]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: optionally pass matrix space into FDEJA instead of guessing it.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide two other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. The Albert EJA is simply a special
47 case of the :class:`OctonionHermitianEJA` where the matrices are
48 three-by-three and the resulting space has dimension 27. And
49 last/least, the trivial EJA is exactly what you think it is; it could
50 also be obtained by constructing a dimension-zero instance of any of
51 the other algebras. Cartesian products of these are also supported
52 using the usual ``cartesian_product()`` function; as a result, we
53 support (up to isomorphism) all Euclidean Jordan algebras.
54
55 SETUP::
56
57 sage: from mjo.eja.eja_algebra import random_eja
58
59 EXAMPLES::
60
61 sage: random_eja()
62 Euclidean Jordan algebra of dimension...
63 """
64
65 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
66 from sage.categories.magmatic_algebras import MagmaticAlgebras
67 from sage.categories.sets_cat import cartesian_product
68 from sage.combinat.free_module import CombinatorialFreeModule
69 from sage.matrix.constructor import matrix
70 from sage.matrix.matrix_space import MatrixSpace
71 from sage.misc.cachefunc import cached_method
72 from sage.misc.table import table
73 from sage.modules.free_module import FreeModule, VectorSpace
74 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
75 PolynomialRing,
76 QuadraticField)
77 from mjo.eja.eja_element import FiniteDimensionalEJAElement
78 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
79 from mjo.eja.eja_utils import _all2list, _mat2vec
80
81 class FiniteDimensionalEJA(CombinatorialFreeModule):
82 r"""
83 A finite-dimensional Euclidean Jordan algebra.
84
85 INPUT:
86
87 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
88 form," which must be the same form as the arguments to
89 ``jordan_product`` and ``inner_product``. In reality, "matrix
90 form" can be either vectors, matrices, or a Cartesian product
91 (ordered tuple) of vectors or matrices. All of these would
92 ideally be vector spaces in sage with no special-casing
93 needed; but in reality we turn vectors into column-matrices
94 and Cartesian products `(a,b)` into column matrices
95 `(a,b)^{T}` after converting `a` and `b` themselves.
96
97 - ``jordan_product`` -- a function; afunction of two ``basis``
98 elements (in matrix form) that returns their jordan product,
99 also in matrix form; this will be applied to ``basis`` to
100 compute a multiplication table for the algebra.
101
102 - ``inner_product`` -- a function; a function of two ``basis``
103 elements (in matrix form) that returns their inner
104 product. This will be applied to ``basis`` to compute an
105 inner-product table (basically a matrix) for this algebra.
106
107 - ``matrix_space`` -- the space that your matrix basis lives in,
108 or ``None`` (the default). So long as your basis does not have
109 length zero you can omit this. But in trivial algebras, it is
110 required.
111
112 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
113 field for the algebra.
114
115 - ``orthonormalize`` -- boolean (default: ``True``); whether or
116 not to orthonormalize the basis. Doing so is expensive and
117 generally rules out using the rationals as your ``field``, but
118 is required for spectral decompositions.
119
120 SETUP::
121
122 sage: from mjo.eja.eja_algebra import random_eja
123
124 TESTS:
125
126 We should compute that an element subalgebra is associative even
127 if we circumvent the element method::
128
129 sage: set_random_seed()
130 sage: J = random_eja(field=QQ,orthonormalize=False)
131 sage: x = J.random_element()
132 sage: A = x.subalgebra_generated_by(orthonormalize=False)
133 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
134 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
135 True
136 """
137 Element = FiniteDimensionalEJAElement
138
139 def __init__(self,
140 basis,
141 jordan_product,
142 inner_product,
143 field=AA,
144 matrix_space=None,
145 orthonormalize=True,
146 associative=None,
147 cartesian_product=False,
148 check_field=True,
149 check_axioms=True,
150 prefix="b"):
151
152 n = len(basis)
153
154 if check_field:
155 if not field.is_subring(RR):
156 # Note: this does return true for the real algebraic
157 # field, the rationals, and any quadratic field where
158 # we've specified a real embedding.
159 raise ValueError("scalar field is not real")
160
161 if check_axioms:
162 # Check commutativity of the Jordan and inner-products.
163 # This has to be done before we build the multiplication
164 # and inner-product tables/matrices, because we take
165 # advantage of symmetry in the process.
166 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
167 for bi in basis
168 for bj in basis ):
169 raise ValueError("Jordan product is not commutative")
170
171 if not all( inner_product(bi,bj) == inner_product(bj,bi)
172 for bi in basis
173 for bj in basis ):
174 raise ValueError("inner-product is not commutative")
175
176
177 category = MagmaticAlgebras(field).FiniteDimensional()
178 category = category.WithBasis().Unital().Commutative()
179
180 if n <= 1:
181 # All zero- and one-dimensional algebras are just the real
182 # numbers with (some positive multiples of) the usual
183 # multiplication as its Jordan and inner-product.
184 associative = True
185 if associative is None:
186 # We should figure it out. As with check_axioms, we have to do
187 # this without the help of the _jordan_product_is_associative()
188 # method because we need to know the category before we
189 # initialize the algebra.
190 associative = all( jordan_product(jordan_product(bi,bj),bk)
191 ==
192 jordan_product(bi,jordan_product(bj,bk))
193 for bi in basis
194 for bj in basis
195 for bk in basis)
196
197 if associative:
198 # Element subalgebras can take advantage of this.
199 category = category.Associative()
200 if cartesian_product:
201 # Use join() here because otherwise we only get the
202 # "Cartesian product of..." and not the things themselves.
203 category = category.join([category,
204 category.CartesianProducts()])
205
206 # Call the superclass constructor so that we can use its from_vector()
207 # method to build our multiplication table.
208 CombinatorialFreeModule.__init__(self,
209 field,
210 range(n),
211 prefix=prefix,
212 category=category,
213 bracket=False)
214
215 # Now comes all of the hard work. We'll be constructing an
216 # ambient vector space V that our (vectorized) basis lives in,
217 # as well as a subspace W of V spanned by those (vectorized)
218 # basis elements. The W-coordinates are the coefficients that
219 # we see in things like x = 1*b1 + 2*b2.
220 vector_basis = basis
221
222 degree = 0
223 if n > 0:
224 degree = len(_all2list(basis[0]))
225
226 # Build an ambient space that fits our matrix basis when
227 # written out as "long vectors."
228 V = VectorSpace(field, degree)
229
230 # The matrix that will hole the orthonormal -> unorthonormal
231 # coordinate transformation.
232 self._deortho_matrix = None
233
234 if orthonormalize:
235 # Save a copy of the un-orthonormalized basis for later.
236 # Convert it to ambient V (vector) coordinates while we're
237 # at it, because we'd have to do it later anyway.
238 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
239
240 from mjo.eja.eja_utils import gram_schmidt
241 basis = tuple(gram_schmidt(basis, inner_product))
242
243 # Save the (possibly orthonormalized) matrix basis for
244 # later, as well as the space that its elements live in.
245 # In most cases we can deduce the matrix space, but when
246 # n == 0 (that is, there are no basis elements) we cannot.
247 self._matrix_basis = basis
248 if matrix_space is None:
249 self._matrix_space = self._matrix_basis[0].parent()
250 else:
251 self._matrix_space = matrix_space
252
253 # Now create the vector space for the algebra, which will have
254 # its own set of non-ambient coordinates (in terms of the
255 # supplied basis).
256 vector_basis = tuple( V(_all2list(b)) for b in basis )
257 W = V.span_of_basis( vector_basis, check=check_axioms)
258
259 if orthonormalize:
260 # Now "W" is the vector space of our algebra coordinates. The
261 # variables "X1", "X2",... refer to the entries of vectors in
262 # W. Thus to convert back and forth between the orthonormal
263 # coordinates and the given ones, we need to stick the original
264 # basis in W.
265 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
266 self._deortho_matrix = matrix( U.coordinate_vector(q)
267 for q in vector_basis )
268
269
270 # Now we actually compute the multiplication and inner-product
271 # tables/matrices using the possibly-orthonormalized basis.
272 self._inner_product_matrix = matrix.identity(field, n)
273 self._multiplication_table = [ [0 for j in range(i+1)]
274 for i in range(n) ]
275
276 # Note: the Jordan and inner-products are defined in terms
277 # of the ambient basis. It's important that their arguments
278 # are in ambient coordinates as well.
279 for i in range(n):
280 for j in range(i+1):
281 # ortho basis w.r.t. ambient coords
282 q_i = basis[i]
283 q_j = basis[j]
284
285 # The jordan product returns a matrixy answer, so we
286 # have to convert it to the algebra coordinates.
287 elt = jordan_product(q_i, q_j)
288 elt = W.coordinate_vector(V(_all2list(elt)))
289 self._multiplication_table[i][j] = self.from_vector(elt)
290
291 if not orthonormalize:
292 # If we're orthonormalizing the basis with respect
293 # to an inner-product, then the inner-product
294 # matrix with respect to the resulting basis is
295 # just going to be the identity.
296 ip = inner_product(q_i, q_j)
297 self._inner_product_matrix[i,j] = ip
298 self._inner_product_matrix[j,i] = ip
299
300 self._inner_product_matrix._cache = {'hermitian': True}
301 self._inner_product_matrix.set_immutable()
302
303 if check_axioms:
304 if not self._is_jordanian():
305 raise ValueError("Jordan identity does not hold")
306 if not self._inner_product_is_associative():
307 raise ValueError("inner product is not associative")
308
309
310 def _coerce_map_from_base_ring(self):
311 """
312 Disable the map from the base ring into the algebra.
313
314 Performing a nonsense conversion like this automatically
315 is counterpedagogical. The fallback is to try the usual
316 element constructor, which should also fail.
317
318 SETUP::
319
320 sage: from mjo.eja.eja_algebra import random_eja
321
322 TESTS::
323
324 sage: set_random_seed()
325 sage: J = random_eja()
326 sage: J(1)
327 Traceback (most recent call last):
328 ...
329 ValueError: not an element of this algebra
330
331 """
332 return None
333
334
335 def product_on_basis(self, i, j):
336 r"""
337 Returns the Jordan product of the `i` and `j`th basis elements.
338
339 This completely defines the Jordan product on the algebra, and
340 is used direclty by our superclass machinery to implement
341 :meth:`product`.
342
343 SETUP::
344
345 sage: from mjo.eja.eja_algebra import random_eja
346
347 TESTS::
348
349 sage: set_random_seed()
350 sage: J = random_eja()
351 sage: n = J.dimension()
352 sage: bi = J.zero()
353 sage: bj = J.zero()
354 sage: bi_bj = J.zero()*J.zero()
355 sage: if n > 0:
356 ....: i = ZZ.random_element(n)
357 ....: j = ZZ.random_element(n)
358 ....: bi = J.monomial(i)
359 ....: bj = J.monomial(j)
360 ....: bi_bj = J.product_on_basis(i,j)
361 sage: bi*bj == bi_bj
362 True
363
364 """
365 # We only stored the lower-triangular portion of the
366 # multiplication table.
367 if j <= i:
368 return self._multiplication_table[i][j]
369 else:
370 return self._multiplication_table[j][i]
371
372 def inner_product(self, x, y):
373 """
374 The inner product associated with this Euclidean Jordan algebra.
375
376 Defaults to the trace inner product, but can be overridden by
377 subclasses if they are sure that the necessary properties are
378 satisfied.
379
380 SETUP::
381
382 sage: from mjo.eja.eja_algebra import (random_eja,
383 ....: HadamardEJA,
384 ....: BilinearFormEJA)
385
386 EXAMPLES:
387
388 Our inner product is "associative," which means the following for
389 a symmetric bilinear form::
390
391 sage: set_random_seed()
392 sage: J = random_eja()
393 sage: x,y,z = J.random_elements(3)
394 sage: (x*y).inner_product(z) == y.inner_product(x*z)
395 True
396
397 TESTS:
398
399 Ensure that this is the usual inner product for the algebras
400 over `R^n`::
401
402 sage: set_random_seed()
403 sage: J = HadamardEJA.random_instance()
404 sage: x,y = J.random_elements(2)
405 sage: actual = x.inner_product(y)
406 sage: expected = x.to_vector().inner_product(y.to_vector())
407 sage: actual == expected
408 True
409
410 Ensure that this is one-half of the trace inner-product in a
411 BilinearFormEJA that isn't just the reals (when ``n`` isn't
412 one). This is in Faraut and Koranyi, and also my "On the
413 symmetry..." paper::
414
415 sage: set_random_seed()
416 sage: J = BilinearFormEJA.random_instance()
417 sage: n = J.dimension()
418 sage: x = J.random_element()
419 sage: y = J.random_element()
420 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
421 True
422
423 """
424 B = self._inner_product_matrix
425 return (B*x.to_vector()).inner_product(y.to_vector())
426
427
428 def is_associative(self):
429 r"""
430 Return whether or not this algebra's Jordan product is associative.
431
432 SETUP::
433
434 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
435
436 EXAMPLES::
437
438 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
439 sage: J.is_associative()
440 False
441 sage: x = sum(J.gens())
442 sage: A = x.subalgebra_generated_by(orthonormalize=False)
443 sage: A.is_associative()
444 True
445
446 """
447 return "Associative" in self.category().axioms()
448
449 def _is_commutative(self):
450 r"""
451 Whether or not this algebra's multiplication table is commutative.
452
453 This method should of course always return ``True``, unless
454 this algebra was constructed with ``check_axioms=False`` and
455 passed an invalid multiplication table.
