]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: refactor some matrix algebra stuff and break the tests.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
37 r"""
38 The lowest-level class for representing a Euclidean Jordan algebra.
39 """
40 def _coerce_map_from_base_ring(self):
41 """
42 Disable the map from the base ring into the algebra.
43
44 Performing a nonsense conversion like this automatically
45 is counterpedagogical. The fallback is to try the usual
46 element constructor, which should also fail.
47
48 SETUP::
49
50 sage: from mjo.eja.eja_algebra import random_eja
51
52 TESTS::
53
54 sage: set_random_seed()
55 sage: J = random_eja()
56 sage: J(1)
57 Traceback (most recent call last):
58 ...
59 ValueError: not an element of this algebra
60
61 """
62 return None
63
64 def __init__(self,
65 field,
66 multiplication_table,
67 inner_product_table,
68 prefix='e',
69 category=None,
70 matrix_basis=None,
71 check_field=True,
72 check_axioms=True):
73 """
74 INPUT:
75
76 * field -- the scalar field for this algebra (must be real)
77
78 * multiplication_table -- the multiplication table for this
79 algebra's implicit basis. Only the lower-triangular portion
80 of the table is used, since the multiplication is assumed
81 to be commutative.
82
83 SETUP::
84
85 sage: from mjo.eja.eja_algebra import (
86 ....: FiniteDimensionalEuclideanJordanAlgebra,
87 ....: JordanSpinEJA,
88 ....: random_eja)
89
90 EXAMPLES:
91
92 By definition, Jordan multiplication commutes::
93
94 sage: set_random_seed()
95 sage: J = random_eja()
96 sage: x,y = J.random_elements(2)
97 sage: x*y == y*x
98 True
99
100 An error is raised if the Jordan product is not commutative::
101
102 sage: JP = ((1,2),(0,0))
103 sage: IP = ((1,0),(0,1))
104 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
105 Traceback (most recent call last):
106 ...
107 ValueError: Jordan product is not commutative
108
109 An error is raised if the inner-product is not commutative::
110
111 sage: JP = ((1,0),(0,1))
112 sage: IP = ((1,2),(0,0))
113 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
114 Traceback (most recent call last):
115 ...
116 ValueError: inner-product is not commutative
117
118 TESTS:
119
120 The ``field`` we're given must be real with ``check_field=True``::
121
122 sage: JordanSpinEJA(2, field=QQbar)
123 Traceback (most recent call last):
124 ...
125 ValueError: scalar field is not real
126 sage: JordanSpinEJA(2, field=QQbar, check_field=False)
127 Euclidean Jordan algebra of dimension 2 over Algebraic Field
128
129 The multiplication table must be square with ``check_axioms=True``::
130
131 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
132 Traceback (most recent call last):
133 ...
134 ValueError: multiplication table is not square
135
136 The multiplication and inner-product tables must be the same
137 size (and in particular, the inner-product table must also be
138 square) with ``check_axioms=True``::
139
140 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
141 Traceback (most recent call last):
142 ...
143 ValueError: multiplication and inner-product tables are
144 different sizes
145 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
146 Traceback (most recent call last):
147 ...
148 ValueError: multiplication and inner-product tables are
149 different sizes
150
151 """
152 if check_field:
153 if not field.is_subring(RR):
154 # Note: this does return true for the real algebraic
155 # field, the rationals, and any quadratic field where
156 # we've specified a real embedding.
157 raise ValueError("scalar field is not real")
158
159
160 # The multiplication and inner-product tables should be square
161 # if the user wants us to verify them. And we verify them as
162 # soon as possible, because we want to exploit their symmetry.
163 n = len(multiplication_table)
164 if check_axioms:
165 if not all( len(l) == n for l in multiplication_table ):
166 raise ValueError("multiplication table is not square")
167
168 # If the multiplication table is square, we can check if
169 # the inner-product table is square by comparing it to the
170 # multiplication table's dimensions.
171 msg = "multiplication and inner-product tables are different sizes"
172 if not len(inner_product_table) == n:
173 raise ValueError(msg)
174
175 if not all( len(l) == n for l in inner_product_table ):
176 raise ValueError(msg)
177
178 # Check commutativity of the Jordan product (symmetry of
179 # the multiplication table) and the commutativity of the
180 # inner-product (symmetry of the inner-product table)
181 # first if we're going to check them at all.. This has to
182 # be done before we define product_on_basis(), because
183 # that method assumes that self._multiplication_table is
184 # symmetric. And it has to be done before we build
185 # self._inner_product_matrix, because the process used to
186 # construct it assumes symmetry as well.
187 if not all( multiplication_table[j][i]
188 == multiplication_table[i][j]
189 for i in range(n)
190 for j in range(i+1) ):
191 raise ValueError("Jordan product is not commutative")
192
193 if not all( inner_product_table[j][i]
194 == inner_product_table[i][j]
195 for i in range(n)
196 for j in range(i+1) ):
197 raise ValueError("inner-product is not commutative")
198
199 self._matrix_basis = matrix_basis
200
201 if category is None:
202 category = MagmaticAlgebras(field).FiniteDimensional()
203 category = category.WithBasis().Unital()
204
205 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
206 fda.__init__(field,
207 range(n),
208 prefix=prefix,
209 category=category)
210 self.print_options(bracket='')
211
212 # The multiplication table we're given is necessarily in terms
213 # of vectors, because we don't have an algebra yet for
214 # anything to be an element of. However, it's faster in the
215 # long run to have the multiplication table be in terms of
216 # algebra elements. We do this after calling the superclass
217 # constructor so that from_vector() knows what to do.
218 #
219 # Note: we take advantage of symmetry here, and only store
220 # the lower-triangular portion of the table.
221 self._multiplication_table = [ [ self.vector_space().zero()
222 for j in range(i+1) ]
223 for i in range(n) ]
224
225 for i in range(n):
226 for j in range(i+1):
227 elt = self.from_vector(multiplication_table[i][j])
228 self._multiplication_table[i][j] = elt
229
230 self._multiplication_table = tuple(map(tuple, self._multiplication_table))
231
232 # Save our inner product as a matrix, since the efficiency of
233 # matrix multiplication will usually outweigh the fact that we
234 # have to store a redundant upper- or lower-triangular part.
235 # Pre-cache the fact that these are Hermitian (real symmetric,
236 # in fact) in case some e.g. matrix multiplication routine can
237 # take advantage of it.
238 ip_matrix_constructor = lambda i,j: inner_product_table[i][j] if j <= i else inner_product_table[j][i]
239 self._inner_product_matrix = matrix(field, n, ip_matrix_constructor)
240 self._inner_product_matrix._cache = {'hermitian': True}
241 self._inner_product_matrix.set_immutable()
242
243 if check_axioms:
244 if not self._is_jordanian():
245 raise ValueError("Jordan identity does not hold")
246 if not self._inner_product_is_associative():
247 raise ValueError("inner product is not associative")
248
249 def _element_constructor_(self, elt):
250 """
251 Construct an element of this algebra from its vector or matrix
252 representation.
253
254 This gets called only after the parent element _call_ method
255 fails to find a coercion for the argument.
256
257 SETUP::
258
259 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
260 ....: HadamardEJA,
261 ....: RealSymmetricEJA)
262
263 EXAMPLES:
264
265 The identity in `S^n` is converted to the identity in the EJA::
266
267 sage: J = RealSymmetricEJA(3)
268 sage: I = matrix.identity(QQ,3)
269 sage: J(I) == J.one()
270 True
271
272 This skew-symmetric matrix can't be represented in the EJA::
273
274 sage: J = RealSymmetricEJA(3)
275 sage: A = matrix(QQ,3, lambda i,j: i-j)
276 sage: J(A)
277 Traceback (most recent call last):
278 ...
279 ValueError: not an element of this algebra
280
281 TESTS:
282
283 Ensure that we can convert any element of the two non-matrix
284 simple algebras (whose matrix representations are columns)
285 back and forth faithfully::
286
287 sage: set_random_seed()
288 sage: J = HadamardEJA.random_instance()
289 sage: x = J.random_element()
290 sage: J(x.to_vector().column()) == x
291 True
292 sage: J = JordanSpinEJA.random_instance()
293 sage: x = J.random_element()
294 sage: J(x.to_vector().column()) == x
295 True
296
297 """
298 msg = "not an element of this algebra"
299 if elt == 0:
300 # The superclass implementation of random_element()
301 # needs to be able to coerce "0" into the algebra.
302 return self.zero()
303 elif elt in self.base_ring():
304 # Ensure that no base ring -> algebra coercion is performed
305 # by this method. There's some stupidity in sage that would
306 # otherwise propagate to this method; for example, sage thinks
307 # that the integer 3 belongs to the space of 2-by-2 matrices.
308 raise ValueError(msg)
309
310 if elt not in self.matrix_space():
311 raise ValueError(msg)
312
313 # Thanks for nothing! Matrix spaces aren't vector spaces in
314 # Sage, so we have to figure out its matrix-basis coordinates
315 # ourselves. We use the basis space's ring instead of the
316 # element's ring because the basis space might be an algebraic
317 # closure whereas the base ring of the 3-by-3 identity matrix
318 # could be QQ instead of QQbar.
319 #
320 # We pass check=False because the matrix basis is "guaranteed"
321 # to be linearly independent... right? Ha ha.
322 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
323 W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
324 check=False)
325
326 try:
327 coords = W.coordinate_vector(_mat2vec(elt))
328 except ArithmeticError: # vector is not in free module
329 raise ValueError(msg)
330
331 return self.from_vector(coords)
332
333 def _repr_(self):
334 """
335 Return a string representation of ``self``.
336
337 SETUP::
338
339 sage: from mjo.eja.eja_algebra import JordanSpinEJA
340
341 TESTS:
342
343 Ensure that it says what we think it says::
344
345 sage: JordanSpinEJA(2, field=AA)
346 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
347 sage: JordanSpinEJA(3, field=RDF)
348 Euclidean Jordan algebra of dimension 3 over Real Double Field
349
350 """
351 fmt = "Euclidean Jordan algebra of dimension {} over {}"
352 return fmt.format(self.dimension(), self.base_ring())
353
354 def product_on_basis(self, i, j):
355 # We only stored the lower-triangular portion of the
356 # multiplication table.
357 if j <= i:
358 return self._multiplication_table[i][j]
359 else:
360 return self._multiplication_table[j][i]
361
362 def _is_commutative(self):
363 r"""
364 Whether or not this algebra's multiplication table is commutative.
365
366 This method should of course always return ``True``, unless
367 this algebra was constructed with ``check_axioms=False`` and
368 passed an invalid multiplication table.
369 """
370 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
371 for i in range(self.dimension())
372 for j in range(self.dimension()) )
373
374 def _is_jordanian(self):
375 r"""
376 Whether or not this algebra's multiplication table respects the
377 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
378
379 We only check one arrangement of `x` and `y`, so for a
380 ``True`` result to be truly true, you should also check
381 :meth:`_is_commutative`. This method should of course always
382 return ``True``, unless this algebra was constructed with
383 ``check_axioms=False`` and passed an invalid multiplication table.
