]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: more cached charpoly coefficients.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide two other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. The Albert EJA is simply a special
47 case of the :class:`OctonionHermitianEJA` where the matrices are
48 three-by-three and the resulting space has dimension 27. And
49 last/least, the trivial EJA is exactly what you think it is; it could
50 also be obtained by constructing a dimension-zero instance of any of
51 the other algebras. Cartesian products of these are also supported
52 using the usual ``cartesian_product()`` function; as a result, we
53 support (up to isomorphism) all Euclidean Jordan algebras.
54
55 SETUP::
56
57 sage: from mjo.eja.eja_algebra import random_eja
58
59 EXAMPLES::
60
61 sage: random_eja()
62 Euclidean Jordan algebra of dimension...
63 """
64
65 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
66 from sage.categories.magmatic_algebras import MagmaticAlgebras
67 from sage.categories.sets_cat import cartesian_product
68 from sage.combinat.free_module import CombinatorialFreeModule
69 from sage.matrix.constructor import matrix
70 from sage.matrix.matrix_space import MatrixSpace
71 from sage.misc.cachefunc import cached_method
72 from sage.misc.table import table
73 from sage.modules.free_module import FreeModule, VectorSpace
74 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
75 PolynomialRing,
76 QuadraticField)
77 from mjo.eja.eja_element import FiniteDimensionalEJAElement
78 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
79 from mjo.eja.eja_utils import _all2list, _mat2vec
80
81 class FiniteDimensionalEJA(CombinatorialFreeModule):
82 r"""
83 A finite-dimensional Euclidean Jordan algebra.
84
85 INPUT:
86
87 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
88 form," which must be the same form as the arguments to
89 ``jordan_product`` and ``inner_product``. In reality, "matrix
90 form" can be either vectors, matrices, or a Cartesian product
91 (ordered tuple) of vectors or matrices. All of these would
92 ideally be vector spaces in sage with no special-casing
93 needed; but in reality we turn vectors into column-matrices
94 and Cartesian products `(a,b)` into column matrices
95 `(a,b)^{T}` after converting `a` and `b` themselves.
96
97 - ``jordan_product`` -- a function; afunction of two ``basis``
98 elements (in matrix form) that returns their jordan product,
99 also in matrix form; this will be applied to ``basis`` to
100 compute a multiplication table for the algebra.
101
102 - ``inner_product`` -- a function; a function of two ``basis``
103 elements (in matrix form) that returns their inner
104 product. This will be applied to ``basis`` to compute an
105 inner-product table (basically a matrix) for this algebra.
106
107 - ``matrix_space`` -- the space that your matrix basis lives in,
108 or ``None`` (the default). So long as your basis does not have
109 length zero you can omit this. But in trivial algebras, it is
110 required.
111
112 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
113 field for the algebra.
114
115 - ``orthonormalize`` -- boolean (default: ``True``); whether or
116 not to orthonormalize the basis. Doing so is expensive and
117 generally rules out using the rationals as your ``field``, but
118 is required for spectral decompositions.
119
120 SETUP::
121
122 sage: from mjo.eja.eja_algebra import random_eja
123
124 TESTS:
125
126 We should compute that an element subalgebra is associative even
127 if we circumvent the element method::
128
129 sage: set_random_seed()
130 sage: J = random_eja(field=QQ,orthonormalize=False)
131 sage: x = J.random_element()
132 sage: A = x.subalgebra_generated_by(orthonormalize=False)
133 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
134 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
135 True
136 """
137 Element = FiniteDimensionalEJAElement
138
139 def __init__(self,
140 basis,
141 jordan_product,
142 inner_product,
143 field=AA,
144 matrix_space=None,
145 orthonormalize=True,
146 associative=None,
147 cartesian_product=False,
148 check_field=True,
149 check_axioms=True,
150 prefix="b"):
151
152 n = len(basis)
153
154 if check_field:
155 if not field.is_subring(RR):
156 # Note: this does return true for the real algebraic
157 # field, the rationals, and any quadratic field where
158 # we've specified a real embedding.
159 raise ValueError("scalar field is not real")
160
161 if check_axioms:
162 # Check commutativity of the Jordan and inner-products.
163 # This has to be done before we build the multiplication
164 # and inner-product tables/matrices, because we take
165 # advantage of symmetry in the process.
166 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
167 for bi in basis
168 for bj in basis ):
169 raise ValueError("Jordan product is not commutative")
170
171 if not all( inner_product(bi,bj) == inner_product(bj,bi)
172 for bi in basis
173 for bj in basis ):
174 raise ValueError("inner-product is not commutative")
175
176
177 category = MagmaticAlgebras(field).FiniteDimensional()
178 category = category.WithBasis().Unital().Commutative()
179
180 if n <= 1:
181 # All zero- and one-dimensional algebras are just the real
182 # numbers with (some positive multiples of) the usual
183 # multiplication as its Jordan and inner-product.
184 associative = True
185 if associative is None:
186 # We should figure it out. As with check_axioms, we have to do
187 # this without the help of the _jordan_product_is_associative()
188 # method because we need to know the category before we
189 # initialize the algebra.
190 associative = all( jordan_product(jordan_product(bi,bj),bk)
191 ==
192 jordan_product(bi,jordan_product(bj,bk))
193 for bi in basis
194 for bj in basis
195 for bk in basis)
196
197 if associative:
198 # Element subalgebras can take advantage of this.
199 category = category.Associative()
200 if cartesian_product:
201 # Use join() here because otherwise we only get the
202 # "Cartesian product of..." and not the things themselves.
203 category = category.join([category,
204 category.CartesianProducts()])
205
206 # Call the superclass constructor so that we can use its from_vector()
207 # method to build our multiplication table.
208 CombinatorialFreeModule.__init__(self,
209 field,
210 range(n),
211 prefix=prefix,
212 category=category,
213 bracket=False)
214
215 # Now comes all of the hard work. We'll be constructing an
216 # ambient vector space V that our (vectorized) basis lives in,
217 # as well as a subspace W of V spanned by those (vectorized)
218 # basis elements. The W-coordinates are the coefficients that
219 # we see in things like x = 1*b1 + 2*b2.
220 vector_basis = basis
221
222 degree = 0
223 if n > 0:
224 degree = len(_all2list(basis[0]))
225
226 # Build an ambient space that fits our matrix basis when
227 # written out as "long vectors."
228 V = VectorSpace(field, degree)
229
230 # The matrix that will hole the orthonormal -> unorthonormal
231 # coordinate transformation.
232 self._deortho_matrix = None
233
234 if orthonormalize:
235 # Save a copy of the un-orthonormalized basis for later.
236 # Convert it to ambient V (vector) coordinates while we're
237 # at it, because we'd have to do it later anyway.
238 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
239
240 from mjo.eja.eja_utils import gram_schmidt
241 basis = tuple(gram_schmidt(basis, inner_product))
242
243 # Save the (possibly orthonormalized) matrix basis for
244 # later, as well as the space that its elements live in.
245 # In most cases we can deduce the matrix space, but when
246 # n == 0 (that is, there are no basis elements) we cannot.
247 self._matrix_basis = basis
248 if matrix_space is None:
249 self._matrix_space = self._matrix_basis[0].parent()
250 else:
251 self._matrix_space = matrix_space
252
253 # Now create the vector space for the algebra, which will have
254 # its own set of non-ambient coordinates (in terms of the
255 # supplied basis).
256 vector_basis = tuple( V(_all2list(b)) for b in basis )
257 W = V.span_of_basis( vector_basis, check=check_axioms)
258
259 if orthonormalize:
260 # Now "W" is the vector space of our algebra coordinates. The
261 # variables "X1", "X2",... refer to the entries of vectors in
262 # W. Thus to convert back and forth between the orthonormal
263 # coordinates and the given ones, we need to stick the original
264 # basis in W.
265 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
266 self._deortho_matrix = matrix( U.coordinate_vector(q)
267 for q in vector_basis )
268
269
270 # Now we actually compute the multiplication and inner-product
271 # tables/matrices using the possibly-orthonormalized basis.
272 self._inner_product_matrix = matrix.identity(field, n)
273 self._multiplication_table = [ [0 for j in range(i+1)]
274 for i in range(n) ]
275
276 # Note: the Jordan and inner-products are defined in terms
277 # of the ambient basis. It's important that their arguments
278 # are in ambient coordinates as well.
279 for i in range(n):
280 for j in range(i+1):
281 # ortho basis w.r.t. ambient coords
282 q_i = basis[i]
283 q_j = basis[j]
284
285 # The jordan product returns a matrixy answer, so we
286 # have to convert it to the algebra coordinates.
287 elt = jordan_product(q_i, q_j)
288 elt = W.coordinate_vector(V(_all2list(elt)))
289 self._multiplication_table[i][j] = self.from_vector(elt)
290
291 if not orthonormalize:
292 # If we're orthonormalizing the basis with respect
293 # to an inner-product, then the inner-product
294 # matrix with respect to the resulting basis is
295 # just going to be the identity.
296 ip = inner_product(q_i, q_j)
297 self._inner_product_matrix[i,j] = ip
298 self._inner_product_matrix[j,i] = ip
299
300 self._inner_product_matrix._cache = {'hermitian': True}
301 self._inner_product_matrix.set_immutable()
302
303 if check_axioms:
304 if not self._is_jordanian():
305 raise ValueError("Jordan identity does not hold")
306 if not self._inner_product_is_associative():
307 raise ValueError("inner product is not associative")
308
309
310 def _coerce_map_from_base_ring(self):
311 """
312 Disable the map from the base ring into the algebra.
313
314 Performing a nonsense conversion like this automatically
315 is counterpedagogical. The fallback is to try the usual
316 element constructor, which should also fail.
317
318 SETUP::
319
320 sage: from mjo.eja.eja_algebra import random_eja
321
322 TESTS::
323
324 sage: set_random_seed()
325 sage: J = random_eja()
326 sage: J(1)
327 Traceback (most recent call last):
328 ...
329 ValueError: not an element of this algebra
330
331 """
332 return None
333
334
335 def product_on_basis(self, i, j):
336 r"""
337 Returns the Jordan product of the `i` and `j`th basis elements.
338
339 This completely defines the Jordan product on the algebra, and
340 is used direclty by our superclass machinery to implement
341 :meth:`product`.
342
343 SETUP::
344
345 sage: from mjo.eja.eja_algebra import random_eja
346
347 TESTS::
348
349 sage: set_random_seed()
350 sage: J = random_eja()
351 sage: n = J.dimension()
352 sage: bi = J.zero()
353 sage: bj = J.zero()
354 sage: bi_bj = J.zero()*J.zero()
355 sage: if n > 0:
356 ....: i = ZZ.random_element(n)
357 ....: j = ZZ.random_element(n)
358 ....: bi = J.monomial(i)
359 ....: bj = J.monomial(j)
360 ....: bi_bj = J.product_on_basis(i,j)
361 sage: bi*bj == bi_bj
362 True
363
364 """
365 # We only stored the lower-triangular portion of the
366 # multiplication table.
367 if j <= i:
368 return self._multiplication_table[i][j]
369 else:
370 return self._multiplication_table[j][i]
371
372 def inner_product(self, x, y):
373 """
374 The inner product associated with this Euclidean Jordan algebra.
375
376 Defaults to the trace inner product, but can be overridden by
377 subclasses if they are sure that the necessary properties are
378 satisfied.
379
380 SETUP::
381
382 sage: from mjo.eja.eja_algebra import (random_eja,
383 ....: HadamardEJA,
384 ....: BilinearFormEJA)
385
386 EXAMPLES:
387
388 Our inner product is "associative," which means the following for
389 a symmetric bilinear form::
390
391 sage: set_random_seed()
392 sage: J = random_eja()
393 sage: x,y,z = J.random_elements(3)
394 sage: (x*y).inner_product(z) == y.inner_product(x*z)
395 True
396
397 TESTS:
398
399 Ensure that this is the usual inner product for the algebras
400 over `R^n`::
401
402 sage: set_random_seed()
403 sage: J = HadamardEJA.random_instance()
404 sage: x,y = J.random_elements(2)
405 sage: actual = x.inner_product(y)
406 sage: expected = x.to_vector().inner_product(y.to_vector())
407 sage: actual == expected
408 True
409
410 Ensure that this is one-half of the trace inner-product in a
411 BilinearFormEJA that isn't just the reals (when ``n`` isn't
412 one). This is in Faraut and Koranyi, and also my "On the
413 symmetry..." paper::
414
415 sage: set_random_seed()
416 sage: J = BilinearFormEJA.random_instance()
417 sage: n = J.dimension()
418 sage: x = J.random_element()
419 sage: y = J.random_element()
420 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
421 True
422
423 """
424 B = self._inner_product_matrix
425 return (B*x.to_vector()).inner_product(y.to_vector())
426
427
428 def is_associative(self):
429 r"""
430 Return whether or not this algebra's Jordan product is associative.
431
432 SETUP::
433
434 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
435
436 EXAMPLES::
437
438 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
439 sage: J.is_associative()
440 False
441 sage: x = sum(J.gens())
442 sage: A = x.subalgebra_generated_by(orthonormalize=False)
443 sage: A.is_associative()
444 True
445
446 """
447 return "Associative" in self.category().axioms()
448
449 def _is_commutative(self):
450 r"""
451 Whether or not this algebra's multiplication table is commutative.
452
453 This method should of course always return ``True``, unless
454 this algebra was constructed with ``check_axioms=False`` and
455 passed an invalid multiplication table.