456 """
457 return all( x*y == y*x for x in self.gens() for y in self.gens() )
458
459 def _is_jordanian(self):
460 r"""
461 Whether or not this algebra's multiplication table respects the
462 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
463
464 We only check one arrangement of `x` and `y`, so for a
465 ``True`` result to be truly true, you should also check
466 :meth:`_is_commutative`. This method should of course always
467 return ``True``, unless this algebra was constructed with
468 ``check_axioms=False`` and passed an invalid multiplication table.
469 """
470 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
471 ==
472 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
473 for i in range(self.dimension())
474 for j in range(self.dimension()) )
475
476 def _jordan_product_is_associative(self):
477 r"""
478 Return whether or not this algebra's Jordan product is
479 associative; that is, whether or not `x*(y*z) = (x*y)*z`
480 for all `x,y,x`.
481
482 This method should agree with :meth:`is_associative` unless
483 you lied about the value of the ``associative`` parameter
484 when you constructed the algebra.
485
486 SETUP::
487
488 sage: from mjo.eja.eja_algebra import (random_eja,
489 ....: RealSymmetricEJA,
490 ....: ComplexHermitianEJA,
491 ....: QuaternionHermitianEJA)
492
493 EXAMPLES::
494
495 sage: J = RealSymmetricEJA(4, orthonormalize=False)
496 sage: J._jordan_product_is_associative()
497 False
498 sage: x = sum(J.gens())
499 sage: A = x.subalgebra_generated_by()
500 sage: A._jordan_product_is_associative()
501 True
502
503 ::
504
505 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
506 sage: J._jordan_product_is_associative()
507 False
508 sage: x = sum(J.gens())
509 sage: A = x.subalgebra_generated_by(orthonormalize=False)
510 sage: A._jordan_product_is_associative()
511 True
512
513 ::
514
515 sage: J = QuaternionHermitianEJA(2)
516 sage: J._jordan_product_is_associative()
517 False
518 sage: x = sum(J.gens())
519 sage: A = x.subalgebra_generated_by()
520 sage: A._jordan_product_is_associative()
521 True
522
523 TESTS:
524
525 The values we've presupplied to the constructors agree with
526 the computation::
527
528 sage: set_random_seed()
529 sage: J = random_eja()
530 sage: J.is_associative() == J._jordan_product_is_associative()
531 True
532
533 """
534 R = self.base_ring()
535
536 # Used to check whether or not something is zero.
537 epsilon = R.zero()
538 if not R.is_exact():
539 # I don't know of any examples that make this magnitude
540 # necessary because I don't know how to make an
541 # associative algebra when the element subalgebra
542 # construction is unreliable (as it is over RDF; we can't
543 # find the degree of an element because we can't compute
544 # the rank of a matrix). But even multiplication of floats
545 # is non-associative, so *some* epsilon is needed... let's
546 # just take the one from _inner_product_is_associative?
547 epsilon = 1e-15
548
549 for i in range(self.dimension()):
550 for j in range(self.dimension()):
551 for k in range(self.dimension()):
552 x = self.monomial(i)
553 y = self.monomial(j)
554 z = self.monomial(k)
555 diff = (x*y)*z - x*(y*z)
556
557 if diff.norm() > epsilon:
558 return False
559
560 return True
561
562 def _inner_product_is_associative(self):
563 r"""
564 Return whether or not this algebra's inner product `B` is
565 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
566
567 This method should of course always return ``True``, unless
568 this algebra was constructed with ``check_axioms=False`` and
569 passed an invalid Jordan or inner-product.
570 """
571 R = self.base_ring()
572
573 # Used to check whether or not something is zero.
574 epsilon = R.zero()
575 if not R.is_exact():
576 # This choice is sufficient to allow the construction of
577 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
578 epsilon = 1e-15
579
580 for i in range(self.dimension()):
581 for j in range(self.dimension()):
582 for k in range(self.dimension()):
583 x = self.monomial(i)
584 y = self.monomial(j)
585 z = self.monomial(k)
586 diff = (x*y).inner_product(z) - x.inner_product(y*z)
587
588 if diff.abs() > epsilon:
589 return False
590
591 return True
592
593 def _element_constructor_(self, elt):
594 """
595 Construct an element of this algebra from its vector or matrix
596 representation.
597
598 This gets called only after the parent element _call_ method
599 fails to find a coercion for the argument.
600
601 SETUP::
602
603 sage: from mjo.eja.eja_algebra import (random_eja,
604 ....: JordanSpinEJA,
605 ....: HadamardEJA,
606 ....: RealSymmetricEJA)
607
608 EXAMPLES:
609
610 The identity in `S^n` is converted to the identity in the EJA::
611
612 sage: J = RealSymmetricEJA(3)
613 sage: I = matrix.identity(QQ,3)
614 sage: J(I) == J.one()
615 True
616
617 This skew-symmetric matrix can't be represented in the EJA::
618
619 sage: J = RealSymmetricEJA(3)
620 sage: A = matrix(QQ,3, lambda i,j: i-j)
621 sage: J(A)
622 Traceback (most recent call last):
623 ...
624 ValueError: not an element of this algebra
625
626 Tuples work as well, provided that the matrix basis for the
627 algebra consists of them::
628
629 sage: J1 = HadamardEJA(3)
630 sage: J2 = RealSymmetricEJA(2)
631 sage: J = cartesian_product([J1,J2])
632 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
633 b1 + b5
634
635 TESTS:
636
637 Ensure that we can convert any element back and forth
638 faithfully between its matrix and algebra representations::
639
640 sage: set_random_seed()
641 sage: J = random_eja()
642 sage: x = J.random_element()
643 sage: J(x.to_matrix()) == x
644 True
645
646 We cannot coerce elements between algebras just because their
647 matrix representations are compatible::
648
649 sage: J1 = HadamardEJA(3)
650 sage: J2 = JordanSpinEJA(3)
651 sage: J2(J1.one())
652 Traceback (most recent call last):
653 ...
654 ValueError: not an element of this algebra
655 sage: J1(J2.zero())
656 Traceback (most recent call last):
657 ...
658 ValueError: not an element of this algebra
659 """
660 msg = "not an element of this algebra"
661 if elt in self.base_ring():
662 # Ensure that no base ring -> algebra coercion is performed
663 # by this method. There's some stupidity in sage that would
664 # otherwise propagate to this method; for example, sage thinks
665 # that the integer 3 belongs to the space of 2-by-2 matrices.
666 raise ValueError(msg)
667
668 try:
669 # Try to convert a vector into a column-matrix...
670 elt = elt.column()
671 except (AttributeError, TypeError):
672 # and ignore failure, because we weren't really expecting
673 # a vector as an argument anyway.
674 pass
675
676 if elt not in self.matrix_space():
677 raise ValueError(msg)
678
679 # Thanks for nothing! Matrix spaces aren't vector spaces in
680 # Sage, so we have to figure out its matrix-basis coordinates
681 # ourselves. We use the basis space's ring instead of the
682 # element's ring because the basis space might be an algebraic
683 # closure whereas the base ring of the 3-by-3 identity matrix
684 # could be QQ instead of QQbar.
685 #
686 # And, we also have to handle Cartesian product bases (when
687 # the matrix basis consists of tuples) here. The "good news"
688 # is that we're already converting everything to long vectors,
689 # and that strategy works for tuples as well.
690 #
691 # We pass check=False because the matrix basis is "guaranteed"
692 # to be linearly independent... right? Ha ha.
693 elt = _all2list(elt)
694 V = VectorSpace(self.base_ring(), len(elt))
695 W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
696 check=False)
697
698 try:
699 coords = W.coordinate_vector(V(elt))
700 except ArithmeticError: # vector is not in free module
701 raise ValueError(msg)
702
703 return self.from_vector(coords)
704
705 def _repr_(self):
706 """
707 Return a string representation of ``self``.
708
709 SETUP::
710
711 sage: from mjo.eja.eja_algebra import JordanSpinEJA
712
713 TESTS:
714
715 Ensure that it says what we think it says::
716
717 sage: JordanSpinEJA(2, field=AA)
718 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
719 sage: JordanSpinEJA(3, field=RDF)
720 Euclidean Jordan algebra of dimension 3 over Real Double Field
721
722 """
723 fmt = "Euclidean Jordan algebra of dimension {} over {}"
724 return fmt.format(self.dimension(), self.base_ring())
725
726
727 @cached_method
728 def characteristic_polynomial_of(self):
729 """
730 Return the algebra's "characteristic polynomial of" function,
731 which is itself a multivariate polynomial that, when evaluated
732 at the coordinates of some algebra element, returns that
733 element's characteristic polynomial.
734
735 The resulting polynomial has `n+1` variables, where `n` is the
736 dimension of this algebra. The first `n` variables correspond to
737 the coordinates of an algebra element: when evaluated at the
738 coordinates of an algebra element with respect to a certain
739 basis, the result is a univariate polynomial (in the one
740 remaining variable ``t``), namely the characteristic polynomial
741 of that element.
742
743 SETUP::
744
745 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
746
747 EXAMPLES:
748
749 The characteristic polynomial in the spin algebra is given in
750 Alizadeh, Example 11.11::
751
752 sage: J = JordanSpinEJA(3)
753 sage: p = J.characteristic_polynomial_of(); p
754 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
755 sage: xvec = J.one().to_vector()
756 sage: p(*xvec)
757 t^2 - 2*t + 1
758
759 By definition, the characteristic polynomial is a monic
760 degree-zero polynomial in a rank-zero algebra. Note that
761 Cayley-Hamilton is indeed satisfied since the polynomial
762 ``1`` evaluates to the identity element of the algebra on
763 any argument::
764
765 sage: J = TrivialEJA()
766 sage: J.characteristic_polynomial_of()
767 1
768
769 """
770 r = self.rank()
771 n = self.dimension()
772
773 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
774 a = self._charpoly_coefficients()
775
776 # We go to a bit of trouble here to reorder the
777 # indeterminates, so that it's easier to evaluate the
778 # characteristic polynomial at x's coordinates and get back
779 # something in terms of t, which is what we want.
780 S = PolynomialRing(self.base_ring(),'t')
781 t = S.gen(0)
782 if r > 0:
783 R = a[0].parent()
784 S = PolynomialRing(S, R.variable_names())
785 t = S(t)
786
787 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
788
789 def coordinate_polynomial_ring(self):
790 r"""
791 The multivariate polynomial ring in which this algebra's
792 :meth:`characteristic_polynomial_of` lives.
793
794 SETUP::
795
796 sage: from mjo.eja.eja_algebra import (HadamardEJA,
797 ....: RealSymmetricEJA)
798
799 EXAMPLES::
800
801 sage: J = HadamardEJA(2)
802 sage: J.coordinate_polynomial_ring()
803 Multivariate Polynomial Ring in X1, X2...
804 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
805 sage: J.coordinate_polynomial_ring()
806 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
807
808 """
809 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
810 return PolynomialRing(self.base_ring(), var_names)
811
812 def inner_product(self, x, y):
813 """
814 The inner product associated with this Euclidean Jordan algebra.
815
816 Defaults to the trace inner product, but can be overridden by
817 subclasses if they are sure that the necessary properties are
818 satisfied.
819
820 SETUP::
821
822 sage: from mjo.eja.eja_algebra import (random_eja,
823 ....: HadamardEJA,
824 ....: BilinearFormEJA)
825
826 EXAMPLES:
827
828 Our inner product is "associative," which means the following for
829 a symmetric bilinear form::
830
831 sage: set_random_seed()
832 sage: J = random_eja()
833 sage: x,y,z = J.random_elements(3)
834 sage: (x*y).inner_product(z) == y.inner_product(x*z)
835 True
836
837 TESTS:
838
839 Ensure that this is the usual inner product for the algebras
840 over `R^n`::
841
842 sage: set_random_seed()
843 sage: J = HadamardEJA.random_instance()
844 sage: x,y = J.random_elements(2)
845 sage: actual = x.inner_product(y)
846 sage: expected = x.to_vector().inner_product(y.to_vector())
847 sage: actual == expected
848 True
849
850 Ensure that this is one-half of the trace inner-product in a
851 BilinearFormEJA that isn't just the reals (when ``n`` isn't
852 one). This is in Faraut and Koranyi, and also my "On the
853 symmetry..." paper::
854
855 sage: set_random_seed()
856 sage: J = BilinearFormEJA.random_instance()
857 sage: n = J.dimension()
858 sage: x = J.random_element()
859 sage: y = J.random_element()
860 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
861 True
862 """
863 B = self._inner_product_matrix
864 return (B*x.to_vector()).inner_product(y.to_vector())
865
866
867 def is_trivial(self):
868 """
869 Return whether or not this algebra is trivial.
870
871 A trivial algebra contains only the zero element.
872
873 SETUP::
874
875 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
876 ....: TrivialEJA)
877
878 EXAMPLES::
879
880 sage: J = ComplexHermitianEJA(3)
881 sage: J.is_trivial()
882 False
883
884 ::
885
886 sage: J = TrivialEJA()
887 sage: J.is_trivial()
888 True
889
890 """
891 return self.dimension() == 0
892
893
894 def multiplication_table(self):
895 """
896 Return a visual representation of this algebra's multiplication
897 table (on basis elements).