384 """
385 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
386 ==
387 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
388 for i in range(self.dimension())
389 for j in range(self.dimension()) )
390
391 def _inner_product_is_associative(self):
392 r"""
393 Return whether or not this algebra's inner product `B` is
394 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
395
396 This method should of course always return ``True``, unless
397 this algebra was constructed with ``check_axioms=False`` and
398 passed an invalid multiplication table.
399 """
400
401 # Used to check whether or not something is zero in an inexact
402 # ring. This number is sufficient to allow the construction of
403 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
404 epsilon = 1e-16
405
406 for i in range(self.dimension()):
407 for j in range(self.dimension()):
408 for k in range(self.dimension()):
409 x = self.monomial(i)
410 y = self.monomial(j)
411 z = self.monomial(k)
412 diff = (x*y).inner_product(z) - x.inner_product(y*z)
413
414 if self.base_ring().is_exact():
415 if diff != 0:
416 return False
417 else:
418 if diff.abs() > epsilon:
419 return False
420
421 return True
422
423 @cached_method
424 def characteristic_polynomial_of(self):
425 """
426 Return the algebra's "characteristic polynomial of" function,
427 which is itself a multivariate polynomial that, when evaluated
428 at the coordinates of some algebra element, returns that
429 element's characteristic polynomial.
430
431 The resulting polynomial has `n+1` variables, where `n` is the
432 dimension of this algebra. The first `n` variables correspond to
433 the coordinates of an algebra element: when evaluated at the
434 coordinates of an algebra element with respect to a certain
435 basis, the result is a univariate polynomial (in the one
436 remaining variable ``t``), namely the characteristic polynomial
437 of that element.
438
439 SETUP::
440
441 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
442
443 EXAMPLES:
444
445 The characteristic polynomial in the spin algebra is given in
446 Alizadeh, Example 11.11::
447
448 sage: J = JordanSpinEJA(3)
449 sage: p = J.characteristic_polynomial_of(); p
450 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
451 sage: xvec = J.one().to_vector()
452 sage: p(*xvec)
453 t^2 - 2*t + 1
454
455 By definition, the characteristic polynomial is a monic
456 degree-zero polynomial in a rank-zero algebra. Note that
457 Cayley-Hamilton is indeed satisfied since the polynomial
458 ``1`` evaluates to the identity element of the algebra on
459 any argument::
460
461 sage: J = TrivialEJA()
462 sage: J.characteristic_polynomial_of()
463 1
464
465 """
466 r = self.rank()
467 n = self.dimension()
468
469 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
470 a = self._charpoly_coefficients()
471
472 # We go to a bit of trouble here to reorder the
473 # indeterminates, so that it's easier to evaluate the
474 # characteristic polynomial at x's coordinates and get back
475 # something in terms of t, which is what we want.
476 S = PolynomialRing(self.base_ring(),'t')
477 t = S.gen(0)
478 if r > 0:
479 R = a[0].parent()
480 S = PolynomialRing(S, R.variable_names())
481 t = S(t)
482
483 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
484
485 def coordinate_polynomial_ring(self):
486 r"""
487 The multivariate polynomial ring in which this algebra's
488 :meth:`characteristic_polynomial_of` lives.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (HadamardEJA,
493 ....: RealSymmetricEJA)
494
495 EXAMPLES::
496
497 sage: J = HadamardEJA(2)
498 sage: J.coordinate_polynomial_ring()
499 Multivariate Polynomial Ring in X1, X2...
500 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
501 sage: J.coordinate_polynomial_ring()
502 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
503
504 """
505 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
506 return PolynomialRing(self.base_ring(), var_names)
507
508 def inner_product(self, x, y):
509 """
510 The inner product associated with this Euclidean Jordan algebra.
511
512 Defaults to the trace inner product, but can be overridden by
513 subclasses if they are sure that the necessary properties are
514 satisfied.
515
516 SETUP::
517
518 sage: from mjo.eja.eja_algebra import (random_eja,
519 ....: HadamardEJA,
520 ....: BilinearFormEJA)
521
522 EXAMPLES:
523
524 Our inner product is "associative," which means the following for
525 a symmetric bilinear form::
526
527 sage: set_random_seed()
528 sage: J = random_eja()
529 sage: x,y,z = J.random_elements(3)
530 sage: (x*y).inner_product(z) == y.inner_product(x*z)
531 True
532
533 TESTS:
534
535 Ensure that this is the usual inner product for the algebras
536 over `R^n`::
537
538 sage: set_random_seed()
539 sage: J = HadamardEJA.random_instance()
540 sage: x,y = J.random_elements(2)
541 sage: actual = x.inner_product(y)
542 sage: expected = x.to_vector().inner_product(y.to_vector())
543 sage: actual == expected
544 True
545
546 Ensure that this is one-half of the trace inner-product in a
547 BilinearFormEJA that isn't just the reals (when ``n`` isn't
548 one). This is in Faraut and Koranyi, and also my "On the
549 symmetry..." paper::
550
551 sage: set_random_seed()
552 sage: J = BilinearFormEJA.random_instance()
553 sage: n = J.dimension()
554 sage: x = J.random_element()
555 sage: y = J.random_element()
556 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
557 True
558 """
559 B = self._inner_product_matrix
560 return (B*x.to_vector()).inner_product(y.to_vector())
561
562
563 def is_trivial(self):
564 """
565 Return whether or not this algebra is trivial.
566
567 A trivial algebra contains only the zero element.
568
569 SETUP::
570
571 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
572 ....: TrivialEJA)
573
574 EXAMPLES::
575
576 sage: J = ComplexHermitianEJA(3)
577 sage: J.is_trivial()
578 False
579
580 ::
581
582 sage: J = TrivialEJA()
583 sage: J.is_trivial()
584 True
585
586 """
587 return self.dimension() == 0
588
589
590 def multiplication_table(self):
591 """
592 Return a visual representation of this algebra's multiplication
593 table (on basis elements).
594
595 SETUP::
596
597 sage: from mjo.eja.eja_algebra import JordanSpinEJA
598
599 EXAMPLES::
600
601 sage: J = JordanSpinEJA(4)
602 sage: J.multiplication_table()
603 +----++----+----+----+----+
604 | * || e0 | e1 | e2 | e3 |
605 +====++====+====+====+====+
606 | e0 || e0 | e1 | e2 | e3 |
607 +----++----+----+----+----+
608 | e1 || e1 | e0 | 0 | 0 |
609 +----++----+----+----+----+
610 | e2 || e2 | 0 | e0 | 0 |
611 +----++----+----+----+----+
612 | e3 || e3 | 0 | 0 | e0 |
613 +----++----+----+----+----+
614
615 """
616 n = self.dimension()
617 M = [ [ self.zero() for j in range(n) ]
618 for i in range(n) ]
619 for i in range(n):
620 for j in range(i+1):
621 M[i][j] = self._multiplication_table[i][j]
622 M[j][i] = M[i][j]
623
624 for i in range(n):
625 # Prepend the left "header" column entry Can't do this in
626 # the loop because it messes up the symmetry.
627 M[i] = [self.monomial(i)] + M[i]
628
629 # Prepend the header row.
630 M = [["*"] + list(self.gens())] + M
631 return table(M, header_row=True, header_column=True, frame=True)
632
633
634 def matrix_basis(self):
635 """
636 Return an (often more natural) representation of this algebras
637 basis as an ordered tuple of matrices.
638
639 Every finite-dimensional Euclidean Jordan Algebra is a, up to
640 Jordan isomorphism, a direct sum of five simple
641 algebras---four of which comprise Hermitian matrices. And the
642 last type of algebra can of course be thought of as `n`-by-`1`
643 column matrices (ambiguusly called column vectors) to avoid
644 special cases. As a result, matrices (and column vectors) are
645 a natural representation format for Euclidean Jordan algebra
646 elements.
647
648 But, when we construct an algebra from a basis of matrices,
649 those matrix representations are lost in favor of coordinate
650 vectors *with respect to* that basis. We could eventually
651 convert back if we tried hard enough, but having the original
652 representations handy is valuable enough that we simply store
653 them and return them from this method.
654
655 Why implement this for non-matrix algebras? Avoiding special
656 cases for the :class:`BilinearFormEJA` pays with simplicity in
657 its own right. But mainly, we would like to be able to assume
658 that elements of a :class:`DirectSumEJA` can be displayed
659 nicely, without having to have special classes for direct sums
660 one of whose components was a matrix algebra.
661
662 SETUP::
663
664 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
665 ....: RealSymmetricEJA)
666
667 EXAMPLES::
668
669 sage: J = RealSymmetricEJA(2)
670 sage: J.basis()
671 Finite family {0: e0, 1: e1, 2: e2}
672 sage: J.matrix_basis()
673 (
674 [1 0] [ 0 0.7071067811865475?] [0 0]
675 [0 0], [0.7071067811865475? 0], [0 1]
676 )
677
678 ::
679
680 sage: J = JordanSpinEJA(2)
681 sage: J.basis()
682 Finite family {0: e0, 1: e1}
683 sage: J.matrix_basis()
684 (
685 [1] [0]
686 [0], [1]
687 )
688 """
689 if self._matrix_basis is None:
690 M = self.matrix_space()
691 return tuple( M(b.to_vector()) for b in self.basis() )
692 else:
693 return self._matrix_basis
694
695
696 def matrix_space(self):
697 """
698 Return the matrix space in which this algebra's elements live, if
699 we think of them as matrices (including column vectors of the
700 appropriate size).
701
702 Generally this will be an `n`-by-`1` column-vector space,
703 except when the algebra is trivial. There it's `n`-by-`n`
704 (where `n` is zero), to ensure that two elements of the matrix
705 space (empty matrices) can be multiplied.
706
707 Matrix algebras override this with something more useful.
708 """
709 if self.is_trivial():
710 return MatrixSpace(self.base_ring(), 0)
711 elif self._matrix_basis is None or len(self._matrix_basis) == 0:
712 return MatrixSpace(self.base_ring(), self.dimension(), 1)
713 else:
714 return self._matrix_basis[0].matrix_space()
715
716
717 @cached_method
718 def one(self):
719 """
720 Return the unit element of this algebra.
721
722 SETUP::
723
724 sage: from mjo.eja.eja_algebra import (HadamardEJA,
725 ....: random_eja)
726
727 EXAMPLES::
728
729 sage: J = HadamardEJA(5)
730 sage: J.one()
731 e0 + e1 + e2 + e3 + e4
732
733 TESTS:
734
735 The identity element acts like the identity::
736
737 sage: set_random_seed()
738 sage: J = random_eja()
739 sage: x = J.random_element()
740 sage: J.one()*x == x and x*J.one() == x
741 True
742
743 The matrix of the unit element's operator is the identity::
744
745 sage: set_random_seed()
746 sage: J = random_eja()
747 sage: actual = J.one().operator().matrix()
748 sage: expected = matrix.identity(J.base_ring(), J.dimension())
749 sage: actual == expected
750 True
751
752 Ensure that the cached unit element (often precomputed by
753 hand) agrees with the computed one::
754
755 sage: set_random_seed()
756 sage: J = random_eja()
757 sage: cached = J.one()
758 sage: J.one.clear_cache()
759 sage: J.one() == cached
760 True
761
762 """
763 # We can brute-force compute the matrices of the operators
764 # that correspond to the basis elements of this algebra.
