]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: eliminate the special element subalgebra class.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEJAElement
33 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEJA(CombinatorialFreeModule):
37 r"""
38 A finite-dimensional Euclidean Jordan algebra.
39
40 INPUT:
41
42 - basis -- a tuple of basis elements in their matrix form.
43
44 - jordan_product -- function of two elements (in matrix form)
45 that returns their jordan product in this algebra; this will
46 be applied to ``basis`` to compute a multiplication table for
47 the algebra.
48
49 - inner_product -- function of two elements (in matrix form) that
50 returns their inner product. This will be applied to ``basis`` to
51 compute an inner-product table (basically a matrix) for this algebra.
52
53 """
54 Element = FiniteDimensionalEJAElement
55
56 def __init__(self,
57 basis,
58 jordan_product,
59 inner_product,
60 field=AA,
61 orthonormalize=True,
62 associative=False,
63 check_field=True,
64 check_axioms=True,
65 prefix='e'):
66
67 if check_field:
68 if not field.is_subring(RR):
69 # Note: this does return true for the real algebraic
70 # field, the rationals, and any quadratic field where
71 # we've specified a real embedding.
72 raise ValueError("scalar field is not real")
73
74 # If the basis given to us wasn't over the field that it's
75 # supposed to be over, fix that. Or, you know, crash.
76 basis = tuple( b.change_ring(field) for b in basis )
77
78 if check_axioms:
79 # Check commutativity of the Jordan and inner-products.
80 # This has to be done before we build the multiplication
81 # and inner-product tables/matrices, because we take
82 # advantage of symmetry in the process.
83 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
84 for bi in basis
85 for bj in basis ):
86 raise ValueError("Jordan product is not commutative")
87
88 if not all( inner_product(bi,bj) == inner_product(bj,bi)
89 for bi in basis
90 for bj in basis ):
91 raise ValueError("inner-product is not commutative")
92
93
94 category = MagmaticAlgebras(field).FiniteDimensional()
95 category = category.WithBasis().Unital()
96 if associative:
97 # Element subalgebras can take advantage of this.
98 category = category.Associative()
99
100 # Call the superclass constructor so that we can use its from_vector()
101 # method to build our multiplication table.
102 n = len(basis)
103 super().__init__(field,
104 range(n),
105 prefix=prefix,
106 category=category,
107 bracket=False)
108
109 # Now comes all of the hard work. We'll be constructing an
110 # ambient vector space V that our (vectorized) basis lives in,
111 # as well as a subspace W of V spanned by those (vectorized)
112 # basis elements. The W-coordinates are the coefficients that
113 # we see in things like x = 1*e1 + 2*e2.
114 vector_basis = basis
115
116 degree = 0
117 if n > 0:
118 # Works on both column and square matrices...
119 degree = len(basis[0].list())
120
121 # Build an ambient space that fits our matrix basis when
122 # written out as "long vectors."
123 V = VectorSpace(field, degree)
124
125 # The matrix that will hole the orthonormal -> unorthonormal
126 # coordinate transformation.
127 self._deortho_matrix = None
128
129 if orthonormalize:
130 # Save a copy of the un-orthonormalized basis for later.
131 # Convert it to ambient V (vector) coordinates while we're
132 # at it, because we'd have to do it later anyway.
133 deortho_vector_basis = tuple( V(b.list()) for b in basis )
134
135 from mjo.eja.eja_utils import gram_schmidt
136 basis = tuple(gram_schmidt(basis, inner_product))
137
138 # Save the (possibly orthonormalized) matrix basis for
139 # later...
140 self._matrix_basis = basis
141
142 # Now create the vector space for the algebra, which will have
143 # its own set of non-ambient coordinates (in terms of the
144 # supplied basis).
145 vector_basis = tuple( V(b.list()) for b in basis )
146 W = V.span_of_basis( vector_basis, check=check_axioms)
147
148 if orthonormalize:
149 # Now "W" is the vector space of our algebra coordinates. The
150 # variables "X1", "X2",... refer to the entries of vectors in
151 # W. Thus to convert back and forth between the orthonormal
152 # coordinates and the given ones, we need to stick the original
153 # basis in W.
154 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
155 self._deortho_matrix = matrix( U.coordinate_vector(q)
156 for q in vector_basis )
157
158
159 # Now we actually compute the multiplication and inner-product
160 # tables/matrices using the possibly-orthonormalized basis.
161 self._inner_product_matrix = matrix.identity(field, n)
162 self._multiplication_table = [ [0 for j in range(i+1)]
163 for i in range(n) ]
164
165 # Note: the Jordan and inner-products are defined in terms
166 # of the ambient basis. It's important that their arguments
167 # are in ambient coordinates as well.
168 for i in range(n):
169 for j in range(i+1):
170 # ortho basis w.r.t. ambient coords
171 q_i = basis[i]
172 q_j = basis[j]
173
174 # The jordan product returns a matrixy answer, so we
175 # have to convert it to the algebra coordinates.
176 elt = jordan_product(q_i, q_j)
177 elt = W.coordinate_vector(V(elt.list()))
178 self._multiplication_table[i][j] = self.from_vector(elt)
179
180 if not orthonormalize:
181 # If we're orthonormalizing the basis with respect
182 # to an inner-product, then the inner-product
183 # matrix with respect to the resulting basis is
184 # just going to be the identity.
185 ip = inner_product(q_i, q_j)
186 self._inner_product_matrix[i,j] = ip
187 self._inner_product_matrix[j,i] = ip
188
189 self._inner_product_matrix._cache = {'hermitian': True}
190 self._inner_product_matrix.set_immutable()
191
192 if check_axioms:
193 if not self._is_jordanian():
194 raise ValueError("Jordan identity does not hold")
195 if not self._inner_product_is_associative():
196 raise ValueError("inner product is not associative")
197
198
199 def _coerce_map_from_base_ring(self):
200 """
201 Disable the map from the base ring into the algebra.
202
203 Performing a nonsense conversion like this automatically
204 is counterpedagogical. The fallback is to try the usual
205 element constructor, which should also fail.
206
207 SETUP::
208
209 sage: from mjo.eja.eja_algebra import random_eja
210
211 TESTS::
212
213 sage: set_random_seed()
214 sage: J = random_eja()
215 sage: J(1)
216 Traceback (most recent call last):
217 ...
218 ValueError: not an element of this algebra
219
220 """
221 return None
222
223
224 def product_on_basis(self, i, j):
225 # We only stored the lower-triangular portion of the
226 # multiplication table.
227 if j <= i:
228 return self._multiplication_table[i][j]
229 else:
230 return self._multiplication_table[j][i]
231
232 def inner_product(self, x, y):
233 """
234 The inner product associated with this Euclidean Jordan algebra.
235
236 Defaults to the trace inner product, but can be overridden by
237 subclasses if they are sure that the necessary properties are
238 satisfied.
239
240 SETUP::
241
242 sage: from mjo.eja.eja_algebra import (random_eja,
243 ....: HadamardEJA,
244 ....: BilinearFormEJA)
245
246 EXAMPLES:
247
248 Our inner product is "associative," which means the following for
249 a symmetric bilinear form::
250
251 sage: set_random_seed()
252 sage: J = random_eja()
253 sage: x,y,z = J.random_elements(3)
254 sage: (x*y).inner_product(z) == y.inner_product(x*z)
255 True
256
257 TESTS:
258
259 Ensure that this is the usual inner product for the algebras
260 over `R^n`::
261
262 sage: set_random_seed()
263 sage: J = HadamardEJA.random_instance()
264 sage: x,y = J.random_elements(2)
265 sage: actual = x.inner_product(y)
266 sage: expected = x.to_vector().inner_product(y.to_vector())
267 sage: actual == expected
268 True
269
270 Ensure that this is one-half of the trace inner-product in a
271 BilinearFormEJA that isn't just the reals (when ``n`` isn't
272 one). This is in Faraut and Koranyi, and also my "On the
273 symmetry..." paper::
274
275 sage: set_random_seed()
276 sage: J = BilinearFormEJA.random_instance()
277 sage: n = J.dimension()
278 sage: x = J.random_element()
279 sage: y = J.random_element()
280 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
281 True
282 """
283 B = self._inner_product_matrix
284 return (B*x.to_vector()).inner_product(y.to_vector())
285
286
287 def _is_commutative(self):
288 r"""
289 Whether or not this algebra's multiplication table is commutative.
290
291 This method should of course always return ``True``, unless
292 this algebra was constructed with ``check_axioms=False`` and
293 passed an invalid multiplication table.
294 """
295 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
296 for i in range(self.dimension())
297 for j in range(self.dimension()) )
298
299 def _is_jordanian(self):
300 r"""
301 Whether or not this algebra's multiplication table respects the
302 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
303
304 We only check one arrangement of `x` and `y`, so for a
305 ``True`` result to be truly true, you should also check
306 :meth:`_is_commutative`. This method should of course always
307 return ``True``, unless this algebra was constructed with
308 ``check_axioms=False`` and passed an invalid multiplication table.
309 """
310 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
311 ==
312 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
313 for i in range(self.dimension())
314 for j in range(self.dimension()) )
315
316 def _inner_product_is_associative(self):
317 r"""
318 Return whether or not this algebra's inner product `B` is
319 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
320
321 This method should of course always return ``True``, unless
322 this algebra was constructed with ``check_axioms=False`` and
323 passed an invalid Jordan or inner-product.
324 """
325
326 # Used to check whether or not something is zero in an inexact
327 # ring. This number is sufficient to allow the construction of
328 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
329 epsilon = 1e-16
330
331 for i in range(self.dimension()):
332 for j in range(self.dimension()):
333 for k in range(self.dimension()):
334 x = self.monomial(i)
335 y = self.monomial(j)
336 z = self.monomial(k)
337 diff = (x*y).inner_product(z) - x.inner_product(y*z)
338
339 if self.base_ring().is_exact():
340 if diff != 0:
341 return False
342 else:
343 if diff.abs() > epsilon:
344 return False
345
346 return True
347
348 def _element_constructor_(self, elt):
349 """
350 Construct an element of this algebra from its vector or matrix
351 representation.
352
353 This gets called only after the parent element _call_ method
354 fails to find a coercion for the argument.