456 """
457 return all( x*y == y*x for x in self.gens() for y in self.gens() )
458
459 def _is_jordanian(self):
460 r"""
461 Whether or not this algebra's multiplication table respects the
462 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
463
464 We only check one arrangement of `x` and `y`, so for a
465 ``True`` result to be truly true, you should also check
466 :meth:`_is_commutative`. This method should of course always
467 return ``True``, unless this algebra was constructed with
468 ``check_axioms=False`` and passed an invalid multiplication table.
469 """
470 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
471 ==
472 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
473 for i in range(self.dimension())
474 for j in range(self.dimension()) )
475
476 def _jordan_product_is_associative(self):
477 r"""
478 Return whether or not this algebra's Jordan product is
479 associative; that is, whether or not `x*(y*z) = (x*y)*z`
480 for all `x,y,x`.
481
482 This method should agree with :meth:`is_associative` unless
483 you lied about the value of the ``associative`` parameter
484 when you constructed the algebra.
485
486 SETUP::
487
488 sage: from mjo.eja.eja_algebra import (random_eja,
489 ....: RealSymmetricEJA,
490 ....: ComplexHermitianEJA,
491 ....: QuaternionHermitianEJA)
492
493 EXAMPLES::
494
495 sage: J = RealSymmetricEJA(4, orthonormalize=False)
496 sage: J._jordan_product_is_associative()
497 False
498 sage: x = sum(J.gens())
499 sage: A = x.subalgebra_generated_by()
500 sage: A._jordan_product_is_associative()
501 True
502
503 ::
504
505 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
506 sage: J._jordan_product_is_associative()
507 False
508 sage: x = sum(J.gens())
509 sage: A = x.subalgebra_generated_by(orthonormalize=False)
510 sage: A._jordan_product_is_associative()
511 True
512
513 ::
514
515 sage: J = QuaternionHermitianEJA(2)
516 sage: J._jordan_product_is_associative()
517 False
518 sage: x = sum(J.gens())
519 sage: A = x.subalgebra_generated_by()
520 sage: A._jordan_product_is_associative()
521 True
522
523 TESTS:
524
525 The values we've presupplied to the constructors agree with
526 the computation::
527
528 sage: set_random_seed()
529 sage: J = random_eja()
530 sage: J.is_associative() == J._jordan_product_is_associative()
531 True
532
533 """
534 R = self.base_ring()
535
536 # Used to check whether or not something is zero.
537 epsilon = R.zero()
538 if not R.is_exact():
539 # I don't know of any examples that make this magnitude
540 # necessary because I don't know how to make an
541 # associative algebra when the element subalgebra
542 # construction is unreliable (as it is over RDF; we can't
543 # find the degree of an element because we can't compute
544 # the rank of a matrix). But even multiplication of floats
545 # is non-associative, so *some* epsilon is needed... let's
546 # just take the one from _inner_product_is_associative?
547 epsilon = 1e-15
548
549 for i in range(self.dimension()):
550 for j in range(self.dimension()):
551 for k in range(self.dimension()):
552 x = self.monomial(i)
553 y = self.monomial(j)
554 z = self.monomial(k)
555 diff = (x*y)*z - x*(y*z)
556
557 if diff.norm() > epsilon:
558 return False
559
560 return True
561
562 def _inner_product_is_associative(self):
563 r"""
564 Return whether or not this algebra's inner product `B` is
565 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
566
567 This method should of course always return ``True``, unless
568 this algebra was constructed with ``check_axioms=False`` and
569 passed an invalid Jordan or inner-product.
570 """
571 R = self.base_ring()
572
573 # Used to check whether or not something is zero.
574 epsilon = R.zero()
575 if not R.is_exact():
576 # This choice is sufficient to allow the construction of
577 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
578 epsilon = 1e-15
579
580 for i in range(self.dimension()):
581 for j in range(self.dimension()):
582 for k in range(self.dimension()):
583 x = self.monomial(i)
584 y = self.monomial(j)
585 z = self.monomial(k)
586 diff = (x*y).inner_product(z) - x.inner_product(y*z)
587
588 if diff.abs() > epsilon:
589 return False
590
591 return True
592
593 def _element_constructor_(self, elt):
594 """
595 Construct an element of this algebra from its vector or matrix
596 representation.
597
598 This gets called only after the parent element _call_ method
599 fails to find a coercion for the argument.
600
601 SETUP::
602
603 sage: from mjo.eja.eja_algebra import (random_eja,
604 ....: JordanSpinEJA,
605 ....: HadamardEJA,
606 ....: RealSymmetricEJA)
607
608 EXAMPLES:
609
610 The identity in `S^n` is converted to the identity in the EJA::
611
612 sage: J = RealSymmetricEJA(3)
613 sage: I = matrix.identity(QQ,3)
614 sage: J(I) == J.one()
615 True
616
617 This skew-symmetric matrix can't be represented in the EJA::
618
619 sage: J = RealSymmetricEJA(3)
620 sage: A = matrix(QQ,3, lambda i,j: i-j)
621 sage: J(A)
622 Traceback (most recent call last):
623 ...
624 ValueError: not an element of this algebra
625
626 Tuples work as well, provided that the matrix basis for the
627 algebra consists of them::
628
629 sage: J1 = HadamardEJA(3)
630 sage: J2 = RealSymmetricEJA(2)
631 sage: J = cartesian_product([J1,J2])
632 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
633 b1 + b5
634
635 TESTS:
636
637 Ensure that we can convert any element back and forth
638 faithfully between its matrix and algebra representations::
639
640 sage: set_random_seed()
641 sage: J = random_eja()
642 sage: x = J.random_element()
643 sage: J(x.to_matrix()) == x
644 True
645
646 We cannot coerce elements between algebras just because their
647 matrix representations are compatible::
648
649 sage: J1 = HadamardEJA(3)
650 sage: J2 = JordanSpinEJA(3)
651 sage: J2(J1.one())
652 Traceback (most recent call last):
653 ...
654 ValueError: not an element of this algebra
655 sage: J1(J2.zero())
656 Traceback (most recent call last):
657 ...
658 ValueError: not an element of this algebra
659 """
660 msg = "not an element of this algebra"
661 if elt in self.base_ring():
662 # Ensure that no base ring -> algebra coercion is performed
663 # by this method. There's some stupidity in sage that would
664 # otherwise propagate to this method; for example, sage thinks
665 # that the integer 3 belongs to the space of 2-by-2 matrices.
666 raise ValueError(msg)
667
668 try:
669 # Try to convert a vector into a column-matrix...
670 elt = elt.column()
671 except (AttributeError, TypeError):
672 # and ignore failure, because we weren't really expecting
673 # a vector as an argument anyway.
674 pass
675
676 if elt not in self.matrix_space():
677 raise ValueError(msg)
678
679 # Thanks for nothing! Matrix spaces aren't vector spaces in
680 # Sage, so we have to figure out its matrix-basis coordinates
681 # ourselves. We use the basis space's ring instead of the
682 # element's ring because the basis space might be an algebraic
683 # closure whereas the base ring of the 3-by-3 identity matrix
684 # could be QQ instead of QQbar.
685 #
686 # And, we also have to handle Cartesian product bases (when
687 # the matrix basis consists of tuples) here. The "good news"
688 # is that we're already converting everything to long vectors,
689 # and that strategy works for tuples as well.
690 #
691 # We pass check=False because the matrix basis is "guaranteed"
692 # to be linearly independent... right? Ha ha.
693 elt = _all2list(elt)
694 V = VectorSpace(self.base_ring(), len(elt))
695 W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
696 check=False)
697
698 try:
699 coords = W.coordinate_vector(V(elt))
700 except ArithmeticError: # vector is not in free module
701 raise ValueError(msg)
702
703 return self.from_vector(coords)
704
705 def _repr_(self):
706 """
707 Return a string representation of ``self``.
708
709 SETUP::
710
711 sage: from mjo.eja.eja_algebra import JordanSpinEJA
712
713 TESTS:
714
715 Ensure that it says what we think it says::
716
717 sage: JordanSpinEJA(2, field=AA)
718 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
719 sage: JordanSpinEJA(3, field=RDF)
720 Euclidean Jordan algebra of dimension 3 over Real Double Field
721
722 """
723 fmt = "Euclidean Jordan algebra of dimension {} over {}"
724 return fmt.format(self.dimension(), self.base_ring())
725
726
727 @cached_method
728 def characteristic_polynomial_of(self):
729 """
730 Return the algebra's "characteristic polynomial of" function,
731 which is itself a multivariate polynomial that, when evaluated
732 at the coordinates of some algebra element, returns that
733 element's characteristic polynomial.
734
735 The resulting polynomial has `n+1` variables, where `n` is the
736 dimension of this algebra. The first `n` variables correspond to
737 the coordinates of an algebra element: when evaluated at the
738 coordinates of an algebra element with respect to a certain
739 basis, the result is a univariate polynomial (in the one
740 remaining variable ``t``), namely the characteristic polynomial
741 of that element.
742
743 SETUP::
744
745 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
746
747 EXAMPLES:
748
749 The characteristic polynomial in the spin algebra is given in
750 Alizadeh, Example 11.11::
751
752 sage: J = JordanSpinEJA(3)
753 sage: p = J.characteristic_polynomial_of(); p
754 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
755 sage: xvec = J.one().to_vector()
756 sage: p(*xvec)
757 t^2 - 2*t + 1
758
759 By definition, the characteristic polynomial is a monic
760 degree-zero polynomial in a rank-zero algebra. Note that
761 Cayley-Hamilton is indeed satisfied since the polynomial
762 ``1`` evaluates to the identity element of the algebra on
763 any argument::
764
765 sage: J = TrivialEJA()
766 sage: J.characteristic_polynomial_of()
767 1
768
769 """
770 r = self.rank()
771 n = self.dimension()
772
773 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
774 a = self._charpoly_coefficients()
775
776 # We go to a bit of trouble here to reorder the
777 # indeterminates, so that it's easier to evaluate the
778 # characteristic polynomial at x's coordinates and get back
779 # something in terms of t, which is what we want.
780 S = PolynomialRing(self.base_ring(),'t')
781 t = S.gen(0)
782 if r > 0:
783 R = a[0].parent()
784 S = PolynomialRing(S, R.variable_names())
785 t = S(t)
786
787 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
788
789 def coordinate_polynomial_ring(self):
790 r"""
791 The multivariate polynomial ring in which this algebra's
792 :meth:`characteristic_polynomial_of` lives.
793
794 SETUP::
795
796 sage: from mjo.eja.eja_algebra import (HadamardEJA,
797 ....: RealSymmetricEJA)
798
799 EXAMPLES::
800
801 sage: J = HadamardEJA(2)
802 sage: J.coordinate_polynomial_ring()
803 Multivariate Polynomial Ring in X1, X2...
804 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
805 sage: J.coordinate_polynomial_ring()
806 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
807
808 """
809 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
810 return PolynomialRing(self.base_ring(), var_names)
811
812 def inner_product(self, x, y):
813 """
814 The inner product associated with this Euclidean Jordan algebra.
815
816 Defaults to the trace inner product, but can be overridden by
817 subclasses if they are sure that the necessary properties are
818 satisfied.
819
820 SETUP::
821
822 sage: from mjo.eja.eja_algebra import (random_eja,
823 ....: HadamardEJA,
824 ....: BilinearFormEJA)
825
826 EXAMPLES:
827
828 Our inner product is "associative," which means the following for
829 a symmetric bilinear form::
830
831 sage: set_random_seed()
832 sage: J = random_eja()
833 sage: x,y,z = J.random_elements(3)
834 sage: (x*y).inner_product(z) == y.inner_product(x*z)
835 True
836
837 TESTS:
838
839 Ensure that this is the usual inner product for the algebras
840 over `R^n`::
841
842 sage: set_random_seed()
843 sage: J = HadamardEJA.random_instance()
844 sage: x,y = J.random_elements(2)
845 sage: actual = x.inner_product(y)
846 sage: expected = x.to_vector().inner_product(y.to_vector())
847 sage: actual == expected
848 True
849
850 Ensure that this is one-half of the trace inner-product in a
851 BilinearFormEJA that isn't just the reals (when ``n`` isn't
852 one). This is in Faraut and Koranyi, and also my "On the
853 symmetry..." paper::
854
855 sage: set_random_seed()
856 sage: J = BilinearFormEJA.random_instance()
857 sage: n = J.dimension()
858 sage: x = J.random_element()
859 sage: y = J.random_element()
860 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
861 True
862 """
863 B = self._inner_product_matrix
864 return (B*x.to_vector()).inner_product(y.to_vector())
865
866
867 def is_trivial(self):
868 """
869 Return whether or not this algebra is trivial.
870
871 A trivial algebra contains only the zero element.
872
873 SETUP::
874
875 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
876 ....: TrivialEJA)
877
878 EXAMPLES::
879
880 sage: J = ComplexHermitianEJA(3)
881 sage: J.is_trivial()
882 False
883
884 ::
885
886 sage: J = TrivialEJA()
887 sage: J.is_trivial()
888 True
889
890 """
891 return self.dimension() == 0
892
893
894 def multiplication_table(self):
895 """
896 Return a visual representation of this algebra's multiplication
897 table (on basis elements).