765 # If some linear combination of those basis elements is the
766 # algebra identity, then the same linear combination of
767 # their matrices has to be the identity matrix.
768 #
769 # Of course, matrices aren't vectors in sage, so we have to
770 # appeal to the "long vectors" isometry.
771 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
772
773 # Now we use basic linear algebra to find the coefficients,
774 # of the matrices-as-vectors-linear-combination, which should
775 # work for the original algebra basis too.
776 A = matrix(self.base_ring(), oper_vecs)
777
778 # We used the isometry on the left-hand side already, but we
779 # still need to do it for the right-hand side. Recall that we
780 # wanted something that summed to the identity matrix.
781 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
782
783 # Now if there's an identity element in the algebra, this
784 # should work. We solve on the left to avoid having to
785 # transpose the matrix "A".
786 return self.from_vector(A.solve_left(b))
787
788
789 def peirce_decomposition(self, c):
790 """
791 The Peirce decomposition of this algebra relative to the
792 idempotent ``c``.
793
794 In the future, this can be extended to a complete system of
795 orthogonal idempotents.
796
797 INPUT:
798
799 - ``c`` -- an idempotent of this algebra.
800
801 OUTPUT:
802
803 A triple (J0, J5, J1) containing two subalgebras and one subspace
804 of this algebra,
805
806 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
807 corresponding to the eigenvalue zero.
808
809 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
810 corresponding to the eigenvalue one-half.
811
812 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
813 corresponding to the eigenvalue one.
814
815 These are the only possible eigenspaces for that operator, and this
816 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
817 orthogonal, and are subalgebras of this algebra with the appropriate
818 restrictions.
819
820 SETUP::
821
822 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
823
824 EXAMPLES:
825
826 The canonical example comes from the symmetric matrices, which
827 decompose into diagonal and off-diagonal parts::
828
829 sage: J = RealSymmetricEJA(3)
830 sage: C = matrix(QQ, [ [1,0,0],
831 ....: [0,1,0],
832 ....: [0,0,0] ])
833 sage: c = J(C)
834 sage: J0,J5,J1 = J.peirce_decomposition(c)
835 sage: J0
836 Euclidean Jordan algebra of dimension 1...
837 sage: J5
838 Vector space of degree 6 and dimension 2...
839 sage: J1
840 Euclidean Jordan algebra of dimension 3...
841 sage: J0.one().to_matrix()
842 [0 0 0]
843 [0 0 0]
844 [0 0 1]
845 sage: orig_df = AA.options.display_format
846 sage: AA.options.display_format = 'radical'
847 sage: J.from_vector(J5.basis()[0]).to_matrix()
848 [ 0 0 1/2*sqrt(2)]
849 [ 0 0 0]
850 [1/2*sqrt(2) 0 0]
851 sage: J.from_vector(J5.basis()[1]).to_matrix()
852 [ 0 0 0]
853 [ 0 0 1/2*sqrt(2)]
854 [ 0 1/2*sqrt(2) 0]
855 sage: AA.options.display_format = orig_df
856 sage: J1.one().to_matrix()
857 [1 0 0]
858 [0 1 0]
859 [0 0 0]
860
861 TESTS:
862
863 Every algebra decomposes trivially with respect to its identity
864 element::
865
866 sage: set_random_seed()
867 sage: J = random_eja()
868 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
869 sage: J0.dimension() == 0 and J5.dimension() == 0
870 True
871 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
872 True
873
874 The decomposition is into eigenspaces, and its components are
875 therefore necessarily orthogonal. Moreover, the identity
876 elements in the two subalgebras are the projections onto their
877 respective subspaces of the superalgebra's identity element::
878
879 sage: set_random_seed()
880 sage: J = random_eja()
881 sage: x = J.random_element()
882 sage: if not J.is_trivial():
883 ....: while x.is_nilpotent():
884 ....: x = J.random_element()
885 sage: c = x.subalgebra_idempotent()
886 sage: J0,J5,J1 = J.peirce_decomposition(c)
887 sage: ipsum = 0
888 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
889 ....: w = w.superalgebra_element()
890 ....: y = J.from_vector(y)
891 ....: z = z.superalgebra_element()
892 ....: ipsum += w.inner_product(y).abs()
893 ....: ipsum += w.inner_product(z).abs()
894 ....: ipsum += y.inner_product(z).abs()
895 sage: ipsum
896 0
897 sage: J1(c) == J1.one()
898 True
899 sage: J0(J.one() - c) == J0.one()
900 True
901
902 """
903 if not c.is_idempotent():
904 raise ValueError("element is not idempotent: %s" % c)
905
906 from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
907
908 # Default these to what they should be if they turn out to be
909 # trivial, because eigenspaces_left() won't return eigenvalues
910 # corresponding to trivial spaces (e.g. it returns only the
911 # eigenspace corresponding to lambda=1 if you take the
912 # decomposition relative to the identity element).
913 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
914 J0 = trivial # eigenvalue zero
915 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
916 J1 = trivial # eigenvalue one
917
918 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
919 if eigval == ~(self.base_ring()(2)):
920 J5 = eigspace
921 else:
922 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
923 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
924 gens,
925 check_axioms=False)
926 if eigval == 0:
927 J0 = subalg
928 elif eigval == 1:
929 J1 = subalg
930 else:
931 raise ValueError("unexpected eigenvalue: %s" % eigval)
932
933 return (J0, J5, J1)
934
935
936 def random_element(self, thorough=False):
937 r"""
938 Return a random element of this algebra.
939
940 Our algebra superclass method only returns a linear
941 combination of at most two basis elements. We instead
942 want the vector space "random element" method that
943 returns a more diverse selection.
944
945 INPUT:
946
947 - ``thorough`` -- (boolean; default False) whether or not we
948 should generate irrational coefficients for the random
949 element when our base ring is irrational; this slows the
950 algebra operations to a crawl, but any truly random method
951 should include them
952
953 """
954 # For a general base ring... maybe we can trust this to do the
955 # right thing? Unlikely, but.
956 V = self.vector_space()
957 v = V.random_element()
958
959 if self.base_ring() is AA:
960 # The "random element" method of the algebraic reals is
961 # stupid at the moment, and only returns integers between
962 # -2 and 2, inclusive:
963 #
964 # https://trac.sagemath.org/ticket/30875
965 #
966 # Instead, we implement our own "random vector" method,
967 # and then coerce that into the algebra. We use the vector
968 # space degree here instead of the dimension because a
969 # subalgebra could (for example) be spanned by only two
970 # vectors, each with five coordinates. We need to
971 # generate all five coordinates.
972 if thorough:
973 v *= QQbar.random_element().real()
974 else:
975 v *= QQ.random_element()
976
977 return self.from_vector(V.coordinate_vector(v))
978
979 def random_elements(self, count, thorough=False):
980 """
981 Return ``count`` random elements as a tuple.
982
983 INPUT:
984
985 - ``thorough`` -- (boolean; default False) whether or not we
986 should generate irrational coefficients for the random
987 elements when our base ring is irrational; this slows the
988 algebra operations to a crawl, but any truly random method
989 should include them
990
991 SETUP::
992
993 sage: from mjo.eja.eja_algebra import JordanSpinEJA
994
995 EXAMPLES::
996
997 sage: J = JordanSpinEJA(3)
998 sage: x,y,z = J.random_elements(3)
999 sage: all( [ x in J, y in J, z in J ])
1000 True
1001 sage: len( J.random_elements(10) ) == 10
1002 True
1003
1004 """
1005 return tuple( self.random_element(thorough)
1006 for idx in range(count) )
1007
1008
1009 @cached_method
1010 def _charpoly_coefficients(self):
1011 r"""
1012 The `r` polynomial coefficients of the "characteristic polynomial
1013 of" function.
1014 """
1015 n = self.dimension()
1016 R = self.coordinate_polynomial_ring()
1017 vars = R.gens()
1018 F = R.fraction_field()
1019
1020 def L_x_i_j(i,j):
1021 # From a result in my book, these are the entries of the
1022 # basis representation of L_x.
1023 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1024 for k in range(n) )
1025
1026 L_x = matrix(F, n, n, L_x_i_j)
1027
1028 r = None
1029 if self.rank.is_in_cache():
1030 r = self.rank()
1031 # There's no need to pad the system with redundant
1032 # columns if we *know* they'll be redundant.
1033 n = r
1034
1035 # Compute an extra power in case the rank is equal to
1036 # the dimension (otherwise, we would stop at x^(r-1)).
1037 x_powers = [ (L_x**k)*self.one().to_vector()
1038 for k in range(n+1) ]
1039 A = matrix.column(F, x_powers[:n])
1040 AE = A.extended_echelon_form()
1041 E = AE[:,n:]
1042 A_rref = AE[:,:n]
1043 if r is None:
1044 r = A_rref.rank()
1045 b = x_powers[r]
1046
1047 # The theory says that only the first "r" coefficients are
1048 # nonzero, and they actually live in the original polynomial
1049 # ring and not the fraction field. We negate them because
1050 # in the actual characteristic polynomial, they get moved
1051 # to the other side where x^r lives.
1052 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1053
1054 @cached_method
1055 def rank(self):
1056 r"""
1057 Return the rank of this EJA.
1058
1059 This is a cached method because we know the rank a priori for
1060 all of the algebras we can construct. Thus we can avoid the
1061 expensive ``_charpoly_coefficients()`` call unless we truly
1062 need to compute the whole characteristic polynomial.
1063
1064 SETUP::
1065
1066 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1067 ....: JordanSpinEJA,
1068 ....: RealSymmetricEJA,
1069 ....: ComplexHermitianEJA,
1070 ....: QuaternionHermitianEJA,
1071 ....: random_eja)
1072
1073 EXAMPLES:
1074
1075 The rank of the Jordan spin algebra is always two::
1076
1077 sage: JordanSpinEJA(2).rank()
1078 2
1079 sage: JordanSpinEJA(3).rank()
1080 2
1081 sage: JordanSpinEJA(4).rank()
1082 2
1083
1084 The rank of the `n`-by-`n` Hermitian real, complex, or
1085 quaternion matrices is `n`::
1086
1087 sage: RealSymmetricEJA(4).rank()
1088 4
1089 sage: ComplexHermitianEJA(3).rank()
1090 3
1091 sage: QuaternionHermitianEJA(2).rank()
1092 2
1093
1094 TESTS:
1095
1096 Ensure that every EJA that we know how to construct has a
1097 positive integer rank, unless the algebra is trivial in
1098 which case its rank will be zero::
1099
1100 sage: set_random_seed()
1101 sage: J = random_eja()
1102 sage: r = J.rank()
1103 sage: r in ZZ
1104 True
1105 sage: r > 0 or (r == 0 and J.is_trivial())
1106 True
1107
1108 Ensure that computing the rank actually works, since the ranks
1109 of all simple algebras are known and will be cached by default::
1110
1111 sage: set_random_seed() # long time
1112 sage: J = random_eja() # long time
1113 sage: caches = J.rank() # long time
1114 sage: J.rank.clear_cache() # long time
1115 sage: J.rank() == cached # long time
1116 True
1117
1118 """
1119 return len(self._charpoly_coefficients())
1120
1121
1122 def vector_space(self):
1123 """
1124 Return the vector space that underlies this algebra.
1125
1126 SETUP::
1127
1128 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1129
1130 EXAMPLES::
1131
1132 sage: J = RealSymmetricEJA(2)
1133 sage: J.vector_space()
1134 Vector space of dimension 3 over...
1135
1136 """
1137 return self.zero().to_vector().parent().ambient_vector_space()
1138
1139
1140 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1141
1142 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1143 r"""
1144 New class for algebras whose supplied basis elements have all rational entries.
1145
1146 SETUP::
1147
1148 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1149
1150 EXAMPLES:
1151
1152 The supplied basis is orthonormalized by default::
1153
1154 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1155 sage: J = BilinearFormEJA(B)
1156 sage: J.matrix_basis()
1157 (
1158 [1] [ 0] [ 0]
1159 [0] [1/5] [32/5]
1160 [0], [ 0], [ 5]
1161 )
1162
1163 """
1164 def __init__(self,
1165 basis,
1166 jordan_product,
1167 inner_product,
1168 field=AA,
1169 orthonormalize=True,
1170 prefix='e',
1171 category=None,
1172 check_field=True,
1173 check_axioms=True):
1174
1175 if check_field:
1176 # Abuse the check_field parameter to check that the entries of
1177 # out basis (in ambient coordinates) are in the field QQ.
