67 ....: random_eja)
68
69 EXAMPLES:
70
71 By definition, Jordan multiplication commutes::
72
73 sage: set_random_seed()
74 sage: J = random_eja()
75 sage: x,y = J.random_elements(2)
76 sage: x*y == y*x
77 True
78
79 TESTS:
80
81 The ``field`` we're given must be real with ``check=True``::
82
83 sage: JordanSpinEJA(2,QQbar)
84 Traceback (most recent call last):
85 ...
86 ValueError: field is not real
87
88 The multiplication table must be square with ``check=True``::
89
90 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
91 Traceback (most recent call last):
92 ...
93 ValueError: multiplication table is not square
94
95 """
96 if check:
97 if not field.is_subring(RR):
98 # Note: this does return true for the real algebraic
99 # field, and any quadratic field where we've specified
100 # a real embedding.
101 raise ValueError('field is not real')
102
103 self._natural_basis = natural_basis
104
105 if category is None:
106 category = MagmaticAlgebras(field).FiniteDimensional()
107 category = category.WithBasis().Unital()
108
109 # The multiplication table had better be square
110 n = len(mult_table)
111 if check:
112 if not all( len(l) == n for l in mult_table ):
113 raise ValueError("multiplication table is not square")
114
115 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
116 fda.__init__(field,
117 range(n),
118 prefix=prefix,
119 category=category)
120 self.print_options(bracket='')
121
122 # The multiplication table we're given is necessarily in terms
123 # of vectors, because we don't have an algebra yet for
124 # anything to be an element of. However, it's faster in the
125 # long run to have the multiplication table be in terms of
126 # algebra elements. We do this after calling the superclass
127 # constructor so that from_vector() knows what to do.
128 self._multiplication_table = [
129 list(map(lambda x: self.from_vector(x), ls))
130 for ls in mult_table
131 ]
132
133 if check:
134 if not self._is_commutative():
135 raise ValueError("algebra is not commutative")
136 if not self._is_jordanian():
137 raise ValueError("Jordan identity does not hold")
138 if not self._inner_product_is_associative():
139 raise ValueError("inner product is not associative")
140
141 def _element_constructor_(self, elt):
142 """
143 Construct an element of this algebra from its natural
144 representation.
145
146 This gets called only after the parent element _call_ method
147 fails to find a coercion for the argument.
148
149 SETUP::
150
151 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
152 ....: HadamardEJA,
153 ....: RealSymmetricEJA)
154
155 EXAMPLES:
156
157 The identity in `S^n` is converted to the identity in the EJA::
158
159 sage: J = RealSymmetricEJA(3)
160 sage: I = matrix.identity(QQ,3)
161 sage: J(I) == J.one()
162 True
163
164 This skew-symmetric matrix can't be represented in the EJA::
165
166 sage: J = RealSymmetricEJA(3)
167 sage: A = matrix(QQ,3, lambda i,j: i-j)
168 sage: J(A)
169 Traceback (most recent call last):
170 ...
171 ArithmeticError: vector is not in free module
172
173 TESTS:
174
175 Ensure that we can convert any element of the two non-matrix
176 simple algebras (whose natural representations are their usual
177 vector representations) back and forth faithfully::
178
179 sage: set_random_seed()
180 sage: J = HadamardEJA.random_instance()
181 sage: x = J.random_element()
182 sage: J(x.to_vector().column()) == x
183 True
184 sage: J = JordanSpinEJA.random_instance()
185 sage: x = J.random_element()
186 sage: J(x.to_vector().column()) == x
187 True
188
189 """
190 msg = "not a naturally-represented algebra element"
191 if elt == 0:
192 # The superclass implementation of random_element()
193 # needs to be able to coerce "0" into the algebra.
194 return self.zero()
195 elif elt in self.base_ring():
196 # Ensure that no base ring -> algebra coercion is performed
197 # by this method. There's some stupidity in sage that would
198 # otherwise propagate to this method; for example, sage thinks
199 # that the integer 3 belongs to the space of 2-by-2 matrices.
200 raise ValueError(msg)
201
202 natural_basis = self.natural_basis()
203 basis_space = natural_basis[0].matrix_space()
204 if elt not in basis_space:
205 raise ValueError(msg)
206
207 # Thanks for nothing! Matrix spaces aren't vector spaces in
208 # Sage, so we have to figure out its natural-basis coordinates
209 # ourselves. We use the basis space's ring instead of the
210 # element's ring because the basis space might be an algebraic
211 # closure whereas the base ring of the 3-by-3 identity matrix
212 # could be QQ instead of QQbar.
213 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
214 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
215 coords = W.coordinate_vector(_mat2vec(elt))
216 return self.from_vector(coords)
217
218 @staticmethod
219 def _max_test_case_size():
220 """
221 Return an integer "size" that is an upper bound on the size of
222 this algebra when it is used in a random test
223 case. Unfortunately, the term "size" is quite vague -- when
224 dealing with `R^n` under either the Hadamard or Jordan spin
225 product, the "size" refers to the dimension `n`. When dealing
226 with a matrix algebra (real symmetric or complex/quaternion
227 Hermitian), it refers to the size of the matrix, which is
228 far less than the dimension of the underlying vector space.
229
230 We default to five in this class, which is safe in `R^n`. The
231 matrix algebra subclasses (or any class where the "size" is
232 interpreted to be far less than the dimension) should override
233 with a smaller number.
234 """
235 return 5
236
237 def _repr_(self):
238 """
239 Return a string representation of ``self``.
240
241 SETUP::
242
243 sage: from mjo.eja.eja_algebra import JordanSpinEJA
244
245 TESTS:
246
247 Ensure that it says what we think it says::
248
249 sage: JordanSpinEJA(2, field=AA)
250 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
251 sage: JordanSpinEJA(3, field=RDF)
252 Euclidean Jordan algebra of dimension 3 over Real Double Field
253
254 """
255 fmt = "Euclidean Jordan algebra of dimension {} over {}"
256 return fmt.format(self.dimension(), self.base_ring())
257
258 def product_on_basis(self, i, j):
259 return self._multiplication_table[i][j]
260
261 def _is_commutative(self):
262 r"""
263 Whether or not this algebra's multiplication table is commutative.
264
265 This method should of course always return ``True``, unless
266 this algebra was constructed with ``check=False`` and passed
267 an invalid multiplication table.
268 """
269 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
270 for i in range(self.dimension())
271 for j in range(self.dimension()) )
272
273 def _is_jordanian(self):
274 r"""
275 Whether or not this algebra's multiplication table respects the
276 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
277
278 We only check one arrangement of `x` and `y`, so for a
279 ``True`` result to be truly true, you should also check
280 :meth:`_is_commutative`. This method should of course always
281 return ``True``, unless this algebra was constructed with
282 ``check=False`` and passed an invalid multiplication table.
283 """
284 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
285 ==
286 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
287 for i in range(self.dimension())
288 for j in range(self.dimension()) )
289
290 def _inner_product_is_associative(self):
291 r"""
292 Return whether or not this algebra's inner product `B` is
293 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
294
295 This method should of course always return ``True``, unless
296 this algebra was constructed with ``check=False`` and passed
297 an invalid multiplication table.
298 """
299
300 # Used to check whether or not something is zero in an inexact
301 # ring. This number is sufficient to allow the construction of
302 # QuaternionHermitianEJA(2, RDF) with check=True.
303 epsilon = 1e-16
304
305 for i in range(self.dimension()):
306 for j in range(self.dimension()):
307 for k in range(self.dimension()):
308 x = self.monomial(i)
309 y = self.monomial(j)
310 z = self.monomial(k)
311 diff = (x*y).inner_product(z) - x.inner_product(y*z)
312
313 if self.base_ring().is_exact():
314 if diff != 0:
315 return False
316 else:
317 if diff.abs() > epsilon:
318 return False
319
320 return True
321
322 @cached_method
323 def characteristic_polynomial_of(self):
324 """
325 Return the algebra's "characteristic polynomial of" function,
326 which is itself a multivariate polynomial that, when evaluated
327 at the coordinates of some algebra element, returns that
328 element's characteristic polynomial.
329
330 The resulting polynomial has `n+1` variables, where `n` is the
331 dimension of this algebra. The first `n` variables correspond to
332 the coordinates of an algebra element: when evaluated at the
333 coordinates of an algebra element with respect to a certain
334 basis, the result is a univariate polynomial (in the one
335 remaining variable ``t``), namely the characteristic polynomial
336 of that element.