898
899 SETUP::
900
901 sage: from mjo.eja.eja_algebra import JordanSpinEJA
902
903 EXAMPLES::
904
905 sage: J = JordanSpinEJA(4)
906 sage: J.multiplication_table()
907 +----++----+----+----+----+
908 | * || b0 | b1 | b2 | b3 |
909 +====++====+====+====+====+
910 | b0 || b0 | b1 | b2 | b3 |
911 +----++----+----+----+----+
912 | b1 || b1 | b0 | 0 | 0 |
913 +----++----+----+----+----+
914 | b2 || b2 | 0 | b0 | 0 |
915 +----++----+----+----+----+
916 | b3 || b3 | 0 | 0 | b0 |
917 +----++----+----+----+----+
918
919 """
920 n = self.dimension()
921 # Prepend the header row.
922 M = [["*"] + list(self.gens())]
923
924 # And to each subsequent row, prepend an entry that belongs to
925 # the left-side "header column."
926 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
927 for j in range(n) ]
928 for i in range(n) ]
929
930 return table(M, header_row=True, header_column=True, frame=True)
931
932
933 def matrix_basis(self):
934 """
935 Return an (often more natural) representation of this algebras
936 basis as an ordered tuple of matrices.
937
938 Every finite-dimensional Euclidean Jordan Algebra is a, up to
939 Jordan isomorphism, a direct sum of five simple
940 algebras---four of which comprise Hermitian matrices. And the
941 last type of algebra can of course be thought of as `n`-by-`1`
942 column matrices (ambiguusly called column vectors) to avoid
943 special cases. As a result, matrices (and column vectors) are
944 a natural representation format for Euclidean Jordan algebra
945 elements.
946
947 But, when we construct an algebra from a basis of matrices,
948 those matrix representations are lost in favor of coordinate
949 vectors *with respect to* that basis. We could eventually
950 convert back if we tried hard enough, but having the original
951 representations handy is valuable enough that we simply store
952 them and return them from this method.
953
954 Why implement this for non-matrix algebras? Avoiding special
955 cases for the :class:`BilinearFormEJA` pays with simplicity in
956 its own right. But mainly, we would like to be able to assume
957 that elements of a :class:`CartesianProductEJA` can be displayed
958 nicely, without having to have special classes for direct sums
959 one of whose components was a matrix algebra.
960
961 SETUP::
962
963 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
964 ....: RealSymmetricEJA)
965
966 EXAMPLES::
967
968 sage: J = RealSymmetricEJA(2)
969 sage: J.basis()
970 Finite family {0: b0, 1: b1, 2: b2}
971 sage: J.matrix_basis()
972 (
973 [1 0] [ 0 0.7071067811865475?] [0 0]
974 [0 0], [0.7071067811865475? 0], [0 1]
975 )
976
977 ::
978
979 sage: J = JordanSpinEJA(2)
980 sage: J.basis()
981 Finite family {0: b0, 1: b1}
982 sage: J.matrix_basis()
983 (
984 [1] [0]
985 [0], [1]
986 )
987 """
988 return self._matrix_basis
989
990
991 def matrix_space(self):
992 """
993 Return the matrix space in which this algebra's elements live, if
994 we think of them as matrices (including column vectors of the
995 appropriate size).
996
997 "By default" this will be an `n`-by-`1` column-matrix space,
998 except when the algebra is trivial. There it's `n`-by-`n`
999 (where `n` is zero), to ensure that two elements of the matrix
1000 space (empty matrices) can be multiplied. For algebras of
1001 matrices, this returns the space in which their
1002 real embeddings live.
1003
1004 SETUP::
1005
1006 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1007 ....: JordanSpinEJA,
1008 ....: QuaternionHermitianEJA,
1009 ....: TrivialEJA)
1010
1011 EXAMPLES:
1012
1013 By default, the matrix representation is just a column-matrix
1014 equivalent to the vector representation::
1015
1016 sage: J = JordanSpinEJA(3)
1017 sage: J.matrix_space()
1018 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1019 Real Field
1020
1021 The matrix representation in the trivial algebra is
1022 zero-by-zero instead of the usual `n`-by-one::
1023
1024 sage: J = TrivialEJA()
1025 sage: J.matrix_space()
1026 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1027 Real Field
1028
1029 The matrix space for complex/quaternion Hermitian matrix EJA
1030 is the space in which their real-embeddings live, not the
1031 original complex/quaternion matrix space::
1032
1033 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1034 sage: J.matrix_space()
1035 Module of 2 by 2 matrices with entries in Algebraic Field over
1036 the scalar ring Rational Field
1037 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1038 sage: J.matrix_space()
1039 Module of 1 by 1 matrices with entries in Quaternion
1040 Algebra (-1, -1) with base ring Rational Field over
1041 the scalar ring Rational Field
1042
1043 """
1044 return self._matrix_space
1045
1046
1047 @cached_method
1048 def one(self):
1049 """
1050 Return the unit element of this algebra.
1051
1052 SETUP::
1053
1054 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1055 ....: random_eja)
1056
1057 EXAMPLES:
1058
1059 We can compute unit element in the Hadamard EJA::
1060
1061 sage: J = HadamardEJA(5)
1062 sage: J.one()
1063 b0 + b1 + b2 + b3 + b4
1064
1065 The unit element in the Hadamard EJA is inherited in the
1066 subalgebras generated by its elements::
1067
1068 sage: J = HadamardEJA(5)
1069 sage: J.one()
1070 b0 + b1 + b2 + b3 + b4
1071 sage: x = sum(J.gens())
1072 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1073 sage: A.one()
1074 c0
1075 sage: A.one().superalgebra_element()
1076 b0 + b1 + b2 + b3 + b4
1077
1078 TESTS:
1079
1080 The identity element acts like the identity, regardless of
1081 whether or not we orthonormalize::
1082
1083 sage: set_random_seed()
1084 sage: J = random_eja()
1085 sage: x = J.random_element()
1086 sage: J.one()*x == x and x*J.one() == x
1087 True
1088 sage: A = x.subalgebra_generated_by()
1089 sage: y = A.random_element()
1090 sage: A.one()*y == y and y*A.one() == y
1091 True
1092
1093 ::
1094
1095 sage: set_random_seed()
1096 sage: J = random_eja(field=QQ, orthonormalize=False)
1097 sage: x = J.random_element()
1098 sage: J.one()*x == x and x*J.one() == x
1099 True
1100 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1101 sage: y = A.random_element()
1102 sage: A.one()*y == y and y*A.one() == y
1103 True
1104
1105 The matrix of the unit element's operator is the identity,
1106 regardless of the base field and whether or not we
1107 orthonormalize::
1108
1109 sage: set_random_seed()
1110 sage: J = random_eja()
1111 sage: actual = J.one().operator().matrix()
1112 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1113 sage: actual == expected
1114 True
1115 sage: x = J.random_element()
1116 sage: A = x.subalgebra_generated_by()
1117 sage: actual = A.one().operator().matrix()
1118 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1119 sage: actual == expected
1120 True
1121
1122 ::
1123
1124 sage: set_random_seed()
1125 sage: J = random_eja(field=QQ, orthonormalize=False)
1126 sage: actual = J.one().operator().matrix()
1127 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1128 sage: actual == expected
1129 True
1130 sage: x = J.random_element()
1131 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1132 sage: actual = A.one().operator().matrix()
1133 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1134 sage: actual == expected
1135 True
1136
1137 Ensure that the cached unit element (often precomputed by
1138 hand) agrees with the computed one::
1139
1140 sage: set_random_seed()
1141 sage: J = random_eja()
1142 sage: cached = J.one()
1143 sage: J.one.clear_cache()
1144 sage: J.one() == cached
1145 True
1146
1147 ::
1148
1149 sage: set_random_seed()
1150 sage: J = random_eja(field=QQ, orthonormalize=False)
1151 sage: cached = J.one()
1152 sage: J.one.clear_cache()
1153 sage: J.one() == cached
1154 True
1155
1156 """
1157 # We can brute-force compute the matrices of the operators
1158 # that correspond to the basis elements of this algebra.
1159 # If some linear combination of those basis elements is the
1160 # algebra identity, then the same linear combination of
1161 # their matrices has to be the identity matrix.
1162 #
1163 # Of course, matrices aren't vectors in sage, so we have to
1164 # appeal to the "long vectors" isometry.
1165 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1166
1167 # Now we use basic linear algebra to find the coefficients,
1168 # of the matrices-as-vectors-linear-combination, which should
1169 # work for the original algebra basis too.
1170 A = matrix(self.base_ring(), oper_vecs)
1171
1172 # We used the isometry on the left-hand side already, but we
1173 # still need to do it for the right-hand side. Recall that we
1174 # wanted something that summed to the identity matrix.
1175 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1176
1177 # Now if there's an identity element in the algebra, this
1178 # should work. We solve on the left to avoid having to
1179 # transpose the matrix "A".
1180 return self.from_vector(A.solve_left(b))
1181
1182
1183 def peirce_decomposition(self, c):
1184 """
1185 The Peirce decomposition of this algebra relative to the
1186 idempotent ``c``.
1187
1188 In the future, this can be extended to a complete system of
1189 orthogonal idempotents.
1190
1191 INPUT:
1192
1193 - ``c`` -- an idempotent of this algebra.
1194
1195 OUTPUT:
1196
1197 A triple (J0, J5, J1) containing two subalgebras and one subspace
1198 of this algebra,
1199
1200 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1201 corresponding to the eigenvalue zero.
1202
1203 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1204 corresponding to the eigenvalue one-half.
1205
1206 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1207 corresponding to the eigenvalue one.
1208
1209 These are the only possible eigenspaces for that operator, and this
1210 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1211 orthogonal, and are subalgebras of this algebra with the appropriate
1212 restrictions.
1213
1214 SETUP::
1215
1216 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1217
1218 EXAMPLES:
1219
1220 The canonical example comes from the symmetric matrices, which
1221 decompose into diagonal and off-diagonal parts::
1222
1223 sage: J = RealSymmetricEJA(3)
1224 sage: C = matrix(QQ, [ [1,0,0],
1225 ....: [0,1,0],
1226 ....: [0,0,0] ])
1227 sage: c = J(C)
1228 sage: J0,J5,J1 = J.peirce_decomposition(c)
1229 sage: J0
1230 Euclidean Jordan algebra of dimension 1...
1231 sage: J5
1232 Vector space of degree 6 and dimension 2...
1233 sage: J1
1234 Euclidean Jordan algebra of dimension 3...
1235 sage: J0.one().to_matrix()
1236 [0 0 0]
1237 [0 0 0]
1238 [0 0 1]
1239 sage: orig_df = AA.options.display_format
1240 sage: AA.options.display_format = 'radical'
1241 sage: J.from_vector(J5.basis()[0]).to_matrix()
1242 [ 0 0 1/2*sqrt(2)]
1243 [ 0 0 0]
1244 [1/2*sqrt(2) 0 0]
1245 sage: J.from_vector(J5.basis()[1]).to_matrix()
1246 [ 0 0 0]
1247 [ 0 0 1/2*sqrt(2)]
1248 [ 0 1/2*sqrt(2) 0]
1249 sage: AA.options.display_format = orig_df
1250 sage: J1.one().to_matrix()
1251 [1 0 0]
1252 [0 1 0]
1253 [0 0 0]
1254
1255 TESTS:
1256
1257 Every algebra decomposes trivially with respect to its identity
1258 element::
1259
1260 sage: set_random_seed()
1261 sage: J = random_eja()
1262 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1263 sage: J0.dimension() == 0 and J5.dimension() == 0
1264 True
1265 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1266 True
1267
1268 The decomposition is into eigenspaces, and its components are
1269 therefore necessarily orthogonal. Moreover, the identity
1270 elements in the two subalgebras are the projections onto their
1271 respective subspaces of the superalgebra's identity element::
1272
1273 sage: set_random_seed()
1274 sage: J = random_eja()
1275 sage: x = J.random_element()
1276 sage: if not J.is_trivial():
1277 ....: while x.is_nilpotent():
1278 ....: x = J.random_element()
1279 sage: c = x.subalgebra_idempotent()
1280 sage: J0,J5,J1 = J.peirce_decomposition(c)
1281 sage: ipsum = 0
1282 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1283 ....: w = w.superalgebra_element()
1284 ....: y = J.from_vector(y)
1285 ....: z = z.superalgebra_element()
1286 ....: ipsum += w.inner_product(y).abs()
1287 ....: ipsum += w.inner_product(z).abs()
1288 ....: ipsum += y.inner_product(z).abs()
1289 sage: ipsum
1290 0
1291 sage: J1(c) == J1.one()
1292 True
1293 sage: J0(J.one() - c) == J0.one()
1294 True
1295
1296 """
1297 if not c.is_idempotent():
1298 raise ValueError("element is not idempotent: %s" % c)
1299
1300 # Default these to what they should be if they turn out to be
1301 # trivial, because eigenspaces_left() won't return eigenvalues
1302 # corresponding to trivial spaces (e.g. it returns only the
1303 # eigenspace corresponding to lambda=1 if you take the
1304 # decomposition relative to the identity element).