1178 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1179 raise TypeError("basis not rational")
1180
1181 # Temporary(?) hack to ensure that the matrix and vector bases
1182 # are over the same ring.
1183 basis = tuple( b.change_ring(field) for b in basis )
1184
1185 n = len(basis)
1186 vector_basis = basis
1187
1188 from sage.structure.element import is_Matrix
1189 basis_is_matrices = False
1190
1191 degree = 0
1192 if n > 0:
1193 if is_Matrix(basis[0]):
1194 basis_is_matrices = True
1195 from mjo.eja.eja_utils import _vec2mat
1196 vector_basis = tuple( map(_mat2vec,basis) )
1197 degree = basis[0].nrows()**2
1198 else:
1199 degree = basis[0].degree()
1200
1201 V = VectorSpace(field, degree)
1202
1203 # If we were asked to orthonormalize, and if the orthonormal
1204 # basis is different from the given one, then we also want to
1205 # compute multiplication and inner-product tables for the
1206 # deorthonormalized basis. These can be used later to
1207 # construct a deorthonormalized copy of this algebra over QQ
1208 # in which several operations are much faster.
1209 self._rational_algebra = None
1210
1211 if orthonormalize:
1212 if self.base_ring() is not QQ:
1213 # There's no point in constructing the extra algebra if this
1214 # one is already rational. If the original basis is rational
1215 # but normalization would make it irrational, then this whole
1216 # constructor will just fail anyway as it tries to stick an
1217 # irrational number into a rational algebra.
1218 #
1219 # Note: the same Jordan and inner-products work here,
1220 # because they are necessarily defined with respect to
1221 # ambient coordinates and not any particular basis.
1222 self._rational_algebra = RationalBasisEuclideanJordanAlgebra(
1223 basis,
1224 jordan_product,
1225 inner_product,
1226 field=QQ,
1227 orthonormalize=False,
1228 prefix=prefix,
1229 category=category,
1230 check_field=False,
1231 check_axioms=False)
1232
1233 # Compute the deorthonormalized tables before we orthonormalize
1234 # the given basis. The "check" parameter here guarantees that
1235 # the basis is linearly-independent.
1236 W = V.span_of_basis( vector_basis, check=check_axioms)
1237
1238 # Note: the Jordan and inner-products are defined in terms
1239 # of the ambient basis. It's important that their arguments
1240 # are in ambient coordinates as well.
1241 for i in range(n):
1242 for j in range(i+1):
1243 # given basis w.r.t. ambient coords
1244 q_i = vector_basis[i]
1245 q_j = vector_basis[j]
1246
1247 if basis_is_matrices:
1248 q_i = _vec2mat(q_i)
1249 q_j = _vec2mat(q_j)
1250
1251 elt = jordan_product(q_i, q_j)
1252 ip = inner_product(q_i, q_j)
1253
1254 if basis_is_matrices:
1255 # do another mat2vec because the multiplication
1256 # table is in terms of vectors
1257 elt = _mat2vec(elt)
1258
1259 # We overwrite the name "vector_basis" in a second, but never modify it
1260 # in place, to this effectively makes a copy of it.
1261 deortho_vector_basis = vector_basis
1262 self._deortho_matrix = None
1263
1264 if orthonormalize:
1265 from mjo.eja.eja_utils import gram_schmidt
1266 if basis_is_matrices:
1267 vector_ip = lambda x,y: inner_product(_vec2mat(x), _vec2mat(y))
1268 vector_basis = gram_schmidt(vector_basis, vector_ip)
1269 else:
1270 vector_basis = gram_schmidt(vector_basis, inner_product)
1271
1272 # Normalize the "matrix" basis, too!
1273 basis = vector_basis
1274
1275 if basis_is_matrices:
1276 basis = tuple( map(_vec2mat,basis) )
1277
1278 W = V.span_of_basis( vector_basis, check=check_axioms)
1279
1280 # Now "W" is the vector space of our algebra coordinates. The
1281 # variables "X1", "X2",... refer to the entries of vectors in
1282 # W. Thus to convert back and forth between the orthonormal
1283 # coordinates and the given ones, we need to stick the original
1284 # basis in W.
1285 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
1286 self._deortho_matrix = matrix( U.coordinate_vector(q)
1287 for q in vector_basis )
1288
1289 # If the superclass constructor is going to verify the
1290 # symmetry of this table, it has better at least be
1291 # square...
1292 if check_axioms:
1293 mult_table = [ [0 for j in range(n)] for i in range(n) ]
1294 ip_table = [ [0 for j in range(n)] for i in range(n) ]
1295 else:
1296 mult_table = [ [0 for j in range(i+1)] for i in range(n) ]
1297 ip_table = [ [0 for j in range(i+1)] for i in range(n) ]
1298
1299 # Note: the Jordan and inner-products are defined in terms
1300 # of the ambient basis. It's important that their arguments
1301 # are in ambient coordinates as well.
1302 for i in range(n):
1303 for j in range(i+1):
1304 # ortho basis w.r.t. ambient coords
1305 q_i = vector_basis[i]
1306 q_j = vector_basis[j]
1307
1308 if basis_is_matrices:
1309 q_i = _vec2mat(q_i)
1310 q_j = _vec2mat(q_j)
1311
1312 elt = jordan_product(q_i, q_j)
1313 ip = inner_product(q_i, q_j)
1314
1315 if basis_is_matrices:
1316 # do another mat2vec because the multiplication
1317 # table is in terms of vectors
1318 elt = _mat2vec(elt)
1319
1320 elt = W.coordinate_vector(elt)
1321 mult_table[i][j] = elt
1322 ip_table[i][j] = ip
1323 if check_axioms:
1324 # The tables are square if we're verifying that they
1325 # are commutative.
1326 mult_table[j][i] = elt
1327 ip_table[j][i] = ip
1328
1329 if basis_is_matrices:
1330 for m in basis:
1331 m.set_immutable()
1332 else:
1333 basis = tuple( x.column() for x in basis )
1334
1335 super().__init__(field,
1336 mult_table,
1337 ip_table,
1338 prefix,
1339 category,
1340 basis, # matrix basis
1341 check_field,
1342 check_axioms)
1343
1344 @cached_method
1345 def _charpoly_coefficients(self):
1346 r"""
1347 SETUP::
1348
1349 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1350 ....: JordanSpinEJA)
1351
1352 EXAMPLES:
1353
1354 The base ring of the resulting polynomial coefficients is what
1355 it should be, and not the rationals (unless the algebra was
1356 already over the rationals)::
1357
1358 sage: J = JordanSpinEJA(3)
1359 sage: J._charpoly_coefficients()
1360 (X1^2 - X2^2 - X3^2, -2*X1)
1361 sage: a0 = J._charpoly_coefficients()[0]
1362 sage: J.base_ring()
1363 Algebraic Real Field
1364 sage: a0.base_ring()
1365 Algebraic Real Field
1366
1367 """
1368 if self.base_ring() is QQ or self._rational_algebra is None:
1369 # There's no need to construct *another* algebra over the
1370 # rationals if this one is already over the
1371 # rationals. Likewise, if we never orthonormalized our
1372 # basis, we might as well just use the given one.
1373 superclass = super(RationalBasisEuclideanJordanAlgebra, self)
1374 return superclass._charpoly_coefficients()
1375
1376 # Do the computation over the rationals. The answer will be
1377 # the same, because all we've done is a change of basis.
1378 # Then, change back from QQ to our real base ring
1379 a = ( a_i.change_ring(self.base_ring())
1380 for a_i in self._rational_algebra._charpoly_coefficients() )
1381
1382 # Now convert the coordinate variables back to the
1383 # deorthonormalized ones.
1384 R = self.coordinate_polynomial_ring()
1385 from sage.modules.free_module_element import vector
1386 X = vector(R, R.gens())
1387 BX = self._deortho_matrix*X
1388
1389 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1390 return tuple( a_i.subs(subs_dict) for a_i in a )
1391
1392 class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
1393 r"""
1394 A class for the Euclidean Jordan algebras that we know by name.
1395
1396 These are the Jordan algebras whose basis, multiplication table,
1397 rank, and so on are known a priori. More to the point, they are
1398 the Euclidean Jordan algebras for which we are able to conjure up
1399 a "random instance."
1400
1401 SETUP::
1402
1403 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1404
1405 TESTS:
1406
1407 Our basis is normalized with respect to the algebra's inner
1408 product, unless we specify otherwise::
1409
1410 sage: set_random_seed()
1411 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1412 sage: all( b.norm() == 1 for b in J.gens() )
1413 True
1414
1415 Since our basis is orthonormal with respect to the algebra's inner
1416 product, and since we know that this algebra is an EJA, any
1417 left-multiplication operator's matrix will be symmetric because
1418 natural->EJA basis representation is an isometry and within the
1419 EJA the operator is self-adjoint by the Jordan axiom::
1420
1421 sage: set_random_seed()
1422 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1423 sage: x = J.random_element()
1424 sage: x.operator().is_self_adjoint()
1425 True
1426 """
1427
1428 @staticmethod
1429 def _max_random_instance_size():
1430 """
1431 Return an integer "size" that is an upper bound on the size of
1432 this algebra when it is used in a random test
1433 case. Unfortunately, the term "size" is ambiguous -- when
1434 dealing with `R^n` under either the Hadamard or Jordan spin
1435 product, the "size" refers to the dimension `n`. When dealing
1436 with a matrix algebra (real symmetric or complex/quaternion
1437 Hermitian), it refers to the size of the matrix, which is far
1438 less than the dimension of the underlying vector space.