337
338 SETUP::
339
340 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
341
342 EXAMPLES:
343
344 The characteristic polynomial in the spin algebra is given in
345 Alizadeh, Example 11.11::
346
347 sage: J = JordanSpinEJA(3)
348 sage: p = J.characteristic_polynomial_of(); p
349 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
350 sage: xvec = J.one().to_vector()
351 sage: p(*xvec)
352 t^2 - 2*t + 1
353
354 By definition, the characteristic polynomial is a monic
355 degree-zero polynomial in a rank-zero algebra. Note that
356 Cayley-Hamilton is indeed satisfied since the polynomial
357 ``1`` evaluates to the identity element of the algebra on
358 any argument::
359
360 sage: J = TrivialEJA()
361 sage: J.characteristic_polynomial_of()
362 1
363
364 """
365 r = self.rank()
366 n = self.dimension()
367
368 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
369 a = self._charpoly_coefficients()
370
371 # We go to a bit of trouble here to reorder the
372 # indeterminates, so that it's easier to evaluate the
373 # characteristic polynomial at x's coordinates and get back
374 # something in terms of t, which is what we want.
375 S = PolynomialRing(self.base_ring(),'t')
376 t = S.gen(0)
377 if r > 0:
378 R = a[0].parent()
379 S = PolynomialRing(S, R.variable_names())
380 t = S(t)
381
382 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
383
384
385 def inner_product(self, x, y):
386 """
387 The inner product associated with this Euclidean Jordan algebra.
388
389 Defaults to the trace inner product, but can be overridden by
390 subclasses if they are sure that the necessary properties are
391 satisfied.
392
393 SETUP::
394
395 sage: from mjo.eja.eja_algebra import random_eja
396
397 EXAMPLES:
398
399 Our inner product is "associative," which means the following for
400 a symmetric bilinear form::
401
402 sage: set_random_seed()
403 sage: J = random_eja()
404 sage: x,y,z = J.random_elements(3)
405 sage: (x*y).inner_product(z) == y.inner_product(x*z)
406 True
407
408 """
409 X = x.natural_representation()
410 Y = y.natural_representation()
411 return self.natural_inner_product(X,Y)
412
413
414 def is_trivial(self):
415 """
416 Return whether or not this algebra is trivial.
417
418 A trivial algebra contains only the zero element.
419
420 SETUP::
421
422 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
423 ....: TrivialEJA)
424
425 EXAMPLES::
426
427 sage: J = ComplexHermitianEJA(3)
428 sage: J.is_trivial()
429 False
430
431 ::
432
433 sage: J = TrivialEJA()
434 sage: J.is_trivial()
435 True
436
437 """
438 return self.dimension() == 0
439
440
441 def multiplication_table(self):
442 """
443 Return a visual representation of this algebra's multiplication
444 table (on basis elements).
445
446 SETUP::
447
448 sage: from mjo.eja.eja_algebra import JordanSpinEJA
449
450 EXAMPLES::
451
452 sage: J = JordanSpinEJA(4)
453 sage: J.multiplication_table()
454 +----++----+----+----+----+
455 | * || e0 | e1 | e2 | e3 |
456 +====++====+====+====+====+
457 | e0 || e0 | e1 | e2 | e3 |
458 +----++----+----+----+----+
459 | e1 || e1 | e0 | 0 | 0 |
460 +----++----+----+----+----+
461 | e2 || e2 | 0 | e0 | 0 |
462 +----++----+----+----+----+
463 | e3 || e3 | 0 | 0 | e0 |
464 +----++----+----+----+----+
465
466 """
467 M = list(self._multiplication_table) # copy
468 for i in range(len(M)):
469 # M had better be "square"
470 M[i] = [self.monomial(i)] + M[i]
471 M = [["*"] + list(self.gens())] + M
472 return table(M, header_row=True, header_column=True, frame=True)
473
474
475 def natural_basis(self):
476 """
477 Return a more-natural representation of this algebra's basis.
478
479 Every finite-dimensional Euclidean Jordan Algebra is a direct
480 sum of five simple algebras, four of which comprise Hermitian
481 matrices. This method returns the original "natural" basis
482 for our underlying vector space. (Typically, the natural basis
483 is used to construct the multiplication table in the first place.)
484
485 Note that this will always return a matrix. The standard basis
486 in `R^n` will be returned as `n`-by-`1` column matrices.
487
488 SETUP::
489
490 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
491 ....: RealSymmetricEJA)
492
493 EXAMPLES::
494
495 sage: J = RealSymmetricEJA(2)
496 sage: J.basis()
497 Finite family {0: e0, 1: e1, 2: e2}
498 sage: J.natural_basis()
499 (
500 [1 0] [ 0 0.7071067811865475?] [0 0]
501 [0 0], [0.7071067811865475? 0], [0 1]
502 )
503
504 ::
505
506 sage: J = JordanSpinEJA(2)
507 sage: J.basis()
508 Finite family {0: e0, 1: e1}
509 sage: J.natural_basis()
510 (
511 [1] [0]
512 [0], [1]
513 )
514
515 """
516 if self._natural_basis is None:
517 M = self.natural_basis_space()
518 return tuple( M(b.to_vector()) for b in self.basis() )
519 else:
520 return self._natural_basis
521
522
523 def natural_basis_space(self):
524 """
525 Return the matrix space in which this algebra's natural basis
526 elements live.
527
528 Generally this will be an `n`-by-`1` column-vector space,
529 except when the algebra is trivial. There it's `n`-by-`n`
530 (where `n` is zero), to ensure that two elements of the
531 natural basis space (empty matrices) can be multiplied.
532 """
533 if self.is_trivial():
534 return MatrixSpace(self.base_ring(), 0)
535 elif self._natural_basis is None or len(self._natural_basis) == 0:
536 return MatrixSpace(self.base_ring(), self.dimension(), 1)
537 else:
538 return self._natural_basis[0].matrix_space()
539
540
541 @staticmethod
542 def natural_inner_product(X,Y):
543 """
544 Compute the inner product of two naturally-represented elements.
545
546 For example in the real symmetric matrix EJA, this will compute
547 the trace inner-product of two n-by-n symmetric matrices. The
548 default should work for the real cartesian product EJA, the
549 Jordan spin EJA, and the real symmetric matrices. The others
550 will have to be overridden.
551 """
552 return (X.conjugate_transpose()*Y).trace()
553
554
555 @cached_method
556 def one(self):
557 """
558 Return the unit element of this algebra.
559
560 SETUP::
561
562 sage: from mjo.eja.eja_algebra import (HadamardEJA,
563 ....: random_eja)
564
565 EXAMPLES::
566
567 sage: J = HadamardEJA(5)
568 sage: J.one()
569 e0 + e1 + e2 + e3 + e4
570
571 TESTS:
572
573 The identity element acts like the identity::
574
575 sage: set_random_seed()
576 sage: J = random_eja()
577 sage: x = J.random_element()
578 sage: J.one()*x == x and x*J.one() == x
579 True
580
581 The matrix of the unit element's operator is the identity::
582
583 sage: set_random_seed()
584 sage: J = random_eja()
585 sage: actual = J.one().operator().matrix()
586 sage: expected = matrix.identity(J.base_ring(), J.dimension())
587 sage: actual == expected
588 True
589
590 """
591 # We can brute-force compute the matrices of the operators
592 # that correspond to the basis elements of this algebra.
593 # If some linear combination of those basis elements is the
594 # algebra identity, then the same linear combination of
595 # their matrices has to be the identity matrix.
596 #
597 # Of course, matrices aren't vectors in sage, so we have to
598 # appeal to the "long vectors" isometry.
599 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
600
601 # Now we use basis linear algebra to find the coefficients,
602 # of the matrices-as-vectors-linear-combination, which should
603 # work for the original algebra basis too.
604 A = matrix.column(self.base_ring(), oper_vecs)
605
606 # We used the isometry on the left-hand side already, but we
607 # still need to do it for the right-hand side. Recall that we
608 # wanted something that summed to the identity matrix.
609 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
610
611 # Now if there's an identity element in the algebra, this should work.
612 coeffs = A.solve_right(b)
613 return self.linear_combination(zip(self.gens(), coeffs))
614
615
616 def peirce_decomposition(self, c):
617 """
618 The Peirce decomposition of this algebra relative to the
619 idempotent ``c``.