355
356 SETUP::
357
358 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
359 ....: HadamardEJA,
360 ....: RealSymmetricEJA)
361
362 EXAMPLES:
363
364 The identity in `S^n` is converted to the identity in the EJA::
365
366 sage: J = RealSymmetricEJA(3)
367 sage: I = matrix.identity(QQ,3)
368 sage: J(I) == J.one()
369 True
370
371 This skew-symmetric matrix can't be represented in the EJA::
372
373 sage: J = RealSymmetricEJA(3)
374 sage: A = matrix(QQ,3, lambda i,j: i-j)
375 sage: J(A)
376 Traceback (most recent call last):
377 ...
378 ValueError: not an element of this algebra
379
380 TESTS:
381
382 Ensure that we can convert any element of the two non-matrix
383 simple algebras (whose matrix representations are columns)
384 back and forth faithfully::
385
386 sage: set_random_seed()
387 sage: J = HadamardEJA.random_instance()
388 sage: x = J.random_element()
389 sage: J(x.to_vector().column()) == x
390 True
391 sage: J = JordanSpinEJA.random_instance()
392 sage: x = J.random_element()
393 sage: J(x.to_vector().column()) == x
394 True
395
396 """
397 msg = "not an element of this algebra"
398 if elt == 0:
399 # The superclass implementation of random_element()
400 # needs to be able to coerce "0" into the algebra.
401 return self.zero()
402 elif elt in self.base_ring():
403 # Ensure that no base ring -> algebra coercion is performed
404 # by this method. There's some stupidity in sage that would
405 # otherwise propagate to this method; for example, sage thinks
406 # that the integer 3 belongs to the space of 2-by-2 matrices.
407 raise ValueError(msg)
408
409 try:
410 elt = elt.column()
411 except (AttributeError, TypeError):
412 # Try to convert a vector into a column-matrix
413 pass
414
415 if elt not in self.matrix_space():
416 raise ValueError(msg)
417
418 # Thanks for nothing! Matrix spaces aren't vector spaces in
419 # Sage, so we have to figure out its matrix-basis coordinates
420 # ourselves. We use the basis space's ring instead of the
421 # element's ring because the basis space might be an algebraic
422 # closure whereas the base ring of the 3-by-3 identity matrix
423 # could be QQ instead of QQbar.
424 #
425 # We pass check=False because the matrix basis is "guaranteed"
426 # to be linearly independent... right? Ha ha.
427 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
428 W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
429 check=False)
430
431 try:
432 coords = W.coordinate_vector(_mat2vec(elt))
433 except ArithmeticError: # vector is not in free module
434 raise ValueError(msg)
435
436 return self.from_vector(coords)
437
438 def _repr_(self):
439 """
440 Return a string representation of ``self``.
441
442 SETUP::
443
444 sage: from mjo.eja.eja_algebra import JordanSpinEJA
445
446 TESTS:
447
448 Ensure that it says what we think it says::
449
450 sage: JordanSpinEJA(2, field=AA)
451 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
452 sage: JordanSpinEJA(3, field=RDF)
453 Euclidean Jordan algebra of dimension 3 over Real Double Field
454
455 """
456 fmt = "Euclidean Jordan algebra of dimension {} over {}"
457 return fmt.format(self.dimension(), self.base_ring())
458
459
460 @cached_method
461 def characteristic_polynomial_of(self):
462 """
463 Return the algebra's "characteristic polynomial of" function,
464 which is itself a multivariate polynomial that, when evaluated
465 at the coordinates of some algebra element, returns that
466 element's characteristic polynomial.
467
468 The resulting polynomial has `n+1` variables, where `n` is the
469 dimension of this algebra. The first `n` variables correspond to
470 the coordinates of an algebra element: when evaluated at the
471 coordinates of an algebra element with respect to a certain
472 basis, the result is a univariate polynomial (in the one
473 remaining variable ``t``), namely the characteristic polynomial
474 of that element.
475
476 SETUP::
477
478 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
479
480 EXAMPLES:
481
482 The characteristic polynomial in the spin algebra is given in
483 Alizadeh, Example 11.11::
484
485 sage: J = JordanSpinEJA(3)
486 sage: p = J.characteristic_polynomial_of(); p
487 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
488 sage: xvec = J.one().to_vector()
489 sage: p(*xvec)
490 t^2 - 2*t + 1
491
492 By definition, the characteristic polynomial is a monic
493 degree-zero polynomial in a rank-zero algebra. Note that
494 Cayley-Hamilton is indeed satisfied since the polynomial
495 ``1`` evaluates to the identity element of the algebra on
496 any argument::
497
498 sage: J = TrivialEJA()
499 sage: J.characteristic_polynomial_of()
500 1
501
502 """
503 r = self.rank()
504 n = self.dimension()
505
506 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
507 a = self._charpoly_coefficients()
508
509 # We go to a bit of trouble here to reorder the
510 # indeterminates, so that it's easier to evaluate the
511 # characteristic polynomial at x's coordinates and get back
512 # something in terms of t, which is what we want.
513 S = PolynomialRing(self.base_ring(),'t')
514 t = S.gen(0)
515 if r > 0:
516 R = a[0].parent()
517 S = PolynomialRing(S, R.variable_names())
518 t = S(t)
519
520 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
521
522 def coordinate_polynomial_ring(self):
523 r"""
524 The multivariate polynomial ring in which this algebra's
525 :meth:`characteristic_polynomial_of` lives.
526
527 SETUP::
528
529 sage: from mjo.eja.eja_algebra import (HadamardEJA,
530 ....: RealSymmetricEJA)
531
532 EXAMPLES::
533
534 sage: J = HadamardEJA(2)
535 sage: J.coordinate_polynomial_ring()
536 Multivariate Polynomial Ring in X1, X2...
537 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
538 sage: J.coordinate_polynomial_ring()
539 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
540
541 """
542 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
543 return PolynomialRing(self.base_ring(), var_names)
544
545 def inner_product(self, x, y):
546 """
547 The inner product associated with this Euclidean Jordan algebra.
548
549 Defaults to the trace inner product, but can be overridden by
550 subclasses if they are sure that the necessary properties are
551 satisfied.
552
553 SETUP::
554
555 sage: from mjo.eja.eja_algebra import (random_eja,
556 ....: HadamardEJA,
557 ....: BilinearFormEJA)
558
559 EXAMPLES:
560
561 Our inner product is "associative," which means the following for
562 a symmetric bilinear form::
563
564 sage: set_random_seed()
565 sage: J = random_eja()
566 sage: x,y,z = J.random_elements(3)
567 sage: (x*y).inner_product(z) == y.inner_product(x*z)
568 True
569
570 TESTS:
571
572 Ensure that this is the usual inner product for the algebras
573 over `R^n`::
574
575 sage: set_random_seed()
576 sage: J = HadamardEJA.random_instance()
577 sage: x,y = J.random_elements(2)
578 sage: actual = x.inner_product(y)
579 sage: expected = x.to_vector().inner_product(y.to_vector())
580 sage: actual == expected
581 True
582
583 Ensure that this is one-half of the trace inner-product in a
584 BilinearFormEJA that isn't just the reals (when ``n`` isn't
585 one). This is in Faraut and Koranyi, and also my "On the
586 symmetry..." paper::
587
588 sage: set_random_seed()
589 sage: J = BilinearFormEJA.random_instance()
590 sage: n = J.dimension()
591 sage: x = J.random_element()
592 sage: y = J.random_element()
593 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
594 True
595 """
596 B = self._inner_product_matrix
597 return (B*x.to_vector()).inner_product(y.to_vector())
598
599
600 def is_trivial(self):
601 """
602 Return whether or not this algebra is trivial.
603
604 A trivial algebra contains only the zero element.
605
606 SETUP::
607
608 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
609 ....: TrivialEJA)
610
611 EXAMPLES::
612
613 sage: J = ComplexHermitianEJA(3)
614 sage: J.is_trivial()
615 False
616
617 ::
618
619 sage: J = TrivialEJA()
620 sage: J.is_trivial()
621 True
622
623 """
624 return self.dimension() == 0
625
626
627 def multiplication_table(self):
628 """
629 Return a visual representation of this algebra's multiplication
630 table (on basis elements).
631
632 SETUP::
633
634 sage: from mjo.eja.eja_algebra import JordanSpinEJA
635
636 EXAMPLES::
637
638 sage: J = JordanSpinEJA(4)
639 sage: J.multiplication_table()
640 +----++----+----+----+----+
641 | * || e0 | e1 | e2 | e3 |
642 +====++====+====+====+====+
643 | e0 || e0 | e1 | e2 | e3 |
644 +----++----+----+----+----+
645 | e1 || e1 | e0 | 0 | 0 |
646 +----++----+----+----+----+
647 | e2 || e2 | 0 | e0 | 0 |
648 +----++----+----+----+----+
649 | e3 || e3 | 0 | 0 | e0 |
650 +----++----+----+----+----+
651
652 """
653 n = self.dimension()
654 # Prepend the header row.
655 M = [["*"] + list(self.gens())]
656
657 # And to each subsequent row, prepend an entry that belongs to
658 # the left-side "header column."
659 M += [ [self.monomial(i)] + [ self.product_on_basis(i,j)
660 for j in range(n) ]
661 for i in range(n) ]
662
663 return table(M, header_row=True, header_column=True, frame=True)
664
665
666 def matrix_basis(self):
667 """
668 Return an (often more natural) representation of this algebras
669 basis as an ordered tuple of matrices.
670
671 Every finite-dimensional Euclidean Jordan Algebra is a, up to
672 Jordan isomorphism, a direct sum of five simple
673 algebras---four of which comprise Hermitian matrices. And the
674 last type of algebra can of course be thought of as `n`-by-`1`
675 column matrices (ambiguusly called column vectors) to avoid
676 special cases. As a result, matrices (and column vectors) are
677 a natural representation format for Euclidean Jordan algebra
678 elements.
679
680 But, when we construct an algebra from a basis of matrices,
681 those matrix representations are lost in favor of coordinate
682 vectors *with respect to* that basis. We could eventually
683 convert back if we tried hard enough, but having the original
684 representations handy is valuable enough that we simply store
685 them and return them from this method.
686
687 Why implement this for non-matrix algebras? Avoiding special
688 cases for the :class:`BilinearFormEJA` pays with simplicity in
689 its own right. But mainly, we would like to be able to assume
690 that elements of a :class:`DirectSumEJA` can be displayed
691 nicely, without having to have special classes for direct sums
692 one of whose components was a matrix algebra.