1439
1440 This method must be implemented in each subclass.
1441 """
1442 raise NotImplementedError
1443
1444 @classmethod
1445 def random_instance(cls, *args, **kwargs):
1446 """
1447 Return a random instance of this type of algebra.
1448
1449 This method should be implemented in each subclass.
1450 """
1451 from sage.misc.prandom import choice
1452 eja_class = choice(cls.__subclasses__())
1453
1454 # These all bubble up to the RationalBasisEuclideanJordanAlgebra
1455 # superclass constructor, so any (kw)args valid there are also
1456 # valid here.
1457 return eja_class.random_instance(*args, **kwargs)
1458
1459
1460 class MatrixEuclideanJordanAlgebra:
1461 @staticmethod
1462 def dimension_over_reals():
1463 r"""
1464 The dimension of this matrix's base ring over the reals.
1465
1466 The reals are dimension one over themselves, obviously; that's
1467 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1468 have dimension two. Finally, the quaternions have dimension
1469 four over the reals.
1470
1471 This is used to determine the size of the matrix returned from
1472 :meth:`real_embed`, among other things.
1473 """
1474 raise NotImplementedError
1475
1476 @classmethod
1477 def real_embed(cls,M):
1478 """
1479 Embed the matrix ``M`` into a space of real matrices.
1480
1481 The matrix ``M`` can have entries in any field at the moment:
1482 the real numbers, complex numbers, or quaternions. And although
1483 they are not a field, we can probably support octonions at some
1484 point, too. This function returns a real matrix that "acts like"
1485 the original with respect to matrix multiplication; i.e.
1486
1487 real_embed(M*N) = real_embed(M)*real_embed(N)
1488
1489 """
1490 if M.ncols() != M.nrows():
1491 raise ValueError("the matrix 'M' must be square")
1492 return M
1493
1494
1495 @classmethod
1496 def real_unembed(cls,M):
1497 """
1498 The inverse of :meth:`real_embed`.
1499 """
1500 if M.ncols() != M.nrows():
1501 raise ValueError("the matrix 'M' must be square")
1502 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1503 raise ValueError("the matrix 'M' must be a real embedding")
1504 return M
1505
1506 @staticmethod
1507 def jordan_product(X,Y):
1508 return (X*Y + Y*X)/2
1509
1510 @classmethod
1511 def trace_inner_product(cls,X,Y):
1512 r"""
1513 Compute the trace inner-product of two real-embeddings.
1514
1515 SETUP::
1516
1517 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1518 ....: ComplexHermitianEJA,
1519 ....: QuaternionHermitianEJA)
1520
1521 EXAMPLES::
1522
1523 This gives the same answer as it would if we computed the trace
1524 from the unembedded (original) matrices::
1525
1526 sage: set_random_seed()
1527 sage: J = ComplexHermitianEJA.random_instance()
1528 sage: x,y = J.random_elements(2)
1529 sage: Xe = x.to_matrix()
1530 sage: Ye = y.to_matrix()
1531 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1532 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1533 sage: expected = (X*Y).trace().real()
1534 sage: actual = ComplexHermitianEJA.trace_inner_product(Xe,Ye)
1535 sage: actual == expected
1536 True
1537
1538 ::
1539
1540 sage: set_random_seed()
1541 sage: J = QuaternionHermitianEJA.random_instance()
1542 sage: x,y = J.random_elements(2)
1543 sage: Xe = x.to_matrix()
1544 sage: Ye = y.to_matrix()
1545 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1546 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1547 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1548 sage: actual = QuaternionHermitianEJA.trace_inner_product(Xe,Ye)
1549 sage: actual == expected
1550 True
1551
1552 """
1553 Xu = cls.real_unembed(X)
1554 Yu = cls.real_unembed(Y)
1555 tr = (Xu*Yu).trace()
1556
1557 try:
1558 # Works in QQ, AA, RDF, et cetera.
1559 return tr.real() / cls.dimension_over_reals()
1560 except AttributeError:
1561 # A quaternion doesn't have a real() method, but does
1562 # have coefficient_tuple() method that returns the
1563 # coefficients of 1, i, j, and k -- in that order.
1564 return tr.coefficient_tuple()[0] / cls.dimension_over_reals()
1565
1566
1567 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1568 @staticmethod
1569 def dimension_over_reals():
1570 return 1
1571
1572
1573 class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
1574 RealMatrixEuclideanJordanAlgebra):
1575 """
1576 The rank-n simple EJA consisting of real symmetric n-by-n
1577 matrices, the usual symmetric Jordan product, and the trace inner
1578 product. It has dimension `(n^2 + n)/2` over the reals.
1579
1580 SETUP::
1581
1582 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1583
1584 EXAMPLES::
1585
1586 sage: J = RealSymmetricEJA(2)
1587 sage: e0, e1, e2 = J.gens()
1588 sage: e0*e0
1589 e0
1590 sage: e1*e1
1591 1/2*e0 + 1/2*e2
1592 sage: e2*e2
1593 e2
1594
1595 In theory, our "field" can be any subfield of the reals::
1596
1597 sage: RealSymmetricEJA(2, field=RDF)
1598 Euclidean Jordan algebra of dimension 3 over Real Double Field
1599 sage: RealSymmetricEJA(2, field=RR)
1600 Euclidean Jordan algebra of dimension 3 over Real Field with
1601 53 bits of precision
1602
1603 TESTS:
1604
1605 The dimension of this algebra is `(n^2 + n) / 2`::
1606
1607 sage: set_random_seed()
1608 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1609 sage: n = ZZ.random_element(1, n_max)
1610 sage: J = RealSymmetricEJA(n)
1611 sage: J.dimension() == (n^2 + n)/2
1612 True
1613
1614 The Jordan multiplication is what we think it is::
1615
1616 sage: set_random_seed()
1617 sage: J = RealSymmetricEJA.random_instance()
1618 sage: x,y = J.random_elements(2)
1619 sage: actual = (x*y).to_matrix()
1620 sage: X = x.to_matrix()
1621 sage: Y = y.to_matrix()
1622 sage: expected = (X*Y + Y*X)/2
1623 sage: actual == expected
1624 True
1625 sage: J(expected) == x*y
1626 True
1627
1628 We can change the generator prefix::
1629
1630 sage: RealSymmetricEJA(3, prefix='q').gens()
1631 (q0, q1, q2, q3, q4, q5)
1632
1633 We can construct the (trivial) algebra of rank zero::
1634
1635 sage: RealSymmetricEJA(0)
1636 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1637
1638 """
1639 @classmethod
1640 def _denormalized_basis(cls, n):
1641 """
1642 Return a basis for the space of real symmetric n-by-n matrices.
1643
1644 SETUP::
1645
1646 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1647
1648 TESTS::
1649
1650 sage: set_random_seed()
1651 sage: n = ZZ.random_element(1,5)
1652 sage: B = RealSymmetricEJA._denormalized_basis(n)
1653 sage: all( M.is_symmetric() for M in B)
1654 True
1655
1656 """
1657 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1658 # coordinates.
1659 S = []
1660 for i in range(n):
1661 for j in range(i+1):
1662 Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
1663 if i == j:
1664 Sij = Eij
1665 else:
1666 Sij = Eij + Eij.transpose()
1667 S.append(Sij)
1668 return tuple(S)
1669
1670
1671 @staticmethod
1672 def _max_random_instance_size():
1673 return 4 # Dimension 10
1674
1675 @classmethod
1676 def random_instance(cls, **kwargs):
1677 """
1678 Return a random instance of this type of algebra.
1679 """
1680 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1681 return cls(n, **kwargs)
1682
1683 def __init__(self, n, **kwargs):
1684 # We know this is a valid EJA, but will double-check
1685 # if the user passes check_axioms=True.
1686 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1687
1688 super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
1689 self.jordan_product,
1690 self.trace_inner_product,
1691 **kwargs)
1692
1693 # TODO: this could be factored out somehow, but is left here
1694 # because the MatrixEuclideanJordanAlgebra is not presently
1695 # a subclass of the FDEJA class that defines rank() and one().
1696 self.rank.set_cache(n)
1697 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1698 self.one.set_cache(self(idV))
1699
1700
1701
1702 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1703 @staticmethod
1704 def dimension_over_reals():
1705 return 2
1706
1707 @classmethod
1708 def real_embed(cls,M):
1709 """
1710 Embed the n-by-n complex matrix ``M`` into the space of real
1711 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1712 bi` to the block matrix ``[[a,b],[-b,a]]``.
1713
1714 SETUP::
1715
1716 sage: from mjo.eja.eja_algebra import \
1717 ....: ComplexMatrixEuclideanJordanAlgebra
1718
1719 EXAMPLES::
1720
1721 sage: F = QuadraticField(-1, 'I')
1722 sage: x1 = F(4 - 2*i)
1723 sage: x2 = F(1 + 2*i)
1724 sage: x3 = F(-i)
1725 sage: x4 = F(6)
1726 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1727 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1728 [ 4 -2| 1 2]
1729 [ 2 4|-2 1]
1730 [-----+-----]
1731 [ 0 -1| 6 0]
1732 [ 1 0| 0 6]
1733
1734 TESTS:
1735
1736 Embedding is a homomorphism (isomorphism, in fact)::
1737
1738 sage: set_random_seed()
1739 sage: n = ZZ.random_element(3)
1740 sage: F = QuadraticField(-1, 'I')
1741 sage: X = random_matrix(F, n)
1742 sage: Y = random_matrix(F, n)
1743 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1744 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1745 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1746 sage: Xe*Ye == XYe
1747 True
1748
1749 """
1750 super(ComplexMatrixEuclideanJordanAlgebra,cls).real_embed(M)
1751 n = M.nrows()
1752
1753 # We don't need any adjoined elements...
1754 field = M.base_ring().base_ring()
1755
1756 blocks = []
1757 for z in M.list():
1758 a = z.list()[0] # real part, I guess
1759 b = z.list()[1] # imag part, I guess
1760 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1761
1762 return matrix.block(field, n, blocks)
1763
1764
1765 @classmethod
1766 def real_unembed(cls,M):
1767 """
1768 The inverse of _embed_complex_matrix().
1769
1770 SETUP::
1771
1772 sage: from mjo.eja.eja_algebra import \
1773 ....: ComplexMatrixEuclideanJordanAlgebra
1774
1775 EXAMPLES::
1776
1777 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1778 ....: [-2, 1, -4, 3],
1779 ....: [ 9, 10, 11, 12],
1780 ....: [-10, 9, -12, 11] ])
1781 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1782 [ 2*I + 1 4*I + 3]
1783 [ 10*I + 9 12*I + 11]
1784
1785 TESTS:
1786
1787 Unembedding is the inverse of embedding::
1788
1789 sage: set_random_seed()
1790 sage: F = QuadraticField(-1, 'I')
1791 sage: M = random_matrix(F, 3)
1792 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1793 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1794 True
1795
1796 """
1797 super(ComplexMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
1798 n = ZZ(M.nrows())
1799 d = cls.dimension_over_reals()
1800
1801 # If "M" was normalized, its base ring might have roots
1802 # adjoined and they can stick around after unembedding.