620
621 In the future, this can be extended to a complete system of
622 orthogonal idempotents.
623
624 INPUT:
625
626 - ``c`` -- an idempotent of this algebra.
627
628 OUTPUT:
629
630 A triple (J0, J5, J1) containing two subalgebras and one subspace
631 of this algebra,
632
633 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
634 corresponding to the eigenvalue zero.
635
636 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
637 corresponding to the eigenvalue one-half.
638
639 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
640 corresponding to the eigenvalue one.
641
642 These are the only possible eigenspaces for that operator, and this
643 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
644 orthogonal, and are subalgebras of this algebra with the appropriate
645 restrictions.
646
647 SETUP::
648
649 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
650
651 EXAMPLES:
652
653 The canonical example comes from the symmetric matrices, which
654 decompose into diagonal and off-diagonal parts::
655
656 sage: J = RealSymmetricEJA(3)
657 sage: C = matrix(QQ, [ [1,0,0],
658 ....: [0,1,0],
659 ....: [0,0,0] ])
660 sage: c = J(C)
661 sage: J0,J5,J1 = J.peirce_decomposition(c)
662 sage: J0
663 Euclidean Jordan algebra of dimension 1...
664 sage: J5
665 Vector space of degree 6 and dimension 2...
666 sage: J1
667 Euclidean Jordan algebra of dimension 3...
668 sage: J0.one().natural_representation()
669 [0 0 0]
670 [0 0 0]
671 [0 0 1]
672 sage: orig_df = AA.options.display_format
673 sage: AA.options.display_format = 'radical'
674 sage: J.from_vector(J5.basis()[0]).natural_representation()
675 [ 0 0 1/2*sqrt(2)]
676 [ 0 0 0]
677 [1/2*sqrt(2) 0 0]
678 sage: J.from_vector(J5.basis()[1]).natural_representation()
679 [ 0 0 0]
680 [ 0 0 1/2*sqrt(2)]
681 [ 0 1/2*sqrt(2) 0]
682 sage: AA.options.display_format = orig_df
683 sage: J1.one().natural_representation()
684 [1 0 0]
685 [0 1 0]
686 [0 0 0]
687
688 TESTS:
689
690 Every algebra decomposes trivially with respect to its identity
691 element::
692
693 sage: set_random_seed()
694 sage: J = random_eja()
695 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
696 sage: J0.dimension() == 0 and J5.dimension() == 0
697 True
698 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
699 True
700
701 The decomposition is into eigenspaces, and its components are
702 therefore necessarily orthogonal. Moreover, the identity
703 elements in the two subalgebras are the projections onto their
704 respective subspaces of the superalgebra's identity element::
705
706 sage: set_random_seed()
707 sage: J = random_eja()
708 sage: x = J.random_element()
709 sage: if not J.is_trivial():
710 ....: while x.is_nilpotent():
711 ....: x = J.random_element()
712 sage: c = x.subalgebra_idempotent()
713 sage: J0,J5,J1 = J.peirce_decomposition(c)
714 sage: ipsum = 0
715 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
716 ....: w = w.superalgebra_element()
717 ....: y = J.from_vector(y)
718 ....: z = z.superalgebra_element()
719 ....: ipsum += w.inner_product(y).abs()
720 ....: ipsum += w.inner_product(z).abs()
721 ....: ipsum += y.inner_product(z).abs()
722 sage: ipsum
723 0
724 sage: J1(c) == J1.one()
725 True
726 sage: J0(J.one() - c) == J0.one()
727 True
728
729 """
730 if not c.is_idempotent():
731 raise ValueError("element is not idempotent: %s" % c)
732
733 # Default these to what they should be if they turn out to be
734 # trivial, because eigenspaces_left() won't return eigenvalues
735 # corresponding to trivial spaces (e.g. it returns only the
736 # eigenspace corresponding to lambda=1 if you take the
737 # decomposition relative to the identity element).
738 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
739 J0 = trivial # eigenvalue zero
740 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
741 J1 = trivial # eigenvalue one
742
743 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
744 if eigval == ~(self.base_ring()(2)):
745 J5 = eigspace
746 else:
747 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
748 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
749 if eigval == 0:
750 J0 = subalg
751 elif eigval == 1:
752 J1 = subalg
753 else:
754 raise ValueError("unexpected eigenvalue: %s" % eigval)
755
756 return (J0, J5, J1)
757
758
759 def random_element(self, thorough=False):
760 r"""
761 Return a random element of this algebra.
762
763 Our algebra superclass method only returns a linear
764 combination of at most two basis elements. We instead
765 want the vector space "random element" method that
766 returns a more diverse selection.
767
768 INPUT:
769
770 - ``thorough`` -- (boolean; default False) whether or not we
771 should generate irrational coefficients for the random
772 element when our base ring is irrational; this slows the
773 algebra operations to a crawl, but any truly random method
774 should include them
775
776 """
777 # For a general base ring... maybe we can trust this to do the
778 # right thing? Unlikely, but.
779 V = self.vector_space()
780 v = V.random_element()
781
782 if self.base_ring() is AA:
783 # The "random element" method of the algebraic reals is
784 # stupid at the moment, and only returns integers between
785 # -2 and 2, inclusive:
786 #
787 # https://trac.sagemath.org/ticket/30875
788 #
789 # Instead, we implement our own "random vector" method,
790 # and then coerce that into the algebra. We use the vector
791 # space degree here instead of the dimension because a
792 # subalgebra could (for example) be spanned by only two
793 # vectors, each with five coordinates. We need to
794 # generate all five coordinates.
795 if thorough:
796 v *= QQbar.random_element().real()
797 else:
798 v *= QQ.random_element()
799
800 return self.from_vector(V.coordinate_vector(v))
801
802 def random_elements(self, count, thorough=False):
803 """
804 Return ``count`` random elements as a tuple.
805
806 INPUT:
807
808 - ``thorough`` -- (boolean; default False) whether or not we
809 should generate irrational coefficients for the random
810 elements when our base ring is irrational; this slows the
811 algebra operations to a crawl, but any truly random method
812 should include them
813
814 SETUP::
815
816 sage: from mjo.eja.eja_algebra import JordanSpinEJA
817
818 EXAMPLES::
819
820 sage: J = JordanSpinEJA(3)
821 sage: x,y,z = J.random_elements(3)
822 sage: all( [ x in J, y in J, z in J ])
823 True
824 sage: len( J.random_elements(10) ) == 10
825 True
826
827 """
828 return tuple( self.random_element(thorough)
829 for idx in range(count) )
830
831 @classmethod
832 def random_instance(cls, field=AA, **kwargs):
833 """
834 Return a random instance of this type of algebra.
835
836 Beware, this will crash for "most instances" because the
837 constructor below looks wrong.
838 """
839 if cls is TrivialEJA:
840 # The TrivialEJA class doesn't take an "n" argument because
841 # there's only one.
842 return cls(field)
843
844 n = ZZ.random_element(cls._max_test_case_size() + 1)
845 return cls(n, field, **kwargs)
846
847 @cached_method
848 def _charpoly_coefficients(self):
849 r"""
850 The `r` polynomial coefficients of the "characteristic polynomial
851 of" function.
852 """
853 n = self.dimension()
854 var_names = [ "X" + str(z) for z in range(1,n+1) ]
855 R = PolynomialRing(self.base_ring(), var_names)
856 vars = R.gens()
857 F = R.fraction_field()
858
859 def L_x_i_j(i,j):
860 # From a result in my book, these are the entries of the
861 # basis representation of L_x.
862 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
863 for k in range(n) )
864
865 L_x = matrix(F, n, n, L_x_i_j)
866
867 r = None
868 if self.rank.is_in_cache():
869 r = self.rank()
870 # There's no need to pad the system with redundant
871 # columns if we *know* they'll be redundant.
872 n = r
873
874 # Compute an extra power in case the rank is equal to
875 # the dimension (otherwise, we would stop at x^(r-1)).
876 x_powers = [ (L_x**k)*self.one().to_vector()
877 for k in range(n+1) ]
878 A = matrix.column(F, x_powers[:n])
879 AE = A.extended_echelon_form()
880 E = AE[:,n:]
881 A_rref = AE[:,:n]
882 if r is None:
883 r = A_rref.rank()
884 b = x_powers[r]
885
886 # The theory says that only the first "r" coefficients are
887 # nonzero, and they actually live in the original polynomial
888 # ring and not the fraction field. We negate them because
889 # in the actual characteristic polynomial, they get moved
890 # to the other side where x^r lives.