693
694 SETUP::
695
696 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
697 ....: RealSymmetricEJA)
698
699 EXAMPLES::
700
701 sage: J = RealSymmetricEJA(2)
702 sage: J.basis()
703 Finite family {0: e0, 1: e1, 2: e2}
704 sage: J.matrix_basis()
705 (
706 [1 0] [ 0 0.7071067811865475?] [0 0]
707 [0 0], [0.7071067811865475? 0], [0 1]
708 )
709
710 ::
711
712 sage: J = JordanSpinEJA(2)
713 sage: J.basis()
714 Finite family {0: e0, 1: e1}
715 sage: J.matrix_basis()
716 (
717 [1] [0]
718 [0], [1]
719 )
720 """
721 return self._matrix_basis
722
723
724 def matrix_space(self):
725 """
726 Return the matrix space in which this algebra's elements live, if
727 we think of them as matrices (including column vectors of the
728 appropriate size).
729
730 Generally this will be an `n`-by-`1` column-vector space,
731 except when the algebra is trivial. There it's `n`-by-`n`
732 (where `n` is zero), to ensure that two elements of the matrix
733 space (empty matrices) can be multiplied.
734
735 Matrix algebras override this with something more useful.
736 """
737 if self.is_trivial():
738 return MatrixSpace(self.base_ring(), 0)
739 else:
740 return self._matrix_basis[0].matrix_space()
741
742
743 @cached_method
744 def one(self):
745 """
746 Return the unit element of this algebra.
747
748 SETUP::
749
750 sage: from mjo.eja.eja_algebra import (HadamardEJA,
751 ....: random_eja)
752
753 EXAMPLES:
754
755 We can compute unit element in the Hadamard EJA::
756
757 sage: J = HadamardEJA(5)
758 sage: J.one()
759 e0 + e1 + e2 + e3 + e4
760
761 The unit element in the Hadamard EJA is inherited in the
762 subalgebras generated by its elements::
763
764 sage: J = HadamardEJA(5)
765 sage: J.one()
766 e0 + e1 + e2 + e3 + e4
767 sage: x = sum(J.gens())
768 sage: A = x.subalgebra_generated_by(orthonormalize=False)
769 sage: A.one()
770 f0
771 sage: A.one().superalgebra_element()
772 e0 + e1 + e2 + e3 + e4
773
774 TESTS:
775
776 The identity element acts like the identity, regardless of
777 whether or not we orthonormalize::
778
779 sage: set_random_seed()
780 sage: J = random_eja()
781 sage: x = J.random_element()
782 sage: J.one()*x == x and x*J.one() == x
783 True
784 sage: A = x.subalgebra_generated_by()
785 sage: y = A.random_element()
786 sage: A.one()*y == y and y*A.one() == y
787 True
788
789 ::
790
791 sage: set_random_seed()
792 sage: J = random_eja(field=QQ, orthonormalize=False)
793 sage: x = J.random_element()
794 sage: J.one()*x == x and x*J.one() == x
795 True
796 sage: A = x.subalgebra_generated_by(orthonormalize=False)
797 sage: y = A.random_element()
798 sage: A.one()*y == y and y*A.one() == y
799 True
800
801 The matrix of the unit element's operator is the identity,
802 regardless of the base field and whether or not we
803 orthonormalize::
804
805 sage: set_random_seed()
806 sage: J = random_eja()
807 sage: actual = J.one().operator().matrix()
808 sage: expected = matrix.identity(J.base_ring(), J.dimension())
809 sage: actual == expected
810 True
811 sage: x = J.random_element()
812 sage: A = x.subalgebra_generated_by()
813 sage: actual = A.one().operator().matrix()
814 sage: expected = matrix.identity(A.base_ring(), A.dimension())
815 sage: actual == expected
816 True
817
818 ::
819
820 sage: set_random_seed()
821 sage: J = random_eja(field=QQ, orthonormalize=False)
822 sage: actual = J.one().operator().matrix()
823 sage: expected = matrix.identity(J.base_ring(), J.dimension())
824 sage: actual == expected
825 True
826 sage: x = J.random_element()
827 sage: A = x.subalgebra_generated_by(orthonormalize=False)
828 sage: actual = A.one().operator().matrix()
829 sage: expected = matrix.identity(A.base_ring(), A.dimension())
830 sage: actual == expected
831 True
832
833 Ensure that the cached unit element (often precomputed by
834 hand) agrees with the computed one::
835
836 sage: set_random_seed()
837 sage: J = random_eja()
838 sage: cached = J.one()
839 sage: J.one.clear_cache()
840 sage: J.one() == cached
841 True
842
843 ::
844
845 sage: set_random_seed()
846 sage: J = random_eja(field=QQ, orthonormalize=False)
847 sage: cached = J.one()
848 sage: J.one.clear_cache()
849 sage: J.one() == cached
850 True
851
852 """
853 # We can brute-force compute the matrices of the operators
854 # that correspond to the basis elements of this algebra.
855 # If some linear combination of those basis elements is the
856 # algebra identity, then the same linear combination of
857 # their matrices has to be the identity matrix.
858 #
859 # Of course, matrices aren't vectors in sage, so we have to
860 # appeal to the "long vectors" isometry.
861 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
862
863 # Now we use basic linear algebra to find the coefficients,
864 # of the matrices-as-vectors-linear-combination, which should
865 # work for the original algebra basis too.
866 A = matrix(self.base_ring(), oper_vecs)
867
868 # We used the isometry on the left-hand side already, but we
869 # still need to do it for the right-hand side. Recall that we
870 # wanted something that summed to the identity matrix.
871 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
872
873 # Now if there's an identity element in the algebra, this
874 # should work. We solve on the left to avoid having to
875 # transpose the matrix "A".
876 return self.from_vector(A.solve_left(b))
877
878
879 def peirce_decomposition(self, c):
880 """
881 The Peirce decomposition of this algebra relative to the
882 idempotent ``c``.
883
884 In the future, this can be extended to a complete system of
885 orthogonal idempotents.
886
887 INPUT:
888
889 - ``c`` -- an idempotent of this algebra.
890
891 OUTPUT:
892
893 A triple (J0, J5, J1) containing two subalgebras and one subspace
894 of this algebra,
895
896 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
897 corresponding to the eigenvalue zero.
898
899 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
900 corresponding to the eigenvalue one-half.
901
902 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
903 corresponding to the eigenvalue one.
904
905 These are the only possible eigenspaces for that operator, and this
906 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
907 orthogonal, and are subalgebras of this algebra with the appropriate
908 restrictions.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
913
914 EXAMPLES:
915
916 The canonical example comes from the symmetric matrices, which
917 decompose into diagonal and off-diagonal parts::
918
919 sage: J = RealSymmetricEJA(3)
920 sage: C = matrix(QQ, [ [1,0,0],
921 ....: [0,1,0],
922 ....: [0,0,0] ])
923 sage: c = J(C)
924 sage: J0,J5,J1 = J.peirce_decomposition(c)
925 sage: J0
926 Euclidean Jordan algebra of dimension 1...
927 sage: J5
928 Vector space of degree 6 and dimension 2...
929 sage: J1
930 Euclidean Jordan algebra of dimension 3...
931 sage: J0.one().to_matrix()
932 [0 0 0]
933 [0 0 0]
934 [0 0 1]
935 sage: orig_df = AA.options.display_format
936 sage: AA.options.display_format = 'radical'
937 sage: J.from_vector(J5.basis()[0]).to_matrix()
938 [ 0 0 1/2*sqrt(2)]
939 [ 0 0 0]
940 [1/2*sqrt(2) 0 0]
941 sage: J.from_vector(J5.basis()[1]).to_matrix()
942 [ 0 0 0]
943 [ 0 0 1/2*sqrt(2)]
944 [ 0 1/2*sqrt(2) 0]
945 sage: AA.options.display_format = orig_df
946 sage: J1.one().to_matrix()
947 [1 0 0]
948 [0 1 0]
949 [0 0 0]
950
951 TESTS:
952
953 Every algebra decomposes trivially with respect to its identity
954 element::
955
956 sage: set_random_seed()
957 sage: J = random_eja()
958 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
959 sage: J0.dimension() == 0 and J5.dimension() == 0
960 True
961 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
962 True
963
964 The decomposition is into eigenspaces, and its components are
965 therefore necessarily orthogonal. Moreover, the identity
966 elements in the two subalgebras are the projections onto their
967 respective subspaces of the superalgebra's identity element::
968
969 sage: set_random_seed()
970 sage: J = random_eja()
971 sage: x = J.random_element()
972 sage: if not J.is_trivial():
973 ....: while x.is_nilpotent():
974 ....: x = J.random_element()
975 sage: c = x.subalgebra_idempotent()
976 sage: J0,J5,J1 = J.peirce_decomposition(c)
977 sage: ipsum = 0
978 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
979 ....: w = w.superalgebra_element()
980 ....: y = J.from_vector(y)
981 ....: z = z.superalgebra_element()
982 ....: ipsum += w.inner_product(y).abs()
983 ....: ipsum += w.inner_product(z).abs()
984 ....: ipsum += y.inner_product(z).abs()
985 sage: ipsum
986 0
987 sage: J1(c) == J1.one()
988 True
989 sage: J0(J.one() - c) == J0.one()
990 True
991
992 """
993 if not c.is_idempotent():
994 raise ValueError("element is not idempotent: %s" % c)
995
996 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
997
998 # Default these to what they should be if they turn out to be
999 # trivial, because eigenspaces_left() won't return eigenvalues
1000 # corresponding to trivial spaces (e.g. it returns only the
1001 # eigenspace corresponding to lambda=1 if you take the
1002 # decomposition relative to the identity element).
1003 trivial = FiniteDimensionalEJASubalgebra(self, ())
1004 J0 = trivial # eigenvalue zero
1005 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1006 J1 = trivial # eigenvalue one
1007
1008 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1009 if eigval == ~(self.base_ring()(2)):
1010 J5 = eigspace
1011 else:
1012 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1013 subalg = FiniteDimensionalEJASubalgebra(self,
1014 gens,
1015 check_axioms=False)
1016 if eigval == 0:
1017 J0 = subalg
1018 elif eigval == 1:
1019 J1 = subalg
1020 else:
1021 raise ValueError("unexpected eigenvalue: %s" % eigval)
1022
1023 return (J0, J5, J1)
1024
1025
1026 def random_element(self, thorough=False):
1027 r"""
1028 Return a random element of this algebra.
1029
1030 Our algebra superclass method only returns a linear
1031 combination of at most two basis elements. We instead
1032 want the vector space "random element" method that
1033 returns a more diverse selection.