1803 field = M.base_ring()
1804 R = PolynomialRing(field, 'z')
1805 z = R.gen()
1806 if field is AA:
1807 # Sage doesn't know how to embed AA into QQbar, i.e. how
1808 # to adjoin sqrt(-1) to AA.
1809 F = QQbar
1810 else:
1811 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1812 i = F.gen()
1813
1814 # Go top-left to bottom-right (reading order), converting every
1815 # 2-by-2 block we see to a single complex element.
1816 elements = []
1817 for k in range(n/d):
1818 for j in range(n/d):
1819 submat = M[d*k:d*k+d,d*j:d*j+d]
1820 if submat[0,0] != submat[1,1]:
1821 raise ValueError('bad on-diagonal submatrix')
1822 if submat[0,1] != -submat[1,0]:
1823 raise ValueError('bad off-diagonal submatrix')
1824 z = submat[0,0] + submat[0,1]*i
1825 elements.append(z)
1826
1827 return matrix(F, n/d, elements)
1828
1829
1830 class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
1831 ComplexMatrixEuclideanJordanAlgebra):
1832 """
1833 The rank-n simple EJA consisting of complex Hermitian n-by-n
1834 matrices over the real numbers, the usual symmetric Jordan product,
1835 and the real-part-of-trace inner product. It has dimension `n^2` over
1836 the reals.
1837
1838 SETUP::
1839
1840 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1841
1842 EXAMPLES:
1843
1844 In theory, our "field" can be any subfield of the reals::
1845
1846 sage: ComplexHermitianEJA(2, field=RDF)
1847 Euclidean Jordan algebra of dimension 4 over Real Double Field
1848 sage: ComplexHermitianEJA(2, field=RR)
1849 Euclidean Jordan algebra of dimension 4 over Real Field with
1850 53 bits of precision
1851
1852 TESTS:
1853
1854 The dimension of this algebra is `n^2`::
1855
1856 sage: set_random_seed()
1857 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1858 sage: n = ZZ.random_element(1, n_max)
1859 sage: J = ComplexHermitianEJA(n)
1860 sage: J.dimension() == n^2
1861 True
1862
1863 The Jordan multiplication is what we think it is::
1864
1865 sage: set_random_seed()
1866 sage: J = ComplexHermitianEJA.random_instance()
1867 sage: x,y = J.random_elements(2)
1868 sage: actual = (x*y).to_matrix()
1869 sage: X = x.to_matrix()
1870 sage: Y = y.to_matrix()
1871 sage: expected = (X*Y + Y*X)/2
1872 sage: actual == expected
1873 True
1874 sage: J(expected) == x*y
1875 True
1876
1877 We can change the generator prefix::
1878
1879 sage: ComplexHermitianEJA(2, prefix='z').gens()
1880 (z0, z1, z2, z3)
1881
1882 We can construct the (trivial) algebra of rank zero::
1883
1884 sage: ComplexHermitianEJA(0)
1885 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1886
1887 """
1888
1889 @classmethod
1890 def _denormalized_basis(cls, n):
1891 """
1892 Returns a basis for the space of complex Hermitian n-by-n matrices.
1893
1894 Why do we embed these? Basically, because all of numerical linear
1895 algebra assumes that you're working with vectors consisting of `n`
1896 entries from a field and scalars from the same field. There's no way
1897 to tell SageMath that (for example) the vectors contain complex
1898 numbers, while the scalar field is real.
1899
1900 SETUP::
1901
1902 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1903
1904 TESTS::
1905
1906 sage: set_random_seed()
1907 sage: n = ZZ.random_element(1,5)
1908 sage: field = QuadraticField(2, 'sqrt2')
1909 sage: B = ComplexHermitianEJA._denormalized_basis(n)
1910 sage: all( M.is_symmetric() for M in B)
1911 True
1912
1913 """
1914 field = ZZ
1915 R = PolynomialRing(field, 'z')
1916 z = R.gen()
1917 F = field.extension(z**2 + 1, 'I')
1918 I = F.gen(1)
1919
1920 # This is like the symmetric case, but we need to be careful:
1921 #
1922 # * We want conjugate-symmetry, not just symmetry.
1923 # * The diagonal will (as a result) be real.
1924 #
1925 S = []
1926 for i in range(n):
1927 for j in range(i+1):
1928 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1929 if i == j:
1930 Sij = cls.real_embed(Eij)
1931 S.append(Sij)
1932 else:
1933 # The second one has a minus because it's conjugated.
1934 Sij_real = cls.real_embed(Eij + Eij.transpose())
1935 S.append(Sij_real)
1936 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1937 S.append(Sij_imag)
1938
1939 # Since we embedded these, we can drop back to the "field" that we
1940 # started with instead of the complex extension "F".
1941 return tuple( s.change_ring(field) for s in S )
1942
1943
1944 def __init__(self, n, **kwargs):
1945 # We know this is a valid EJA, but will double-check
1946 # if the user passes check_axioms=True.
1947 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1948
1949 super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
1950 self.jordan_product,
1951 self.trace_inner_product,
1952 **kwargs)
1953 # TODO: this could be factored out somehow, but is left here
1954 # because the MatrixEuclideanJordanAlgebra is not presently
1955 # a subclass of the FDEJA class that defines rank() and one().
1956 self.rank.set_cache(n)
1957 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1958 self.one.set_cache(self(idV))
1959
1960 @staticmethod
1961 def _max_random_instance_size():
1962 return 3 # Dimension 9
1963
1964 @classmethod
1965 def random_instance(cls, **kwargs):
1966 """
1967 Return a random instance of this type of algebra.
1968 """
1969 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1970 return cls(n, **kwargs)
1971
1972 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1973 @staticmethod
1974 def dimension_over_reals():
1975 return 4
1976
1977 @classmethod
1978 def real_embed(cls,M):
1979 """
1980 Embed the n-by-n quaternion matrix ``M`` into the space of real
1981 matrices of size 4n-by-4n by first sending each quaternion entry `z
1982 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1983 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1984 matrix.
1985
1986 SETUP::
1987
1988 sage: from mjo.eja.eja_algebra import \
1989 ....: QuaternionMatrixEuclideanJordanAlgebra
1990
1991 EXAMPLES::
1992
1993 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1994 sage: i,j,k = Q.gens()
1995 sage: x = 1 + 2*i + 3*j + 4*k
1996 sage: M = matrix(Q, 1, [[x]])
1997 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1998 [ 1 2 3 4]
1999 [-2 1 -4 3]
2000 [-3 4 1 -2]
2001 [-4 -3 2 1]
2002
2003 Embedding is a homomorphism (isomorphism, in fact)::
2004
2005 sage: set_random_seed()
2006 sage: n = ZZ.random_element(2)
2007 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2008 sage: X = random_matrix(Q, n)
2009 sage: Y = random_matrix(Q, n)
2010 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
2011 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
2012 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
2013 sage: Xe*Ye == XYe
2014 True
2015
2016 """
2017 super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_embed(M)
2018 quaternions = M.base_ring()
2019 n = M.nrows()
2020
2021 F = QuadraticField(-1, 'I')
2022 i = F.gen()
2023
2024 blocks = []
2025 for z in M.list():
2026 t = z.coefficient_tuple()
2027 a = t[0]
2028 b = t[1]
2029 c = t[2]
2030 d = t[3]
2031 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2032 [-c + d*i, a - b*i]])
2033 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
2034 blocks.append(realM)
2035
2036 # We should have real entries by now, so use the realest field
2037 # we've got for the return value.
2038 return matrix.block(quaternions.base_ring(), n, blocks)
2039
2040
2041
2042 @classmethod
2043 def real_unembed(cls,M):
2044 """
2045 The inverse of _embed_quaternion_matrix().
2046
2047 SETUP::
2048
2049 sage: from mjo.eja.eja_algebra import \
2050 ....: QuaternionMatrixEuclideanJordanAlgebra
2051
2052 EXAMPLES::
2053
2054 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2055 ....: [-2, 1, -4, 3],
2056 ....: [-3, 4, 1, -2],
2057 ....: [-4, -3, 2, 1]])
2058 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
2059 [1 + 2*i + 3*j + 4*k]
2060
2061 TESTS:
2062
2063 Unembedding is the inverse of embedding::
2064
2065 sage: set_random_seed()
2066 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2067 sage: M = random_matrix(Q, 3)
2068 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2069 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
2070 True
2071
2072 """
2073 super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
2074 n = ZZ(M.nrows())
2075 d = cls.dimension_over_reals()
2076
2077 # Use the base ring of the matrix to ensure that its entries can be
2078 # multiplied by elements of the quaternion algebra.
2079 field = M.base_ring()
2080 Q = QuaternionAlgebra(field,-1,-1)
2081 i,j,k = Q.gens()
2082
2083 # Go top-left to bottom-right (reading order), converting every
2084 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2085 # quaternion block.
2086 elements = []
2087 for l in range(n/d):
2088 for m in range(n/d):
2089 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
2090 M[d*l:d*l+d,d*m:d*m+d] )
2091 if submat[0,0] != submat[1,1].conjugate():
2092 raise ValueError('bad on-diagonal submatrix')
2093 if submat[0,1] != -submat[1,0].conjugate():
2094 raise ValueError('bad off-diagonal submatrix')
2095 z = submat[0,0].real()
2096 z += submat[0,0].imag()*i
2097 z += submat[0,1].real()*j
2098 z += submat[0,1].imag()*k
2099 elements.append(z)
2100
2101 return matrix(Q, n/d, elements)
2102
2103
2104 class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
2105 QuaternionMatrixEuclideanJordanAlgebra):
2106 r"""
2107 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2108 matrices, the usual symmetric Jordan product, and the
2109 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2110 the reals.
2111
2112 SETUP::
2113
2114 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2115
2116 EXAMPLES:
2117
2118 In theory, our "field" can be any subfield of the reals::
2119
2120 sage: QuaternionHermitianEJA(2, field=RDF)
2121 Euclidean Jordan algebra of dimension 6 over Real Double Field
2122 sage: QuaternionHermitianEJA(2, field=RR)
2123 Euclidean Jordan algebra of dimension 6 over Real Field with
2124 53 bits of precision
2125
2126 TESTS:
2127
2128 The dimension of this algebra is `2*n^2 - n`::
2129
2130 sage: set_random_seed()
2131 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2132 sage: n = ZZ.random_element(1, n_max)
2133 sage: J = QuaternionHermitianEJA(n)
2134 sage: J.dimension() == 2*(n^2) - n
2135 True
2136
2137 The Jordan multiplication is what we think it is::
2138
2139 sage: set_random_seed()
2140 sage: J = QuaternionHermitianEJA.random_instance()
2141 sage: x,y = J.random_elements(2)
2142 sage: actual = (x*y).to_matrix()
2143 sage: X = x.to_matrix()
2144 sage: Y = y.to_matrix()
2145 sage: expected = (X*Y + Y*X)/2
2146 sage: actual == expected
2147 True
2148 sage: J(expected) == x*y
2149 True
2150
2151 We can change the generator prefix::
2152
2153 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2154 (a0, a1, a2, a3, a4, a5)
2155
2156 We can construct the (trivial) algebra of rank zero::
2157
2158 sage: QuaternionHermitianEJA(0)
2159 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2160
2161 """
2162 @classmethod
2163 def _denormalized_basis(cls, n):
2164 """
2165 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2166
2167 Why do we embed these? Basically, because all of numerical
2168 linear algebra assumes that you're working with vectors consisting
2169 of `n` entries from a field and scalars from the same field. There's
2170 no way to tell SageMath that (for example) the vectors contain
2171 complex numbers, while the scalar field is real.