1305 trivial = self.subalgebra(())
1306 J0 = trivial # eigenvalue zero
1307 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1308 J1 = trivial # eigenvalue one
1309
1310 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1311 if eigval == ~(self.base_ring()(2)):
1312 J5 = eigspace
1313 else:
1314 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1315 subalg = self.subalgebra(gens, check_axioms=False)
1316 if eigval == 0:
1317 J0 = subalg
1318 elif eigval == 1:
1319 J1 = subalg
1320 else:
1321 raise ValueError("unexpected eigenvalue: %s" % eigval)
1322
1323 return (J0, J5, J1)
1324
1325
1326 def random_element(self, thorough=False):
1327 r"""
1328 Return a random element of this algebra.
1329
1330 Our algebra superclass method only returns a linear
1331 combination of at most two basis elements. We instead
1332 want the vector space "random element" method that
1333 returns a more diverse selection.
1334
1335 INPUT:
1336
1337 - ``thorough`` -- (boolean; default False) whether or not we
1338 should generate irrational coefficients for the random
1339 element when our base ring is irrational; this slows the
1340 algebra operations to a crawl, but any truly random method
1341 should include them
1342
1343 """
1344 # For a general base ring... maybe we can trust this to do the
1345 # right thing? Unlikely, but.
1346 V = self.vector_space()
1347 v = V.random_element()
1348
1349 if self.base_ring() is AA:
1350 # The "random element" method of the algebraic reals is
1351 # stupid at the moment, and only returns integers between
1352 # -2 and 2, inclusive:
1353 #
1354 # https://trac.sagemath.org/ticket/30875
1355 #
1356 # Instead, we implement our own "random vector" method,
1357 # and then coerce that into the algebra. We use the vector
1358 # space degree here instead of the dimension because a
1359 # subalgebra could (for example) be spanned by only two
1360 # vectors, each with five coordinates. We need to
1361 # generate all five coordinates.
1362 if thorough:
1363 v *= QQbar.random_element().real()
1364 else:
1365 v *= QQ.random_element()
1366
1367 return self.from_vector(V.coordinate_vector(v))
1368
1369 def random_elements(self, count, thorough=False):
1370 """
1371 Return ``count`` random elements as a tuple.
1372
1373 INPUT:
1374
1375 - ``thorough`` -- (boolean; default False) whether or not we
1376 should generate irrational coefficients for the random
1377 elements when our base ring is irrational; this slows the
1378 algebra operations to a crawl, but any truly random method
1379 should include them
1380
1381 SETUP::
1382
1383 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1384
1385 EXAMPLES::
1386
1387 sage: J = JordanSpinEJA(3)
1388 sage: x,y,z = J.random_elements(3)
1389 sage: all( [ x in J, y in J, z in J ])
1390 True
1391 sage: len( J.random_elements(10) ) == 10
1392 True
1393
1394 """
1395 return tuple( self.random_element(thorough)
1396 for idx in range(count) )
1397
1398
1399 @cached_method
1400 def _charpoly_coefficients(self):
1401 r"""
1402 The `r` polynomial coefficients of the "characteristic polynomial
1403 of" function.
1404
1405 SETUP::
1406
1407 sage: from mjo.eja.eja_algebra import random_eja
1408
1409 TESTS:
1410
1411 The theory shows that these are all homogeneous polynomials of
1412 a known degree::
1413
1414 sage: set_random_seed()
1415 sage: J = random_eja()
1416 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1417 True
1418
1419 """
1420 n = self.dimension()
1421 R = self.coordinate_polynomial_ring()
1422 vars = R.gens()
1423 F = R.fraction_field()
1424
1425 def L_x_i_j(i,j):
1426 # From a result in my book, these are the entries of the
1427 # basis representation of L_x.
1428 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1429 for k in range(n) )
1430
1431 L_x = matrix(F, n, n, L_x_i_j)
1432
1433 r = None
1434 if self.rank.is_in_cache():
1435 r = self.rank()
1436 # There's no need to pad the system with redundant
1437 # columns if we *know* they'll be redundant.
1438 n = r
1439
1440 # Compute an extra power in case the rank is equal to
1441 # the dimension (otherwise, we would stop at x^(r-1)).
1442 x_powers = [ (L_x**k)*self.one().to_vector()
1443 for k in range(n+1) ]
1444 A = matrix.column(F, x_powers[:n])
1445 AE = A.extended_echelon_form()
1446 E = AE[:,n:]
1447 A_rref = AE[:,:n]
1448 if r is None:
1449 r = A_rref.rank()
1450 b = x_powers[r]
1451
1452 # The theory says that only the first "r" coefficients are
1453 # nonzero, and they actually live in the original polynomial
1454 # ring and not the fraction field. We negate them because in
1455 # the actual characteristic polynomial, they get moved to the
1456 # other side where x^r lives. We don't bother to trim A_rref
1457 # down to a square matrix and solve the resulting system,
1458 # because the upper-left r-by-r portion of A_rref is
1459 # guaranteed to be the identity matrix, so e.g.
1460 #
1461 # A_rref.solve_right(Y)
1462 #
1463 # would just be returning Y.
1464 return (-E*b)[:r].change_ring(R)
1465
1466 @cached_method
1467 def rank(self):
1468 r"""
1469 Return the rank of this EJA.
1470
1471 This is a cached method because we know the rank a priori for
1472 all of the algebras we can construct. Thus we can avoid the
1473 expensive ``_charpoly_coefficients()`` call unless we truly
1474 need to compute the whole characteristic polynomial.
1475
1476 SETUP::
1477
1478 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1479 ....: JordanSpinEJA,
1480 ....: RealSymmetricEJA,
1481 ....: ComplexHermitianEJA,
1482 ....: QuaternionHermitianEJA,
1483 ....: random_eja)
1484
1485 EXAMPLES:
1486
1487 The rank of the Jordan spin algebra is always two::
1488
1489 sage: JordanSpinEJA(2).rank()
1490 2
1491 sage: JordanSpinEJA(3).rank()
1492 2
1493 sage: JordanSpinEJA(4).rank()
1494 2
1495
1496 The rank of the `n`-by-`n` Hermitian real, complex, or
1497 quaternion matrices is `n`::
1498
1499 sage: RealSymmetricEJA(4).rank()
1500 4
1501 sage: ComplexHermitianEJA(3).rank()
1502 3
1503 sage: QuaternionHermitianEJA(2).rank()
1504 2
1505
1506 TESTS:
1507
1508 Ensure that every EJA that we know how to construct has a
1509 positive integer rank, unless the algebra is trivial in
1510 which case its rank will be zero::
1511
1512 sage: set_random_seed()
1513 sage: J = random_eja()
1514 sage: r = J.rank()
1515 sage: r in ZZ
1516 True
1517 sage: r > 0 or (r == 0 and J.is_trivial())
1518 True
1519
1520 Ensure that computing the rank actually works, since the ranks
1521 of all simple algebras are known and will be cached by default::
1522
1523 sage: set_random_seed() # long time
1524 sage: J = random_eja() # long time
1525 sage: cached = J.rank() # long time
1526 sage: J.rank.clear_cache() # long time
1527 sage: J.rank() == cached # long time
1528 True
1529
1530 """
1531 return len(self._charpoly_coefficients())
1532
1533
1534 def subalgebra(self, basis, **kwargs):
1535 r"""
1536 Create a subalgebra of this algebra from the given basis.
1537 """
1538 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1539 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1540
1541
1542 def vector_space(self):
1543 """
1544 Return the vector space that underlies this algebra.
1545
1546 SETUP::
1547
1548 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1549
1550 EXAMPLES::
1551
1552 sage: J = RealSymmetricEJA(2)
1553 sage: J.vector_space()
1554 Vector space of dimension 3 over...
1555
1556 """
1557 return self.zero().to_vector().parent().ambient_vector_space()
1558
1559
1560
1561 class RationalBasisEJA(FiniteDimensionalEJA):
1562 r"""
1563 Algebras whose supplied basis elements have all rational entries.
1564
1565 SETUP::
1566
1567 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1568
1569 EXAMPLES:
1570
1571 The supplied basis is orthonormalized by default::
1572
1573 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1574 sage: J = BilinearFormEJA(B)
1575 sage: J.matrix_basis()
1576 (
1577 [1] [ 0] [ 0]
1578 [0] [1/5] [32/5]
1579 [0], [ 0], [ 5]
1580 )
1581
1582 """
1583 def __init__(self,
1584 basis,
1585 jordan_product,
1586 inner_product,
1587 field=AA,
1588 check_field=True,
1589 **kwargs):
1590
1591 if check_field:
1592 # Abuse the check_field parameter to check that the entries of
1593 # out basis (in ambient coordinates) are in the field QQ.
1594 # Use _all2list to get the vector coordinates of octonion
1595 # entries and not the octonions themselves (which are not
1596 # rational).
1597 if not all( all(b_i in QQ for b_i in _all2list(b))
1598 for b in basis ):
1599 raise TypeError("basis not rational")
1600
1601 super().__init__(basis,
1602 jordan_product,
1603 inner_product,
1604 field=field,
1605 check_field=check_field,
1606 **kwargs)
1607
1608 self._rational_algebra = None
1609 if field is not QQ:
1610 # There's no point in constructing the extra algebra if this
1611 # one is already rational.
1612 #
1613 # Note: the same Jordan and inner-products work here,
1614 # because they are necessarily defined with respect to
1615 # ambient coordinates and not any particular basis.
1616 self._rational_algebra = FiniteDimensionalEJA(
1617 basis,
1618 jordan_product,
1619 inner_product,
1620 field=QQ,
1621 matrix_space=self.matrix_space(),
1622 associative=self.is_associative(),
1623 orthonormalize=False,
1624 check_field=False,
1625 check_axioms=False)
1626
1627 @cached_method
1628 def _charpoly_coefficients(self):
1629 r"""
1630 SETUP::
1631
1632 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1633 ....: JordanSpinEJA)
1634
1635 EXAMPLES:
1636
1637 The base ring of the resulting polynomial coefficients is what
1638 it should be, and not the rationals (unless the algebra was
1639 already over the rationals)::
1640
1641 sage: J = JordanSpinEJA(3)
1642 sage: J._charpoly_coefficients()
1643 (X1^2 - X2^2 - X3^2, -2*X1)
1644 sage: a0 = J._charpoly_coefficients()[0]
1645 sage: J.base_ring()
1646 Algebraic Real Field
1647 sage: a0.base_ring()
1648 Algebraic Real Field
1649
1650 """
1651 if self._rational_algebra is None:
1652 # There's no need to construct *another* algebra over the
1653 # rationals if this one is already over the
1654 # rationals. Likewise, if we never orthonormalized our
1655 # basis, we might as well just use the given one.
1656 return super()._charpoly_coefficients()
1657
1658 # Do the computation over the rationals. The answer will be
1659 # the same, because all we've done is a change of basis.
1660 # Then, change back from QQ to our real base ring
1661 a = ( a_i.change_ring(self.base_ring())
1662 for a_i in self._rational_algebra._charpoly_coefficients() )
1663
1664 if self._deortho_matrix is None:
1665 # This can happen if our base ring was, say, AA and we
1666 # chose not to (or didn't need to) orthonormalize. It's
1667 # still faster to do the computations over QQ even if
1668 # the numbers in the boxes stay the same.
1669 return tuple(a)
1670
1671 # Otherwise, convert the coordinate variables back to the
1672 # deorthonormalized ones.
1673 R = self.coordinate_polynomial_ring()
1674 from sage.modules.free_module_element import vector
1675 X = vector(R, R.gens())
1676 BX = self._deortho_matrix*X
1677
1678 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1679 return tuple( a_i.subs(subs_dict) for a_i in a )
1680
1681 class ConcreteEJA(FiniteDimensionalEJA):
1682 r"""
1683 A class for the Euclidean Jordan algebras that we know by name.
1684
1685 These are the Jordan algebras whose basis, multiplication table,
1686 rank, and so on are known a priori. More to the point, they are
1687 the Euclidean Jordan algebras for which we are able to conjure up
1688 a "random instance."