1034
1035 INPUT:
1036
1037 - ``thorough`` -- (boolean; default False) whether or not we
1038 should generate irrational coefficients for the random
1039 element when our base ring is irrational; this slows the
1040 algebra operations to a crawl, but any truly random method
1041 should include them
1042
1043 """
1044 # For a general base ring... maybe we can trust this to do the
1045 # right thing? Unlikely, but.
1046 V = self.vector_space()
1047 v = V.random_element()
1048
1049 if self.base_ring() is AA:
1050 # The "random element" method of the algebraic reals is
1051 # stupid at the moment, and only returns integers between
1052 # -2 and 2, inclusive:
1053 #
1054 # https://trac.sagemath.org/ticket/30875
1055 #
1056 # Instead, we implement our own "random vector" method,
1057 # and then coerce that into the algebra. We use the vector
1058 # space degree here instead of the dimension because a
1059 # subalgebra could (for example) be spanned by only two
1060 # vectors, each with five coordinates. We need to
1061 # generate all five coordinates.
1062 if thorough:
1063 v *= QQbar.random_element().real()
1064 else:
1065 v *= QQ.random_element()
1066
1067 return self.from_vector(V.coordinate_vector(v))
1068
1069 def random_elements(self, count, thorough=False):
1070 """
1071 Return ``count`` random elements as a tuple.
1072
1073 INPUT:
1074
1075 - ``thorough`` -- (boolean; default False) whether or not we
1076 should generate irrational coefficients for the random
1077 elements when our base ring is irrational; this slows the
1078 algebra operations to a crawl, but any truly random method
1079 should include them
1080
1081 SETUP::
1082
1083 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1084
1085 EXAMPLES::
1086
1087 sage: J = JordanSpinEJA(3)
1088 sage: x,y,z = J.random_elements(3)
1089 sage: all( [ x in J, y in J, z in J ])
1090 True
1091 sage: len( J.random_elements(10) ) == 10
1092 True
1093
1094 """
1095 return tuple( self.random_element(thorough)
1096 for idx in range(count) )
1097
1098
1099 @cached_method
1100 def _charpoly_coefficients(self):
1101 r"""
1102 The `r` polynomial coefficients of the "characteristic polynomial
1103 of" function.
1104 """
1105 n = self.dimension()
1106 R = self.coordinate_polynomial_ring()
1107 vars = R.gens()
1108 F = R.fraction_field()
1109
1110 def L_x_i_j(i,j):
1111 # From a result in my book, these are the entries of the
1112 # basis representation of L_x.
1113 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1114 for k in range(n) )
1115
1116 L_x = matrix(F, n, n, L_x_i_j)
1117
1118 r = None
1119 if self.rank.is_in_cache():
1120 r = self.rank()
1121 # There's no need to pad the system with redundant
1122 # columns if we *know* they'll be redundant.
1123 n = r
1124
1125 # Compute an extra power in case the rank is equal to
1126 # the dimension (otherwise, we would stop at x^(r-1)).
1127 x_powers = [ (L_x**k)*self.one().to_vector()
1128 for k in range(n+1) ]
1129 A = matrix.column(F, x_powers[:n])
1130 AE = A.extended_echelon_form()
1131 E = AE[:,n:]
1132 A_rref = AE[:,:n]
1133 if r is None:
1134 r = A_rref.rank()
1135 b = x_powers[r]
1136
1137 # The theory says that only the first "r" coefficients are
1138 # nonzero, and they actually live in the original polynomial
1139 # ring and not the fraction field. We negate them because
1140 # in the actual characteristic polynomial, they get moved
1141 # to the other side where x^r lives.
1142 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1143
1144 @cached_method
1145 def rank(self):
1146 r"""
1147 Return the rank of this EJA.
1148
1149 This is a cached method because we know the rank a priori for
1150 all of the algebras we can construct. Thus we can avoid the
1151 expensive ``_charpoly_coefficients()`` call unless we truly
1152 need to compute the whole characteristic polynomial.
1153
1154 SETUP::
1155
1156 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1157 ....: JordanSpinEJA,
1158 ....: RealSymmetricEJA,
1159 ....: ComplexHermitianEJA,
1160 ....: QuaternionHermitianEJA,
1161 ....: random_eja)
1162
1163 EXAMPLES:
1164
1165 The rank of the Jordan spin algebra is always two::
1166
1167 sage: JordanSpinEJA(2).rank()
1168 2
1169 sage: JordanSpinEJA(3).rank()
1170 2
1171 sage: JordanSpinEJA(4).rank()
1172 2
1173
1174 The rank of the `n`-by-`n` Hermitian real, complex, or
1175 quaternion matrices is `n`::
1176
1177 sage: RealSymmetricEJA(4).rank()
1178 4
1179 sage: ComplexHermitianEJA(3).rank()
1180 3
1181 sage: QuaternionHermitianEJA(2).rank()
1182 2
1183
1184 TESTS:
1185
1186 Ensure that every EJA that we know how to construct has a
1187 positive integer rank, unless the algebra is trivial in
1188 which case its rank will be zero::
1189
1190 sage: set_random_seed()
1191 sage: J = random_eja()
1192 sage: r = J.rank()
1193 sage: r in ZZ
1194 True
1195 sage: r > 0 or (r == 0 and J.is_trivial())
1196 True
1197
1198 Ensure that computing the rank actually works, since the ranks
1199 of all simple algebras are known and will be cached by default::
1200
1201 sage: set_random_seed() # long time
1202 sage: J = random_eja() # long time
1203 sage: caches = J.rank() # long time
1204 sage: J.rank.clear_cache() # long time
1205 sage: J.rank() == cached # long time
1206 True
1207
1208 """
1209 return len(self._charpoly_coefficients())
1210
1211
1212 def vector_space(self):
1213 """
1214 Return the vector space that underlies this algebra.
1215
1216 SETUP::
1217
1218 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1219
1220 EXAMPLES::
1221
1222 sage: J = RealSymmetricEJA(2)
1223 sage: J.vector_space()
1224 Vector space of dimension 3 over...
1225
1226 """
1227 return self.zero().to_vector().parent().ambient_vector_space()
1228
1229
1230 Element = FiniteDimensionalEJAElement
1231
1232 class RationalBasisEJA(FiniteDimensionalEJA):
1233 r"""
1234 New class for algebras whose supplied basis elements have all rational entries.
1235
1236 SETUP::
1237
1238 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1239
1240 EXAMPLES:
1241
1242 The supplied basis is orthonormalized by default::
1243
1244 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1245 sage: J = BilinearFormEJA(B)
1246 sage: J.matrix_basis()
1247 (
1248 [1] [ 0] [ 0]
1249 [0] [1/5] [32/5]
1250 [0], [ 0], [ 5]
1251 )
1252
1253 """
1254 def __init__(self,
1255 basis,
1256 jordan_product,
1257 inner_product,
1258 field=AA,
1259 check_field=True,
1260 **kwargs):
1261
1262 if check_field:
1263 # Abuse the check_field parameter to check that the entries of
1264 # out basis (in ambient coordinates) are in the field QQ.
1265 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1266 raise TypeError("basis not rational")
1267
1268 self._rational_algebra = None
1269 if field is not QQ:
1270 # There's no point in constructing the extra algebra if this
1271 # one is already rational.
1272 #
1273 # Note: the same Jordan and inner-products work here,
1274 # because they are necessarily defined with respect to
1275 # ambient coordinates and not any particular basis.
1276 self._rational_algebra = FiniteDimensionalEJA(
1277 basis,
1278 jordan_product,
1279 inner_product,
1280 field=QQ,
1281 orthonormalize=False,
1282 check_field=False,
1283 check_axioms=False)
1284
1285 super().__init__(basis,
1286 jordan_product,
1287 inner_product,
1288 field=field,
1289 check_field=check_field,
1290 **kwargs)
1291
1292 @cached_method
1293 def _charpoly_coefficients(self):
1294 r"""
1295 SETUP::
1296
1297 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1298 ....: JordanSpinEJA)
1299
1300 EXAMPLES:
1301
1302 The base ring of the resulting polynomial coefficients is what
1303 it should be, and not the rationals (unless the algebra was
1304 already over the rationals)::
1305
1306 sage: J = JordanSpinEJA(3)
1307 sage: J._charpoly_coefficients()
1308 (X1^2 - X2^2 - X3^2, -2*X1)
1309 sage: a0 = J._charpoly_coefficients()[0]
1310 sage: J.base_ring()
1311 Algebraic Real Field
1312 sage: a0.base_ring()
1313 Algebraic Real Field
1314
1315 """
1316 if self._rational_algebra is None:
1317 # There's no need to construct *another* algebra over the
1318 # rationals if this one is already over the
1319 # rationals. Likewise, if we never orthonormalized our
1320 # basis, we might as well just use the given one.
1321 return super()._charpoly_coefficients()
1322
1323 # Do the computation over the rationals. The answer will be
1324 # the same, because all we've done is a change of basis.
1325 # Then, change back from QQ to our real base ring
1326 a = ( a_i.change_ring(self.base_ring())
1327 for a_i in self._rational_algebra._charpoly_coefficients() )
1328
1329 if self._deortho_matrix is None:
1330 # This can happen if our base ring was, say, AA and we
1331 # chose not to (or didn't need to) orthonormalize. It's
1332 # still faster to do the computations over QQ even if
1333 # the numbers in the boxes stay the same.
1334 return tuple(a)
1335
1336 # Otherwise, convert the coordinate variables back to the
1337 # deorthonormalized ones.