891 return -A_rref.solve_right(E*b).change_ring(R)[:r]
892
893 @cached_method
894 def rank(self):
895 r"""
896 Return the rank of this EJA.
897
898 This is a cached method because we know the rank a priori for
899 all of the algebras we can construct. Thus we can avoid the
900 expensive ``_charpoly_coefficients()`` call unless we truly
901 need to compute the whole characteristic polynomial.
902
903 SETUP::
904
905 sage: from mjo.eja.eja_algebra import (HadamardEJA,
906 ....: JordanSpinEJA,
907 ....: RealSymmetricEJA,
908 ....: ComplexHermitianEJA,
909 ....: QuaternionHermitianEJA,
910 ....: random_eja)
911
912 EXAMPLES:
913
914 The rank of the Jordan spin algebra is always two::
915
916 sage: JordanSpinEJA(2).rank()
917 2
918 sage: JordanSpinEJA(3).rank()
919 2
920 sage: JordanSpinEJA(4).rank()
921 2
922
923 The rank of the `n`-by-`n` Hermitian real, complex, or
924 quaternion matrices is `n`::
925
926 sage: RealSymmetricEJA(4).rank()
927 4
928 sage: ComplexHermitianEJA(3).rank()
929 3
930 sage: QuaternionHermitianEJA(2).rank()
931 2
932
933 TESTS:
934
935 Ensure that every EJA that we know how to construct has a
936 positive integer rank, unless the algebra is trivial in
937 which case its rank will be zero::
938
939 sage: set_random_seed()
940 sage: J = random_eja()
941 sage: r = J.rank()
942 sage: r in ZZ
943 True
944 sage: r > 0 or (r == 0 and J.is_trivial())
945 True
946
947 Ensure that computing the rank actually works, since the ranks
948 of all simple algebras are known and will be cached by default::
949
950 sage: J = HadamardEJA(4)
951 sage: J.rank.clear_cache()
952 sage: J.rank()
953 4
954
955 ::
956
957 sage: J = JordanSpinEJA(4)
958 sage: J.rank.clear_cache()
959 sage: J.rank()
960 2
961
962 ::
963
964 sage: J = RealSymmetricEJA(3)
965 sage: J.rank.clear_cache()
966 sage: J.rank()
967 3
968
969 ::
970
971 sage: J = ComplexHermitianEJA(2)
972 sage: J.rank.clear_cache()
973 sage: J.rank()
974 2
975
976 ::
977
978 sage: J = QuaternionHermitianEJA(2)
979 sage: J.rank.clear_cache()
980 sage: J.rank()
981 2
982 """
983 return len(self._charpoly_coefficients())
984
985
986 def vector_space(self):
987 """
988 Return the vector space that underlies this algebra.
989
990 SETUP::
991
992 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
993
994 EXAMPLES::
995
996 sage: J = RealSymmetricEJA(2)
997 sage: J.vector_space()
998 Vector space of dimension 3 over...
999
1000 """
1001 return self.zero().to_vector().parent().ambient_vector_space()
1002
1003
1004 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1005
1006
1007 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
1008 """
1009 Return the Euclidean Jordan Algebra corresponding to the set
1010 `R^n` under the Hadamard product.
1011
1012 Note: this is nothing more than the Cartesian product of ``n``
1013 copies of the spin algebra. Once Cartesian product algebras
1014 are implemented, this can go.
1015
1016 SETUP::
1017
1018 sage: from mjo.eja.eja_algebra import HadamardEJA
1019
1020 EXAMPLES:
1021
1022 This multiplication table can be verified by hand::
1023
1024 sage: J = HadamardEJA(3)
1025 sage: e0,e1,e2 = J.gens()
1026 sage: e0*e0
1027 e0
1028 sage: e0*e1
1029 0
1030 sage: e0*e2
1031 0
1032 sage: e1*e1
1033 e1
1034 sage: e1*e2
1035 0
1036 sage: e2*e2
1037 e2
1038
1039 TESTS:
1040
1041 We can change the generator prefix::
1042
1043 sage: HadamardEJA(3, prefix='r').gens()
1044 (r0, r1, r2)
1045
1046 """
1047 def __init__(self, n, field=AA, **kwargs):
1048 V = VectorSpace(field, n)
1049 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
1050 for i in range(n) ]
1051
1052 fdeja = super(HadamardEJA, self)
1053 fdeja.__init__(field, mult_table, **kwargs)
1054 self.rank.set_cache(n)
1055
1056 def inner_product(self, x, y):
1057 """
1058 Faster to reimplement than to use natural representations.
1059
1060 SETUP::
1061
1062 sage: from mjo.eja.eja_algebra import HadamardEJA
1063
1064 TESTS:
1065
1066 Ensure that this is the usual inner product for the algebras
1067 over `R^n`::
1068
1069 sage: set_random_seed()
1070 sage: J = HadamardEJA.random_instance()
1071 sage: x,y = J.random_elements(2)
1072 sage: X = x.natural_representation()
1073 sage: Y = y.natural_representation()
1074 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1075 True
1076
1077 """
1078 return x.to_vector().inner_product(y.to_vector())
1079
1080
1081 def random_eja(field=AA):
1082 """
1083 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1084
1085 SETUP::
1086
1087 sage: from mjo.eja.eja_algebra import random_eja
1088
1089 TESTS::
1090
1091 sage: random_eja()
1092 Euclidean Jordan algebra of dimension...
1093
1094 """
1095 classname = choice([TrivialEJA,
1096 HadamardEJA,
1097 JordanSpinEJA,
1098 RealSymmetricEJA,
1099 ComplexHermitianEJA,
1100 QuaternionHermitianEJA])
1101 return classname.random_instance(field=field)
1102
1103
1104
1105
1106 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1107 @staticmethod
1108 def _max_test_case_size():
1109 # Play it safe, since this will be squared and the underlying
1110 # field can have dimension 4 (quaternions) too.
1111 return 2
1112
1113 def __init__(self, field, basis, normalize_basis=True, **kwargs):
1114 """
1115 Compared to the superclass constructor, we take a basis instead of
1116 a multiplication table because the latter can be computed in terms
1117 of the former when the product is known (like it is here).
1118 """
1119 # Used in this class's fast _charpoly_coefficients() override.
1120 self._basis_normalizers = None
1121
1122 # We're going to loop through this a few times, so now's a good
1123 # time to ensure that it isn't a generator expression.
1124 basis = tuple(basis)
1125
1126 if len(basis) > 1 and normalize_basis:
1127 # We'll need sqrt(2) to normalize the basis, and this
1128 # winds up in the multiplication table, so the whole
1129 # algebra needs to be over the field extension.
1130 R = PolynomialRing(field, 'z')
1131 z = R.gen()
1132 p = z**2 - 2
1133 if p.is_irreducible():
1134 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1135 basis = tuple( s.change_ring(field) for s in basis )
1136 self._basis_normalizers = tuple(
1137 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1138 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1139
1140 Qs = self.multiplication_table_from_matrix_basis(basis)
1141
1142 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1143 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
1144 return
1145
1146
1147 @cached_method
1148 def _charpoly_coefficients(self):
1149 r"""
1150 Override the parent method with something that tries to compute
1151 over a faster (non-extension) field.
1152 """
1153 if self._basis_normalizers is None:
1154 # We didn't normalize, so assume that the basis we started
1155 # with had entries in a nice field.
1156 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
1157 else:
1158 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1159 self._basis_normalizers) )
1160
1161 # Do this over the rationals and convert back at the end.
1162 # Only works because we know the entries of the basis are
1163 # integers.
1164 J = MatrixEuclideanJordanAlgebra(QQ,
1165 basis,
1166 normalize_basis=False)
1167 a = J._charpoly_coefficients()
1168
1169 # Unfortunately, changing the basis does change the
1170 # coefficients of the characteristic polynomial, but since
1171 # these are really the coefficients of the "characteristic
1172 # polynomial of" function, everything is still nice and
1173 # unevaluated. It's therefore "obvious" how scaling the
1174 # basis affects the coordinate variables X1, X2, et
1175 # cetera. Scaling the first basis vector up by "n" adds a
1176 # factor of 1/n into every "X1" term, for example. So here
1177 # we simply undo the basis_normalizer scaling that we
1178 # performed earlier.