1689
1690 SETUP::
1691
1692 sage: from mjo.eja.eja_algebra import ConcreteEJA
1693
1694 TESTS:
1695
1696 Our basis is normalized with respect to the algebra's inner
1697 product, unless we specify otherwise::
1698
1699 sage: set_random_seed()
1700 sage: J = ConcreteEJA.random_instance()
1701 sage: all( b.norm() == 1 for b in J.gens() )
1702 True
1703
1704 Since our basis is orthonormal with respect to the algebra's inner
1705 product, and since we know that this algebra is an EJA, any
1706 left-multiplication operator's matrix will be symmetric because
1707 natural->EJA basis representation is an isometry and within the
1708 EJA the operator is self-adjoint by the Jordan axiom::
1709
1710 sage: set_random_seed()
1711 sage: J = ConcreteEJA.random_instance()
1712 sage: x = J.random_element()
1713 sage: x.operator().is_self_adjoint()
1714 True
1715 """
1716
1717 @staticmethod
1718 def _max_random_instance_size():
1719 """
1720 Return an integer "size" that is an upper bound on the size of
1721 this algebra when it is used in a random test
1722 case. Unfortunately, the term "size" is ambiguous -- when
1723 dealing with `R^n` under either the Hadamard or Jordan spin
1724 product, the "size" refers to the dimension `n`. When dealing
1725 with a matrix algebra (real symmetric or complex/quaternion
1726 Hermitian), it refers to the size of the matrix, which is far
1727 less than the dimension of the underlying vector space.
1728
1729 This method must be implemented in each subclass.
1730 """
1731 raise NotImplementedError
1732
1733 @classmethod
1734 def random_instance(cls, *args, **kwargs):
1735 """
1736 Return a random instance of this type of algebra.
1737
1738 This method should be implemented in each subclass.
1739 """
1740 from sage.misc.prandom import choice
1741 eja_class = choice(cls.__subclasses__())
1742
1743 # These all bubble up to the RationalBasisEJA superclass
1744 # constructor, so any (kw)args valid there are also valid
1745 # here.
1746 return eja_class.random_instance(*args, **kwargs)
1747
1748
1749 class MatrixEJA:
1750 @staticmethod
1751 def _denormalized_basis(A):
1752 """
1753 Returns a basis for the space of complex Hermitian n-by-n matrices.
1754
1755 Why do we embed these? Basically, because all of numerical linear
1756 algebra assumes that you're working with vectors consisting of `n`
1757 entries from a field and scalars from the same field. There's no way
1758 to tell SageMath that (for example) the vectors contain complex
1759 numbers, while the scalar field is real.
1760
1761 SETUP::
1762
1763 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1764 ....: QuaternionMatrixAlgebra,
1765 ....: OctonionMatrixAlgebra)
1766 sage: from mjo.eja.eja_algebra import MatrixEJA
1767
1768 TESTS::
1769
1770 sage: set_random_seed()
1771 sage: n = ZZ.random_element(1,5)
1772 sage: A = MatrixSpace(QQ, n)
1773 sage: B = MatrixEJA._denormalized_basis(A)
1774 sage: all( M.is_hermitian() for M in B)
1775 True
1776
1777 ::
1778
1779 sage: set_random_seed()
1780 sage: n = ZZ.random_element(1,5)
1781 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1782 sage: B = MatrixEJA._denormalized_basis(A)
1783 sage: all( M.is_hermitian() for M in B)
1784 True
1785
1786 ::
1787
1788 sage: set_random_seed()
1789 sage: n = ZZ.random_element(1,5)
1790 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1791 sage: B = MatrixEJA._denormalized_basis(A)
1792 sage: all( M.is_hermitian() for M in B )
1793 True
1794
1795 ::
1796
1797 sage: set_random_seed()
1798 sage: n = ZZ.random_element(1,5)
1799 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1800 sage: B = MatrixEJA._denormalized_basis(A)
1801 sage: all( M.is_hermitian() for M in B )
1802 True
1803
1804 """
1805 # These work for real MatrixSpace, whose monomials only have
1806 # two coordinates (because the last one would always be "1").
1807 es = A.base_ring().gens()
1808 gen = lambda A,m: A.monomial(m[:2])
1809
1810 if hasattr(A, 'entry_algebra_gens'):
1811 # We've got a MatrixAlgebra, and its monomials will have
1812 # three coordinates.
1813 es = A.entry_algebra_gens()
1814 gen = lambda A,m: A.monomial(m)
1815
1816 basis = []
1817 for i in range(A.nrows()):
1818 for j in range(i+1):
1819 if i == j:
1820 E_ii = gen(A, (i,j,es[0]))
1821 basis.append(E_ii)
1822 else:
1823 for e in es:
1824 E_ij = gen(A, (i,j,e))
1825 E_ij += E_ij.conjugate_transpose()
1826 basis.append(E_ij)
1827
1828 return tuple( basis )
1829
1830 @staticmethod
1831 def jordan_product(X,Y):
1832 return (X*Y + Y*X)/2
1833
1834 @staticmethod
1835 def trace_inner_product(X,Y):
1836 r"""
1837 A trace inner-product for matrices that aren't embedded in the
1838 reals. It takes MATRICES as arguments, not EJA elements.
1839
1840 SETUP::
1841
1842 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1843 ....: ComplexHermitianEJA,
1844 ....: QuaternionHermitianEJA,
1845 ....: OctonionHermitianEJA)
1846
1847 EXAMPLES::
1848
1849 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
1850 sage: I = J.one().to_matrix()
1851 sage: J.trace_inner_product(I, -I)
1852 -2
1853
1854 ::
1855
1856 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1857 sage: I = J.one().to_matrix()
1858 sage: J.trace_inner_product(I, -I)
1859 -2
1860
1861 ::
1862
1863 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
1864 sage: I = J.one().to_matrix()
1865 sage: J.trace_inner_product(I, -I)
1866 -2
1867
1868 ::
1869
1870 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
1871 sage: I = J.one().to_matrix()
1872 sage: J.trace_inner_product(I, -I)
1873 -2
1874
1875 """
1876 tr = (X*Y).trace()
1877 if hasattr(tr, 'coefficient'):
1878 # Works for octonions, and has to come first because they
1879 # also have a "real()" method that doesn't return an
1880 # element of the scalar ring.
1881 return tr.coefficient(0)
1882 elif hasattr(tr, 'coefficient_tuple'):
1883 # Works for quaternions.
1884 return tr.coefficient_tuple()[0]
1885
1886 # Works for real and complex numbers.
1887 return tr.real()
1888
1889
1890
1891 class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
1892 """
1893 The rank-n simple EJA consisting of real symmetric n-by-n
1894 matrices, the usual symmetric Jordan product, and the trace inner
1895 product. It has dimension `(n^2 + n)/2` over the reals.
1896
1897 SETUP::
1898
1899 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1900
1901 EXAMPLES::
1902
1903 sage: J = RealSymmetricEJA(2)
1904 sage: b0, b1, b2 = J.gens()
1905 sage: b0*b0
1906 b0
1907 sage: b1*b1
1908 1/2*b0 + 1/2*b2
1909 sage: b2*b2
1910 b2
1911
1912 In theory, our "field" can be any subfield of the reals::
1913
1914 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
1915 Euclidean Jordan algebra of dimension 3 over Real Double Field
1916 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
1917 Euclidean Jordan algebra of dimension 3 over Real Field with
1918 53 bits of precision
1919
1920 TESTS:
1921
1922 The dimension of this algebra is `(n^2 + n) / 2`::
1923
1924 sage: set_random_seed()
1925 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1926 sage: n = ZZ.random_element(1, n_max)
1927 sage: J = RealSymmetricEJA(n)
1928 sage: J.dimension() == (n^2 + n)/2
1929 True
1930
1931 The Jordan multiplication is what we think it is::
1932
1933 sage: set_random_seed()
1934 sage: J = RealSymmetricEJA.random_instance()
1935 sage: x,y = J.random_elements(2)
1936 sage: actual = (x*y).to_matrix()
1937 sage: X = x.to_matrix()
1938 sage: Y = y.to_matrix()
1939 sage: expected = (X*Y + Y*X)/2
1940 sage: actual == expected
1941 True
1942 sage: J(expected) == x*y
1943 True
1944
1945 We can change the generator prefix::
1946
1947 sage: RealSymmetricEJA(3, prefix='q').gens()
1948 (q0, q1, q2, q3, q4, q5)
1949
1950 We can construct the (trivial) algebra of rank zero::
1951
1952 sage: RealSymmetricEJA(0)
1953 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1954
1955 """
1956 @staticmethod
1957 def _max_random_instance_size():
1958 return 4 # Dimension 10
1959
1960 @classmethod
1961 def random_instance(cls, **kwargs):
1962 """
1963 Return a random instance of this type of algebra.
1964 """
1965 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1966 return cls(n, **kwargs)
1967
1968 def __init__(self, n, field=AA, **kwargs):
1969 # We know this is a valid EJA, but will double-check
1970 # if the user passes check_axioms=True.
1971 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1972
1973 A = MatrixSpace(field, n)
1974 super().__init__(self._denormalized_basis(A),
1975 self.jordan_product,
1976 self.trace_inner_product,
1977 field=field,
1978 matrix_space=A,
1979 **kwargs)
1980
1981 # TODO: this could be factored out somehow, but is left here
1982 # because the MatrixEJA is not presently a subclass of the
1983 # FDEJA class that defines rank() and one().
1984 self.rank.set_cache(n)
1985 self.one.set_cache( self(A.one()) )
1986
1987
1988
1989 class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
1990 """
1991 The rank-n simple EJA consisting of complex Hermitian n-by-n
1992 matrices over the real numbers, the usual symmetric Jordan product,
1993 and the real-part-of-trace inner product. It has dimension `n^2` over
1994 the reals.
1995
1996 SETUP::
1997
1998 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1999
2000 EXAMPLES:
2001
2002 In theory, our "field" can be any subfield of the reals, but we
2003 can't use inexact real fields at the moment because SageMath
2004 doesn't know how to convert their elements into complex numbers,
2005 or even into algebraic reals::
2006
2007 sage: QQbar(RDF(1))
2008 Traceback (most recent call last):
2009 ...
2010 TypeError: Illegal initializer for algebraic number
2011 sage: AA(RR(1))
2012 Traceback (most recent call last):
2013 ...
2014 TypeError: Illegal initializer for algebraic number
2015
2016 This causes the following error when we try to scale a matrix of
2017 complex numbers by an inexact real number::
2018
2019 sage: ComplexHermitianEJA(2,field=RR)
2020 Traceback (most recent call last):
2021 ...
2022 TypeError: Unable to coerce entries (=(1.00000000000000,
2023 -0.000000000000000)) to coefficients in Algebraic Real Field
2024
2025 TESTS:
2026
2027 The dimension of this algebra is `n^2`::
2028
2029 sage: set_random_seed()
2030 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
2031 sage: n = ZZ.random_element(1, n_max)
2032 sage: J = ComplexHermitianEJA(n)
2033 sage: J.dimension() == n^2
2034 True
2035
2036 The Jordan multiplication is what we think it is::
2037
2038 sage: set_random_seed()
2039 sage: J = ComplexHermitianEJA.random_instance()
2040 sage: x,y = J.random_elements(2)
2041 sage: actual = (x*y).to_matrix()
2042 sage: X = x.to_matrix()
2043 sage: Y = y.to_matrix()
2044 sage: expected = (X*Y + Y*X)/2
2045 sage: actual == expected
2046 True
2047 sage: J(expected) == x*y
2048 True
2049
2050 We can change the generator prefix::
2051
2052 sage: ComplexHermitianEJA(2, prefix='z').gens()
2053 (z0, z1, z2, z3)
2054
2055 We can construct the (trivial) algebra of rank zero::
2056
2057 sage: ComplexHermitianEJA(0)
2058 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2059 """
2060 def __init__(self, n, field=AA, **kwargs):
2061 # We know this is a valid EJA, but will double-check
2062 # if the user passes check_axioms=True.
2063 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2064
2065 from mjo.hurwitz import ComplexMatrixAlgebra
2066 A = ComplexMatrixAlgebra(n, scalars=field)
2067 super().__init__(self._denormalized_basis(A),
2068 self.jordan_product,
2069 self.trace_inner_product,
2070 field=field,
2071 matrix_space=A,
2072 **kwargs)
2073
2074 # TODO: this could be factored out somehow, but is left here
2075 # because the MatrixEJA is not presently a subclass of the
2076 # FDEJA class that defines rank() and one().