1338 R = self.coordinate_polynomial_ring()
1339 from sage.modules.free_module_element import vector
1340 X = vector(R, R.gens())
1341 BX = self._deortho_matrix*X
1342
1343 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1344 return tuple( a_i.subs(subs_dict) for a_i in a )
1345
1346 class ConcreteEJA(RationalBasisEJA):
1347 r"""
1348 A class for the Euclidean Jordan algebras that we know by name.
1349
1350 These are the Jordan algebras whose basis, multiplication table,
1351 rank, and so on are known a priori. More to the point, they are
1352 the Euclidean Jordan algebras for which we are able to conjure up
1353 a "random instance."
1354
1355 SETUP::
1356
1357 sage: from mjo.eja.eja_algebra import ConcreteEJA
1358
1359 TESTS:
1360
1361 Our basis is normalized with respect to the algebra's inner
1362 product, unless we specify otherwise::
1363
1364 sage: set_random_seed()
1365 sage: J = ConcreteEJA.random_instance()
1366 sage: all( b.norm() == 1 for b in J.gens() )
1367 True
1368
1369 Since our basis is orthonormal with respect to the algebra's inner
1370 product, and since we know that this algebra is an EJA, any
1371 left-multiplication operator's matrix will be symmetric because
1372 natural->EJA basis representation is an isometry and within the
1373 EJA the operator is self-adjoint by the Jordan axiom::
1374
1375 sage: set_random_seed()
1376 sage: J = ConcreteEJA.random_instance()
1377 sage: x = J.random_element()
1378 sage: x.operator().is_self_adjoint()
1379 True
1380 """
1381
1382 @staticmethod
1383 def _max_random_instance_size():
1384 """
1385 Return an integer "size" that is an upper bound on the size of
1386 this algebra when it is used in a random test
1387 case. Unfortunately, the term "size" is ambiguous -- when
1388 dealing with `R^n` under either the Hadamard or Jordan spin
1389 product, the "size" refers to the dimension `n`. When dealing
1390 with a matrix algebra (real symmetric or complex/quaternion
1391 Hermitian), it refers to the size of the matrix, which is far
1392 less than the dimension of the underlying vector space.
1393
1394 This method must be implemented in each subclass.
1395 """
1396 raise NotImplementedError
1397
1398 @classmethod
1399 def random_instance(cls, *args, **kwargs):
1400 """
1401 Return a random instance of this type of algebra.
1402
1403 This method should be implemented in each subclass.
1404 """
1405 from sage.misc.prandom import choice
1406 eja_class = choice(cls.__subclasses__())
1407
1408 # These all bubble up to the RationalBasisEJA superclass
1409 # constructor, so any (kw)args valid there are also valid
1410 # here.
1411 return eja_class.random_instance(*args, **kwargs)
1412
1413
1414 class MatrixEJA:
1415 @staticmethod
1416 def dimension_over_reals():
1417 r"""
1418 The dimension of this matrix's base ring over the reals.
1419
1420 The reals are dimension one over themselves, obviously; that's
1421 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1422 have dimension two. Finally, the quaternions have dimension
1423 four over the reals.
1424
1425 This is used to determine the size of the matrix returned from
1426 :meth:`real_embed`, among other things.
1427 """
1428 raise NotImplementedError
1429
1430 @classmethod
1431 def real_embed(cls,M):
1432 """
1433 Embed the matrix ``M`` into a space of real matrices.
1434
1435 The matrix ``M`` can have entries in any field at the moment:
1436 the real numbers, complex numbers, or quaternions. And although
1437 they are not a field, we can probably support octonions at some
1438 point, too. This function returns a real matrix that "acts like"
1439 the original with respect to matrix multiplication; i.e.
1440
1441 real_embed(M*N) = real_embed(M)*real_embed(N)
1442
1443 """
1444 if M.ncols() != M.nrows():
1445 raise ValueError("the matrix 'M' must be square")
1446 return M
1447
1448
1449 @classmethod
1450 def real_unembed(cls,M):
1451 """
1452 The inverse of :meth:`real_embed`.
1453 """
1454 if M.ncols() != M.nrows():
1455 raise ValueError("the matrix 'M' must be square")
1456 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1457 raise ValueError("the matrix 'M' must be a real embedding")
1458 return M
1459
1460 @staticmethod
1461 def jordan_product(X,Y):
1462 return (X*Y + Y*X)/2
1463
1464 @classmethod
1465 def trace_inner_product(cls,X,Y):
1466 r"""
1467 Compute the trace inner-product of two real-embeddings.
1468
1469 SETUP::
1470
1471 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1472 ....: ComplexHermitianEJA,
1473 ....: QuaternionHermitianEJA)
1474
1475 EXAMPLES::
1476
1477 This gives the same answer as it would if we computed the trace
1478 from the unembedded (original) matrices::
1479
1480 sage: set_random_seed()
1481 sage: J = RealSymmetricEJA.random_instance()
1482 sage: x,y = J.random_elements(2)
1483 sage: Xe = x.to_matrix()
1484 sage: Ye = y.to_matrix()
1485 sage: X = J.real_unembed(Xe)
1486 sage: Y = J.real_unembed(Ye)
1487 sage: expected = (X*Y).trace()
1488 sage: actual = J.trace_inner_product(Xe,Ye)
1489 sage: actual == expected
1490 True
1491
1492 ::
1493
1494 sage: set_random_seed()
1495 sage: J = ComplexHermitianEJA.random_instance()
1496 sage: x,y = J.random_elements(2)
1497 sage: Xe = x.to_matrix()
1498 sage: Ye = y.to_matrix()
1499 sage: X = J.real_unembed(Xe)
1500 sage: Y = J.real_unembed(Ye)
1501 sage: expected = (X*Y).trace().real()
1502 sage: actual = J.trace_inner_product(Xe,Ye)
1503 sage: actual == expected
1504 True
1505
1506 ::
1507
1508 sage: set_random_seed()
1509 sage: J = QuaternionHermitianEJA.random_instance()
1510 sage: x,y = J.random_elements(2)
1511 sage: Xe = x.to_matrix()
1512 sage: Ye = y.to_matrix()
1513 sage: X = J.real_unembed(Xe)
1514 sage: Y = J.real_unembed(Ye)
1515 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1516 sage: actual = J.trace_inner_product(Xe,Ye)
1517 sage: actual == expected
1518 True
1519
1520 """
1521 Xu = cls.real_unembed(X)
1522 Yu = cls.real_unembed(Y)
1523 tr = (Xu*Yu).trace()
1524
1525 try:
1526 # Works in QQ, AA, RDF, et cetera.
1527 return tr.real()
1528 except AttributeError:
1529 # A quaternion doesn't have a real() method, but does
1530 # have coefficient_tuple() method that returns the
1531 # coefficients of 1, i, j, and k -- in that order.
1532 return tr.coefficient_tuple()[0]
1533
1534
1535 class RealMatrixEJA(MatrixEJA):
1536 @staticmethod
1537 def dimension_over_reals():
1538 return 1
1539
1540
1541 class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
1542 """
1543 The rank-n simple EJA consisting of real symmetric n-by-n
1544 matrices, the usual symmetric Jordan product, and the trace inner
1545 product. It has dimension `(n^2 + n)/2` over the reals.
1546
1547 SETUP::
1548
1549 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1550
1551 EXAMPLES::
1552
1553 sage: J = RealSymmetricEJA(2)
1554 sage: e0, e1, e2 = J.gens()
1555 sage: e0*e0
1556 e0
1557 sage: e1*e1
1558 1/2*e0 + 1/2*e2
1559 sage: e2*e2
1560 e2
1561
1562 In theory, our "field" can be any subfield of the reals::
1563
1564 sage: RealSymmetricEJA(2, field=RDF)
1565 Euclidean Jordan algebra of dimension 3 over Real Double Field
1566 sage: RealSymmetricEJA(2, field=RR)
1567 Euclidean Jordan algebra of dimension 3 over Real Field with
1568 53 bits of precision
1569
1570 TESTS:
1571
1572 The dimension of this algebra is `(n^2 + n) / 2`::
1573
1574 sage: set_random_seed()
1575 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1576 sage: n = ZZ.random_element(1, n_max)
1577 sage: J = RealSymmetricEJA(n)
1578 sage: J.dimension() == (n^2 + n)/2
1579 True
1580
1581 The Jordan multiplication is what we think it is::
1582
1583 sage: set_random_seed()
1584 sage: J = RealSymmetricEJA.random_instance()
1585 sage: x,y = J.random_elements(2)
1586 sage: actual = (x*y).to_matrix()
1587 sage: X = x.to_matrix()
1588 sage: Y = y.to_matrix()
1589 sage: expected = (X*Y + Y*X)/2
1590 sage: actual == expected
1591 True
1592 sage: J(expected) == x*y
1593 True
1594
1595 We can change the generator prefix::
1596
1597 sage: RealSymmetricEJA(3, prefix='q').gens()
1598 (q0, q1, q2, q3, q4, q5)
1599
1600 We can construct the (trivial) algebra of rank zero::
1601
1602 sage: RealSymmetricEJA(0)
1603 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1604
1605 """
1606 @classmethod
1607 def _denormalized_basis(cls, n):
1608 """
1609 Return a basis for the space of real symmetric n-by-n matrices.
1610
1611 SETUP::
1612
1613 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1614
1615 TESTS::
1616
1617 sage: set_random_seed()
1618 sage: n = ZZ.random_element(1,5)
1619 sage: B = RealSymmetricEJA._denormalized_basis(n)
1620 sage: all( M.is_symmetric() for M in B)
1621 True
1622
1623 """
1624 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1625 # coordinates.
1626 S = []
1627 for i in range(n):
1628 for j in range(i+1):
1629 Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
1630 if i == j:
1631 Sij = Eij
1632 else:
1633 Sij = Eij + Eij.transpose()
1634 S.append(Sij)
1635 return tuple(S)
1636
1637
1638 @staticmethod
1639 def _max_random_instance_size():
1640 return 4 # Dimension 10
1641
1642 @classmethod
1643 def random_instance(cls, **kwargs):
1644 """
1645 Return a random instance of this type of algebra.
1646 """
1647 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1648 return cls(n, **kwargs)
1649
1650 def __init__(self, n, **kwargs):
1651 # We know this is a valid EJA, but will double-check
1652 # if the user passes check_axioms=True.
1653 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1654
1655 super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
1656 self.jordan_product,
1657 self.trace_inner_product,
1658 **kwargs)
1659
1660 # TODO: this could be factored out somehow, but is left here
1661 # because the MatrixEJA is not presently a subclass of the
1662 # FDEJA class that defines rank() and one().