1179 #
1180 # The a[0] access here is safe because trivial algebras
1181 # won't have any basis normalizers and therefore won't
1182 # make it to this "else" branch.
1183 XS = a[0].parent().gens()
1184 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1185 for i in range(len(XS)) }
1186 return tuple( a_i.subs(subs_dict) for a_i in a )
1187
1188
1189 @staticmethod
1190 def multiplication_table_from_matrix_basis(basis):
1191 """
1192 At least three of the five simple Euclidean Jordan algebras have the
1193 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1194 multiplication on the right is matrix multiplication. Given a basis
1195 for the underlying matrix space, this function returns a
1196 multiplication table (obtained by looping through the basis
1197 elements) for an algebra of those matrices.
1198 """
1199 # In S^2, for example, we nominally have four coordinates even
1200 # though the space is of dimension three only. The vector space V
1201 # is supposed to hold the entire long vector, and the subspace W
1202 # of V will be spanned by the vectors that arise from symmetric
1203 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1204 if len(basis) == 0:
1205 return []
1206
1207 field = basis[0].base_ring()
1208 dimension = basis[0].nrows()
1209
1210 V = VectorSpace(field, dimension**2)
1211 W = V.span_of_basis( _mat2vec(s) for s in basis )
1212 n = len(basis)
1213 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1214 for i in range(n):
1215 for j in range(n):
1216 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1217 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1218
1219 return mult_table
1220
1221
1222 @staticmethod
1223 def real_embed(M):
1224 """
1225 Embed the matrix ``M`` into a space of real matrices.
1226
1227 The matrix ``M`` can have entries in any field at the moment:
1228 the real numbers, complex numbers, or quaternions. And although
1229 they are not a field, we can probably support octonions at some
1230 point, too. This function returns a real matrix that "acts like"
1231 the original with respect to matrix multiplication; i.e.
1232
1233 real_embed(M*N) = real_embed(M)*real_embed(N)
1234
1235 """
1236 raise NotImplementedError
1237
1238
1239 @staticmethod
1240 def real_unembed(M):
1241 """
1242 The inverse of :meth:`real_embed`.
1243 """
1244 raise NotImplementedError
1245
1246
1247 @classmethod
1248 def natural_inner_product(cls,X,Y):
1249 Xu = cls.real_unembed(X)
1250 Yu = cls.real_unembed(Y)
1251 tr = (Xu*Yu).trace()
1252
1253 if tr in RLF:
1254 # It's real already.
1255 return tr
1256
1257 # Otherwise, try the thing that works for complex numbers; and
1258 # if that doesn't work, the thing that works for quaternions.
1259 try:
1260 return tr.vector()[0] # real part, imag part is index 1
1261 except AttributeError:
1262 # A quaternions doesn't have a vector() method, but does
1263 # have coefficient_tuple() method that returns the
1264 # coefficients of 1, i, j, and k -- in that order.
1265 return tr.coefficient_tuple()[0]
1266
1267
1268 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1269 @staticmethod
1270 def real_embed(M):
1271 """
1272 The identity function, for embedding real matrices into real
1273 matrices.
1274 """
1275 return M
1276
1277 @staticmethod
1278 def real_unembed(M):
1279 """
1280 The identity function, for unembedding real matrices from real
1281 matrices.
1282 """
1283 return M
1284
1285
1286 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1287 """
1288 The rank-n simple EJA consisting of real symmetric n-by-n
1289 matrices, the usual symmetric Jordan product, and the trace inner
1290 product. It has dimension `(n^2 + n)/2` over the reals.
1291
1292 SETUP::
1293
1294 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1295
1296 EXAMPLES::
1297
1298 sage: J = RealSymmetricEJA(2)
1299 sage: e0, e1, e2 = J.gens()
1300 sage: e0*e0
1301 e0
1302 sage: e1*e1
1303 1/2*e0 + 1/2*e2
1304 sage: e2*e2
1305 e2
1306
1307 In theory, our "field" can be any subfield of the reals::
1308
1309 sage: RealSymmetricEJA(2, RDF)
1310 Euclidean Jordan algebra of dimension 3 over Real Double Field
1311 sage: RealSymmetricEJA(2, RR)
1312 Euclidean Jordan algebra of dimension 3 over Real Field with
1313 53 bits of precision
1314
1315 TESTS:
1316
1317 The dimension of this algebra is `(n^2 + n) / 2`::
1318
1319 sage: set_random_seed()
1320 sage: n_max = RealSymmetricEJA._max_test_case_size()
1321 sage: n = ZZ.random_element(1, n_max)
1322 sage: J = RealSymmetricEJA(n)
1323 sage: J.dimension() == (n^2 + n)/2
1324 True
1325
1326 The Jordan multiplication is what we think it is::
1327
1328 sage: set_random_seed()
1329 sage: J = RealSymmetricEJA.random_instance()
1330 sage: x,y = J.random_elements(2)
1331 sage: actual = (x*y).natural_representation()
1332 sage: X = x.natural_representation()
1333 sage: Y = y.natural_representation()
1334 sage: expected = (X*Y + Y*X)/2
1335 sage: actual == expected
1336 True
1337 sage: J(expected) == x*y
1338 True
1339
1340 We can change the generator prefix::
1341
1342 sage: RealSymmetricEJA(3, prefix='q').gens()
1343 (q0, q1, q2, q3, q4, q5)
1344
1345 Our natural basis is normalized with respect to the natural inner
1346 product unless we specify otherwise::
1347
1348 sage: set_random_seed()
1349 sage: J = RealSymmetricEJA.random_instance()
1350 sage: all( b.norm() == 1 for b in J.gens() )
1351 True
1352
1353 Since our natural basis is normalized with respect to the natural
1354 inner product, and since we know that this algebra is an EJA, any
1355 left-multiplication operator's matrix will be symmetric because
1356 natural->EJA basis representation is an isometry and within the EJA
1357 the operator is self-adjoint by the Jordan axiom::
1358
1359 sage: set_random_seed()
1360 sage: x = RealSymmetricEJA.random_instance().random_element()
1361 sage: x.operator().matrix().is_symmetric()
1362 True
1363
1364 We can construct the (trivial) algebra of rank zero::
1365
1366 sage: RealSymmetricEJA(0)
1367 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1368
1369 """
1370 @classmethod
1371 def _denormalized_basis(cls, n, field):
1372 """
1373 Return a basis for the space of real symmetric n-by-n matrices.
1374
1375 SETUP::
1376
1377 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1378
1379 TESTS::
1380
1381 sage: set_random_seed()
1382 sage: n = ZZ.random_element(1,5)
1383 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1384 sage: all( M.is_symmetric() for M in B)
1385 True
1386
1387 """
1388 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1389 # coordinates.
1390 S = []
1391 for i in range(n):
1392 for j in range(i+1):
1393 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1394 if i == j:
1395 Sij = Eij
1396 else:
1397 Sij = Eij + Eij.transpose()
1398 S.append(Sij)
1399 return S
1400
1401
1402 @staticmethod
1403 def _max_test_case_size():
1404 return 4 # Dimension 10
1405
1406
1407 def __init__(self, n, field=AA, **kwargs):
1408 basis = self._denormalized_basis(n, field)
1409 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1410 self.rank.set_cache(n)
1411
1412
1413 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1414 @staticmethod
1415 def real_embed(M):
1416 """
1417 Embed the n-by-n complex matrix ``M`` into the space of real
1418 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1419 bi` to the block matrix ``[[a,b],[-b,a]]``.
1420
1421 SETUP::
1422
1423 sage: from mjo.eja.eja_algebra import \
1424 ....: ComplexMatrixEuclideanJordanAlgebra
1425
1426 EXAMPLES::
1427
1428 sage: F = QuadraticField(-1, 'I')
1429 sage: x1 = F(4 - 2*i)
1430 sage: x2 = F(1 + 2*i)
1431 sage: x3 = F(-i)
1432 sage: x4 = F(6)
1433 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1434 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1435 [ 4 -2| 1 2]
1436 [ 2 4|-2 1]
1437 [-----+-----]
1438 [ 0 -1| 6 0]
1439 [ 1 0| 0 6]
1440
1441 TESTS:
1442
1443 Embedding is a homomorphism (isomorphism, in fact)::
1444
1445 sage: set_random_seed()
1446 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1447 sage: n = ZZ.random_element(n_max)
1448 sage: F = QuadraticField(-1, 'I')
1449 sage: X = random_matrix(F, n)
1450 sage: Y = random_matrix(F, n)
1451 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1452 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1453 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1454 sage: Xe*Ye == XYe
1455 True
1456
1457 """
1458 n = M.nrows()
1459 if M.ncols() != n:
1460 raise ValueError("the matrix 'M' must be square")
1461
1462 # We don't need any adjoined elements...