898
899 SETUP::
900
901 sage: from mjo.eja.eja_algebra import JordanSpinEJA
902
903 EXAMPLES::
904
905 sage: J = JordanSpinEJA(4)
906 sage: J.multiplication_table()
907 +----++----+----+----+----+
908 | * || b0 | b1 | b2 | b3 |
909 +====++====+====+====+====+
910 | b0 || b0 | b1 | b2 | b3 |
911 +----++----+----+----+----+
912 | b1 || b1 | b0 | 0 | 0 |
913 +----++----+----+----+----+
914 | b2 || b2 | 0 | b0 | 0 |
915 +----++----+----+----+----+
916 | b3 || b3 | 0 | 0 | b0 |
917 +----++----+----+----+----+
918
919 """
920 n = self.dimension()
921 # Prepend the header row.
922 M = [["*"] + list(self.gens())]
923
924 # And to each subsequent row, prepend an entry that belongs to
925 # the left-side "header column."
926 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
927 for j in range(n) ]
928 for i in range(n) ]
929
930 return table(M, header_row=True, header_column=True, frame=True)
931
932
933 def matrix_basis(self):
934 """
935 Return an (often more natural) representation of this algebras
936 basis as an ordered tuple of matrices.
937
938 Every finite-dimensional Euclidean Jordan Algebra is a, up to
939 Jordan isomorphism, a direct sum of five simple
940 algebras---four of which comprise Hermitian matrices. And the
941 last type of algebra can of course be thought of as `n`-by-`1`
942 column matrices (ambiguusly called column vectors) to avoid
943 special cases. As a result, matrices (and column vectors) are
944 a natural representation format for Euclidean Jordan algebra
945 elements.
946
947 But, when we construct an algebra from a basis of matrices,
948 those matrix representations are lost in favor of coordinate
949 vectors *with respect to* that basis. We could eventually
950 convert back if we tried hard enough, but having the original
951 representations handy is valuable enough that we simply store
952 them and return them from this method.
953
954 Why implement this for non-matrix algebras? Avoiding special
955 cases for the :class:`BilinearFormEJA` pays with simplicity in
956 its own right. But mainly, we would like to be able to assume
957 that elements of a :class:`CartesianProductEJA` can be displayed
958 nicely, without having to have special classes for direct sums
959 one of whose components was a matrix algebra.
960
961 SETUP::
962
963 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
964 ....: RealSymmetricEJA)
965
966 EXAMPLES::
967
968 sage: J = RealSymmetricEJA(2)
969 sage: J.basis()
970 Finite family {0: b0, 1: b1, 2: b2}
971 sage: J.matrix_basis()
972 (
973 [1 0] [ 0 0.7071067811865475?] [0 0]
974 [0 0], [0.7071067811865475? 0], [0 1]
975 )
976
977 ::
978
979 sage: J = JordanSpinEJA(2)
980 sage: J.basis()
981 Finite family {0: b0, 1: b1}
982 sage: J.matrix_basis()
983 (
984 [1] [0]
985 [0], [1]
986 )
987 """
988 return self._matrix_basis
989
990
991 def matrix_space(self):
992 """
993 Return the matrix space in which this algebra's elements live, if
994 we think of them as matrices (including column vectors of the
995 appropriate size).
996
997 "By default" this will be an `n`-by-`1` column-matrix space,
998 except when the algebra is trivial. There it's `n`-by-`n`
999 (where `n` is zero), to ensure that two elements of the matrix
1000 space (empty matrices) can be multiplied. For algebras of
1001 matrices, this returns the space in which their
1002 real embeddings live.
1003
1004 SETUP::
1005
1006 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1007 ....: JordanSpinEJA,
1008 ....: QuaternionHermitianEJA,
1009 ....: TrivialEJA)
1010
1011 EXAMPLES:
1012
1013 By default, the matrix representation is just a column-matrix
1014 equivalent to the vector representation::
1015
1016 sage: J = JordanSpinEJA(3)
1017 sage: J.matrix_space()
1018 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1019 Real Field
1020
1021 The matrix representation in the trivial algebra is
1022 zero-by-zero instead of the usual `n`-by-one::
1023
1024 sage: J = TrivialEJA()
1025 sage: J.matrix_space()
1026 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1027 Real Field
1028
1029 The matrix space for complex/quaternion Hermitian matrix EJA
1030 is the space in which their real-embeddings live, not the
1031 original complex/quaternion matrix space::
1032
1033 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1034 sage: J.matrix_space()
1035 Module of 2 by 2 matrices with entries in Algebraic Field over
1036 the scalar ring Rational Field
1037 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1038 sage: J.matrix_space()
1039 Module of 1 by 1 matrices with entries in Quaternion
1040 Algebra (-1, -1) with base ring Rational Field over
1041 the scalar ring Rational Field
1042
1043 """
1044 return self._matrix_space
1045
1046
1047 @cached_method
1048 def one(self):
1049 """
1050 Return the unit element of this algebra.
1051
1052 SETUP::
1053
1054 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1055 ....: random_eja)
1056
1057 EXAMPLES:
1058
1059 We can compute unit element in the Hadamard EJA::
1060
1061 sage: J = HadamardEJA(5)
1062 sage: J.one()
1063 b0 + b1 + b2 + b3 + b4
1064
1065 The unit element in the Hadamard EJA is inherited in the
1066 subalgebras generated by its elements::
1067
1068 sage: J = HadamardEJA(5)
1069 sage: J.one()
1070 b0 + b1 + b2 + b3 + b4
1071 sage: x = sum(J.gens())
1072 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1073 sage: A.one()
1074 c0
1075 sage: A.one().superalgebra_element()
1076 b0 + b1 + b2 + b3 + b4
1077
1078 TESTS:
1079
1080 The identity element acts like the identity, regardless of
1081 whether or not we orthonormalize::
1082
1083 sage: set_random_seed()
1084 sage: J = random_eja()
1085 sage: x = J.random_element()
1086 sage: J.one()*x == x and x*J.one() == x
1087 True
1088 sage: A = x.subalgebra_generated_by()
1089 sage: y = A.random_element()
1090 sage: A.one()*y == y and y*A.one() == y
1091 True
1092
1093 ::
1094
1095 sage: set_random_seed()
1096 sage: J = random_eja(field=QQ, orthonormalize=False)
1097 sage: x = J.random_element()
1098 sage: J.one()*x == x and x*J.one() == x
1099 True
1100 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1101 sage: y = A.random_element()
1102 sage: A.one()*y == y and y*A.one() == y
1103 True
1104
1105 The matrix of the unit element's operator is the identity,
1106 regardless of the base field and whether or not we
1107 orthonormalize::
1108
1109 sage: set_random_seed()
1110 sage: J = random_eja()
1111 sage: actual = J.one().operator().matrix()
1112 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1113 sage: actual == expected
1114 True
1115 sage: x = J.random_element()
1116 sage: A = x.subalgebra_generated_by()
1117 sage: actual = A.one().operator().matrix()
1118 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1119 sage: actual == expected
1120 True
1121
1122 ::
1123
1124 sage: set_random_seed()
1125 sage: J = random_eja(field=QQ, orthonormalize=False)
1126 sage: actual = J.one().operator().matrix()
1127 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1128 sage: actual == expected
1129 True
1130 sage: x = J.random_element()
1131 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1132 sage: actual = A.one().operator().matrix()
1133 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1134 sage: actual == expected
1135 True
1136
1137 Ensure that the cached unit element (often precomputed by
1138 hand) agrees with the computed one::
1139
1140 sage: set_random_seed()
1141 sage: J = random_eja()
1142 sage: cached = J.one()
1143 sage: J.one.clear_cache()
1144 sage: J.one() == cached
1145 True
1146
1147 ::
1148
1149 sage: set_random_seed()
1150 sage: J = random_eja(field=QQ, orthonormalize=False)
1151 sage: cached = J.one()
1152 sage: J.one.clear_cache()
1153 sage: J.one() == cached
1154 True
1155
1156 """
1157 # We can brute-force compute the matrices of the operators
1158 # that correspond to the basis elements of this algebra.
1159 # If some linear combination of those basis elements is the
1160 # algebra identity, then the same linear combination of
1161 # their matrices has to be the identity matrix.
1162 #
1163 # Of course, matrices aren't vectors in sage, so we have to
1164 # appeal to the "long vectors" isometry.
1165 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1166
1167 # Now we use basic linear algebra to find the coefficients,
1168 # of the matrices-as-vectors-linear-combination, which should
1169 # work for the original algebra basis too.
1170 A = matrix(self.base_ring(), oper_vecs)
1171
1172 # We used the isometry on the left-hand side already, but we
1173 # still need to do it for the right-hand side. Recall that we
1174 # wanted something that summed to the identity matrix.
1175 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1176
1177 # Now if there's an identity element in the algebra, this
1178 # should work. We solve on the left to avoid having to
1179 # transpose the matrix "A".
1180 return self.from_vector(A.solve_left(b))
1181
1182
1183 def peirce_decomposition(self, c):
1184 """
1185 The Peirce decomposition of this algebra relative to the
1186 idempotent ``c``.
1187
1188 In the future, this can be extended to a complete system of
1189 orthogonal idempotents.
1190
1191 INPUT:
1192
1193 - ``c`` -- an idempotent of this algebra.
1194
1195 OUTPUT:
1196
1197 A triple (J0, J5, J1) containing two subalgebras and one subspace
1198 of this algebra,
1199
1200 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1201 corresponding to the eigenvalue zero.
1202
1203 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1204 corresponding to the eigenvalue one-half.
1205
1206 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1207 corresponding to the eigenvalue one.
1208
1209 These are the only possible eigenspaces for that operator, and this
1210 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1211 orthogonal, and are subalgebras of this algebra with the appropriate
1212 restrictions.
1213
1214 SETUP::
1215
1216 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1217
1218 EXAMPLES:
1219
1220 The canonical example comes from the symmetric matrices, which
1221 decompose into diagonal and off-diagonal parts::
1222
1223 sage: J = RealSymmetricEJA(3)
1224 sage: C = matrix(QQ, [ [1,0,0],
1225 ....: [0,1,0],
1226 ....: [0,0,0] ])
1227 sage: c = J(C)
1228 sage: J0,J5,J1 = J.peirce_decomposition(c)
1229 sage: J0
1230 Euclidean Jordan algebra of dimension 1...
1231 sage: J5
1232 Vector space of degree 6 and dimension 2...
1233 sage: J1
1234 Euclidean Jordan algebra of dimension 3...
1235 sage: J0.one().to_matrix()
1236 [0 0 0]
1237 [0 0 0]
1238 [0 0 1]
1239 sage: orig_df = AA.options.display_format
1240 sage: AA.options.display_format = 'radical'
1241 sage: J.from_vector(J5.basis()[0]).to_matrix()
1242 [ 0 0 1/2*sqrt(2)]
1243 [ 0 0 0]
1244 [1/2*sqrt(2) 0 0]
1245 sage: J.from_vector(J5.basis()[1]).to_matrix()
1246 [ 0 0 0]
1247 [ 0 0 1/2*sqrt(2)]
1248 [ 0 1/2*sqrt(2) 0]
1249 sage: AA.options.display_format = orig_df
1250 sage: J1.one().to_matrix()
1251 [1 0 0]
1252 [0 1 0]
1253 [0 0 0]
1254
1255 TESTS:
1256
1257 Every algebra decomposes trivially with respect to its identity
1258 element::
1259
1260 sage: set_random_seed()
1261 sage: J = random_eja()
1262 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1263 sage: J0.dimension() == 0 and J5.dimension() == 0
1264 True
1265 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1266 True
1267
1268 The decomposition is into eigenspaces, and its components are
1269 therefore necessarily orthogonal. Moreover, the identity
1270 elements in the two subalgebras are the projections onto their
1271 respective subspaces of the superalgebra's identity element::
1272
1273 sage: set_random_seed()
1274 sage: J = random_eja()
1275 sage: x = J.random_element()
1276 sage: if not J.is_trivial():
1277 ....: while x.is_nilpotent():
1278 ....: x = J.random_element()
1279 sage: c = x.subalgebra_idempotent()
1280 sage: J0,J5,J1 = J.peirce_decomposition(c)
1281 sage: ipsum = 0
1282 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1283 ....: w = w.superalgebra_element()
1284 ....: y = J.from_vector(y)
1285 ....: z = z.superalgebra_element()
1286 ....: ipsum += w.inner_product(y).abs()
1287 ....: ipsum += w.inner_product(z).abs()
1288 ....: ipsum += y.inner_product(z).abs()
1289 sage: ipsum
1290 0
1291 sage: J1(c) == J1.one()
1292 True
1293 sage: J0(J.one() - c) == J0.one()
1294 True
1295
1296 """
1297 if not c.is_idempotent():
1298 raise ValueError("element is not idempotent: %s" % c)
1299
1300 # Default these to what they should be if they turn out to be
1301 # trivial, because eigenspaces_left() won't return eigenvalues
1302 # corresponding to trivial spaces (e.g. it returns only the
1303 # eigenspace corresponding to lambda=1 if you take the
1304 # decomposition relative to the identity element).