1663 self.rank.set_cache(n)
1664 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1665 self.one.set_cache(self(idV))
1666
1667
1668
1669 class ComplexMatrixEJA(MatrixEJA):
1670 @staticmethod
1671 def dimension_over_reals():
1672 return 2
1673
1674 @classmethod
1675 def real_embed(cls,M):
1676 """
1677 Embed the n-by-n complex matrix ``M`` into the space of real
1678 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1679 bi` to the block matrix ``[[a,b],[-b,a]]``.
1680
1681 SETUP::
1682
1683 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
1684
1685 EXAMPLES::
1686
1687 sage: F = QuadraticField(-1, 'I')
1688 sage: x1 = F(4 - 2*i)
1689 sage: x2 = F(1 + 2*i)
1690 sage: x3 = F(-i)
1691 sage: x4 = F(6)
1692 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1693 sage: ComplexMatrixEJA.real_embed(M)
1694 [ 4 -2| 1 2]
1695 [ 2 4|-2 1]
1696 [-----+-----]
1697 [ 0 -1| 6 0]
1698 [ 1 0| 0 6]
1699
1700 TESTS:
1701
1702 Embedding is a homomorphism (isomorphism, in fact)::
1703
1704 sage: set_random_seed()
1705 sage: n = ZZ.random_element(3)
1706 sage: F = QuadraticField(-1, 'I')
1707 sage: X = random_matrix(F, n)
1708 sage: Y = random_matrix(F, n)
1709 sage: Xe = ComplexMatrixEJA.real_embed(X)
1710 sage: Ye = ComplexMatrixEJA.real_embed(Y)
1711 sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
1712 sage: Xe*Ye == XYe
1713 True
1714
1715 """
1716 super(ComplexMatrixEJA,cls).real_embed(M)
1717 n = M.nrows()
1718
1719 # We don't need any adjoined elements...
1720 field = M.base_ring().base_ring()
1721
1722 blocks = []
1723 for z in M.list():
1724 a = z.list()[0] # real part, I guess
1725 b = z.list()[1] # imag part, I guess
1726 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1727
1728 return matrix.block(field, n, blocks)
1729
1730
1731 @classmethod
1732 def real_unembed(cls,M):
1733 """
1734 The inverse of _embed_complex_matrix().
1735
1736 SETUP::
1737
1738 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
1739
1740 EXAMPLES::
1741
1742 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1743 ....: [-2, 1, -4, 3],
1744 ....: [ 9, 10, 11, 12],
1745 ....: [-10, 9, -12, 11] ])
1746 sage: ComplexMatrixEJA.real_unembed(A)
1747 [ 2*I + 1 4*I + 3]
1748 [ 10*I + 9 12*I + 11]
1749
1750 TESTS:
1751
1752 Unembedding is the inverse of embedding::
1753
1754 sage: set_random_seed()
1755 sage: F = QuadraticField(-1, 'I')
1756 sage: M = random_matrix(F, 3)
1757 sage: Me = ComplexMatrixEJA.real_embed(M)
1758 sage: ComplexMatrixEJA.real_unembed(Me) == M
1759 True
1760
1761 """
1762 super(ComplexMatrixEJA,cls).real_unembed(M)
1763 n = ZZ(M.nrows())
1764 d = cls.dimension_over_reals()
1765
1766 # If "M" was normalized, its base ring might have roots
1767 # adjoined and they can stick around after unembedding.
1768 field = M.base_ring()
1769 R = PolynomialRing(field, 'z')
1770 z = R.gen()
1771
1772 # Sage doesn't know how to adjoin the complex "i" (the root of
1773 # x^2 + 1) to a field in a general way. Here, we just enumerate
1774 # all of the cases that I have cared to support so far.
1775 if field is AA:
1776 # Sage doesn't know how to embed AA into QQbar, i.e. how
1777 # to adjoin sqrt(-1) to AA.
1778 F = QQbar
1779 elif not field.is_exact():
1780 # RDF or RR
1781 F = field.complex_field()
1782 else:
1783 # Works for QQ and... maybe some other fields.
1784 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1785 i = F.gen()
1786
1787 # Go top-left to bottom-right (reading order), converting every
1788 # 2-by-2 block we see to a single complex element.
1789 elements = []
1790 for k in range(n/d):
1791 for j in range(n/d):
1792 submat = M[d*k:d*k+d,d*j:d*j+d]
1793 if submat[0,0] != submat[1,1]:
1794 raise ValueError('bad on-diagonal submatrix')
1795 if submat[0,1] != -submat[1,0]:
1796 raise ValueError('bad off-diagonal submatrix')
1797 z = submat[0,0] + submat[0,1]*i
1798 elements.append(z)
1799
1800 return matrix(F, n/d, elements)
1801
1802
1803 class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
1804 """
1805 The rank-n simple EJA consisting of complex Hermitian n-by-n
1806 matrices over the real numbers, the usual symmetric Jordan product,
1807 and the real-part-of-trace inner product. It has dimension `n^2` over
1808 the reals.
1809
1810 SETUP::
1811
1812 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1813
1814 EXAMPLES:
1815
1816 In theory, our "field" can be any subfield of the reals::
1817
1818 sage: ComplexHermitianEJA(2, field=RDF)
1819 Euclidean Jordan algebra of dimension 4 over Real Double Field
1820 sage: ComplexHermitianEJA(2, field=RR)
1821 Euclidean Jordan algebra of dimension 4 over Real Field with
1822 53 bits of precision
1823
1824 TESTS:
1825
1826 The dimension of this algebra is `n^2`::
1827
1828 sage: set_random_seed()
1829 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1830 sage: n = ZZ.random_element(1, n_max)
1831 sage: J = ComplexHermitianEJA(n)
1832 sage: J.dimension() == n^2
1833 True
1834
1835 The Jordan multiplication is what we think it is::
1836
1837 sage: set_random_seed()
1838 sage: J = ComplexHermitianEJA.random_instance()
1839 sage: x,y = J.random_elements(2)
1840 sage: actual = (x*y).to_matrix()
1841 sage: X = x.to_matrix()
1842 sage: Y = y.to_matrix()
1843 sage: expected = (X*Y + Y*X)/2
1844 sage: actual == expected
1845 True
1846 sage: J(expected) == x*y
1847 True
1848
1849 We can change the generator prefix::
1850
1851 sage: ComplexHermitianEJA(2, prefix='z').gens()
1852 (z0, z1, z2, z3)
1853
1854 We can construct the (trivial) algebra of rank zero::
1855
1856 sage: ComplexHermitianEJA(0)
1857 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1858
1859 """
1860
1861 @classmethod
1862 def _denormalized_basis(cls, n):
1863 """
1864 Returns a basis for the space of complex Hermitian n-by-n matrices.
1865
1866 Why do we embed these? Basically, because all of numerical linear
1867 algebra assumes that you're working with vectors consisting of `n`
1868 entries from a field and scalars from the same field. There's no way
1869 to tell SageMath that (for example) the vectors contain complex
1870 numbers, while the scalar field is real.
1871
1872 SETUP::
1873
1874 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1875
1876 TESTS::
1877
1878 sage: set_random_seed()
1879 sage: n = ZZ.random_element(1,5)
1880 sage: field = QuadraticField(2, 'sqrt2')
1881 sage: B = ComplexHermitianEJA._denormalized_basis(n)
1882 sage: all( M.is_symmetric() for M in B)
1883 True
1884
1885 """
1886 field = ZZ
1887 R = PolynomialRing(field, 'z')
1888 z = R.gen()
1889 F = field.extension(z**2 + 1, 'I')
1890 I = F.gen(1)
1891
1892 # This is like the symmetric case, but we need to be careful:
1893 #
1894 # * We want conjugate-symmetry, not just symmetry.
1895 # * The diagonal will (as a result) be real.
1896 #
1897 S = []
1898 for i in range(n):
1899 for j in range(i+1):
1900 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1901 if i == j:
1902 Sij = cls.real_embed(Eij)
1903 S.append(Sij)
1904 else:
1905 # The second one has a minus because it's conjugated.
1906 Sij_real = cls.real_embed(Eij + Eij.transpose())
1907 S.append(Sij_real)
1908 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1909 S.append(Sij_imag)
1910
1911 # Since we embedded these, we can drop back to the "field" that we
1912 # started with instead of the complex extension "F".
1913 return tuple( s.change_ring(field) for s in S )
1914
1915
1916 def __init__(self, n, **kwargs):
1917 # We know this is a valid EJA, but will double-check
1918 # if the user passes check_axioms=True.
1919 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1920
1921 super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
1922 self.jordan_product,
1923 self.trace_inner_product,
1924 **kwargs)
1925 # TODO: this could be factored out somehow, but is left here
1926 # because the MatrixEJA is not presently a subclass of the
1927 # FDEJA class that defines rank() and one().
1928 self.rank.set_cache(n)
1929 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1930 self.one.set_cache(self(idV))
1931
1932 @staticmethod
1933 def _max_random_instance_size():
1934 return 3 # Dimension 9
1935
1936 @classmethod
1937 def random_instance(cls, **kwargs):
1938 """
1939 Return a random instance of this type of algebra.
1940 """
1941 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1942 return cls(n, **kwargs)
1943
1944 class QuaternionMatrixEJA(MatrixEJA):
1945 @staticmethod
1946 def dimension_over_reals():
1947 return 4
1948
1949 @classmethod
1950 def real_embed(cls,M):
1951 """
1952 Embed the n-by-n quaternion matrix ``M`` into the space of real
1953 matrices of size 4n-by-4n by first sending each quaternion entry `z
1954 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1955 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1956 matrix.