1463 field = M.base_ring().base_ring()
1464
1465 blocks = []
1466 for z in M.list():
1467 a = z.list()[0] # real part, I guess
1468 b = z.list()[1] # imag part, I guess
1469 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1470
1471 return matrix.block(field, n, blocks)
1472
1473
1474 @staticmethod
1475 def real_unembed(M):
1476 """
1477 The inverse of _embed_complex_matrix().
1478
1479 SETUP::
1480
1481 sage: from mjo.eja.eja_algebra import \
1482 ....: ComplexMatrixEuclideanJordanAlgebra
1483
1484 EXAMPLES::
1485
1486 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1487 ....: [-2, 1, -4, 3],
1488 ....: [ 9, 10, 11, 12],
1489 ....: [-10, 9, -12, 11] ])
1490 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1491 [ 2*I + 1 4*I + 3]
1492 [ 10*I + 9 12*I + 11]
1493
1494 TESTS:
1495
1496 Unembedding is the inverse of embedding::
1497
1498 sage: set_random_seed()
1499 sage: F = QuadraticField(-1, 'I')
1500 sage: M = random_matrix(F, 3)
1501 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1502 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1503 True
1504
1505 """
1506 n = ZZ(M.nrows())
1507 if M.ncols() != n:
1508 raise ValueError("the matrix 'M' must be square")
1509 if not n.mod(2).is_zero():
1510 raise ValueError("the matrix 'M' must be a complex embedding")
1511
1512 # If "M" was normalized, its base ring might have roots
1513 # adjoined and they can stick around after unembedding.
1514 field = M.base_ring()
1515 R = PolynomialRing(field, 'z')
1516 z = R.gen()
1517 if field is AA:
1518 # Sage doesn't know how to embed AA into QQbar, i.e. how
1519 # to adjoin sqrt(-1) to AA.
1520 F = QQbar
1521 else:
1522 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1523 i = F.gen()
1524
1525 # Go top-left to bottom-right (reading order), converting every
1526 # 2-by-2 block we see to a single complex element.
1527 elements = []
1528 for k in range(n/2):
1529 for j in range(n/2):
1530 submat = M[2*k:2*k+2,2*j:2*j+2]
1531 if submat[0,0] != submat[1,1]:
1532 raise ValueError('bad on-diagonal submatrix')
1533 if submat[0,1] != -submat[1,0]:
1534 raise ValueError('bad off-diagonal submatrix')
1535 z = submat[0,0] + submat[0,1]*i
1536 elements.append(z)
1537
1538 return matrix(F, n/2, elements)
1539
1540
1541 @classmethod
1542 def natural_inner_product(cls,X,Y):
1543 """
1544 Compute a natural inner product in this algebra directly from
1545 its real embedding.
1546
1547 SETUP::
1548
1549 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1550
1551 TESTS:
1552
1553 This gives the same answer as the slow, default method implemented
1554 in :class:`MatrixEuclideanJordanAlgebra`::
1555
1556 sage: set_random_seed()
1557 sage: J = ComplexHermitianEJA.random_instance()
1558 sage: x,y = J.random_elements(2)
1559 sage: Xe = x.natural_representation()
1560 sage: Ye = y.natural_representation()
1561 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1562 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1563 sage: expected = (X*Y).trace().real()
1564 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1565 sage: actual == expected
1566 True
1567
1568 """
1569 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1570
1571
1572 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1573 """
1574 The rank-n simple EJA consisting of complex Hermitian n-by-n
1575 matrices over the real numbers, the usual symmetric Jordan product,
1576 and the real-part-of-trace inner product. It has dimension `n^2` over
1577 the reals.
1578
1579 SETUP::
1580
1581 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1582
1583 EXAMPLES:
1584
1585 In theory, our "field" can be any subfield of the reals::
1586
1587 sage: ComplexHermitianEJA(2, RDF)
1588 Euclidean Jordan algebra of dimension 4 over Real Double Field
1589 sage: ComplexHermitianEJA(2, RR)
1590 Euclidean Jordan algebra of dimension 4 over Real Field with
1591 53 bits of precision
1592
1593 TESTS:
1594
1595 The dimension of this algebra is `n^2`::
1596
1597 sage: set_random_seed()
1598 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1599 sage: n = ZZ.random_element(1, n_max)
1600 sage: J = ComplexHermitianEJA(n)
1601 sage: J.dimension() == n^2
1602 True
1603
1604 The Jordan multiplication is what we think it is::
1605
1606 sage: set_random_seed()
1607 sage: J = ComplexHermitianEJA.random_instance()
1608 sage: x,y = J.random_elements(2)
1609 sage: actual = (x*y).natural_representation()
1610 sage: X = x.natural_representation()
1611 sage: Y = y.natural_representation()
1612 sage: expected = (X*Y + Y*X)/2
1613 sage: actual == expected
1614 True
1615 sage: J(expected) == x*y
1616 True
1617
1618 We can change the generator prefix::
1619
1620 sage: ComplexHermitianEJA(2, prefix='z').gens()
1621 (z0, z1, z2, z3)
1622
1623 Our natural basis is normalized with respect to the natural inner
1624 product unless we specify otherwise::
1625
1626 sage: set_random_seed()
1627 sage: J = ComplexHermitianEJA.random_instance()
1628 sage: all( b.norm() == 1 for b in J.gens() )
1629 True
1630
1631 Since our natural basis is normalized with respect to the natural
1632 inner product, and since we know that this algebra is an EJA, any
1633 left-multiplication operator's matrix will be symmetric because
1634 natural->EJA basis representation is an isometry and within the EJA
1635 the operator is self-adjoint by the Jordan axiom::
1636
1637 sage: set_random_seed()
1638 sage: x = ComplexHermitianEJA.random_instance().random_element()
1639 sage: x.operator().matrix().is_symmetric()
1640 True
1641
1642 We can construct the (trivial) algebra of rank zero::
1643
1644 sage: ComplexHermitianEJA(0)
1645 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1646
1647 """
1648
1649 @classmethod
1650 def _denormalized_basis(cls, n, field):
1651 """
1652 Returns a basis for the space of complex Hermitian n-by-n matrices.
1653
1654 Why do we embed these? Basically, because all of numerical linear
1655 algebra assumes that you're working with vectors consisting of `n`
1656 entries from a field and scalars from the same field. There's no way
1657 to tell SageMath that (for example) the vectors contain complex
1658 numbers, while the scalar field is real.
1659
1660 SETUP::
1661
1662 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1663
1664 TESTS::
1665
1666 sage: set_random_seed()
1667 sage: n = ZZ.random_element(1,5)
1668 sage: field = QuadraticField(2, 'sqrt2')
1669 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1670 sage: all( M.is_symmetric() for M in B)
1671 True
1672
1673 """
1674 R = PolynomialRing(field, 'z')
1675 z = R.gen()
1676 F = field.extension(z**2 + 1, 'I')
1677 I = F.gen()
1678
1679 # This is like the symmetric case, but we need to be careful:
1680 #
1681 # * We want conjugate-symmetry, not just symmetry.
1682 # * The diagonal will (as a result) be real.
1683 #
1684 S = []
1685 for i in range(n):
1686 for j in range(i+1):
1687 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1688 if i == j:
1689 Sij = cls.real_embed(Eij)
1690 S.append(Sij)
1691 else:
1692 # The second one has a minus because it's conjugated.
1693 Sij_real = cls.real_embed(Eij + Eij.transpose())
1694 S.append(Sij_real)
1695 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1696 S.append(Sij_imag)
1697
1698 # Since we embedded these, we can drop back to the "field" that we
1699 # started with instead of the complex extension "F".
1700 return ( s.change_ring(field) for s in S )
1701
1702
1703 def __init__(self, n, field=AA, **kwargs):
1704 basis = self._denormalized_basis(n,field)
1705 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1706 self.rank.set_cache(n)
1707
1708
1709 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1710 @staticmethod
1711 def real_embed(M):
1712 """
1713 Embed the n-by-n quaternion matrix ``M`` into the space of real
1714 matrices of size 4n-by-4n by first sending each quaternion entry `z
1715 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1716 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1717 matrix.