1305 trivial = self.subalgebra(())
1306 J0 = trivial # eigenvalue zero
1307 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1308 J1 = trivial # eigenvalue one
1309
1310 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1311 if eigval == ~(self.base_ring()(2)):
1312 J5 = eigspace
1313 else:
1314 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1315 subalg = self.subalgebra(gens, check_axioms=False)
1316 if eigval == 0:
1317 J0 = subalg
1318 elif eigval == 1:
1319 J1 = subalg
1320 else:
1321 raise ValueError("unexpected eigenvalue: %s" % eigval)
1322
1323 return (J0, J5, J1)
1324
1325
1326 def random_element(self, thorough=False):
1327 r"""
1328 Return a random element of this algebra.
1329
1330 Our algebra superclass method only returns a linear
1331 combination of at most two basis elements. We instead
1332 want the vector space "random element" method that
1333 returns a more diverse selection.
1334
1335 INPUT:
1336
1337 - ``thorough`` -- (boolean; default False) whether or not we
1338 should generate irrational coefficients for the random
1339 element when our base ring is irrational; this slows the
1340 algebra operations to a crawl, but any truly random method
1341 should include them
1342
1343 """
1344 # For a general base ring... maybe we can trust this to do the
1345 # right thing? Unlikely, but.
1346 V = self.vector_space()
1347 v = V.random_element()
1348
1349 if self.base_ring() is AA:
1350 # The "random element" method of the algebraic reals is
1351 # stupid at the moment, and only returns integers between
1352 # -2 and 2, inclusive:
1353 #
1354 # https://trac.sagemath.org/ticket/30875
1355 #
1356 # Instead, we implement our own "random vector" method,
1357 # and then coerce that into the algebra. We use the vector
1358 # space degree here instead of the dimension because a
1359 # subalgebra could (for example) be spanned by only two
1360 # vectors, each with five coordinates. We need to
1361 # generate all five coordinates.
1362 if thorough:
1363 v *= QQbar.random_element().real()
1364 else:
1365 v *= QQ.random_element()
1366
1367 return self.from_vector(V.coordinate_vector(v))
1368
1369 def random_elements(self, count, thorough=False):
1370 """
1371 Return ``count`` random elements as a tuple.
1372
1373 INPUT:
1374
1375 - ``thorough`` -- (boolean; default False) whether or not we
1376 should generate irrational coefficients for the random
1377 elements when our base ring is irrational; this slows the
1378 algebra operations to a crawl, but any truly random method
1379 should include them
1380
1381 SETUP::
1382
1383 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1384
1385 EXAMPLES::
1386
1387 sage: J = JordanSpinEJA(3)
1388 sage: x,y,z = J.random_elements(3)
1389 sage: all( [ x in J, y in J, z in J ])
1390 True
1391 sage: len( J.random_elements(10) ) == 10
1392 True
1393
1394 """
1395 return tuple( self.random_element(thorough)
1396 for idx in range(count) )
1397
1398
1399 @cached_method
1400 def _charpoly_coefficients(self):
1401 r"""
1402 The `r` polynomial coefficients of the "characteristic polynomial
1403 of" function.
1404
1405 SETUP::
1406
1407 sage: from mjo.eja.eja_algebra import random_eja
1408
1409 TESTS:
1410
1411 The theory shows that these are all homogeneous polynomials of
1412 a known degree::
1413
1414 sage: set_random_seed()
1415 sage: J = random_eja()
1416 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1417 True
1418
1419 """
1420 n = self.dimension()
1421 R = self.coordinate_polynomial_ring()
1422 vars = R.gens()
1423 F = R.fraction_field()
1424
1425 def L_x_i_j(i,j):
1426 # From a result in my book, these are the entries of the
1427 # basis representation of L_x.
1428 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1429 for k in range(n) )
1430
1431 L_x = matrix(F, n, n, L_x_i_j)
1432
1433 r = None
1434 if self.rank.is_in_cache():
1435 r = self.rank()
1436 # There's no need to pad the system with redundant
1437 # columns if we *know* they'll be redundant.
1438 n = r
1439
1440 # Compute an extra power in case the rank is equal to
1441 # the dimension (otherwise, we would stop at x^(r-1)).
1442 x_powers = [ (L_x**k)*self.one().to_vector()
1443 for k in range(n+1) ]
1444 A = matrix.column(F, x_powers[:n])
1445 AE = A.extended_echelon_form()
1446 E = AE[:,n:]
1447 A_rref = AE[:,:n]
1448 if r is None:
1449 r = A_rref.rank()
1450 b = x_powers[r]
1451
1452 # The theory says that only the first "r" coefficients are
1453 # nonzero, and they actually live in the original polynomial
1454 # ring and not the fraction field. We negate them because in
1455 # the actual characteristic polynomial, they get moved to the
1456 # other side where x^r lives. We don't bother to trim A_rref
1457 # down to a square matrix and solve the resulting system,
1458 # because the upper-left r-by-r portion of A_rref is
1459 # guaranteed to be the identity matrix, so e.g.
1460 #
1461 # A_rref.solve_right(Y)
1462 #
1463 # would just be returning Y.
1464 return (-E*b)[:r].change_ring(R)
1465
1466 @cached_method
1467 def rank(self):
1468 r"""
1469 Return the rank of this EJA.
1470
1471 This is a cached method because we know the rank a priori for
1472 all of the algebras we can construct. Thus we can avoid the
1473 expensive ``_charpoly_coefficients()`` call unless we truly
1474 need to compute the whole characteristic polynomial.
1475
1476 SETUP::
1477
1478 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1479 ....: JordanSpinEJA,
1480 ....: RealSymmetricEJA,
1481 ....: ComplexHermitianEJA,
1482 ....: QuaternionHermitianEJA,
1483 ....: random_eja)
1484
1485 EXAMPLES:
1486
1487 The rank of the Jordan spin algebra is always two::
1488
1489 sage: JordanSpinEJA(2).rank()
1490 2
1491 sage: JordanSpinEJA(3).rank()
1492 2
1493 sage: JordanSpinEJA(4).rank()
1494 2
1495
1496 The rank of the `n`-by-`n` Hermitian real, complex, or
1497 quaternion matrices is `n`::
1498
1499 sage: RealSymmetricEJA(4).rank()
1500 4
1501 sage: ComplexHermitianEJA(3).rank()
1502 3
1503 sage: QuaternionHermitianEJA(2).rank()
1504 2
1505
1506 TESTS:
1507
1508 Ensure that every EJA that we know how to construct has a
1509 positive integer rank, unless the algebra is trivial in
1510 which case its rank will be zero::
1511
1512 sage: set_random_seed()
1513 sage: J = random_eja()
1514 sage: r = J.rank()
1515 sage: r in ZZ
1516 True
1517 sage: r > 0 or (r == 0 and J.is_trivial())
1518 True
1519
1520 Ensure that computing the rank actually works, since the ranks
1521 of all simple algebras are known and will be cached by default::
1522
1523 sage: set_random_seed() # long time
1524 sage: J = random_eja() # long time
1525 sage: cached = J.rank() # long time
1526 sage: J.rank.clear_cache() # long time
1527 sage: J.rank() == cached # long time
1528 True
1529
1530 """
1531 return len(self._charpoly_coefficients())
1532
1533
1534 def subalgebra(self, basis, **kwargs):
1535 r"""
1536 Create a subalgebra of this algebra from the given basis.
1537 """
1538 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1539 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1540
1541
1542 def vector_space(self):
1543 """
1544 Return the vector space that underlies this algebra.
1545
1546 SETUP::
1547
1548 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1549
1550 EXAMPLES::
1551
1552 sage: J = RealSymmetricEJA(2)
1553 sage: J.vector_space()
1554 Vector space of dimension 3 over...
1555
1556 """
1557 return self.zero().to_vector().parent().ambient_vector_space()
1558
1559
1560
1561 class RationalBasisEJA(FiniteDimensionalEJA):
1562 r"""
1563 Algebras whose supplied basis elements have all rational entries.
1564
1565 SETUP::
1566
1567 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1568
1569 EXAMPLES:
1570
1571 The supplied basis is orthonormalized by default::
1572
1573 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1574 sage: J = BilinearFormEJA(B)
1575 sage: J.matrix_basis()
1576 (
1577 [1] [ 0] [ 0]
1578 [0] [1/5] [32/5]
1579 [0], [ 0], [ 5]
1580 )
1581
1582 """
1583 def __init__(self,
1584 basis,
1585 jordan_product,
1586 inner_product,
1587 field=AA,
1588 check_field=True,
1589 **kwargs):
1590
1591 if check_field:
1592 # Abuse the check_field parameter to check that the entries of
1593 # out basis (in ambient coordinates) are in the field QQ.
1594 # Use _all2list to get the vector coordinates of octonion
1595 # entries and not the octonions themselves (which are not
1596 # rational).
1597 if not all( all(b_i in QQ for b_i in _all2list(b))
1598 for b in basis ):
1599 raise TypeError("basis not rational")
1600
1601 super().__init__(basis,
1602 jordan_product,
1603 inner_product,
1604 field=field,
1605 check_field=check_field,
1606 **kwargs)
1607
1608 self._rational_algebra = None
1609 if field is not QQ:
1610 # There's no point in constructing the extra algebra if this
1611 # one is already rational.
1612 #
1613 # Note: the same Jordan and inner-products work here,
1614 # because they are necessarily defined with respect to
1615 # ambient coordinates and not any particular basis.
1616 self._rational_algebra = FiniteDimensionalEJA(
1617 basis,
1618 jordan_product,
1619 inner_product,
1620 field=QQ,
1621 matrix_space=self.matrix_space(),
1622 associative=self.is_associative(),
1623 orthonormalize=False,
1624 check_field=False,
1625 check_axioms=False)
1626
1627 @cached_method
1628 def _charpoly_coefficients(self):
1629 r"""
1630 SETUP::
1631
1632 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1633 ....: JordanSpinEJA)
1634
1635 EXAMPLES:
1636
1637 The base ring of the resulting polynomial coefficients is what
1638 it should be, and not the rationals (unless the algebra was
1639 already over the rationals)::
1640
1641 sage: J = JordanSpinEJA(3)
1642 sage: J._charpoly_coefficients()
1643 (X1^2 - X2^2 - X3^2, -2*X1)
1644 sage: a0 = J._charpoly_coefficients()[0]
1645 sage: J.base_ring()
1646 Algebraic Real Field
1647 sage: a0.base_ring()
1648 Algebraic Real Field
1649
1650 """
1651 if self._rational_algebra is None:
1652 # There's no need to construct *another* algebra over the
1653 # rationals if this one is already over the
1654 # rationals. Likewise, if we never orthonormalized our
1655 # basis, we might as well just use the given one.
1656 return super()._charpoly_coefficients()
1657
1658 # Do the computation over the rationals. The answer will be
1659 # the same, because all we've done is a change of basis.
1660 # Then, change back from QQ to our real base ring
1661 a = ( a_i.change_ring(self.base_ring())
1662 for a_i in self._rational_algebra._charpoly_coefficients() )
1663
1664 if self._deortho_matrix is None:
1665 # This can happen if our base ring was, say, AA and we
1666 # chose not to (or didn't need to) orthonormalize. It's
1667 # still faster to do the computations over QQ even if
1668 # the numbers in the boxes stay the same.
1669 return tuple(a)
1670
1671 # Otherwise, convert the coordinate variables back to the
1672 # deorthonormalized ones.
1673 R = self.coordinate_polynomial_ring()
1674 from sage.modules.free_module_element import vector
1675 X = vector(R, R.gens())
1676 BX = self._deortho_matrix*X
1677
1678 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1679 return tuple( a_i.subs(subs_dict) for a_i in a )
1680
1681 class ConcreteEJA(FiniteDimensionalEJA):
1682 r"""
1683 A class for the Euclidean Jordan algebras that we know by name.
1684
1685 These are the Jordan algebras whose basis, multiplication table,
1686 rank, and so on are known a priori. More to the point, they are
1687 the Euclidean Jordan algebras for which we are able to conjure up
1688 a "random instance."