1957
1958 SETUP::
1959
1960 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
1961
1962 EXAMPLES::
1963
1964 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1965 sage: i,j,k = Q.gens()
1966 sage: x = 1 + 2*i + 3*j + 4*k
1967 sage: M = matrix(Q, 1, [[x]])
1968 sage: QuaternionMatrixEJA.real_embed(M)
1969 [ 1 2 3 4]
1970 [-2 1 -4 3]
1971 [-3 4 1 -2]
1972 [-4 -3 2 1]
1973
1974 Embedding is a homomorphism (isomorphism, in fact)::
1975
1976 sage: set_random_seed()
1977 sage: n = ZZ.random_element(2)
1978 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1979 sage: X = random_matrix(Q, n)
1980 sage: Y = random_matrix(Q, n)
1981 sage: Xe = QuaternionMatrixEJA.real_embed(X)
1982 sage: Ye = QuaternionMatrixEJA.real_embed(Y)
1983 sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
1984 sage: Xe*Ye == XYe
1985 True
1986
1987 """
1988 super(QuaternionMatrixEJA,cls).real_embed(M)
1989 quaternions = M.base_ring()
1990 n = M.nrows()
1991
1992 F = QuadraticField(-1, 'I')
1993 i = F.gen()
1994
1995 blocks = []
1996 for z in M.list():
1997 t = z.coefficient_tuple()
1998 a = t[0]
1999 b = t[1]
2000 c = t[2]
2001 d = t[3]
2002 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2003 [-c + d*i, a - b*i]])
2004 realM = ComplexMatrixEJA.real_embed(cplxM)
2005 blocks.append(realM)
2006
2007 # We should have real entries by now, so use the realest field
2008 # we've got for the return value.
2009 return matrix.block(quaternions.base_ring(), n, blocks)
2010
2011
2012
2013 @classmethod
2014 def real_unembed(cls,M):
2015 """
2016 The inverse of _embed_quaternion_matrix().
2017
2018 SETUP::
2019
2020 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2021
2022 EXAMPLES::
2023
2024 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2025 ....: [-2, 1, -4, 3],
2026 ....: [-3, 4, 1, -2],
2027 ....: [-4, -3, 2, 1]])
2028 sage: QuaternionMatrixEJA.real_unembed(M)
2029 [1 + 2*i + 3*j + 4*k]
2030
2031 TESTS:
2032
2033 Unembedding is the inverse of embedding::
2034
2035 sage: set_random_seed()
2036 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2037 sage: M = random_matrix(Q, 3)
2038 sage: Me = QuaternionMatrixEJA.real_embed(M)
2039 sage: QuaternionMatrixEJA.real_unembed(Me) == M
2040 True
2041
2042 """
2043 super(QuaternionMatrixEJA,cls).real_unembed(M)
2044 n = ZZ(M.nrows())
2045 d = cls.dimension_over_reals()
2046
2047 # Use the base ring of the matrix to ensure that its entries can be
2048 # multiplied by elements of the quaternion algebra.
2049 field = M.base_ring()
2050 Q = QuaternionAlgebra(field,-1,-1)
2051 i,j,k = Q.gens()
2052
2053 # Go top-left to bottom-right (reading order), converting every
2054 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2055 # quaternion block.
2056 elements = []
2057 for l in range(n/d):
2058 for m in range(n/d):
2059 submat = ComplexMatrixEJA.real_unembed(
2060 M[d*l:d*l+d,d*m:d*m+d] )
2061 if submat[0,0] != submat[1,1].conjugate():
2062 raise ValueError('bad on-diagonal submatrix')
2063 if submat[0,1] != -submat[1,0].conjugate():
2064 raise ValueError('bad off-diagonal submatrix')
2065 z = submat[0,0].real()
2066 z += submat[0,0].imag()*i
2067 z += submat[0,1].real()*j
2068 z += submat[0,1].imag()*k
2069 elements.append(z)
2070
2071 return matrix(Q, n/d, elements)
2072
2073
2074 class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
2075 r"""
2076 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2077 matrices, the usual symmetric Jordan product, and the
2078 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2079 the reals.
2080
2081 SETUP::
2082
2083 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2084
2085 EXAMPLES:
2086
2087 In theory, our "field" can be any subfield of the reals::
2088
2089 sage: QuaternionHermitianEJA(2, field=RDF)
2090 Euclidean Jordan algebra of dimension 6 over Real Double Field
2091 sage: QuaternionHermitianEJA(2, field=RR)
2092 Euclidean Jordan algebra of dimension 6 over Real Field with
2093 53 bits of precision
2094
2095 TESTS:
2096
2097 The dimension of this algebra is `2*n^2 - n`::
2098
2099 sage: set_random_seed()
2100 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2101 sage: n = ZZ.random_element(1, n_max)
2102 sage: J = QuaternionHermitianEJA(n)
2103 sage: J.dimension() == 2*(n^2) - n
2104 True
2105
2106 The Jordan multiplication is what we think it is::
2107
2108 sage: set_random_seed()
2109 sage: J = QuaternionHermitianEJA.random_instance()
2110 sage: x,y = J.random_elements(2)
2111 sage: actual = (x*y).to_matrix()
2112 sage: X = x.to_matrix()
2113 sage: Y = y.to_matrix()
2114 sage: expected = (X*Y + Y*X)/2
2115 sage: actual == expected
2116 True
2117 sage: J(expected) == x*y
2118 True
2119
2120 We can change the generator prefix::
2121
2122 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2123 (a0, a1, a2, a3, a4, a5)
2124
2125 We can construct the (trivial) algebra of rank zero::
2126
2127 sage: QuaternionHermitianEJA(0)
2128 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2129
2130 """
2131 @classmethod
2132 def _denormalized_basis(cls, n):
2133 """
2134 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2135
2136 Why do we embed these? Basically, because all of numerical
2137 linear algebra assumes that you're working with vectors consisting
2138 of `n` entries from a field and scalars from the same field. There's
2139 no way to tell SageMath that (for example) the vectors contain
2140 complex numbers, while the scalar field is real.
2141
2142 SETUP::
2143
2144 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2145
2146 TESTS::
2147
2148 sage: set_random_seed()
2149 sage: n = ZZ.random_element(1,5)
2150 sage: B = QuaternionHermitianEJA._denormalized_basis(n)
2151 sage: all( M.is_symmetric() for M in B )
2152 True
2153
2154 """
2155 field = ZZ
2156 Q = QuaternionAlgebra(QQ,-1,-1)
2157 I,J,K = Q.gens()
2158
2159 # This is like the symmetric case, but we need to be careful:
2160 #
2161 # * We want conjugate-symmetry, not just symmetry.
2162 # * The diagonal will (as a result) be real.
2163 #
2164 S = []
2165 for i in range(n):
2166 for j in range(i+1):
2167 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
2168 if i == j:
2169 Sij = cls.real_embed(Eij)
2170 S.append(Sij)
2171 else:
2172 # The second, third, and fourth ones have a minus
2173 # because they're conjugated.
2174 Sij_real = cls.real_embed(Eij + Eij.transpose())
2175 S.append(Sij_real)
2176 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
2177 S.append(Sij_I)
2178 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
2179 S.append(Sij_J)
2180 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2181 S.append(Sij_K)
2182
2183 # Since we embedded these, we can drop back to the "field" that we
2184 # started with instead of the quaternion algebra "Q".
2185 return tuple( s.change_ring(field) for s in S )
2186
2187
2188 def __init__(self, n, **kwargs):
2189 # We know this is a valid EJA, but will double-check
2190 # if the user passes check_axioms=True.
2191 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2192
2193 super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
2194 self.jordan_product,
2195 self.trace_inner_product,
2196 **kwargs)
2197 # TODO: this could be factored out somehow, but is left here
2198 # because the MatrixEJA is not presently a subclass of the
2199 # FDEJA class that defines rank() and one().
2200 self.rank.set_cache(n)
2201 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2202 self.one.set_cache(self(idV))
2203
2204
2205 @staticmethod
2206 def _max_random_instance_size():
2207 r"""
2208 The maximum rank of a random QuaternionHermitianEJA.
2209 """
2210 return 2 # Dimension 6
2211
2212 @classmethod
2213 def random_instance(cls, **kwargs):
2214 """
2215 Return a random instance of this type of algebra.
2216 """
2217 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2218 return cls(n, **kwargs)
2219
2220
2221 class HadamardEJA(ConcreteEJA):
2222 """
2223 Return the Euclidean Jordan Algebra corresponding to the set
2224 `R^n` under the Hadamard product.
2225
2226 Note: this is nothing more than the Cartesian product of ``n``
2227 copies of the spin algebra. Once Cartesian product algebras
2228 are implemented, this can go.
2229
2230 SETUP::
2231
2232 sage: from mjo.eja.eja_algebra import HadamardEJA
2233
2234 EXAMPLES:
2235
2236 This multiplication table can be verified by hand::
2237
2238 sage: J = HadamardEJA(3)
2239 sage: e0,e1,e2 = J.gens()
2240 sage: e0*e0
2241 e0
2242 sage: e0*e1
2243 0
2244 sage: e0*e2
2245 0
2246 sage: e1*e1
2247 e1
2248 sage: e1*e2
2249 0
2250 sage: e2*e2
2251 e2
2252
2253 TESTS:
2254
2255 We can change the generator prefix::
2256
2257 sage: HadamardEJA(3, prefix='r').gens()
2258 (r0, r1, r2)
2259
2260 """
2261 def __init__(self, n, **kwargs):
2262 if n == 0:
2263 jordan_product = lambda x,y: x
2264 inner_product = lambda x,y: x
2265 else:
2266 def jordan_product(x,y):
2267 P = x.parent()
2268 return P( xi*yi for (xi,yi) in zip(x,y) )
2269
2270 def inner_product(x,y):
2271 return (x.T*y)[0,0]
2272
2273 # New defaults for keyword arguments. Don't orthonormalize
2274 # because our basis is already orthonormal with respect to our
2275 # inner-product. Don't check the axioms, because we know this
2276 # is a valid EJA... but do double-check if the user passes
2277 # check_axioms=True. Note: we DON'T override the "check_field"
2278 # default here, because the user can pass in a field!
2279 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2280 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2281
2282 column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
2283 super().__init__(column_basis, jordan_product, inner_product, **kwargs)
2284 self.rank.set_cache(n)
2285
2286 if n == 0:
2287 self.one.set_cache( self.zero() )
2288 else:
2289 self.one.set_cache( sum(self.gens()) )
2290
2291 @staticmethod
2292 def _max_random_instance_size():
2293 r"""
2294 The maximum dimension of a random HadamardEJA.
2295 """
2296 return 5
2297
2298 @classmethod
2299 def random_instance(cls, **kwargs):
2300 """
2301 Return a random instance of this type of algebra.
2302 """
2303 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2304 return cls(n, **kwargs)
2305
2306
2307 class BilinearFormEJA(ConcreteEJA):
2308 r"""
2309 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2310 with the half-trace inner product and jordan product ``x*y =
2311 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2312 a symmetric positive-definite "bilinear form" matrix. Its
2313 dimension is the size of `B`, and it has rank two in dimensions
2314 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2315 the identity matrix of order ``n``.