2172
2173 SETUP::
2174
2175 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2176
2177 TESTS::
2178
2179 sage: set_random_seed()
2180 sage: n = ZZ.random_element(1,5)
2181 sage: B = QuaternionHermitianEJA._denormalized_basis(n)
2182 sage: all( M.is_symmetric() for M in B )
2183 True
2184
2185 """
2186 field = ZZ
2187 Q = QuaternionAlgebra(QQ,-1,-1)
2188 I,J,K = Q.gens()
2189
2190 # This is like the symmetric case, but we need to be careful:
2191 #
2192 # * We want conjugate-symmetry, not just symmetry.
2193 # * The diagonal will (as a result) be real.
2194 #
2195 S = []
2196 for i in range(n):
2197 for j in range(i+1):
2198 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
2199 if i == j:
2200 Sij = cls.real_embed(Eij)
2201 S.append(Sij)
2202 else:
2203 # The second, third, and fourth ones have a minus
2204 # because they're conjugated.
2205 Sij_real = cls.real_embed(Eij + Eij.transpose())
2206 S.append(Sij_real)
2207 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
2208 S.append(Sij_I)
2209 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
2210 S.append(Sij_J)
2211 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2212 S.append(Sij_K)
2213
2214 # Since we embedded these, we can drop back to the "field" that we
2215 # started with instead of the quaternion algebra "Q".
2216 return tuple( s.change_ring(field) for s in S )
2217
2218
2219 def __init__(self, n, **kwargs):
2220 # We know this is a valid EJA, but will double-check
2221 # if the user passes check_axioms=True.
2222 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2223
2224 super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
2225 self.jordan_product,
2226 self.trace_inner_product,
2227 **kwargs)
2228 # TODO: this could be factored out somehow, but is left here
2229 # because the MatrixEuclideanJordanAlgebra is not presently
2230 # a subclass of the FDEJA class that defines rank() and one().
2231 self.rank.set_cache(n)
2232 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2233 self.one.set_cache(self(idV))
2234
2235
2236 @staticmethod
2237 def _max_random_instance_size():
2238 r"""
2239 The maximum rank of a random QuaternionHermitianEJA.
2240 """
2241 return 2 # Dimension 6
2242
2243 @classmethod
2244 def random_instance(cls, **kwargs):
2245 """
2246 Return a random instance of this type of algebra.
2247 """
2248 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2249 return cls(n, **kwargs)
2250
2251
2252 class HadamardEJA(ConcreteEuclideanJordanAlgebra):
2253 """
2254 Return the Euclidean Jordan Algebra corresponding to the set
2255 `R^n` under the Hadamard product.
2256
2257 Note: this is nothing more than the Cartesian product of ``n``
2258 copies of the spin algebra. Once Cartesian product algebras
2259 are implemented, this can go.
2260
2261 SETUP::
2262
2263 sage: from mjo.eja.eja_algebra import HadamardEJA
2264
2265 EXAMPLES:
2266
2267 This multiplication table can be verified by hand::
2268
2269 sage: J = HadamardEJA(3)
2270 sage: e0,e1,e2 = J.gens()
2271 sage: e0*e0
2272 e0
2273 sage: e0*e1
2274 0
2275 sage: e0*e2
2276 0
2277 sage: e1*e1
2278 e1
2279 sage: e1*e2
2280 0
2281 sage: e2*e2
2282 e2
2283
2284 TESTS:
2285
2286 We can change the generator prefix::
2287
2288 sage: HadamardEJA(3, prefix='r').gens()
2289 (r0, r1, r2)
2290
2291 """
2292 def __init__(self, n, **kwargs):
2293 def jordan_product(x,y):
2294 P = x.parent()
2295 return P(tuple( xi*yi for (xi,yi) in zip(x,y) ))
2296 def inner_product(x,y):
2297 return x.inner_product(y)
2298
2299 # New defaults for keyword arguments. Don't orthonormalize
2300 # because our basis is already orthonormal with respect to our
2301 # inner-product. Don't check the axioms, because we know this
2302 # is a valid EJA... but do double-check if the user passes
2303 # check_axioms=True. Note: we DON'T override the "check_field"
2304 # default here, because the user can pass in a field!
2305 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2306 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2307
2308
2309 standard_basis = FreeModule(ZZ, n).basis()
2310 super(HadamardEJA, self).__init__(standard_basis,
2311 jordan_product,
2312 inner_product,
2313 **kwargs)
2314 self.rank.set_cache(n)
2315
2316 if n == 0:
2317 self.one.set_cache( self.zero() )
2318 else:
2319 self.one.set_cache( sum(self.gens()) )
2320
2321 @staticmethod
2322 def _max_random_instance_size():
2323 r"""
2324 The maximum dimension of a random HadamardEJA.
2325 """
2326 return 5
2327
2328 @classmethod
2329 def random_instance(cls, **kwargs):
2330 """
2331 Return a random instance of this type of algebra.
2332 """
2333 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2334 return cls(n, **kwargs)
2335
2336
2337 class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
2338 r"""
2339 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2340 with the half-trace inner product and jordan product ``x*y =
2341 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2342 a symmetric positive-definite "bilinear form" matrix. Its
2343 dimension is the size of `B`, and it has rank two in dimensions
2344 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2345 the identity matrix of order ``n``.
2346
2347 We insist that the one-by-one upper-left identity block of `B` be
2348 passed in as well so that we can be passed a matrix of size zero
2349 to construct a trivial algebra.
2350
2351 SETUP::
2352
2353 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2354 ....: JordanSpinEJA)
2355
2356 EXAMPLES:
2357
2358 When no bilinear form is specified, the identity matrix is used,
2359 and the resulting algebra is the Jordan spin algebra::
2360
2361 sage: B = matrix.identity(AA,3)
2362 sage: J0 = BilinearFormEJA(B)
2363 sage: J1 = JordanSpinEJA(3)
2364 sage: J0.multiplication_table() == J0.multiplication_table()
2365 True
2366
2367 An error is raised if the matrix `B` does not correspond to a
2368 positive-definite bilinear form::
2369
2370 sage: B = matrix.random(QQ,2,3)
2371 sage: J = BilinearFormEJA(B)
2372 Traceback (most recent call last):
2373 ...
2374 ValueError: bilinear form is not positive-definite
2375 sage: B = matrix.zero(QQ,3)
2376 sage: J = BilinearFormEJA(B)
2377 Traceback (most recent call last):
2378 ...
2379 ValueError: bilinear form is not positive-definite
2380
2381 TESTS:
2382
2383 We can create a zero-dimensional algebra::
2384
2385 sage: B = matrix.identity(AA,0)
2386 sage: J = BilinearFormEJA(B)
2387 sage: J.basis()
2388 Finite family {}
2389
2390 We can check the multiplication condition given in the Jordan, von
2391 Neumann, and Wigner paper (and also discussed on my "On the
2392 symmetry..." paper). Note that this relies heavily on the standard
2393 choice of basis, as does anything utilizing the bilinear form
2394 matrix. We opt not to orthonormalize the basis, because if we
2395 did, we would have to normalize the `s_{i}` in a similar manner::
2396
2397 sage: set_random_seed()
2398 sage: n = ZZ.random_element(5)
2399 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2400 sage: B11 = matrix.identity(QQ,1)
2401 sage: B22 = M.transpose()*M
2402 sage: B = block_matrix(2,2,[ [B11,0 ],
2403 ....: [0, B22 ] ])
2404 sage: J = BilinearFormEJA(B, orthonormalize=False)
2405 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2406 sage: V = J.vector_space()
2407 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2408 ....: for ei in eis ]
2409 sage: actual = [ sis[i]*sis[j]
2410 ....: for i in range(n-1)
2411 ....: for j in range(n-1) ]
2412 sage: expected = [ J.one() if i == j else J.zero()
2413 ....: for i in range(n-1)
2414 ....: for j in range(n-1) ]
2415 sage: actual == expected
2416 True
2417 """
2418 def __init__(self, B, **kwargs):
2419 if not B.is_positive_definite():
2420 raise ValueError("bilinear form is not positive-definite")
2421
2422 def inner_product(x,y):
2423 return (B*x).inner_product(y)
2424
2425 def jordan_product(x,y):
2426 P = x.parent()
2427 x0 = x[0]
2428 xbar = x[1:]
2429 y0 = y[0]
2430 ybar = y[1:]
2431 z0 = inner_product(x,y)
2432 zbar = y0*xbar + x0*ybar
2433 return P((z0,) + tuple(zbar))
2434
2435 # We know this is a valid EJA, but will double-check
2436 # if the user passes check_axioms=True.
2437 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2438
2439 n = B.nrows()
2440 standard_basis = FreeModule(ZZ, n).basis()
2441 super(BilinearFormEJA, self).__init__(standard_basis,
2442 jordan_product,
2443 inner_product,
2444 **kwargs)
2445
2446 # The rank of this algebra is two, unless we're in a
2447 # one-dimensional ambient space (because the rank is bounded
2448 # by the ambient dimension).
2449 self.rank.set_cache(min(n,2))
2450
2451 if n == 0:
2452 self.one.set_cache( self.zero() )
2453 else:
2454 self.one.set_cache( self.monomial(0) )
2455
2456 @staticmethod
2457 def _max_random_instance_size():
2458 r"""
2459 The maximum dimension of a random BilinearFormEJA.
2460 """
2461 return 5
2462
2463 @classmethod
2464 def random_instance(cls, **kwargs):
2465 """
2466 Return a random instance of this algebra.
2467 """
2468 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2469 if n.is_zero():
2470 B = matrix.identity(ZZ, n)
2471 return cls(B, **kwargs)
2472
2473 B11 = matrix.identity(ZZ, 1)
2474 M = matrix.random(ZZ, n-1)
2475 I = matrix.identity(ZZ, n-1)
2476 alpha = ZZ.zero()
2477 while alpha.is_zero():
2478 alpha = ZZ.random_element().abs()
2479 B22 = M.transpose()*M + alpha*I
2480
2481 from sage.matrix.special import block_matrix
2482 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2483 [ZZ(0), B22 ] ])
2484
2485 return cls(B, **kwargs)
2486
2487
2488 class JordanSpinEJA(BilinearFormEJA):
2489 """
2490 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2491 with the usual inner product and jordan product ``x*y =
2492 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2493 the reals.