1689
1690 SETUP::
1691
1692 sage: from mjo.eja.eja_algebra import ConcreteEJA
1693
1694 TESTS:
1695
1696 Our basis is normalized with respect to the algebra's inner
1697 product, unless we specify otherwise::
1698
1699 sage: set_random_seed()
1700 sage: J = ConcreteEJA.random_instance()
1701 sage: all( b.norm() == 1 for b in J.gens() )
1702 True
1703
1704 Since our basis is orthonormal with respect to the algebra's inner
1705 product, and since we know that this algebra is an EJA, any
1706 left-multiplication operator's matrix will be symmetric because
1707 natural->EJA basis representation is an isometry and within the
1708 EJA the operator is self-adjoint by the Jordan axiom::
1709
1710 sage: set_random_seed()
1711 sage: J = ConcreteEJA.random_instance()
1712 sage: x = J.random_element()
1713 sage: x.operator().is_self_adjoint()
1714 True
1715 """
1716
1717 @staticmethod
1718 def _max_random_instance_size():
1719 """
1720 Return an integer "size" that is an upper bound on the size of
1721 this algebra when it is used in a random test
1722 case. Unfortunately, the term "size" is ambiguous -- when
1723 dealing with `R^n` under either the Hadamard or Jordan spin
1724 product, the "size" refers to the dimension `n`. When dealing
1725 with a matrix algebra (real symmetric or complex/quaternion
1726 Hermitian), it refers to the size of the matrix, which is far
1727 less than the dimension of the underlying vector space.
1728
1729 This method must be implemented in each subclass.
1730 """
1731 raise NotImplementedError
1732
1733 @classmethod
1734 def random_instance(cls, *args, **kwargs):
1735 """
1736 Return a random instance of this type of algebra.
1737
1738 This method should be implemented in each subclass.
1739 """
1740 from sage.misc.prandom import choice
1741 eja_class = choice(cls.__subclasses__())
1742
1743 # These all bubble up to the RationalBasisEJA superclass
1744 # constructor, so any (kw)args valid there are also valid
1745 # here.
1746 return eja_class.random_instance(*args, **kwargs)
1747
1748
1749 class MatrixEJA(FiniteDimensionalEJA):
1750 @staticmethod
1751 def _denormalized_basis(A):
1752 """
1753 Returns a basis for the space of complex Hermitian n-by-n matrices.
1754
1755 Why do we embed these? Basically, because all of numerical linear
1756 algebra assumes that you're working with vectors consisting of `n`
1757 entries from a field and scalars from the same field. There's no way
1758 to tell SageMath that (for example) the vectors contain complex
1759 numbers, while the scalar field is real.
1760
1761 SETUP::
1762
1763 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1764 ....: QuaternionMatrixAlgebra,
1765 ....: OctonionMatrixAlgebra)
1766 sage: from mjo.eja.eja_algebra import MatrixEJA
1767
1768 TESTS::
1769
1770 sage: set_random_seed()
1771 sage: n = ZZ.random_element(1,5)
1772 sage: A = MatrixSpace(QQ, n)
1773 sage: B = MatrixEJA._denormalized_basis(A)
1774 sage: all( M.is_hermitian() for M in B)
1775 True
1776
1777 ::
1778
1779 sage: set_random_seed()
1780 sage: n = ZZ.random_element(1,5)
1781 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1782 sage: B = MatrixEJA._denormalized_basis(A)
1783 sage: all( M.is_hermitian() for M in B)
1784 True
1785
1786 ::
1787
1788 sage: set_random_seed()
1789 sage: n = ZZ.random_element(1,5)
1790 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1791 sage: B = MatrixEJA._denormalized_basis(A)
1792 sage: all( M.is_hermitian() for M in B )
1793 True
1794
1795 ::
1796
1797 sage: set_random_seed()
1798 sage: n = ZZ.random_element(1,5)
1799 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1800 sage: B = MatrixEJA._denormalized_basis(A)
1801 sage: all( M.is_hermitian() for M in B )
1802 True
1803
1804 """
1805 # These work for real MatrixSpace, whose monomials only have
1806 # two coordinates (because the last one would always be "1").
1807 es = A.base_ring().gens()
1808 gen = lambda A,m: A.monomial(m[:2])
1809
1810 if hasattr(A, 'entry_algebra_gens'):
1811 # We've got a MatrixAlgebra, and its monomials will have
1812 # three coordinates.
1813 es = A.entry_algebra_gens()
1814 gen = lambda A,m: A.monomial(m)
1815
1816 basis = []
1817 for i in range(A.nrows()):
1818 for j in range(i+1):
1819 if i == j:
1820 E_ii = gen(A, (i,j,es[0]))
1821 basis.append(E_ii)
1822 else:
1823 for e in es:
1824 E_ij = gen(A, (i,j,e))
1825 E_ij += E_ij.conjugate_transpose()
1826 basis.append(E_ij)
1827
1828 return tuple( basis )
1829
1830 @staticmethod
1831 def jordan_product(X,Y):
1832 return (X*Y + Y*X)/2
1833
1834 @staticmethod
1835 def trace_inner_product(X,Y):
1836 r"""
1837 A trace inner-product for matrices that aren't embedded in the
1838 reals. It takes MATRICES as arguments, not EJA elements.
1839
1840 SETUP::
1841
1842 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1843 ....: ComplexHermitianEJA,
1844 ....: QuaternionHermitianEJA,
1845 ....: OctonionHermitianEJA)
1846
1847 EXAMPLES::
1848
1849 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
1850 sage: I = J.one().to_matrix()
1851 sage: J.trace_inner_product(I, -I)
1852 -2
1853
1854 ::
1855
1856 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1857 sage: I = J.one().to_matrix()
1858 sage: J.trace_inner_product(I, -I)
1859 -2
1860
1861 ::
1862
1863 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
1864 sage: I = J.one().to_matrix()
1865 sage: J.trace_inner_product(I, -I)
1866 -2
1867
1868 ::
1869
1870 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
1871 sage: I = J.one().to_matrix()
1872 sage: J.trace_inner_product(I, -I)
1873 -2
1874
1875 """
1876 tr = (X*Y).trace()
1877 if hasattr(tr, 'coefficient'):
1878 # Works for octonions, and has to come first because they
1879 # also have a "real()" method that doesn't return an
1880 # element of the scalar ring.
1881 return tr.coefficient(0)
1882 elif hasattr(tr, 'coefficient_tuple'):
1883 # Works for quaternions.
1884 return tr.coefficient_tuple()[0]
1885
1886 # Works for real and complex numbers.
1887 return tr.real()
1888
1889
1890 def __init__(self, matrix_space, **kwargs):
1891 # We know this is a valid EJA, but will double-check
1892 # if the user passes check_axioms=True.
1893 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1894
1895
1896 super().__init__(self._denormalized_basis(matrix_space),
1897 self.jordan_product,
1898 self.trace_inner_product,
1899 field=matrix_space.base_ring(),
1900 matrix_space=matrix_space,
1901 **kwargs)
1902
1903 self.rank.set_cache(matrix_space.nrows())
1904 self.one.set_cache( self(matrix_space.one()) )
1905
1906 class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
1907 """
1908 The rank-n simple EJA consisting of real symmetric n-by-n
1909 matrices, the usual symmetric Jordan product, and the trace inner
1910 product. It has dimension `(n^2 + n)/2` over the reals.
1911
1912 SETUP::
1913
1914 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1915
1916 EXAMPLES::
1917
1918 sage: J = RealSymmetricEJA(2)
1919 sage: b0, b1, b2 = J.gens()
1920 sage: b0*b0
1921 b0
1922 sage: b1*b1
1923 1/2*b0 + 1/2*b2
1924 sage: b2*b2
1925 b2
1926
1927 In theory, our "field" can be any subfield of the reals::
1928
1929 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
1930 Euclidean Jordan algebra of dimension 3 over Real Double Field
1931 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
1932 Euclidean Jordan algebra of dimension 3 over Real Field with
1933 53 bits of precision
1934
1935 TESTS:
1936
1937 The dimension of this algebra is `(n^2 + n) / 2`::
1938
1939 sage: set_random_seed()
1940 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1941 sage: n = ZZ.random_element(1, n_max)
1942 sage: J = RealSymmetricEJA(n)
1943 sage: J.dimension() == (n^2 + n)/2
1944 True
1945
1946 The Jordan multiplication is what we think it is::
1947
1948 sage: set_random_seed()
1949 sage: J = RealSymmetricEJA.random_instance()
1950 sage: x,y = J.random_elements(2)
1951 sage: actual = (x*y).to_matrix()
1952 sage: X = x.to_matrix()
1953 sage: Y = y.to_matrix()
1954 sage: expected = (X*Y + Y*X)/2
1955 sage: actual == expected
1956 True
1957 sage: J(expected) == x*y
1958 True
1959
1960 We can change the generator prefix::
1961
1962 sage: RealSymmetricEJA(3, prefix='q').gens()
1963 (q0, q1, q2, q3, q4, q5)
1964
1965 We can construct the (trivial) algebra of rank zero::
1966
1967 sage: RealSymmetricEJA(0)
1968 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1969
1970 """
1971 @staticmethod
1972 def _max_random_instance_size():
1973 return 4 # Dimension 10
1974
1975 @classmethod
1976 def random_instance(cls, **kwargs):
1977 """
1978 Return a random instance of this type of algebra.
1979 """
1980 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1981 return cls(n, **kwargs)
1982
1983 def __init__(self, n, field=AA, **kwargs):
1984 # We know this is a valid EJA, but will double-check
1985 # if the user passes check_axioms=True.
1986 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1987
1988 A = MatrixSpace(field, n)
1989 super().__init__(A, **kwargs)
1990
1991 from mjo.eja.eja_cache import real_symmetric_eja_coeffs
1992 a = real_symmetric_eja_coeffs(self)
1993 if a is not None:
1994 if self._rational_algebra is None:
1995 self._charpoly_coefficients.set_cache(a)
1996 else:
1997 self._rational_algebra._charpoly_coefficients.set_cache(a)
1998
1999
2000
2001 class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2002 """
2003 The rank-n simple EJA consisting of complex Hermitian n-by-n
2004 matrices over the real numbers, the usual symmetric Jordan product,
2005 and the real-part-of-trace inner product. It has dimension `n^2` over
2006 the reals.
2007
2008 SETUP::
2009
2010 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2011
2012 EXAMPLES:
2013
2014 In theory, our "field" can be any subfield of the reals, but we
2015 can't use inexact real fields at the moment because SageMath
2016 doesn't know how to convert their elements into complex numbers,
2017 or even into algebraic reals::
2018
2019 sage: QQbar(RDF(1))
2020 Traceback (most recent call last):
2021 ...
2022 TypeError: Illegal initializer for algebraic number
2023 sage: AA(RR(1))
2024 Traceback (most recent call last):
2025 ...
2026 TypeError: Illegal initializer for algebraic number
2027
2028 This causes the following error when we try to scale a matrix of
2029 complex numbers by an inexact real number::
2030
2031 sage: ComplexHermitianEJA(2,field=RR)
2032 Traceback (most recent call last):
2033 ...
2034 TypeError: Unable to coerce entries (=(1.00000000000000,
2035 -0.000000000000000)) to coefficients in Algebraic Real Field
2036
2037 TESTS:
2038
2039 The dimension of this algebra is `n^2`::
2040
2041 sage: set_random_seed()
2042 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
2043 sage: n = ZZ.random_element(1, n_max)
2044 sage: J = ComplexHermitianEJA(n)
2045 sage: J.dimension() == n^2
2046 True
2047
2048 The Jordan multiplication is what we think it is::
2049
2050 sage: set_random_seed()
2051 sage: J = ComplexHermitianEJA.random_instance()
2052 sage: x,y = J.random_elements(2)
2053 sage: actual = (x*y).to_matrix()
2054 sage: X = x.to_matrix()
2055 sage: Y = y.to_matrix()
2056 sage: expected = (X*Y + Y*X)/2
2057 sage: actual == expected
2058 True
2059 sage: J(expected) == x*y
2060 True
2061
2062 We can change the generator prefix::
2063
2064 sage: ComplexHermitianEJA(2, prefix='z').gens()
2065 (z0, z1, z2, z3)
2066
2067 We can construct the (trivial) algebra of rank zero::
2068
2069 sage: ComplexHermitianEJA(0)
2070 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2071 """
2072 def __init__(self, n, field=AA, **kwargs):
2073 # We know this is a valid EJA, but will double-check
2074 # if the user passes check_axioms=True.