1718
1719 SETUP::
1720
1721 sage: from mjo.eja.eja_algebra import \
1722 ....: QuaternionMatrixEuclideanJordanAlgebra
1723
1724 EXAMPLES::
1725
1726 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1727 sage: i,j,k = Q.gens()
1728 sage: x = 1 + 2*i + 3*j + 4*k
1729 sage: M = matrix(Q, 1, [[x]])
1730 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1731 [ 1 2 3 4]
1732 [-2 1 -4 3]
1733 [-3 4 1 -2]
1734 [-4 -3 2 1]
1735
1736 Embedding is a homomorphism (isomorphism, in fact)::
1737
1738 sage: set_random_seed()
1739 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1740 sage: n = ZZ.random_element(n_max)
1741 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1742 sage: X = random_matrix(Q, n)
1743 sage: Y = random_matrix(Q, n)
1744 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1745 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1746 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1747 sage: Xe*Ye == XYe
1748 True
1749
1750 """
1751 quaternions = M.base_ring()
1752 n = M.nrows()
1753 if M.ncols() != n:
1754 raise ValueError("the matrix 'M' must be square")
1755
1756 F = QuadraticField(-1, 'I')
1757 i = F.gen()
1758
1759 blocks = []
1760 for z in M.list():
1761 t = z.coefficient_tuple()
1762 a = t[0]
1763 b = t[1]
1764 c = t[2]
1765 d = t[3]
1766 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1767 [-c + d*i, a - b*i]])
1768 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1769 blocks.append(realM)
1770
1771 # We should have real entries by now, so use the realest field
1772 # we've got for the return value.
1773 return matrix.block(quaternions.base_ring(), n, blocks)
1774
1775
1776
1777 @staticmethod
1778 def real_unembed(M):
1779 """
1780 The inverse of _embed_quaternion_matrix().
1781
1782 SETUP::
1783
1784 sage: from mjo.eja.eja_algebra import \
1785 ....: QuaternionMatrixEuclideanJordanAlgebra
1786
1787 EXAMPLES::
1788
1789 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1790 ....: [-2, 1, -4, 3],
1791 ....: [-3, 4, 1, -2],
1792 ....: [-4, -3, 2, 1]])
1793 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1794 [1 + 2*i + 3*j + 4*k]
1795
1796 TESTS:
1797
1798 Unembedding is the inverse of embedding::
1799
1800 sage: set_random_seed()
1801 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1802 sage: M = random_matrix(Q, 3)
1803 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1804 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1805 True
1806
1807 """
1808 n = ZZ(M.nrows())
1809 if M.ncols() != n:
1810 raise ValueError("the matrix 'M' must be square")
1811 if not n.mod(4).is_zero():
1812 raise ValueError("the matrix 'M' must be a quaternion embedding")
1813
1814 # Use the base ring of the matrix to ensure that its entries can be
1815 # multiplied by elements of the quaternion algebra.
1816 field = M.base_ring()
1817 Q = QuaternionAlgebra(field,-1,-1)
1818 i,j,k = Q.gens()
1819
1820 # Go top-left to bottom-right (reading order), converting every
1821 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1822 # quaternion block.
1823 elements = []
1824 for l in range(n/4):
1825 for m in range(n/4):
1826 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1827 M[4*l:4*l+4,4*m:4*m+4] )
1828 if submat[0,0] != submat[1,1].conjugate():
1829 raise ValueError('bad on-diagonal submatrix')
1830 if submat[0,1] != -submat[1,0].conjugate():
1831 raise ValueError('bad off-diagonal submatrix')
1832 z = submat[0,0].real()
1833 z += submat[0,0].imag()*i
1834 z += submat[0,1].real()*j
1835 z += submat[0,1].imag()*k
1836 elements.append(z)
1837
1838 return matrix(Q, n/4, elements)
1839
1840
1841 @classmethod
1842 def natural_inner_product(cls,X,Y):
1843 """
1844 Compute a natural inner product in this algebra directly from
1845 its real embedding.
1846
1847 SETUP::
1848
1849 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1850
1851 TESTS:
1852
1853 This gives the same answer as the slow, default method implemented
1854 in :class:`MatrixEuclideanJordanAlgebra`::
1855
1856 sage: set_random_seed()
1857 sage: J = QuaternionHermitianEJA.random_instance()
1858 sage: x,y = J.random_elements(2)
1859 sage: Xe = x.natural_representation()
1860 sage: Ye = y.natural_representation()
1861 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1862 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1863 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1864 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1865 sage: actual == expected
1866 True
1867
1868 """
1869 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1870
1871
1872 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1873 """
1874 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1875 matrices, the usual symmetric Jordan product, and the
1876 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1877 the reals.
1878
1879 SETUP::
1880
1881 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1882
1883 EXAMPLES:
1884
1885 In theory, our "field" can be any subfield of the reals::
1886
1887 sage: QuaternionHermitianEJA(2, RDF)
1888 Euclidean Jordan algebra of dimension 6 over Real Double Field
1889 sage: QuaternionHermitianEJA(2, RR)
1890 Euclidean Jordan algebra of dimension 6 over Real Field with
1891 53 bits of precision
1892
1893 TESTS:
1894
1895 The dimension of this algebra is `2*n^2 - n`::
1896
1897 sage: set_random_seed()
1898 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1899 sage: n = ZZ.random_element(1, n_max)
1900 sage: J = QuaternionHermitianEJA(n)
1901 sage: J.dimension() == 2*(n^2) - n
1902 True
1903
1904 The Jordan multiplication is what we think it is::
1905
1906 sage: set_random_seed()
1907 sage: J = QuaternionHermitianEJA.random_instance()
1908 sage: x,y = J.random_elements(2)
1909 sage: actual = (x*y).natural_representation()
1910 sage: X = x.natural_representation()
1911 sage: Y = y.natural_representation()
1912 sage: expected = (X*Y + Y*X)/2
1913 sage: actual == expected
1914 True
1915 sage: J(expected) == x*y
1916 True
1917
1918 We can change the generator prefix::
1919
1920 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1921 (a0, a1, a2, a3, a4, a5)
1922
1923 Our natural basis is normalized with respect to the natural inner
1924 product unless we specify otherwise::
1925
1926 sage: set_random_seed()
1927 sage: J = QuaternionHermitianEJA.random_instance()
1928 sage: all( b.norm() == 1 for b in J.gens() )
1929 True
1930
1931 Since our natural basis is normalized with respect to the natural
1932 inner product, and since we know that this algebra is an EJA, any
1933 left-multiplication operator's matrix will be symmetric because
1934 natural->EJA basis representation is an isometry and within the EJA
1935 the operator is self-adjoint by the Jordan axiom::
1936
1937 sage: set_random_seed()
1938 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1939 sage: x.operator().matrix().is_symmetric()
1940 True
1941
1942 We can construct the (trivial) algebra of rank zero::
1943
1944 sage: QuaternionHermitianEJA(0)
1945 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1946
1947 """
1948 @classmethod
1949 def _denormalized_basis(cls, n, field):
1950 """
1951 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1952
1953 Why do we embed these? Basically, because all of numerical
1954 linear algebra assumes that you're working with vectors consisting
1955 of `n` entries from a field and scalars from the same field. There's
1956 no way to tell SageMath that (for example) the vectors contain
1957 complex numbers, while the scalar field is real.
1958
1959 SETUP::
1960
1961 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1962
1963 TESTS::
1964
1965 sage: set_random_seed()
1966 sage: n = ZZ.random_element(1,5)
1967 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1968 sage: all( M.is_symmetric() for M in B )
1969 True
1970
1971 """
1972 Q = QuaternionAlgebra(QQ,-1,-1)
1973 I,J,K = Q.gens()
1974
1975 # This is like the symmetric case, but we need to be careful:
1976 #
1977 # * We want conjugate-symmetry, not just symmetry.
1978 # * The diagonal will (as a result) be real.
1979 #
1980 S = []
1981 for i in range(n):
1982 for j in range(i+1):
1983 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1984 if i == j:
1985 Sij = cls.real_embed(Eij)
1986 S.append(Sij)
1987 else:
1988 # The second, third, and fourth ones have a minus
1989 # because they're conjugated.