2494
2495 SETUP::
2496
2497 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2498
2499 EXAMPLES:
2500
2501 This multiplication table can be verified by hand::
2502
2503 sage: J = JordanSpinEJA(4)
2504 sage: e0,e1,e2,e3 = J.gens()
2505 sage: e0*e0
2506 e0
2507 sage: e0*e1
2508 e1
2509 sage: e0*e2
2510 e2
2511 sage: e0*e3
2512 e3
2513 sage: e1*e2
2514 0
2515 sage: e1*e3
2516 0
2517 sage: e2*e3
2518 0
2519
2520 We can change the generator prefix::
2521
2522 sage: JordanSpinEJA(2, prefix='B').gens()
2523 (B0, B1)
2524
2525 TESTS:
2526
2527 Ensure that we have the usual inner product on `R^n`::
2528
2529 sage: set_random_seed()
2530 sage: J = JordanSpinEJA.random_instance()
2531 sage: x,y = J.random_elements(2)
2532 sage: actual = x.inner_product(y)
2533 sage: expected = x.to_vector().inner_product(y.to_vector())
2534 sage: actual == expected
2535 True
2536
2537 """
2538 def __init__(self, n, **kwargs):
2539 # This is a special case of the BilinearFormEJA with the
2540 # identity matrix as its bilinear form.
2541 B = matrix.identity(ZZ, n)
2542
2543 # Don't orthonormalize because our basis is already
2544 # orthonormal with respect to our inner-product.
2545 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2546
2547 # But also don't pass check_field=False here, because the user
2548 # can pass in a field!
2549 super(JordanSpinEJA, self).__init__(B, **kwargs)
2550
2551 @staticmethod
2552 def _max_random_instance_size():
2553 r"""
2554 The maximum dimension of a random JordanSpinEJA.
2555 """
2556 return 5
2557
2558 @classmethod
2559 def random_instance(cls, **kwargs):
2560 """
2561 Return a random instance of this type of algebra.
2562
2563 Needed here to override the implementation for ``BilinearFormEJA``.
2564 """
2565 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2566 return cls(n, **kwargs)
2567
2568
2569 class TrivialEJA(ConcreteEuclideanJordanAlgebra):
2570 """
2571 The trivial Euclidean Jordan algebra consisting of only a zero element.
2572
2573 SETUP::
2574
2575 sage: from mjo.eja.eja_algebra import TrivialEJA
2576
2577 EXAMPLES::
2578
2579 sage: J = TrivialEJA()
2580 sage: J.dimension()
2581 0
2582 sage: J.zero()
2583 0
2584 sage: J.one()
2585 0
2586 sage: 7*J.one()*12*J.one()
2587 0
2588 sage: J.one().inner_product(J.one())
2589 0
2590 sage: J.one().norm()
2591 0
2592 sage: J.one().subalgebra_generated_by()
2593 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2594 sage: J.rank()
2595 0
2596
2597 """
2598 def __init__(self, **kwargs):
2599 jordan_product = lambda x,y: x
2600 inner_product = lambda x,y: 0
2601 basis = ()
2602
2603 # New defaults for keyword arguments
2604 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2605 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2606
2607 super(TrivialEJA, self).__init__(basis,
2608 jordan_product,
2609 inner_product,
2610 **kwargs)
2611 # The rank is zero using my definition, namely the dimension of the
2612 # largest subalgebra generated by any element.
2613 self.rank.set_cache(0)
2614 self.one.set_cache( self.zero() )
2615
2616 @classmethod
2617 def random_instance(cls, **kwargs):
2618 # We don't take a "size" argument so the superclass method is
2619 # inappropriate for us.
2620 return cls(**kwargs)
2621
2622 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2623 r"""
2624 The external (orthogonal) direct sum of two other Euclidean Jordan
2625 algebras. Essentially the Cartesian product of its two factors.
2626 Every Euclidean Jordan algebra decomposes into an orthogonal
2627 direct sum of simple Euclidean Jordan algebras, so no generality
2628 is lost by providing only this construction.
2629
2630 SETUP::
2631
2632 sage: from mjo.eja.eja_algebra import (random_eja,
2633 ....: HadamardEJA,
2634 ....: RealSymmetricEJA,
2635 ....: DirectSumEJA)
2636
2637 EXAMPLES::
2638
2639 sage: J1 = HadamardEJA(2)
2640 sage: J2 = RealSymmetricEJA(3)
2641 sage: J = DirectSumEJA(J1,J2)
2642 sage: J.dimension()
2643 8
2644 sage: J.rank()
2645 5
2646
2647 TESTS:
2648
2649 The external direct sum construction is only valid when the two factors
2650 have the same base ring; an error is raised otherwise::
2651
2652 sage: set_random_seed()
2653 sage: J1 = random_eja(field=AA)
2654 sage: J2 = random_eja(field=QQ,orthonormalize=False)
2655 sage: J = DirectSumEJA(J1,J2)
2656 Traceback (most recent call last):
2657 ...
2658 ValueError: algebras must share the same base field
2659
2660 """
2661 def __init__(self, J1, J2, **kwargs):
2662 if J1.base_ring() != J2.base_ring():
2663 raise ValueError("algebras must share the same base field")
2664 field = J1.base_ring()
2665
2666 self._factors = (J1, J2)
2667 n1 = J1.dimension()
2668 n2 = J2.dimension()
2669 n = n1+n2
2670 V = VectorSpace(field, n)
2671 mult_table = [ [ V.zero() for j in range(i+1) ]
2672 for i in range(n) ]
2673 for i in range(n1):
2674 for j in range(i+1):
2675 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2676 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2677
2678 for i in range(n2):
2679 for j in range(i+1):
2680 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2681 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2682
2683 # TODO: build the IP table here from the two constituent IP
2684 # matrices (it'll be block diagonal, I think).
2685 ip_table = [ [ field.zero() for j in range(i+1) ]
2686 for i in range(n) ]
2687 super(DirectSumEJA, self).__init__(field,
2688 mult_table,
2689 ip_table,
2690 check_axioms=False,
2691 **kwargs)
2692 self.rank.set_cache(J1.rank() + J2.rank())
2693
2694
2695 def factors(self):
2696 r"""
2697 Return the pair of this algebra's factors.
2698
2699 SETUP::
2700
2701 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2702 ....: JordanSpinEJA,
2703 ....: DirectSumEJA)
2704
2705 EXAMPLES::
2706
2707 sage: J1 = HadamardEJA(2, field=QQ)
2708 sage: J2 = JordanSpinEJA(3, field=QQ)
2709 sage: J = DirectSumEJA(J1,J2)
2710 sage: J.factors()
2711 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2712 Euclidean Jordan algebra of dimension 3 over Rational Field)
2713
2714 """
2715 return self._factors
2716
2717 def projections(self):
2718 r"""
2719 Return a pair of projections onto this algebra's factors.
2720
2721 SETUP::
2722
2723 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2724 ....: ComplexHermitianEJA,
2725 ....: DirectSumEJA)
2726
2727 EXAMPLES::
2728
2729 sage: J1 = JordanSpinEJA(2)
2730 sage: J2 = ComplexHermitianEJA(2)
2731 sage: J = DirectSumEJA(J1,J2)
2732 sage: (pi_left, pi_right) = J.projections()
2733 sage: J.one().to_vector()
2734 (1, 0, 1, 0, 0, 1)
2735 sage: pi_left(J.one()).to_vector()
2736 (1, 0)
2737 sage: pi_right(J.one()).to_vector()
2738 (1, 0, 0, 1)
2739
2740 """
2741 (J1,J2) = self.factors()
2742 m = J1.dimension()
2743 n = J2.dimension()
2744 V_basis = self.vector_space().basis()
2745 # Need to specify the dimensions explicitly so that we don't
2746 # wind up with a zero-by-zero matrix when we want e.g. a
2747 # zero-by-two matrix (important for composing things).
2748 P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2749 P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2750 pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
2751 pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
2752 return (pi_left, pi_right)
2753
2754 def inclusions(self):
2755 r"""
2756 Return the pair of inclusion maps from our factors into us.
2757
2758 SETUP::
2759
2760 sage: from mjo.eja.eja_algebra import (random_eja,
2761 ....: JordanSpinEJA,
2762 ....: RealSymmetricEJA,
2763 ....: DirectSumEJA)
2764
2765 EXAMPLES::
2766
2767 sage: J1 = JordanSpinEJA(3)
2768 sage: J2 = RealSymmetricEJA(2)
2769 sage: J = DirectSumEJA(J1,J2)
2770 sage: (iota_left, iota_right) = J.inclusions()
2771 sage: iota_left(J1.zero()) == J.zero()
2772 True
2773 sage: iota_right(J2.zero()) == J.zero()
2774 True
2775 sage: J1.one().to_vector()
2776 (1, 0, 0)
2777 sage: iota_left(J1.one()).to_vector()
2778 (1, 0, 0, 0, 0, 0)
2779 sage: J2.one().to_vector()
2780 (1, 0, 1)
2781 sage: iota_right(J2.one()).to_vector()
2782 (0, 0, 0, 1, 0, 1)
2783 sage: J.one().to_vector()
2784 (1, 0, 0, 1, 0, 1)
2785
2786 TESTS:
2787
2788 Composing a projection with the corresponding inclusion should
2789 produce the identity map, and mismatching them should produce
2790 the zero map::
2791
2792 sage: set_random_seed()
2793 sage: J1 = random_eja()
2794 sage: J2 = random_eja()
2795 sage: J = DirectSumEJA(J1,J2)
2796 sage: (iota_left, iota_right) = J.inclusions()
2797 sage: (pi_left, pi_right) = J.projections()
2798 sage: pi_left*iota_left == J1.one().operator()
2799 True
2800 sage: pi_right*iota_right == J2.one().operator()
2801 True
2802 sage: (pi_left*iota_right).is_zero()
2803 True
2804 sage: (pi_right*iota_left).is_zero()
2805 True
2806
2807 """
2808 (J1,J2) = self.factors()
2809 m = J1.dimension()
2810 n = J2.dimension()
2811 V_basis = self.vector_space().basis()
2812 # Need to specify the dimensions explicitly so that we don't
2813 # wind up with a zero-by-zero matrix when we want e.g. a
2814 # two-by-zero matrix (important for composing things).
2815 I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2816 I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2817 iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
2818 iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
2819 return (iota_left, iota_right)
2820
2821 def inner_product(self, x, y):
2822 r"""
2823 The standard Cartesian inner-product.
2824
2825 We project ``x`` and ``y`` onto our factors, and add up the
2826 inner-products from the subalgebras.
2827
2828 SETUP::
2829
2830
2831 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2832 ....: QuaternionHermitianEJA,
2833 ....: DirectSumEJA)
2834
2835 EXAMPLE::
2836
2837 sage: J1 = HadamardEJA(3,field=QQ)
2838 sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2839 sage: J = DirectSumEJA(J1,J2)
2840 sage: x1 = J1.one()
2841 sage: x2 = x1
2842 sage: y1 = J2.one()
2843 sage: y2 = y1
2844 sage: x1.inner_product(x2)
2845 3
2846 sage: y1.inner_product(y2)
2847 2
2848 sage: J.one().inner_product(J.one())
2849 5
2850
2851 """
2852 (pi_left, pi_right) = self.projections()
2853 x1 = pi_left(x)
2854 x2 = pi_right(x)
2855 y1 = pi_left(y)
2856 y2 = pi_right(y)
2857
2858 return (x1.inner_product(y1) + x2.inner_product(y2))
2859
2860
2861
2862 random_eja = ConcreteEuclideanJordanAlgebra.random_instance