2077 self.rank.set_cache(n)
2078 self.one.set_cache( self(A.one()) )
2079
2080
2081 @staticmethod
2082 def _max_random_instance_size():
2083 return 3 # Dimension 9
2084
2085 @classmethod
2086 def random_instance(cls, **kwargs):
2087 """
2088 Return a random instance of this type of algebra.
2089 """
2090 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2091 return cls(n, **kwargs)
2092
2093
2094 class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
2095 r"""
2096 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2097 matrices, the usual symmetric Jordan product, and the
2098 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2099 the reals.
2100
2101 SETUP::
2102
2103 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2104
2105 EXAMPLES:
2106
2107 In theory, our "field" can be any subfield of the reals::
2108
2109 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2110 Euclidean Jordan algebra of dimension 6 over Real Double Field
2111 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2112 Euclidean Jordan algebra of dimension 6 over Real Field with
2113 53 bits of precision
2114
2115 TESTS:
2116
2117 The dimension of this algebra is `2*n^2 - n`::
2118
2119 sage: set_random_seed()
2120 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2121 sage: n = ZZ.random_element(1, n_max)
2122 sage: J = QuaternionHermitianEJA(n)
2123 sage: J.dimension() == 2*(n^2) - n
2124 True
2125
2126 The Jordan multiplication is what we think it is::
2127
2128 sage: set_random_seed()
2129 sage: J = QuaternionHermitianEJA.random_instance()
2130 sage: x,y = J.random_elements(2)
2131 sage: actual = (x*y).to_matrix()
2132 sage: X = x.to_matrix()
2133 sage: Y = y.to_matrix()
2134 sage: expected = (X*Y + Y*X)/2
2135 sage: actual == expected
2136 True
2137 sage: J(expected) == x*y
2138 True
2139
2140 We can change the generator prefix::
2141
2142 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2143 (a0, a1, a2, a3, a4, a5)
2144
2145 We can construct the (trivial) algebra of rank zero::
2146
2147 sage: QuaternionHermitianEJA(0)
2148 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2149
2150 """
2151 def __init__(self, n, field=AA, **kwargs):
2152 # We know this is a valid EJA, but will double-check
2153 # if the user passes check_axioms=True.
2154 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2155
2156 from mjo.hurwitz import QuaternionMatrixAlgebra
2157 A = QuaternionMatrixAlgebra(n, scalars=field)
2158 super().__init__(self._denormalized_basis(A),
2159 self.jordan_product,
2160 self.trace_inner_product,
2161 field=field,
2162 matrix_space=A,
2163 **kwargs)
2164
2165 # TODO: this could be factored out somehow, but is left here
2166 # because the MatrixEJA is not presently a subclass of the
2167 # FDEJA class that defines rank() and one().
2168 self.rank.set_cache(n)
2169 self.one.set_cache( self(A.one()) )
2170
2171
2172 @staticmethod
2173 def _max_random_instance_size():
2174 r"""
2175 The maximum rank of a random QuaternionHermitianEJA.
2176 """
2177 return 2 # Dimension 6
2178
2179 @classmethod
2180 def random_instance(cls, **kwargs):
2181 """
2182 Return a random instance of this type of algebra.
2183 """
2184 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2185 return cls(n, **kwargs)
2186
2187 class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
2188 r"""
2189 SETUP::
2190
2191 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2192 ....: OctonionHermitianEJA)
2193 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2194
2195 EXAMPLES:
2196
2197 The 3-by-3 algebra satisfies the axioms of an EJA::
2198
2199 sage: OctonionHermitianEJA(3, # long time
2200 ....: field=QQ, # long time
2201 ....: orthonormalize=False, # long time
2202 ....: check_axioms=True) # long time
2203 Euclidean Jordan algebra of dimension 27 over Rational Field
2204
2205 After a change-of-basis, the 2-by-2 algebra has the same
2206 multiplication table as the ten-dimensional Jordan spin algebra::
2207
2208 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2209 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2210 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2211 sage: jp = OctonionHermitianEJA.jordan_product
2212 sage: ip = OctonionHermitianEJA.trace_inner_product
2213 sage: J = FiniteDimensionalEJA(basis,
2214 ....: jp,
2215 ....: ip,
2216 ....: field=QQ,
2217 ....: orthonormalize=False)
2218 sage: J.multiplication_table()
2219 +----++----+----+----+----+----+----+----+----+----+----+
2220 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2221 +====++====+====+====+====+====+====+====+====+====+====+
2222 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2223 +----++----+----+----+----+----+----+----+----+----+----+
2224 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2225 +----++----+----+----+----+----+----+----+----+----+----+
2226 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2227 +----++----+----+----+----+----+----+----+----+----+----+
2228 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2229 +----++----+----+----+----+----+----+----+----+----+----+
2230 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2231 +----++----+----+----+----+----+----+----+----+----+----+
2232 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2233 +----++----+----+----+----+----+----+----+----+----+----+
2234 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2235 +----++----+----+----+----+----+----+----+----+----+----+
2236 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2237 +----++----+----+----+----+----+----+----+----+----+----+
2238 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2239 +----++----+----+----+----+----+----+----+----+----+----+
2240 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2241 +----++----+----+----+----+----+----+----+----+----+----+
2242
2243 TESTS:
2244
2245 We can actually construct the 27-dimensional Albert algebra,
2246 and we get the right unit element if we recompute it::
2247
2248 sage: J = OctonionHermitianEJA(3, # long time
2249 ....: field=QQ, # long time
2250 ....: orthonormalize=False) # long time
2251 sage: J.one.clear_cache() # long time
2252 sage: J.one() # long time
2253 b0 + b9 + b26
2254 sage: J.one().to_matrix() # long time
2255 +----+----+----+
2256 | e0 | 0 | 0 |
2257 +----+----+----+
2258 | 0 | e0 | 0 |
2259 +----+----+----+
2260 | 0 | 0 | e0 |
2261 +----+----+----+
2262
2263 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2264 spin algebra, but just to be sure, we recompute its rank::
2265
2266 sage: J = OctonionHermitianEJA(2, # long time
2267 ....: field=QQ, # long time
2268 ....: orthonormalize=False) # long time
2269 sage: J.rank.clear_cache() # long time
2270 sage: J.rank() # long time
2271 2
2272
2273 """
2274 @staticmethod
2275 def _max_random_instance_size():
2276 r"""
2277 The maximum rank of a random QuaternionHermitianEJA.
2278 """
2279 return 1 # Dimension 1
2280
2281 @classmethod
2282 def random_instance(cls, **kwargs):
2283 """
2284 Return a random instance of this type of algebra.
2285 """
2286 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2287 return cls(n, **kwargs)
2288
2289 def __init__(self, n, field=AA, **kwargs):
2290 if n > 3:
2291 # Otherwise we don't get an EJA.
2292 raise ValueError("n cannot exceed 3")
2293
2294 # We know this is a valid EJA, but will double-check
2295 # if the user passes check_axioms=True.
2296 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2297
2298 from mjo.hurwitz import OctonionMatrixAlgebra
2299 A = OctonionMatrixAlgebra(n, scalars=field)
2300 super().__init__(self._denormalized_basis(A),
2301 self.jordan_product,
2302 self.trace_inner_product,
2303 field=field,
2304 matrix_space=A,
2305 **kwargs)
2306
2307 # TODO: this could be factored out somehow, but is left here
2308 # because the MatrixEJA is not presently a subclass of the
2309 # FDEJA class that defines rank() and one().
2310 self.rank.set_cache(n)
2311 self.one.set_cache( self(A.one()) )
2312
2313
2314 class AlbertEJA(OctonionHermitianEJA):
2315 r"""
2316 The Albert algebra is the algebra of three-by-three Hermitian
2317 matrices whose entries are octonions.
2318
2319 SETUP::
2320
2321 sage: from mjo.eja.eja_algebra import AlbertEJA
2322
2323 EXAMPLES::
2324
2325 sage: AlbertEJA(field=QQ, orthonormalize=False)
2326 Euclidean Jordan algebra of dimension 27 over Rational Field
2327 sage: AlbertEJA() # long time
2328 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2329
2330 """
2331 def __init__(self, *args, **kwargs):
2332 super().__init__(3, *args, **kwargs)
2333
2334
2335 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2336 """
2337 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2338 (pointwise real-number multiplication) Jordan product and the
2339 usual inner-product.
2340
2341 This is nothing more than the Cartesian product of ``n`` copies of
2342 the one-dimensional Jordan spin algebra, and is the most common
2343 example of a non-simple Euclidean Jordan algebra.
2344
2345 SETUP::
2346
2347 sage: from mjo.eja.eja_algebra import HadamardEJA
2348
2349 EXAMPLES:
2350
2351 This multiplication table can be verified by hand::
2352
2353 sage: J = HadamardEJA(3)
2354 sage: b0,b1,b2 = J.gens()
2355 sage: b0*b0
2356 b0
2357 sage: b0*b1
2358 0
2359 sage: b0*b2
2360 0
2361 sage: b1*b1
2362 b1
2363 sage: b1*b2
2364 0
2365 sage: b2*b2
2366 b2
2367
2368 TESTS:
2369
2370 We can change the generator prefix::
2371
2372 sage: HadamardEJA(3, prefix='r').gens()
2373 (r0, r1, r2)
2374 """
2375 def __init__(self, n, field=AA, **kwargs):
2376 MS = MatrixSpace(field, n, 1)
2377
2378 if n == 0:
2379 jordan_product = lambda x,y: x
2380 inner_product = lambda x,y: x
2381 else:
2382 def jordan_product(x,y):
2383 return MS( xi*yi for (xi,yi) in zip(x,y) )
2384
2385 def inner_product(x,y):
2386 return (x.T*y)[0,0]
2387
2388 # New defaults for keyword arguments. Don't orthonormalize
2389 # because our basis is already orthonormal with respect to our
2390 # inner-product. Don't check the axioms, because we know this
2391 # is a valid EJA... but do double-check if the user passes
2392 # check_axioms=True. Note: we DON'T override the "check_field"
2393 # default here, because the user can pass in a field!
2394 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2395 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2396
2397 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2398 super().__init__(column_basis,
2399 jordan_product,
2400 inner_product,
2401 field=field,
2402 matrix_space=MS,
2403 associative=True,
2404 **kwargs)
2405 self.rank.set_cache(n)
2406
2407 self.one.set_cache( self.sum(self.gens()) )
2408
2409 @staticmethod
2410 def _max_random_instance_size():
2411 r"""
2412 The maximum dimension of a random HadamardEJA.
2413 """
2414 return 5
2415
2416 @classmethod
2417 def random_instance(cls, **kwargs):
2418 """
2419 Return a random instance of this type of algebra.
2420 """
2421 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2422 return cls(n, **kwargs)
2423
2424
2425 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2426 r"""
2427 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2428 with the half-trace inner product and jordan product ``x*y =
2429 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2430 a symmetric positive-definite "bilinear form" matrix. Its
2431 dimension is the size of `B`, and it has rank two in dimensions
2432 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2433 the identity matrix of order ``n``.
2434
2435 We insist that the one-by-one upper-left identity block of `B` be
2436 passed in as well so that we can be passed a matrix of size zero
2437 to construct a trivial algebra.
2438
2439 SETUP::
2440
2441 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2442 ....: JordanSpinEJA)
2443
2444 EXAMPLES:
2445
2446 When no bilinear form is specified, the identity matrix is used,
2447 and the resulting algebra is the Jordan spin algebra::
2448
2449 sage: B = matrix.identity(AA,3)
2450 sage: J0 = BilinearFormEJA(B)
2451 sage: J1 = JordanSpinEJA(3)
2452 sage: J0.multiplication_table() == J0.multiplication_table()
2453 True
2454
2455 An error is raised if the matrix `B` does not correspond to a
2456 positive-definite bilinear form::
2457
2458 sage: B = matrix.random(QQ,2,3)
2459 sage: J = BilinearFormEJA(B)
2460 Traceback (most recent call last):
2461 ...
2462 ValueError: bilinear form is not positive-definite
2463 sage: B = matrix.zero(QQ,3)
2464 sage: J = BilinearFormEJA(B)
2465 Traceback (most recent call last):
2466 ...
2467 ValueError: bilinear form is not positive-definite
2468
2469 TESTS:
2470
2471 We can create a zero-dimensional algebra::
2472
2473 sage: B = matrix.identity(AA,0)
2474 sage: J = BilinearFormEJA(B)
2475 sage: J.basis()
2476 Finite family {}
2477
2478 We can check the multiplication condition given in the Jordan, von
2479 Neumann, and Wigner paper (and also discussed on my "On the
2480 symmetry..." paper). Note that this relies heavily on the standard
2481 choice of basis, as does anything utilizing the bilinear form
2482 matrix. We opt not to orthonormalize the basis, because if we
2483 did, we would have to normalize the `s_{i}` in a similar manner::
2484
2485 sage: set_random_seed()
2486 sage: n = ZZ.random_element(5)
2487 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2488 sage: B11 = matrix.identity(QQ,1)
2489 sage: B22 = M.transpose()*M
2490 sage: B = block_matrix(2,2,[ [B11,0 ],
2491 ....: [0, B22 ] ])
2492 sage: J = BilinearFormEJA(B, orthonormalize=False)
2493 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2494 sage: V = J.vector_space()
2495 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2496 ....: for ei in eis ]
2497 sage: actual = [ sis[i]*sis[j]
2498 ....: for i in range(n-1)
2499 ....: for j in range(n-1) ]
2500 sage: expected = [ J.one() if i == j else J.zero()
2501 ....: for i in range(n-1)
2502 ....: for j in range(n-1) ]
2503 sage: actual == expected
2504 True
2505
2506 """
2507 def __init__(self, B, field=AA, **kwargs):
2508 # The matrix "B" is supplied by the user in most cases,
2509 # so it makes sense to check whether or not its positive-
2510 # definite unless we are specifically asked not to...