1990 Sij_real = cls.real_embed(Eij + Eij.transpose())
1991 S.append(Sij_real)
1992 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1993 S.append(Sij_I)
1994 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1995 S.append(Sij_J)
1996 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1997 S.append(Sij_K)
1998
1999 # Since we embedded these, we can drop back to the "field" that we
2000 # started with instead of the quaternion algebra "Q".
2001 return ( s.change_ring(field) for s in S )
2002
2003
2004 def __init__(self, n, field=AA, **kwargs):
2005 basis = self._denormalized_basis(n,field)
2006 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
2007 self.rank.set_cache(n)
2008
2009
2010 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
2011 r"""
2012 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2013 with the half-trace inner product and jordan product ``x*y =
2014 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
2015 symmetric positive-definite "bilinear form" matrix. It has
2016 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
2017 when ``B`` is the identity matrix of order ``n-1``.
2018
2019 SETUP::
2020
2021 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2022 ....: JordanSpinEJA)
2023
2024 EXAMPLES:
2025
2026 When no bilinear form is specified, the identity matrix is used,
2027 and the resulting algebra is the Jordan spin algebra::
2028
2029 sage: J0 = BilinearFormEJA(3)
2030 sage: J1 = JordanSpinEJA(3)
2031 sage: J0.multiplication_table() == J0.multiplication_table()
2032 True
2033
2034 TESTS:
2035
2036 We can create a zero-dimensional algebra::
2037
2038 sage: J = BilinearFormEJA(0)
2039 sage: J.basis()
2040 Finite family {}
2041
2042 We can check the multiplication condition given in the Jordan, von
2043 Neumann, and Wigner paper (and also discussed on my "On the
2044 symmetry..." paper). Note that this relies heavily on the standard
2045 choice of basis, as does anything utilizing the bilinear form matrix::
2046
2047 sage: set_random_seed()
2048 sage: n = ZZ.random_element(5)
2049 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2050 sage: B = M.transpose()*M
2051 sage: J = BilinearFormEJA(n, B=B)
2052 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2053 sage: V = J.vector_space()
2054 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2055 ....: for ei in eis ]
2056 sage: actual = [ sis[i]*sis[j]
2057 ....: for i in range(n-1)
2058 ....: for j in range(n-1) ]
2059 sage: expected = [ J.one() if i == j else J.zero()
2060 ....: for i in range(n-1)
2061 ....: for j in range(n-1) ]
2062 sage: actual == expected
2063 True
2064 """
2065 def __init__(self, n, field=AA, B=None, **kwargs):
2066 if B is None:
2067 self._B = matrix.identity(field, max(0,n-1))
2068 else:
2069 self._B = B
2070
2071 V = VectorSpace(field, n)
2072 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
2073 for i in range(n):
2074 for j in range(n):
2075 x = V.gen(i)
2076 y = V.gen(j)
2077 x0 = x[0]
2078 xbar = x[1:]
2079 y0 = y[0]
2080 ybar = y[1:]
2081 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
2082 zbar = y0*xbar + x0*ybar
2083 z = V([z0] + zbar.list())
2084 mult_table[i][j] = z
2085
2086 # The rank of this algebra is two, unless we're in a
2087 # one-dimensional ambient space (because the rank is bounded
2088 # by the ambient dimension).
2089 fdeja = super(BilinearFormEJA, self)
2090 fdeja.__init__(field, mult_table, **kwargs)
2091 self.rank.set_cache(min(n,2))
2092
2093 def inner_product(self, x, y):
2094 r"""
2095 Half of the trace inner product.
2096
2097 This is defined so that the special case of the Jordan spin
2098 algebra gets the usual inner product.
2099
2100 SETUP::
2101
2102 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2103
2104 TESTS:
2105
2106 Ensure that this is one-half of the trace inner-product when
2107 the algebra isn't just the reals (when ``n`` isn't one). This
2108 is in Faraut and Koranyi, and also my "On the symmetry..."
2109 paper::
2110
2111 sage: set_random_seed()
2112 sage: n = ZZ.random_element(2,5)
2113 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2114 sage: B = M.transpose()*M
2115 sage: J = BilinearFormEJA(n, B=B)
2116 sage: x = J.random_element()
2117 sage: y = J.random_element()
2118 sage: x.inner_product(y) == (x*y).trace()/2
2119 True
2120
2121 """
2122 xvec = x.to_vector()
2123 xbar = xvec[1:]
2124 yvec = y.to_vector()
2125 ybar = yvec[1:]
2126 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2127
2128
2129 class JordanSpinEJA(BilinearFormEJA):
2130 """
2131 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2132 with the usual inner product and jordan product ``x*y =
2133 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2134 the reals.
2135
2136 SETUP::
2137
2138 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2139
2140 EXAMPLES:
2141
2142 This multiplication table can be verified by hand::
2143
2144 sage: J = JordanSpinEJA(4)
2145 sage: e0,e1,e2,e3 = J.gens()
2146 sage: e0*e0
2147 e0
2148 sage: e0*e1
2149 e1
2150 sage: e0*e2
2151 e2
2152 sage: e0*e3
2153 e3
2154 sage: e1*e2
2155 0
2156 sage: e1*e3
2157 0
2158 sage: e2*e3
2159 0
2160
2161 We can change the generator prefix::
2162
2163 sage: JordanSpinEJA(2, prefix='B').gens()
2164 (B0, B1)
2165
2166 TESTS:
2167
2168 Ensure that we have the usual inner product on `R^n`::
2169
2170 sage: set_random_seed()
2171 sage: J = JordanSpinEJA.random_instance()
2172 sage: x,y = J.random_elements(2)
2173 sage: X = x.natural_representation()
2174 sage: Y = y.natural_representation()
2175 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2176 True
2177
2178 """
2179 def __init__(self, n, field=AA, **kwargs):
2180 # This is a special case of the BilinearFormEJA with the identity
2181 # matrix as its bilinear form.
2182 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2183
2184
2185 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2186 """
2187 The trivial Euclidean Jordan algebra consisting of only a zero element.
2188
2189 SETUP::
2190
2191 sage: from mjo.eja.eja_algebra import TrivialEJA
2192
2193 EXAMPLES::
2194
2195 sage: J = TrivialEJA()
2196 sage: J.dimension()
2197 0
2198 sage: J.zero()
2199 0
2200 sage: J.one()
2201 0
2202 sage: 7*J.one()*12*J.one()
2203 0
2204 sage: J.one().inner_product(J.one())
2205 0
2206 sage: J.one().norm()
2207 0
2208 sage: J.one().subalgebra_generated_by()
2209 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2210 sage: J.rank()
2211 0
2212
2213 """
2214 def __init__(self, field=AA, **kwargs):
2215 mult_table = []
2216 fdeja = super(TrivialEJA, self)
2217 # The rank is zero using my definition, namely the dimension of the
2218 # largest subalgebra generated by any element.
2219 fdeja.__init__(field, mult_table, **kwargs)
2220 self.rank.set_cache(0)
2221
2222
2223 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2224 r"""
2225 The external (orthogonal) direct sum of two other Euclidean Jordan
2226 algebras. Essentially the Cartesian product of its two factors.
2227 Every Euclidean Jordan algebra decomposes into an orthogonal
2228 direct sum of simple Euclidean Jordan algebras, so no generality
2229 is lost by providing only this construction.
2230
2231 SETUP::
2232
2233 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2234 ....: RealSymmetricEJA,
2235 ....: DirectSumEJA)
2236
2237 EXAMPLES::
2238
2239 sage: J1 = HadamardEJA(2)
2240 sage: J2 = RealSymmetricEJA(3)
2241 sage: J = DirectSumEJA(J1,J2)
2242 sage: J.dimension()
2243 8
2244 sage: J.rank()
2245 5
2246
2247 """
2248 def __init__(self, J1, J2, field=AA, **kwargs):
2249 n1 = J1.dimension()
2250 n2 = J2.dimension()
2251 n = n1+n2
2252 V = VectorSpace(field, n)
2253 mult_table = [ [ V.zero() for j in range(n) ]
2254 for i in range(n) ]
2255 for i in range(n1):
2256 for j in range(n1):
2257 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2258 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2259
2260 for i in range(n2):
2261 for j in range(n2):
2262 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2263 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2264
2265 fdeja = super(DirectSumEJA, self)
2266 fdeja.__init__(field, mult_table, **kwargs)
2267 self.rank.set_cache(J1.rank() + J2.rank())