2075 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2076
2077 from mjo.hurwitz import ComplexMatrixAlgebra
2078 A = ComplexMatrixAlgebra(n, scalars=field)
2079 super().__init__(A, **kwargs)
2080
2081 from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
2082 a = complex_hermitian_eja_coeffs(self)
2083 if a is not None:
2084 if self._rational_algebra is None:
2085 self._charpoly_coefficients.set_cache(a)
2086 else:
2087 self._rational_algebra._charpoly_coefficients.set_cache(a)
2088
2089 @staticmethod
2090 def _max_random_instance_size():
2091 return 3 # Dimension 9
2092
2093 @classmethod
2094 def random_instance(cls, **kwargs):
2095 """
2096 Return a random instance of this type of algebra.
2097 """
2098 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2099 return cls(n, **kwargs)
2100
2101
2102 class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2103 r"""
2104 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2105 matrices, the usual symmetric Jordan product, and the
2106 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2107 the reals.
2108
2109 SETUP::
2110
2111 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2112
2113 EXAMPLES:
2114
2115 In theory, our "field" can be any subfield of the reals::
2116
2117 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2118 Euclidean Jordan algebra of dimension 6 over Real Double Field
2119 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2120 Euclidean Jordan algebra of dimension 6 over Real Field with
2121 53 bits of precision
2122
2123 TESTS:
2124
2125 The dimension of this algebra is `2*n^2 - n`::
2126
2127 sage: set_random_seed()
2128 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2129 sage: n = ZZ.random_element(1, n_max)
2130 sage: J = QuaternionHermitianEJA(n)
2131 sage: J.dimension() == 2*(n^2) - n
2132 True
2133
2134 The Jordan multiplication is what we think it is::
2135
2136 sage: set_random_seed()
2137 sage: J = QuaternionHermitianEJA.random_instance()
2138 sage: x,y = J.random_elements(2)
2139 sage: actual = (x*y).to_matrix()
2140 sage: X = x.to_matrix()
2141 sage: Y = y.to_matrix()
2142 sage: expected = (X*Y + Y*X)/2
2143 sage: actual == expected
2144 True
2145 sage: J(expected) == x*y
2146 True
2147
2148 We can change the generator prefix::
2149
2150 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2151 (a0, a1, a2, a3, a4, a5)
2152
2153 We can construct the (trivial) algebra of rank zero::
2154
2155 sage: QuaternionHermitianEJA(0)
2156 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2157
2158 """
2159 def __init__(self, n, field=AA, **kwargs):
2160 # We know this is a valid EJA, but will double-check
2161 # if the user passes check_axioms=True.
2162 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2163
2164 from mjo.hurwitz import QuaternionMatrixAlgebra
2165 A = QuaternionMatrixAlgebra(n, scalars=field)
2166 super().__init__(A, **kwargs)
2167
2168 from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
2169 a = quaternion_hermitian_eja_coeffs(self)
2170 if a is not None:
2171 if self._rational_algebra is None:
2172 self._charpoly_coefficients.set_cache(a)
2173 else:
2174 self._rational_algebra._charpoly_coefficients.set_cache(a)
2175
2176
2177
2178 @staticmethod
2179 def _max_random_instance_size():
2180 r"""
2181 The maximum rank of a random QuaternionHermitianEJA.
2182 """
2183 return 2 # Dimension 6
2184
2185 @classmethod
2186 def random_instance(cls, **kwargs):
2187 """
2188 Return a random instance of this type of algebra.
2189 """
2190 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2191 return cls(n, **kwargs)
2192
2193 class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2194 r"""
2195 SETUP::
2196
2197 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2198 ....: OctonionHermitianEJA)
2199 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2200
2201 EXAMPLES:
2202
2203 The 3-by-3 algebra satisfies the axioms of an EJA::
2204
2205 sage: OctonionHermitianEJA(3, # long time
2206 ....: field=QQ, # long time
2207 ....: orthonormalize=False, # long time
2208 ....: check_axioms=True) # long time
2209 Euclidean Jordan algebra of dimension 27 over Rational Field
2210
2211 After a change-of-basis, the 2-by-2 algebra has the same
2212 multiplication table as the ten-dimensional Jordan spin algebra::
2213
2214 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2215 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2216 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2217 sage: jp = OctonionHermitianEJA.jordan_product
2218 sage: ip = OctonionHermitianEJA.trace_inner_product
2219 sage: J = FiniteDimensionalEJA(basis,
2220 ....: jp,
2221 ....: ip,
2222 ....: field=QQ,
2223 ....: orthonormalize=False)
2224 sage: J.multiplication_table()
2225 +----++----+----+----+----+----+----+----+----+----+----+
2226 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2227 +====++====+====+====+====+====+====+====+====+====+====+
2228 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2229 +----++----+----+----+----+----+----+----+----+----+----+
2230 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2231 +----++----+----+----+----+----+----+----+----+----+----+
2232 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2233 +----++----+----+----+----+----+----+----+----+----+----+
2234 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2235 +----++----+----+----+----+----+----+----+----+----+----+
2236 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2237 +----++----+----+----+----+----+----+----+----+----+----+
2238 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2239 +----++----+----+----+----+----+----+----+----+----+----+
2240 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2241 +----++----+----+----+----+----+----+----+----+----+----+
2242 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2243 +----++----+----+----+----+----+----+----+----+----+----+
2244 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2245 +----++----+----+----+----+----+----+----+----+----+----+
2246 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2247 +----++----+----+----+----+----+----+----+----+----+----+
2248
2249 TESTS:
2250
2251 We can actually construct the 27-dimensional Albert algebra,
2252 and we get the right unit element if we recompute it::
2253
2254 sage: J = OctonionHermitianEJA(3, # long time
2255 ....: field=QQ, # long time
2256 ....: orthonormalize=False) # long time
2257 sage: J.one.clear_cache() # long time
2258 sage: J.one() # long time
2259 b0 + b9 + b26
2260 sage: J.one().to_matrix() # long time
2261 +----+----+----+
2262 | e0 | 0 | 0 |
2263 +----+----+----+
2264 | 0 | e0 | 0 |
2265 +----+----+----+
2266 | 0 | 0 | e0 |
2267 +----+----+----+
2268
2269 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2270 spin algebra, but just to be sure, we recompute its rank::
2271
2272 sage: J = OctonionHermitianEJA(2, # long time
2273 ....: field=QQ, # long time
2274 ....: orthonormalize=False) # long time
2275 sage: J.rank.clear_cache() # long time
2276 sage: J.rank() # long time
2277 2
2278
2279 """
2280 @staticmethod
2281 def _max_random_instance_size():
2282 r"""
2283 The maximum rank of a random QuaternionHermitianEJA.
2284 """
2285 return 1 # Dimension 1
2286
2287 @classmethod
2288 def random_instance(cls, **kwargs):
2289 """
2290 Return a random instance of this type of algebra.
2291 """
2292 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2293 return cls(n, **kwargs)
2294
2295 def __init__(self, n, field=AA, **kwargs):
2296 if n > 3:
2297 # Otherwise we don't get an EJA.
2298 raise ValueError("n cannot exceed 3")
2299
2300 # We know this is a valid EJA, but will double-check
2301 # if the user passes check_axioms=True.
2302 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2303
2304 from mjo.hurwitz import OctonionMatrixAlgebra
2305 A = OctonionMatrixAlgebra(n, scalars=field)
2306 super().__init__(A, **kwargs)
2307
2308 from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
2309 a = octonion_hermitian_eja_coeffs(self)
2310 if a is not None:
2311 if self._rational_algebra is None:
2312 self._charpoly_coefficients.set_cache(a)
2313 else:
2314 self._rational_algebra._charpoly_coefficients.set_cache(a)
2315
2316
2317 class AlbertEJA(OctonionHermitianEJA):
2318 r"""
2319 The Albert algebra is the algebra of three-by-three Hermitian
2320 matrices whose entries are octonions.
2321
2322 SETUP::
2323
2324 sage: from mjo.eja.eja_algebra import AlbertEJA
2325
2326 EXAMPLES::
2327
2328 sage: AlbertEJA(field=QQ, orthonormalize=False)
2329 Euclidean Jordan algebra of dimension 27 over Rational Field
2330 sage: AlbertEJA() # long time
2331 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2332
2333 """
2334 def __init__(self, *args, **kwargs):
2335 super().__init__(3, *args, **kwargs)
2336
2337
2338 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2339 """
2340 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2341 (pointwise real-number multiplication) Jordan product and the
2342 usual inner-product.
2343
2344 This is nothing more than the Cartesian product of ``n`` copies of
2345 the one-dimensional Jordan spin algebra, and is the most common
2346 example of a non-simple Euclidean Jordan algebra.
2347
2348 SETUP::
2349
2350 sage: from mjo.eja.eja_algebra import HadamardEJA
2351
2352 EXAMPLES:
2353
2354 This multiplication table can be verified by hand::
2355
2356 sage: J = HadamardEJA(3)
2357 sage: b0,b1,b2 = J.gens()
2358 sage: b0*b0
2359 b0
2360 sage: b0*b1
2361 0
2362 sage: b0*b2
2363 0
2364 sage: b1*b1
2365 b1
2366 sage: b1*b2
2367 0
2368 sage: b2*b2
2369 b2
2370
2371 TESTS:
2372
2373 We can change the generator prefix::
2374
2375 sage: HadamardEJA(3, prefix='r').gens()
2376 (r0, r1, r2)
2377 """
2378 def __init__(self, n, field=AA, **kwargs):
2379 MS = MatrixSpace(field, n, 1)
2380
2381 if n == 0:
2382 jordan_product = lambda x,y: x
2383 inner_product = lambda x,y: x
2384 else:
2385 def jordan_product(x,y):
2386 return MS( xi*yi for (xi,yi) in zip(x,y) )
2387
2388 def inner_product(x,y):
2389 return (x.T*y)[0,0]
2390
2391 # New defaults for keyword arguments. Don't orthonormalize
2392 # because our basis is already orthonormal with respect to our
2393 # inner-product. Don't check the axioms, because we know this
2394 # is a valid EJA... but do double-check if the user passes
2395 # check_axioms=True. Note: we DON'T override the "check_field"
2396 # default here, because the user can pass in a field!
2397 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2398 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2399
2400 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2401 super().__init__(column_basis,
2402 jordan_product,
2403 inner_product,
2404 field=field,
2405 matrix_space=MS,
2406 associative=True,
2407 **kwargs)
2408 self.rank.set_cache(n)
2409
2410 self.one.set_cache( self.sum(self.gens()) )
2411
2412 @staticmethod
2413 def _max_random_instance_size():
2414 r"""
2415 The maximum dimension of a random HadamardEJA.
2416 """
2417 return 5
2418
2419 @classmethod
2420 def random_instance(cls, **kwargs):
2421 """
2422 Return a random instance of this type of algebra.
2423 """
2424 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2425 return cls(n, **kwargs)
2426
2427
2428 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2429 r"""
2430 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2431 with the half-trace inner product and jordan product ``x*y =
2432 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2433 a symmetric positive-definite "bilinear form" matrix. Its
2434 dimension is the size of `B`, and it has rank two in dimensions
2435 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2436 the identity matrix of order ``n``.
2437
2438 We insist that the one-by-one upper-left identity block of `B` be
2439 passed in as well so that we can be passed a matrix of size zero
2440 to construct a trivial algebra.
2441
2442 SETUP::
2443
2444 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2445 ....: JordanSpinEJA)
2446
2447 EXAMPLES:
2448
2449 When no bilinear form is specified, the identity matrix is used,
2450 and the resulting algebra is the Jordan spin algebra::
2451
2452 sage: B = matrix.identity(AA,3)
2453 sage: J0 = BilinearFormEJA(B)
2454 sage: J1 = JordanSpinEJA(3)
2455 sage: J0.multiplication_table() == J0.multiplication_table()
2456 True
2457
2458 An error is raised if the matrix `B` does not correspond to a
2459 positive-definite bilinear form::
2460
2461 sage: B = matrix.random(QQ,2,3)
2462 sage: J = BilinearFormEJA(B)
2463 Traceback (most recent call last):
2464 ...
2465 ValueError: bilinear form is not positive-definite
2466 sage: B = matrix.zero(QQ,3)
2467 sage: J = BilinearFormEJA(B)
2468 Traceback (most recent call last):
2469 ...
2470 ValueError: bilinear form is not positive-definite
2471
2472 TESTS:
2473
2474 We can create a zero-dimensional algebra::
2475
2476 sage: B = matrix.identity(AA,0)
2477 sage: J = BilinearFormEJA(B)
2478 sage: J.basis()
2479 Finite family {}
2480
2481 We can check the multiplication condition given in the Jordan, von
2482 Neumann, and Wigner paper (and also discussed on my "On the
2483 symmetry..." paper). Note that this relies heavily on the standard
2484 choice of basis, as does anything utilizing the bilinear form
2485 matrix. We opt not to orthonormalize the basis, because if we
2486 did, we would have to normalize the `s_{i}` in a similar manner::
2487
2488 sage: set_random_seed()
2489 sage: n = ZZ.random_element(5)
2490 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2491 sage: B11 = matrix.identity(QQ,1)
2492 sage: B22 = M.transpose()*M
2493 sage: B = block_matrix(2,2,[ [B11,0 ],
2494 ....: [0, B22 ] ])
2495 sage: J = BilinearFormEJA(B, orthonormalize=False)
2496 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2497 sage: V = J.vector_space()
2498 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2499 ....: for ei in eis ]
2500 sage: actual = [ sis[i]*sis[j]
2501 ....: for i in range(n-1)
2502 ....: for j in range(n-1) ]
2503 sage: expected = [ J.one() if i == j else J.zero()
2504 ....: for i in range(n-1)
2505 ....: for j in range(n-1) ]
2506 sage: actual == expected
2507 True
2508
2509 """
2510 def __init__(self, B, field=AA, **kwargs):
2511 # The matrix "B" is supplied by the user in most cases,
2512 # so it makes sense to check whether or not its positive-
2513 # definite unless we are specifically asked not to...