2511 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2512 if not B.is_positive_definite():
2513 raise ValueError("bilinear form is not positive-definite")
2514
2515 # However, all of the other data for this EJA is computed
2516 # by us in manner that guarantees the axioms are
2517 # satisfied. So, again, unless we are specifically asked to
2518 # verify things, we'll skip the rest of the checks.
2519 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2520
2521 n = B.nrows()
2522 MS = MatrixSpace(field, n, 1)
2523
2524 def inner_product(x,y):
2525 return (y.T*B*x)[0,0]
2526
2527 def jordan_product(x,y):
2528 x0 = x[0,0]
2529 xbar = x[1:,0]
2530 y0 = y[0,0]
2531 ybar = y[1:,0]
2532 z0 = inner_product(y,x)
2533 zbar = y0*xbar + x0*ybar
2534 return MS([z0] + zbar.list())
2535
2536 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2537
2538 # TODO: I haven't actually checked this, but it seems legit.
2539 associative = False
2540 if n <= 2:
2541 associative = True
2542
2543 super().__init__(column_basis,
2544 jordan_product,
2545 inner_product,
2546 field=field,
2547 matrix_space=MS,
2548 associative=associative,
2549 **kwargs)
2550
2551 # The rank of this algebra is two, unless we're in a
2552 # one-dimensional ambient space (because the rank is bounded
2553 # by the ambient dimension).
2554 self.rank.set_cache(min(n,2))
2555 if n == 0:
2556 self.one.set_cache( self.zero() )
2557 else:
2558 self.one.set_cache( self.monomial(0) )
2559
2560 @staticmethod
2561 def _max_random_instance_size():
2562 r"""
2563 The maximum dimension of a random BilinearFormEJA.
2564 """
2565 return 5
2566
2567 @classmethod
2568 def random_instance(cls, **kwargs):
2569 """
2570 Return a random instance of this algebra.
2571 """
2572 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2573 if n.is_zero():
2574 B = matrix.identity(ZZ, n)
2575 return cls(B, **kwargs)
2576
2577 B11 = matrix.identity(ZZ, 1)
2578 M = matrix.random(ZZ, n-1)
2579 I = matrix.identity(ZZ, n-1)
2580 alpha = ZZ.zero()
2581 while alpha.is_zero():
2582 alpha = ZZ.random_element().abs()
2583 B22 = M.transpose()*M + alpha*I
2584
2585 from sage.matrix.special import block_matrix
2586 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2587 [ZZ(0), B22 ] ])
2588
2589 return cls(B, **kwargs)
2590
2591
2592 class JordanSpinEJA(BilinearFormEJA):
2593 """
2594 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2595 with the usual inner product and jordan product ``x*y =
2596 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2597 the reals.
2598
2599 SETUP::
2600
2601 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2602
2603 EXAMPLES:
2604
2605 This multiplication table can be verified by hand::
2606
2607 sage: J = JordanSpinEJA(4)
2608 sage: b0,b1,b2,b3 = J.gens()
2609 sage: b0*b0
2610 b0
2611 sage: b0*b1
2612 b1
2613 sage: b0*b2
2614 b2
2615 sage: b0*b3
2616 b3
2617 sage: b1*b2
2618 0
2619 sage: b1*b3
2620 0
2621 sage: b2*b3
2622 0
2623
2624 We can change the generator prefix::
2625
2626 sage: JordanSpinEJA(2, prefix='B').gens()
2627 (B0, B1)
2628
2629 TESTS:
2630
2631 Ensure that we have the usual inner product on `R^n`::
2632
2633 sage: set_random_seed()
2634 sage: J = JordanSpinEJA.random_instance()
2635 sage: x,y = J.random_elements(2)
2636 sage: actual = x.inner_product(y)
2637 sage: expected = x.to_vector().inner_product(y.to_vector())
2638 sage: actual == expected
2639 True
2640
2641 """
2642 def __init__(self, n, *args, **kwargs):
2643 # This is a special case of the BilinearFormEJA with the
2644 # identity matrix as its bilinear form.
2645 B = matrix.identity(ZZ, n)
2646
2647 # Don't orthonormalize because our basis is already
2648 # orthonormal with respect to our inner-product.
2649 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2650
2651 # But also don't pass check_field=False here, because the user
2652 # can pass in a field!
2653 super().__init__(B, *args, **kwargs)
2654
2655 @staticmethod
2656 def _max_random_instance_size():
2657 r"""
2658 The maximum dimension of a random JordanSpinEJA.
2659 """
2660 return 5
2661
2662 @classmethod
2663 def random_instance(cls, **kwargs):
2664 """
2665 Return a random instance of this type of algebra.
2666
2667 Needed here to override the implementation for ``BilinearFormEJA``.
2668 """
2669 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2670 return cls(n, **kwargs)
2671
2672
2673 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2674 """
2675 The trivial Euclidean Jordan algebra consisting of only a zero element.
2676
2677 SETUP::
2678
2679 sage: from mjo.eja.eja_algebra import TrivialEJA
2680
2681 EXAMPLES::
2682
2683 sage: J = TrivialEJA()
2684 sage: J.dimension()
2685 0
2686 sage: J.zero()
2687 0
2688 sage: J.one()
2689 0
2690 sage: 7*J.one()*12*J.one()
2691 0
2692 sage: J.one().inner_product(J.one())
2693 0
2694 sage: J.one().norm()
2695 0
2696 sage: J.one().subalgebra_generated_by()
2697 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2698 sage: J.rank()
2699 0
2700
2701 """
2702 def __init__(self, field=AA, **kwargs):
2703 jordan_product = lambda x,y: x
2704 inner_product = lambda x,y: field.zero()
2705 basis = ()
2706 MS = MatrixSpace(field,0)
2707
2708 # New defaults for keyword arguments
2709 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2710 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2711
2712 super().__init__(basis,
2713 jordan_product,
2714 inner_product,
2715 associative=True,
2716 field=field,
2717 matrix_space=MS,
2718 **kwargs)
2719
2720 # The rank is zero using my definition, namely the dimension of the
2721 # largest subalgebra generated by any element.
2722 self.rank.set_cache(0)
2723 self.one.set_cache( self.zero() )
2724
2725 @classmethod
2726 def random_instance(cls, **kwargs):
2727 # We don't take a "size" argument so the superclass method is
2728 # inappropriate for us.
2729 return cls(**kwargs)
2730
2731
2732 class CartesianProductEJA(FiniteDimensionalEJA):
2733 r"""
2734 The external (orthogonal) direct sum of two or more Euclidean
2735 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2736 orthogonal direct sum of simple Euclidean Jordan algebras which is
2737 then isometric to a Cartesian product, so no generality is lost by
2738 providing only this construction.
2739
2740 SETUP::
2741
2742 sage: from mjo.eja.eja_algebra import (random_eja,
2743 ....: CartesianProductEJA,
2744 ....: HadamardEJA,
2745 ....: JordanSpinEJA,
2746 ....: RealSymmetricEJA)
2747
2748 EXAMPLES:
2749
2750 The Jordan product is inherited from our factors and implemented by
2751 our CombinatorialFreeModule Cartesian product superclass::
2752
2753 sage: set_random_seed()
2754 sage: J1 = HadamardEJA(2)
2755 sage: J2 = RealSymmetricEJA(2)
2756 sage: J = cartesian_product([J1,J2])
2757 sage: x,y = J.random_elements(2)
2758 sage: x*y in J
2759 True
2760
2761 The ability to retrieve the original factors is implemented by our
2762 CombinatorialFreeModule Cartesian product superclass::
2763
2764 sage: J1 = HadamardEJA(2, field=QQ)
2765 sage: J2 = JordanSpinEJA(3, field=QQ)
2766 sage: J = cartesian_product([J1,J2])
2767 sage: J.cartesian_factors()
2768 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2769 Euclidean Jordan algebra of dimension 3 over Rational Field)
2770
2771 You can provide more than two factors::
2772
2773 sage: J1 = HadamardEJA(2)
2774 sage: J2 = JordanSpinEJA(3)
2775 sage: J3 = RealSymmetricEJA(3)
2776 sage: cartesian_product([J1,J2,J3])
2777 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2778 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2779 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2780 Algebraic Real Field
2781
2782 Rank is additive on a Cartesian product::
2783
2784 sage: J1 = HadamardEJA(1)
2785 sage: J2 = RealSymmetricEJA(2)
2786 sage: J = cartesian_product([J1,J2])
2787 sage: J1.rank.clear_cache()
2788 sage: J2.rank.clear_cache()
2789 sage: J.rank.clear_cache()
2790 sage: J.rank()
2791 3
2792 sage: J.rank() == J1.rank() + J2.rank()
2793 True
2794
2795 The same rank computation works over the rationals, with whatever
2796 basis you like::
2797
2798 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
2799 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
2800 sage: J = cartesian_product([J1,J2])
2801 sage: J1.rank.clear_cache()
2802 sage: J2.rank.clear_cache()
2803 sage: J.rank.clear_cache()
2804 sage: J.rank()
2805 3
2806 sage: J.rank() == J1.rank() + J2.rank()
2807 True
2808
2809 The product algebra will be associative if and only if all of its
2810 components are associative::
2811
2812 sage: J1 = HadamardEJA(2)
2813 sage: J1.is_associative()
2814 True
2815 sage: J2 = HadamardEJA(3)
2816 sage: J2.is_associative()
2817 True
2818 sage: J3 = RealSymmetricEJA(3)
2819 sage: J3.is_associative()
2820 False
2821 sage: CP1 = cartesian_product([J1,J2])
2822 sage: CP1.is_associative()
2823 True
2824 sage: CP2 = cartesian_product([J1,J3])
2825 sage: CP2.is_associative()
2826 False
2827
2828 Cartesian products of Cartesian products work::
2829
2830 sage: J1 = JordanSpinEJA(1)
2831 sage: J2 = JordanSpinEJA(1)
2832 sage: J3 = JordanSpinEJA(1)
2833 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
2834 sage: J.multiplication_table()
2835 +----++----+----+----+
2836 | * || b0 | b1 | b2 |
2837 +====++====+====+====+
2838 | b0 || b0 | 0 | 0 |
2839 +----++----+----+----+
2840 | b1 || 0 | b1 | 0 |
2841 +----++----+----+----+
2842 | b2 || 0 | 0 | b2 |
2843 +----++----+----+----+
2844 sage: HadamardEJA(3).multiplication_table()
2845 +----++----+----+----+
2846 | * || b0 | b1 | b2 |
2847 +====++====+====+====+
2848 | b0 || b0 | 0 | 0 |
2849 +----++----+----+----+
2850 | b1 || 0 | b1 | 0 |
2851 +----++----+----+----+
2852 | b2 || 0 | 0 | b2 |
2853 +----++----+----+----+
2854
2855 TESTS:
2856
2857 All factors must share the same base field::
2858
2859 sage: J1 = HadamardEJA(2, field=QQ)
2860 sage: J2 = RealSymmetricEJA(2)
2861 sage: CartesianProductEJA((J1,J2))
2862 Traceback (most recent call last):
2863 ...
2864 ValueError: all factors must share the same base field
2865
2866 The cached unit element is the same one that would be computed::
2867
2868 sage: set_random_seed() # long time
2869 sage: J1 = random_eja() # long time
2870 sage: J2 = random_eja() # long time
2871 sage: J = cartesian_product([J1,J2]) # long time
2872 sage: actual = J.one() # long time
2873 sage: J.one.clear_cache() # long time
2874 sage: expected = J.one() # long time
2875 sage: actual == expected # long time
2876 True
2877
2878 """
2879 Element = FiniteDimensionalEJAElement
2880
2881
2882 def __init__(self, factors, **kwargs):
2883 m = len(factors)
2884 if m == 0:
2885 return TrivialEJA()
2886
2887 self._sets = factors
2888
2889 field = factors[0].base_ring()
2890 if not all( J.base_ring() == field for J in factors ):
2891 raise ValueError("all factors must share the same base field")
2892
2893 associative = all( f.is_associative() for f in factors )
2894
2895 # Compute my matrix space. This category isn't perfect, but
2896 # is good enough for what we need to do.