2514 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2515 if not B.is_positive_definite():
2516 raise ValueError("bilinear form is not positive-definite")
2517
2518 # However, all of the other data for this EJA is computed
2519 # by us in manner that guarantees the axioms are
2520 # satisfied. So, again, unless we are specifically asked to
2521 # verify things, we'll skip the rest of the checks.
2522 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2523
2524 n = B.nrows()
2525 MS = MatrixSpace(field, n, 1)
2526
2527 def inner_product(x,y):
2528 return (y.T*B*x)[0,0]
2529
2530 def jordan_product(x,y):
2531 x0 = x[0,0]
2532 xbar = x[1:,0]
2533 y0 = y[0,0]
2534 ybar = y[1:,0]
2535 z0 = inner_product(y,x)
2536 zbar = y0*xbar + x0*ybar
2537 return MS([z0] + zbar.list())
2538
2539 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2540
2541 # TODO: I haven't actually checked this, but it seems legit.
2542 associative = False
2543 if n <= 2:
2544 associative = True
2545
2546 super().__init__(column_basis,
2547 jordan_product,
2548 inner_product,
2549 field=field,
2550 matrix_space=MS,
2551 associative=associative,
2552 **kwargs)
2553
2554 # The rank of this algebra is two, unless we're in a
2555 # one-dimensional ambient space (because the rank is bounded
2556 # by the ambient dimension).
2557 self.rank.set_cache(min(n,2))
2558 if n == 0:
2559 self.one.set_cache( self.zero() )
2560 else:
2561 self.one.set_cache( self.monomial(0) )
2562
2563 @staticmethod
2564 def _max_random_instance_size():
2565 r"""
2566 The maximum dimension of a random BilinearFormEJA.
2567 """
2568 return 5
2569
2570 @classmethod
2571 def random_instance(cls, **kwargs):
2572 """
2573 Return a random instance of this algebra.
2574 """
2575 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2576 if n.is_zero():
2577 B = matrix.identity(ZZ, n)
2578 return cls(B, **kwargs)
2579
2580 B11 = matrix.identity(ZZ, 1)
2581 M = matrix.random(ZZ, n-1)
2582 I = matrix.identity(ZZ, n-1)
2583 alpha = ZZ.zero()
2584 while alpha.is_zero():
2585 alpha = ZZ.random_element().abs()
2586 B22 = M.transpose()*M + alpha*I
2587
2588 from sage.matrix.special import block_matrix
2589 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2590 [ZZ(0), B22 ] ])
2591
2592 return cls(B, **kwargs)
2593
2594
2595 class JordanSpinEJA(BilinearFormEJA):
2596 """
2597 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2598 with the usual inner product and jordan product ``x*y =
2599 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2600 the reals.
2601
2602 SETUP::
2603
2604 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2605
2606 EXAMPLES:
2607
2608 This multiplication table can be verified by hand::
2609
2610 sage: J = JordanSpinEJA(4)
2611 sage: b0,b1,b2,b3 = J.gens()
2612 sage: b0*b0
2613 b0
2614 sage: b0*b1
2615 b1
2616 sage: b0*b2
2617 b2
2618 sage: b0*b3
2619 b3
2620 sage: b1*b2
2621 0
2622 sage: b1*b3
2623 0
2624 sage: b2*b3
2625 0
2626
2627 We can change the generator prefix::
2628
2629 sage: JordanSpinEJA(2, prefix='B').gens()
2630 (B0, B1)
2631
2632 TESTS:
2633
2634 Ensure that we have the usual inner product on `R^n`::
2635
2636 sage: set_random_seed()
2637 sage: J = JordanSpinEJA.random_instance()
2638 sage: x,y = J.random_elements(2)
2639 sage: actual = x.inner_product(y)
2640 sage: expected = x.to_vector().inner_product(y.to_vector())
2641 sage: actual == expected
2642 True
2643
2644 """
2645 def __init__(self, n, *args, **kwargs):
2646 # This is a special case of the BilinearFormEJA with the
2647 # identity matrix as its bilinear form.
2648 B = matrix.identity(ZZ, n)
2649
2650 # Don't orthonormalize because our basis is already
2651 # orthonormal with respect to our inner-product.
2652 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2653
2654 # But also don't pass check_field=False here, because the user
2655 # can pass in a field!
2656 super().__init__(B, *args, **kwargs)
2657
2658 @staticmethod
2659 def _max_random_instance_size():
2660 r"""
2661 The maximum dimension of a random JordanSpinEJA.
2662 """
2663 return 5
2664
2665 @classmethod
2666 def random_instance(cls, **kwargs):
2667 """
2668 Return a random instance of this type of algebra.
2669
2670 Needed here to override the implementation for ``BilinearFormEJA``.
2671 """
2672 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2673 return cls(n, **kwargs)
2674
2675
2676 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2677 """
2678 The trivial Euclidean Jordan algebra consisting of only a zero element.
2679
2680 SETUP::
2681
2682 sage: from mjo.eja.eja_algebra import TrivialEJA
2683
2684 EXAMPLES::
2685
2686 sage: J = TrivialEJA()
2687 sage: J.dimension()
2688 0
2689 sage: J.zero()
2690 0
2691 sage: J.one()
2692 0
2693 sage: 7*J.one()*12*J.one()
2694 0
2695 sage: J.one().inner_product(J.one())
2696 0
2697 sage: J.one().norm()
2698 0
2699 sage: J.one().subalgebra_generated_by()
2700 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2701 sage: J.rank()
2702 0
2703
2704 """
2705 def __init__(self, field=AA, **kwargs):
2706 jordan_product = lambda x,y: x
2707 inner_product = lambda x,y: field.zero()
2708 basis = ()
2709 MS = MatrixSpace(field,0)
2710
2711 # New defaults for keyword arguments
2712 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2713 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2714
2715 super().__init__(basis,
2716 jordan_product,
2717 inner_product,
2718 associative=True,
2719 field=field,
2720 matrix_space=MS,
2721 **kwargs)
2722
2723 # The rank is zero using my definition, namely the dimension of the
2724 # largest subalgebra generated by any element.
2725 self.rank.set_cache(0)
2726 self.one.set_cache( self.zero() )
2727
2728 @classmethod
2729 def random_instance(cls, **kwargs):
2730 # We don't take a "size" argument so the superclass method is
2731 # inappropriate for us.
2732 return cls(**kwargs)
2733
2734
2735 class CartesianProductEJA(FiniteDimensionalEJA):
2736 r"""
2737 The external (orthogonal) direct sum of two or more Euclidean
2738 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2739 orthogonal direct sum of simple Euclidean Jordan algebras which is
2740 then isometric to a Cartesian product, so no generality is lost by
2741 providing only this construction.
2742
2743 SETUP::
2744
2745 sage: from mjo.eja.eja_algebra import (random_eja,
2746 ....: CartesianProductEJA,
2747 ....: HadamardEJA,
2748 ....: JordanSpinEJA,
2749 ....: RealSymmetricEJA)
2750
2751 EXAMPLES:
2752
2753 The Jordan product is inherited from our factors and implemented by
2754 our CombinatorialFreeModule Cartesian product superclass::
2755
2756 sage: set_random_seed()
2757 sage: J1 = HadamardEJA(2)
2758 sage: J2 = RealSymmetricEJA(2)
2759 sage: J = cartesian_product([J1,J2])
2760 sage: x,y = J.random_elements(2)
2761 sage: x*y in J
2762 True
2763
2764 The ability to retrieve the original factors is implemented by our
2765 CombinatorialFreeModule Cartesian product superclass::
2766
2767 sage: J1 = HadamardEJA(2, field=QQ)
2768 sage: J2 = JordanSpinEJA(3, field=QQ)
2769 sage: J = cartesian_product([J1,J2])
2770 sage: J.cartesian_factors()
2771 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2772 Euclidean Jordan algebra of dimension 3 over Rational Field)
2773
2774 You can provide more than two factors::
2775
2776 sage: J1 = HadamardEJA(2)
2777 sage: J2 = JordanSpinEJA(3)
2778 sage: J3 = RealSymmetricEJA(3)
2779 sage: cartesian_product([J1,J2,J3])
2780 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2781 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2782 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2783 Algebraic Real Field
2784
2785 Rank is additive on a Cartesian product::
2786
2787 sage: J1 = HadamardEJA(1)
2788 sage: J2 = RealSymmetricEJA(2)
2789 sage: J = cartesian_product([J1,J2])
2790 sage: J1.rank.clear_cache()
2791 sage: J2.rank.clear_cache()
2792 sage: J.rank.clear_cache()
2793 sage: J.rank()
2794 3
2795 sage: J.rank() == J1.rank() + J2.rank()
2796 True
2797
2798 The same rank computation works over the rationals, with whatever
2799 basis you like::
2800
2801 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
2802 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
2803 sage: J = cartesian_product([J1,J2])
2804 sage: J1.rank.clear_cache()
2805 sage: J2.rank.clear_cache()
2806 sage: J.rank.clear_cache()
2807 sage: J.rank()
2808 3
2809 sage: J.rank() == J1.rank() + J2.rank()
2810 True
2811
2812 The product algebra will be associative if and only if all of its
2813 components are associative::
2814
2815 sage: J1 = HadamardEJA(2)
2816 sage: J1.is_associative()
2817 True
2818 sage: J2 = HadamardEJA(3)
2819 sage: J2.is_associative()
2820 True
2821 sage: J3 = RealSymmetricEJA(3)
2822 sage: J3.is_associative()
2823 False
2824 sage: CP1 = cartesian_product([J1,J2])
2825 sage: CP1.is_associative()
2826 True
2827 sage: CP2 = cartesian_product([J1,J3])
2828 sage: CP2.is_associative()
2829 False
2830
2831 Cartesian products of Cartesian products work::
2832
2833 sage: J1 = JordanSpinEJA(1)
2834 sage: J2 = JordanSpinEJA(1)
2835 sage: J3 = JordanSpinEJA(1)
2836 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
2837 sage: J.multiplication_table()
2838 +----++----+----+----+
2839 | * || b0 | b1 | b2 |
2840 +====++====+====+====+
2841 | b0 || b0 | 0 | 0 |
2842 +----++----+----+----+
2843 | b1 || 0 | b1 | 0 |
2844 +----++----+----+----+
2845 | b2 || 0 | 0 | b2 |
2846 +----++----+----+----+
2847 sage: HadamardEJA(3).multiplication_table()
2848 +----++----+----+----+
2849 | * || b0 | b1 | b2 |
2850 +====++====+====+====+
2851 | b0 || b0 | 0 | 0 |
2852 +----++----+----+----+
2853 | b1 || 0 | b1 | 0 |
2854 +----++----+----+----+
2855 | b2 || 0 | 0 | b2 |
2856 +----++----+----+----+
2857
2858 TESTS:
2859
2860 All factors must share the same base field::
2861
2862 sage: J1 = HadamardEJA(2, field=QQ)
2863 sage: J2 = RealSymmetricEJA(2)
2864 sage: CartesianProductEJA((J1,J2))
2865 Traceback (most recent call last):
2866 ...
2867 ValueError: all factors must share the same base field
2868
2869 The cached unit element is the same one that would be computed::
2870
2871 sage: set_random_seed() # long time
2872 sage: J1 = random_eja() # long time
2873 sage: J2 = random_eja() # long time
2874 sage: J = cartesian_product([J1,J2]) # long time
2875 sage: actual = J.one() # long time
2876 sage: J.one.clear_cache() # long time
2877 sage: expected = J.one() # long time
2878 sage: actual == expected # long time
2879 True
2880
2881 """
2882 Element = FiniteDimensionalEJAElement
2883
2884
2885 def __init__(self, factors, **kwargs):
2886 m = len(factors)
2887 if m == 0:
2888 return TrivialEJA()
2889
2890 self._sets = factors
2891
2892 field = factors[0].base_ring()
2893 if not all( J.base_ring() == field for J in factors ):
2894 raise ValueError("all factors must share the same base field")
2895
2896 associative = all( f.is_associative() for f in factors )
2897
2898 # Compute my matrix space. This category isn't perfect, but
2899 # is good enough for what we need to do.
2900 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
2901 MS_cat = MS_cat.Unital().CartesianProducts()
2902 MS_factors = tuple( J.matrix_space() for J in factors )
2903 from sage.sets.cartesian_product import CartesianProduct
2904 MS = CartesianProduct(MS_factors, MS_cat)
2905
2906 basis = []
2907 zero = MS.zero()
2908 for i in range(m):
2909 for b in factors[i].matrix_basis():
2910 z = list(zero)
2911 z[i] = b
2912 basis.append(z)
2913
2914 basis = tuple( MS(b) for b in basis )
2915
2916 # Define jordan/inner products that operate on that matrix_basis.
2917 def jordan_product(x,y):
2918 return MS(tuple(
2919 (factors[i](x[i])*factors[i](y[i])).to_matrix()
2920 for i in range(m)
2921 ))
2922
2923 def inner_product(x, y):
2924 return sum(
2925 factors[i](x[i]).inner_product(factors[i](y[i]))
2926 for i in range(m)
2927 )
2928
2929 # There's no need to check the field since it already came
2930 # from an EJA. Likewise the axioms are guaranteed to be
2931 # satisfied, unless the guy writing this class sucks.
2932 #
2933 # If you want the basis to be orthonormalized, orthonormalize
2934 # the factors.
2935 FiniteDimensionalEJA.__init__(self,
2936 basis,
2937 jordan_product,
2938 inner_product,
2939 field=field,
2940 matrix_space=MS,
2941 orthonormalize=False,
2942 associative=associative,
2943 cartesian_product=True,
2944 check_field=False,
2945 check_axioms=False)
2946
2947 self.rank.set_cache(sum(J.rank() for J in factors))
2948 ones = tuple(J.one().to_matrix() for J in factors)
2949 self.one.set_cache(self(ones))
2950
2951 def cartesian_factors(self):
2952 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2953 return self._sets
2954
2955 def cartesian_factor(self, i):
2956 r"""
2957 Return the ``i``th factor of this algebra.
2958 """
2959 return self._sets[i]
2960
2961 def _repr_(self):
2962 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2963 from sage.categories.cartesian_product import cartesian_product
2964 return cartesian_product.symbol.join("%s" % factor
2965 for factor in self._sets)
2966
2967 def matrix_space(self):
2968 r"""
2969 Return the space that our matrix basis lives in as a Cartesian
2970 product.
2971
2972 We don't simply use the ``cartesian_product()`` functor here
2973 because it acts differently on SageMath MatrixSpaces and our
2974 custom MatrixAlgebras, which are CombinatorialFreeModules. We
2975 always want the result to be represented (and indexed) as
2976 an ordered tuple.
2977
2978 SETUP::
2979
2980 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
2981 ....: HadamardEJA,
2982 ....: OctonionHermitianEJA,
2983 ....: RealSymmetricEJA)
2984
2985 EXAMPLES::
2986
2987 sage: J1 = HadamardEJA(1)
2988 sage: J2 = RealSymmetricEJA(2)
2989 sage: J = cartesian_product([J1,J2])
2990 sage: J.matrix_space()
2991 The Cartesian product of (Full MatrixSpace of 1 by 1 dense
2992 matrices over Algebraic Real Field, Full MatrixSpace of 2
2993 by 2 dense matrices over Algebraic Real Field)
2994
2995 ::
2996
2997 sage: J1 = ComplexHermitianEJA(1)
2998 sage: J2 = ComplexHermitianEJA(1)
2999 sage: J = cartesian_product([J1,J2])
3000 sage: J.one().to_matrix()[0]
3001 +---+
3002 | 1 |
3003 +---+
3004 sage: J.one().to_matrix()[1]
3005 +---+
3006 | 1 |
3007 +---+
3008
3009 ::
3010
3011 sage: J1 = OctonionHermitianEJA(1)
3012 sage: J2 = OctonionHermitianEJA(1)
3013 sage: J = cartesian_product([J1,J2])
3014 sage: J.one().to_matrix()[0]
3015 +----+
3016 | e0 |
3017 +----+
3018 sage: J.one().to_matrix()[1]
3019 +----+
3020 | e0 |
3021 +----+
3022
3023 """
3024 return super().matrix_space()
3025
3026
3027 @cached_method
3028 def cartesian_projection(self, i):
3029 r"""
3030 SETUP::
3031
3032 sage: from mjo.eja.eja_algebra import (random_eja,
3033 ....: JordanSpinEJA,
3034 ....: HadamardEJA,
3035 ....: RealSymmetricEJA,
3036 ....: ComplexHermitianEJA)
3037
3038 EXAMPLES:
3039
3040 The projection morphisms are Euclidean Jordan algebra
3041 operators::
3042
3043 sage: J1 = HadamardEJA(2)
3044 sage: J2 = RealSymmetricEJA(2)
3045 sage: J = cartesian_product([J1,J2])
3046 sage: J.cartesian_projection(0)
3047 Linear operator between finite-dimensional Euclidean Jordan
3048 algebras represented by the matrix:
3049 [1 0 0 0 0]
3050 [0 1 0 0 0]
3051 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3052 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3053 Algebraic Real Field
3054 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3055 Real Field
3056 sage: J.cartesian_projection(1)
3057 Linear operator between finite-dimensional Euclidean Jordan
3058 algebras represented by the matrix:
3059 [0 0 1 0 0]
3060 [0 0 0 1 0]
3061 [0 0 0 0 1]
3062 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3063 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3064 Algebraic Real Field
3065 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3066 Real Field
3067
3068 The projections work the way you'd expect on the vector
3069 representation of an element::
3070
3071 sage: J1 = JordanSpinEJA(2)
3072 sage: J2 = ComplexHermitianEJA(2)
3073 sage: J = cartesian_product([J1,J2])
3074 sage: pi_left = J.cartesian_projection(0)
3075 sage: pi_right = J.cartesian_projection(1)
3076 sage: pi_left(J.one()).to_vector()
3077 (1, 0)
3078 sage: pi_right(J.one()).to_vector()
3079 (1, 0, 0, 1)
3080 sage: J.one().to_vector()
3081 (1, 0, 1, 0, 0, 1)
3082
3083 TESTS:
3084
3085 The answer never changes::
3086
3087 sage: set_random_seed()
3088 sage: J1 = random_eja()
3089 sage: J2 = random_eja()
3090 sage: J = cartesian_product([J1,J2])
3091 sage: P0 = J.cartesian_projection(0)
3092 sage: P1 = J.cartesian_projection(0)
3093 sage: P0 == P1
3094 True
3095
3096 """
3097 offset = sum( self.cartesian_factor(k).dimension()
3098 for k in range(i) )
3099 Ji = self.cartesian_factor(i)
3100 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3101 codomain=Ji)
3102
3103 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3104
3105 @cached_method
3106 def cartesian_embedding(self, i):
3107 r"""
3108 SETUP::
3109
3110 sage: from mjo.eja.eja_algebra import (random_eja,
3111 ....: JordanSpinEJA,
3112 ....: HadamardEJA,
3113 ....: RealSymmetricEJA)
3114
3115 EXAMPLES:
3116
3117 The embedding morphisms are Euclidean Jordan algebra
3118 operators::
3119
3120 sage: J1 = HadamardEJA(2)
3121 sage: J2 = RealSymmetricEJA(2)
3122 sage: J = cartesian_product([J1,J2])
3123 sage: J.cartesian_embedding(0)
3124 Linear operator between finite-dimensional Euclidean Jordan
3125 algebras represented by the matrix:
3126 [1 0]
3127 [0 1]
3128 [0 0]
3129 [0 0]
3130 [0 0]
3131 Domain: Euclidean Jordan algebra of dimension 2 over
3132 Algebraic Real Field
3133 Codomain: Euclidean Jordan algebra of dimension 2 over
3134 Algebraic Real Field (+) Euclidean Jordan algebra of
3135 dimension 3 over Algebraic Real Field
3136 sage: J.cartesian_embedding(1)
3137 Linear operator between finite-dimensional Euclidean Jordan
3138 algebras represented by the matrix:
3139 [0 0 0]
3140 [0 0 0]
3141 [1 0 0]
3142 [0 1 0]
3143 [0 0 1]
3144 Domain: Euclidean Jordan algebra of dimension 3 over
3145 Algebraic Real Field
3146 Codomain: Euclidean Jordan algebra of dimension 2 over
3147 Algebraic Real Field (+) Euclidean Jordan algebra of
3148 dimension 3 over Algebraic Real Field
3149
3150 The embeddings work the way you'd expect on the vector
3151 representation of an element::
3152
3153 sage: J1 = JordanSpinEJA(3)
3154 sage: J2 = RealSymmetricEJA(2)
3155 sage: J = cartesian_product([J1,J2])
3156 sage: iota_left = J.cartesian_embedding(0)
3157 sage: iota_right = J.cartesian_embedding(1)
3158 sage: iota_left(J1.zero()) == J.zero()
3159 True
3160 sage: iota_right(J2.zero()) == J.zero()
3161 True
3162 sage: J1.one().to_vector()
3163 (1, 0, 0)
3164 sage: iota_left(J1.one()).to_vector()
3165 (1, 0, 0, 0, 0, 0)
3166 sage: J2.one().to_vector()
3167 (1, 0, 1)
3168 sage: iota_right(J2.one()).to_vector()
3169 (0, 0, 0, 1, 0, 1)
3170 sage: J.one().to_vector()
3171 (1, 0, 0, 1, 0, 1)
3172
3173 TESTS:
3174
3175 The answer never changes::
3176
3177 sage: set_random_seed()
3178 sage: J1 = random_eja()
3179 sage: J2 = random_eja()
3180 sage: J = cartesian_product([J1,J2])
3181 sage: E0 = J.cartesian_embedding(0)
3182 sage: E1 = J.cartesian_embedding(0)
3183 sage: E0 == E1
3184 True
3185
3186 Composing a projection with the corresponding inclusion should
3187 produce the identity map, and mismatching them should produce
3188 the zero map::
3189
3190 sage: set_random_seed()
3191 sage: J1 = random_eja()
3192 sage: J2 = random_eja()
3193 sage: J = cartesian_product([J1,J2])
3194 sage: iota_left = J.cartesian_embedding(0)
3195 sage: iota_right = J.cartesian_embedding(1)
3196 sage: pi_left = J.cartesian_projection(0)
3197 sage: pi_right = J.cartesian_projection(1)
3198 sage: pi_left*iota_left == J1.one().operator()
3199 True
3200 sage: pi_right*iota_right == J2.one().operator()
3201 True
3202 sage: (pi_left*iota_right).is_zero()
3203 True
3204 sage: (pi_right*iota_left).is_zero()
3205 True
3206
3207 """
3208 offset = sum( self.cartesian_factor(k).dimension()
3209 for k in range(i) )
3210 Ji = self.cartesian_factor(i)
3211 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3212 codomain=self)
3213 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3214
3215
3216
3217 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3218
3219 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3220 RationalBasisEJA):
3221 r"""
3222 A separate class for products of algebras for which we know a
3223 rational basis.
3224
3225 SETUP::
3226
3227 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3228 ....: JordanSpinEJA,
3229 ....: OctonionHermitianEJA,
3230 ....: RealSymmetricEJA)
3231
3232 EXAMPLES:
3233
3234 This gives us fast characteristic polynomial computations in
3235 product algebras, too::
3236
3237
3238 sage: J1 = JordanSpinEJA(2)
3239 sage: J2 = RealSymmetricEJA(3)
3240 sage: J = cartesian_product([J1,J2])
3241 sage: J.characteristic_polynomial_of().degree()
3242 5
3243 sage: J.rank()
3244 5
3245
3246 TESTS:
3247
3248 The ``cartesian_product()`` function only uses the first factor to
3249 decide where the result will live; thus we have to be careful to
3250 check that all factors do indeed have a `_rational_algebra` member
3251 before we try to access it::
3252
3253 sage: J1 = OctonionHermitianEJA(1) # no rational basis
3254 sage: J2 = HadamardEJA(2)
3255 sage: cartesian_product([J1,J2])
3256 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3257 (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3258 sage: cartesian_product([J2,J1])
3259 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3260 (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3261
3262 """
3263 def __init__(self, algebras, **kwargs):
3264 CartesianProductEJA.__init__(self, algebras, **kwargs)
3265
3266 self._rational_algebra = None
3267 if self.vector_space().base_field() is not QQ:
3268 if all( hasattr(r, "_rational_algebra") for r in algebras ):
3269 self._rational_algebra = cartesian_product([
3270 r._rational_algebra for r in algebras
3271 ])
3272
3273
3274 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3275
3276 def random_eja(*args, **kwargs):
3277 J1 = ConcreteEJA.random_instance(*args, **kwargs)
3278
3279 # This might make Cartesian products appear roughly as often as
3280 # any other ConcreteEJA.
3281 if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
3282 # Use random_eja() again so we can get more than two factors.
3283 J2 = random_eja(*args, **kwargs)
3284 J = cartesian_product([J1,J2])
3285 return J
3286 else:
3287 return J1