2897 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
2898 MS_cat = MS_cat.Unital().CartesianProducts()
2899 MS_factors = tuple( J.matrix_space() for J in factors )
2900 from sage.sets.cartesian_product import CartesianProduct
2901 MS = CartesianProduct(MS_factors, MS_cat)
2902
2903 basis = []
2904 zero = MS.zero()
2905 for i in range(m):
2906 for b in factors[i].matrix_basis():
2907 z = list(zero)
2908 z[i] = b
2909 basis.append(z)
2910
2911 basis = tuple( MS(b) for b in basis )
2912
2913 # Define jordan/inner products that operate on that matrix_basis.
2914 def jordan_product(x,y):
2915 return MS(tuple(
2916 (factors[i](x[i])*factors[i](y[i])).to_matrix()
2917 for i in range(m)
2918 ))
2919
2920 def inner_product(x, y):
2921 return sum(
2922 factors[i](x[i]).inner_product(factors[i](y[i]))
2923 for i in range(m)
2924 )
2925
2926 # There's no need to check the field since it already came
2927 # from an EJA. Likewise the axioms are guaranteed to be
2928 # satisfied, unless the guy writing this class sucks.
2929 #
2930 # If you want the basis to be orthonormalized, orthonormalize
2931 # the factors.
2932 FiniteDimensionalEJA.__init__(self,
2933 basis,
2934 jordan_product,
2935 inner_product,
2936 field=field,
2937 matrix_space=MS,
2938 orthonormalize=False,
2939 associative=associative,
2940 cartesian_product=True,
2941 check_field=False,
2942 check_axioms=False)
2943
2944 self.rank.set_cache(sum(J.rank() for J in factors))
2945 ones = tuple(J.one().to_matrix() for J in factors)
2946 self.one.set_cache(self(ones))
2947
2948 def cartesian_factors(self):
2949 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2950 return self._sets
2951
2952 def cartesian_factor(self, i):
2953 r"""
2954 Return the ``i``th factor of this algebra.
2955 """
2956 return self._sets[i]
2957
2958 def _repr_(self):
2959 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2960 from sage.categories.cartesian_product import cartesian_product
2961 return cartesian_product.symbol.join("%s" % factor
2962 for factor in self._sets)
2963
2964 def matrix_space(self):
2965 r"""
2966 Return the space that our matrix basis lives in as a Cartesian
2967 product.
2968
2969 We don't simply use the ``cartesian_product()`` functor here
2970 because it acts differently on SageMath MatrixSpaces and our
2971 custom MatrixAlgebras, which are CombinatorialFreeModules. We
2972 always want the result to be represented (and indexed) as
2973 an ordered tuple.
2974
2975 SETUP::
2976
2977 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
2978 ....: HadamardEJA,
2979 ....: OctonionHermitianEJA,
2980 ....: RealSymmetricEJA)
2981
2982 EXAMPLES::
2983
2984 sage: J1 = HadamardEJA(1)
2985 sage: J2 = RealSymmetricEJA(2)
2986 sage: J = cartesian_product([J1,J2])
2987 sage: J.matrix_space()
2988 The Cartesian product of (Full MatrixSpace of 1 by 1 dense
2989 matrices over Algebraic Real Field, Full MatrixSpace of 2
2990 by 2 dense matrices over Algebraic Real Field)
2991
2992 ::
2993
2994 sage: J1 = ComplexHermitianEJA(1)
2995 sage: J2 = ComplexHermitianEJA(1)
2996 sage: J = cartesian_product([J1,J2])
2997 sage: J.one().to_matrix()[0]
2998 +---+
2999 | 1 |
3000 +---+
3001 sage: J.one().to_matrix()[1]
3002 +---+
3003 | 1 |
3004 +---+
3005
3006 ::
3007
3008 sage: J1 = OctonionHermitianEJA(1)
3009 sage: J2 = OctonionHermitianEJA(1)
3010 sage: J = cartesian_product([J1,J2])
3011 sage: J.one().to_matrix()[0]
3012 +----+
3013 | e0 |
3014 +----+
3015 sage: J.one().to_matrix()[1]
3016 +----+
3017 | e0 |
3018 +----+
3019
3020 """
3021 return super().matrix_space()
3022
3023
3024 @cached_method
3025 def cartesian_projection(self, i):
3026 r"""
3027 SETUP::
3028
3029 sage: from mjo.eja.eja_algebra import (random_eja,
3030 ....: JordanSpinEJA,
3031 ....: HadamardEJA,
3032 ....: RealSymmetricEJA,
3033 ....: ComplexHermitianEJA)
3034
3035 EXAMPLES:
3036
3037 The projection morphisms are Euclidean Jordan algebra
3038 operators::
3039
3040 sage: J1 = HadamardEJA(2)
3041 sage: J2 = RealSymmetricEJA(2)
3042 sage: J = cartesian_product([J1,J2])
3043 sage: J.cartesian_projection(0)
3044 Linear operator between finite-dimensional Euclidean Jordan
3045 algebras represented by the matrix:
3046 [1 0 0 0 0]
3047 [0 1 0 0 0]
3048 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3049 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3050 Algebraic Real Field
3051 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3052 Real Field
3053 sage: J.cartesian_projection(1)
3054 Linear operator between finite-dimensional Euclidean Jordan
3055 algebras represented by the matrix:
3056 [0 0 1 0 0]
3057 [0 0 0 1 0]
3058 [0 0 0 0 1]
3059 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3060 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3061 Algebraic Real Field
3062 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3063 Real Field
3064
3065 The projections work the way you'd expect on the vector
3066 representation of an element::
3067
3068 sage: J1 = JordanSpinEJA(2)
3069 sage: J2 = ComplexHermitianEJA(2)
3070 sage: J = cartesian_product([J1,J2])
3071 sage: pi_left = J.cartesian_projection(0)
3072 sage: pi_right = J.cartesian_projection(1)
3073 sage: pi_left(J.one()).to_vector()
3074 (1, 0)
3075 sage: pi_right(J.one()).to_vector()
3076 (1, 0, 0, 1)
3077 sage: J.one().to_vector()
3078 (1, 0, 1, 0, 0, 1)
3079
3080 TESTS:
3081
3082 The answer never changes::
3083
3084 sage: set_random_seed()
3085 sage: J1 = random_eja()
3086 sage: J2 = random_eja()
3087 sage: J = cartesian_product([J1,J2])
3088 sage: P0 = J.cartesian_projection(0)
3089 sage: P1 = J.cartesian_projection(0)
3090 sage: P0 == P1
3091 True
3092
3093 """
3094 offset = sum( self.cartesian_factor(k).dimension()
3095 for k in range(i) )
3096 Ji = self.cartesian_factor(i)
3097 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3098 codomain=Ji)
3099
3100 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3101
3102 @cached_method
3103 def cartesian_embedding(self, i):
3104 r"""
3105 SETUP::
3106
3107 sage: from mjo.eja.eja_algebra import (random_eja,
3108 ....: JordanSpinEJA,
3109 ....: HadamardEJA,
3110 ....: RealSymmetricEJA)
3111
3112 EXAMPLES:
3113
3114 The embedding morphisms are Euclidean Jordan algebra
3115 operators::
3116
3117 sage: J1 = HadamardEJA(2)
3118 sage: J2 = RealSymmetricEJA(2)
3119 sage: J = cartesian_product([J1,J2])
3120 sage: J.cartesian_embedding(0)
3121 Linear operator between finite-dimensional Euclidean Jordan
3122 algebras represented by the matrix:
3123 [1 0]
3124 [0 1]
3125 [0 0]
3126 [0 0]
3127 [0 0]
3128 Domain: Euclidean Jordan algebra of dimension 2 over
3129 Algebraic Real Field
3130 Codomain: Euclidean Jordan algebra of dimension 2 over
3131 Algebraic Real Field (+) Euclidean Jordan algebra of
3132 dimension 3 over Algebraic Real Field
3133 sage: J.cartesian_embedding(1)
3134 Linear operator between finite-dimensional Euclidean Jordan
3135 algebras represented by the matrix:
3136 [0 0 0]
3137 [0 0 0]
3138 [1 0 0]
3139 [0 1 0]
3140 [0 0 1]
3141 Domain: Euclidean Jordan algebra of dimension 3 over
3142 Algebraic Real Field
3143 Codomain: Euclidean Jordan algebra of dimension 2 over
3144 Algebraic Real Field (+) Euclidean Jordan algebra of
3145 dimension 3 over Algebraic Real Field
3146
3147 The embeddings work the way you'd expect on the vector
3148 representation of an element::
3149
3150 sage: J1 = JordanSpinEJA(3)
3151 sage: J2 = RealSymmetricEJA(2)
3152 sage: J = cartesian_product([J1,J2])
3153 sage: iota_left = J.cartesian_embedding(0)
3154 sage: iota_right = J.cartesian_embedding(1)
3155 sage: iota_left(J1.zero()) == J.zero()
3156 True
3157 sage: iota_right(J2.zero()) == J.zero()
3158 True
3159 sage: J1.one().to_vector()
3160 (1, 0, 0)
3161 sage: iota_left(J1.one()).to_vector()
3162 (1, 0, 0, 0, 0, 0)
3163 sage: J2.one().to_vector()
3164 (1, 0, 1)
3165 sage: iota_right(J2.one()).to_vector()
3166 (0, 0, 0, 1, 0, 1)
3167 sage: J.one().to_vector()
3168 (1, 0, 0, 1, 0, 1)
3169
3170 TESTS:
3171
3172 The answer never changes::
3173
3174 sage: set_random_seed()
3175 sage: J1 = random_eja()
3176 sage: J2 = random_eja()
3177 sage: J = cartesian_product([J1,J2])
3178 sage: E0 = J.cartesian_embedding(0)
3179 sage: E1 = J.cartesian_embedding(0)
3180 sage: E0 == E1
3181 True
3182
3183 Composing a projection with the corresponding inclusion should
3184 produce the identity map, and mismatching them should produce
3185 the zero map::
3186
3187 sage: set_random_seed()
3188 sage: J1 = random_eja()
3189 sage: J2 = random_eja()
3190 sage: J = cartesian_product([J1,J2])
3191 sage: iota_left = J.cartesian_embedding(0)
3192 sage: iota_right = J.cartesian_embedding(1)
3193 sage: pi_left = J.cartesian_projection(0)
3194 sage: pi_right = J.cartesian_projection(1)
3195 sage: pi_left*iota_left == J1.one().operator()
3196 True
3197 sage: pi_right*iota_right == J2.one().operator()
3198 True
3199 sage: (pi_left*iota_right).is_zero()
3200 True
3201 sage: (pi_right*iota_left).is_zero()
3202 True
3203
3204 """
3205 offset = sum( self.cartesian_factor(k).dimension()
3206 for k in range(i) )
3207 Ji = self.cartesian_factor(i)
3208 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3209 codomain=self)
3210 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3211
3212
3213
3214 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3215
3216 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3217 RationalBasisEJA):
3218 r"""
3219 A separate class for products of algebras for which we know a
3220 rational basis.
3221
3222 SETUP::
3223
3224 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3225 ....: JordanSpinEJA,
3226 ....: OctonionHermitianEJA,
3227 ....: RealSymmetricEJA)
3228
3229 EXAMPLES:
3230
3231 This gives us fast characteristic polynomial computations in
3232 product algebras, too::
3233
3234
3235 sage: J1 = JordanSpinEJA(2)
3236 sage: J2 = RealSymmetricEJA(3)
3237 sage: J = cartesian_product([J1,J2])
3238 sage: J.characteristic_polynomial_of().degree()
3239 5
3240 sage: J.rank()
3241 5
3242
3243 TESTS:
3244
3245 The ``cartesian_product()`` function only uses the first factor to
3246 decide where the result will live; thus we have to be careful to
3247 check that all factors do indeed have a `_rational_algebra` member
3248 before we try to access it::
3249
3250 sage: J1 = OctonionHermitianEJA(1) # no rational basis
3251 sage: J2 = HadamardEJA(2)
3252 sage: cartesian_product([J1,J2])
3253 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3254 (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3255 sage: cartesian_product([J2,J1])
3256 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3257 (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3258
3259 """
3260 def __init__(self, algebras, **kwargs):
3261 CartesianProductEJA.__init__(self, algebras, **kwargs)
3262
3263 self._rational_algebra = None
3264 if self.vector_space().base_field() is not QQ:
3265 if all( hasattr(r, "_rational_algebra") for r in algebras ):
3266 self._rational_algebra = cartesian_product([
3267 r._rational_algebra for r in algebras
3268 ])
3269
3270
3271 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3272
3273 def random_eja(*args, **kwargs):
3274 J1 = ConcreteEJA.random_instance(*args, **kwargs)
3275
3276 # This might make Cartesian products appear roughly as often as
3277 # any other ConcreteEJA.
3278 if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
3279 # Use random_eja() again so we can get more than two factors.
3280 J2 = random_eja(*args, **kwargs)
3281 J = cartesian_product([J1,J2])
3282 return J
3283 else:
3284 return J1