2316
2317 We insist that the one-by-one upper-left identity block of `B` be
2318 passed in as well so that we can be passed a matrix of size zero
2319 to construct a trivial algebra.
2320
2321 SETUP::
2322
2323 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2324 ....: JordanSpinEJA)
2325
2326 EXAMPLES:
2327
2328 When no bilinear form is specified, the identity matrix is used,
2329 and the resulting algebra is the Jordan spin algebra::
2330
2331 sage: B = matrix.identity(AA,3)
2332 sage: J0 = BilinearFormEJA(B)
2333 sage: J1 = JordanSpinEJA(3)
2334 sage: J0.multiplication_table() == J0.multiplication_table()
2335 True
2336
2337 An error is raised if the matrix `B` does not correspond to a
2338 positive-definite bilinear form::
2339
2340 sage: B = matrix.random(QQ,2,3)
2341 sage: J = BilinearFormEJA(B)
2342 Traceback (most recent call last):
2343 ...
2344 ValueError: bilinear form is not positive-definite
2345 sage: B = matrix.zero(QQ,3)
2346 sage: J = BilinearFormEJA(B)
2347 Traceback (most recent call last):
2348 ...
2349 ValueError: bilinear form is not positive-definite
2350
2351 TESTS:
2352
2353 We can create a zero-dimensional algebra::
2354
2355 sage: B = matrix.identity(AA,0)
2356 sage: J = BilinearFormEJA(B)
2357 sage: J.basis()
2358 Finite family {}
2359
2360 We can check the multiplication condition given in the Jordan, von
2361 Neumann, and Wigner paper (and also discussed on my "On the
2362 symmetry..." paper). Note that this relies heavily on the standard
2363 choice of basis, as does anything utilizing the bilinear form
2364 matrix. We opt not to orthonormalize the basis, because if we
2365 did, we would have to normalize the `s_{i}` in a similar manner::
2366
2367 sage: set_random_seed()
2368 sage: n = ZZ.random_element(5)
2369 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2370 sage: B11 = matrix.identity(QQ,1)
2371 sage: B22 = M.transpose()*M
2372 sage: B = block_matrix(2,2,[ [B11,0 ],
2373 ....: [0, B22 ] ])
2374 sage: J = BilinearFormEJA(B, orthonormalize=False)
2375 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2376 sage: V = J.vector_space()
2377 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2378 ....: for ei in eis ]
2379 sage: actual = [ sis[i]*sis[j]
2380 ....: for i in range(n-1)
2381 ....: for j in range(n-1) ]
2382 sage: expected = [ J.one() if i == j else J.zero()
2383 ....: for i in range(n-1)
2384 ....: for j in range(n-1) ]
2385 sage: actual == expected
2386 True
2387
2388 """
2389 def __init__(self, B, **kwargs):
2390 # The matrix "B" is supplied by the user in most cases,
2391 # so it makes sense to check whether or not its positive-
2392 # definite unless we are specifically asked not to...
2393 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2394 if not B.is_positive_definite():
2395 raise ValueError("bilinear form is not positive-definite")
2396
2397 # However, all of the other data for this EJA is computed
2398 # by us in manner that guarantees the axioms are
2399 # satisfied. So, again, unless we are specifically asked to
2400 # verify things, we'll skip the rest of the checks.
2401 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2402
2403 def inner_product(x,y):
2404 return (y.T*B*x)[0,0]
2405
2406 def jordan_product(x,y):
2407 P = x.parent()
2408 x0 = x[0,0]
2409 xbar = x[1:,0]
2410 y0 = y[0,0]
2411 ybar = y[1:,0]
2412 z0 = inner_product(y,x)
2413 zbar = y0*xbar + x0*ybar
2414 return P([z0] + zbar.list())
2415
2416 n = B.nrows()
2417 column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
2418 super(BilinearFormEJA, self).__init__(column_basis,
2419 jordan_product,
2420 inner_product,
2421 **kwargs)
2422
2423 # The rank of this algebra is two, unless we're in a
2424 # one-dimensional ambient space (because the rank is bounded
2425 # by the ambient dimension).
2426 self.rank.set_cache(min(n,2))
2427
2428 if n == 0:
2429 self.one.set_cache( self.zero() )
2430 else:
2431 self.one.set_cache( self.monomial(0) )
2432
2433 @staticmethod
2434 def _max_random_instance_size():
2435 r"""
2436 The maximum dimension of a random BilinearFormEJA.
2437 """
2438 return 5
2439
2440 @classmethod
2441 def random_instance(cls, **kwargs):
2442 """
2443 Return a random instance of this algebra.
2444 """
2445 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2446 if n.is_zero():
2447 B = matrix.identity(ZZ, n)
2448 return cls(B, **kwargs)
2449
2450 B11 = matrix.identity(ZZ, 1)
2451 M = matrix.random(ZZ, n-1)
2452 I = matrix.identity(ZZ, n-1)
2453 alpha = ZZ.zero()
2454 while alpha.is_zero():
2455 alpha = ZZ.random_element().abs()
2456 B22 = M.transpose()*M + alpha*I
2457
2458 from sage.matrix.special import block_matrix
2459 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2460 [ZZ(0), B22 ] ])
2461
2462 return cls(B, **kwargs)
2463
2464
2465 class JordanSpinEJA(BilinearFormEJA):
2466 """
2467 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2468 with the usual inner product and jordan product ``x*y =
2469 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2470 the reals.
2471
2472 SETUP::
2473
2474 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2475
2476 EXAMPLES:
2477
2478 This multiplication table can be verified by hand::
2479
2480 sage: J = JordanSpinEJA(4)
2481 sage: e0,e1,e2,e3 = J.gens()
2482 sage: e0*e0
2483 e0
2484 sage: e0*e1
2485 e1
2486 sage: e0*e2
2487 e2
2488 sage: e0*e3
2489 e3
2490 sage: e1*e2
2491 0
2492 sage: e1*e3
2493 0
2494 sage: e2*e3
2495 0
2496
2497 We can change the generator prefix::
2498
2499 sage: JordanSpinEJA(2, prefix='B').gens()
2500 (B0, B1)
2501
2502 TESTS:
2503
2504 Ensure that we have the usual inner product on `R^n`::
2505
2506 sage: set_random_seed()
2507 sage: J = JordanSpinEJA.random_instance()
2508 sage: x,y = J.random_elements(2)
2509 sage: actual = x.inner_product(y)
2510 sage: expected = x.to_vector().inner_product(y.to_vector())
2511 sage: actual == expected
2512 True
2513
2514 """
2515 def __init__(self, n, **kwargs):
2516 # This is a special case of the BilinearFormEJA with the
2517 # identity matrix as its bilinear form.
2518 B = matrix.identity(ZZ, n)
2519
2520 # Don't orthonormalize because our basis is already
2521 # orthonormal with respect to our inner-product.
2522 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2523
2524 # But also don't pass check_field=False here, because the user
2525 # can pass in a field!
2526 super(JordanSpinEJA, self).__init__(B, **kwargs)
2527
2528 @staticmethod
2529 def _max_random_instance_size():
2530 r"""
2531 The maximum dimension of a random JordanSpinEJA.
2532 """
2533 return 5
2534
2535 @classmethod
2536 def random_instance(cls, **kwargs):
2537 """
2538 Return a random instance of this type of algebra.
2539
2540 Needed here to override the implementation for ``BilinearFormEJA``.
2541 """
2542 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2543 return cls(n, **kwargs)
2544
2545
2546 class TrivialEJA(ConcreteEJA):
2547 """
2548 The trivial Euclidean Jordan algebra consisting of only a zero element.
2549
2550 SETUP::
2551
2552 sage: from mjo.eja.eja_algebra import TrivialEJA
2553
2554 EXAMPLES::
2555
2556 sage: J = TrivialEJA()
2557 sage: J.dimension()
2558 0
2559 sage: J.zero()
2560 0
2561 sage: J.one()
2562 0
2563 sage: 7*J.one()*12*J.one()
2564 0
2565 sage: J.one().inner_product(J.one())
2566 0
2567 sage: J.one().norm()
2568 0
2569 sage: J.one().subalgebra_generated_by()
2570 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2571 sage: J.rank()
2572 0
2573
2574 """
2575 def __init__(self, **kwargs):
2576 jordan_product = lambda x,y: x
2577 inner_product = lambda x,y: 0
2578 basis = ()
2579
2580 # New defaults for keyword arguments
2581 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2582 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2583
2584 super(TrivialEJA, self).__init__(basis,
2585 jordan_product,
2586 inner_product,
2587 **kwargs)
2588 # The rank is zero using my definition, namely the dimension of the
2589 # largest subalgebra generated by any element.
2590 self.rank.set_cache(0)
2591 self.one.set_cache( self.zero() )
2592
2593 @classmethod
2594 def random_instance(cls, **kwargs):
2595 # We don't take a "size" argument so the superclass method is
2596 # inappropriate for us.
2597 return cls(**kwargs)
2598
2599 # class DirectSumEJA(ConcreteEJA):
2600 # r"""
2601 # The external (orthogonal) direct sum of two other Euclidean Jordan
2602 # algebras. Essentially the Cartesian product of its two factors.
2603 # Every Euclidean Jordan algebra decomposes into an orthogonal
2604 # direct sum of simple Euclidean Jordan algebras, so no generality
2605 # is lost by providing only this construction.
2606
2607 # SETUP::
2608
2609 # sage: from mjo.eja.eja_algebra import (random_eja,
2610 # ....: HadamardEJA,
2611 # ....: RealSymmetricEJA,
2612 # ....: DirectSumEJA)
2613
2614 # EXAMPLES::
2615
2616 # sage: J1 = HadamardEJA(2)
2617 # sage: J2 = RealSymmetricEJA(3)
2618 # sage: J = DirectSumEJA(J1,J2)
2619 # sage: J.dimension()
2620 # 8
2621 # sage: J.rank()
2622 # 5
2623
2624 # TESTS:
2625
2626 # The external direct sum construction is only valid when the two factors
2627 # have the same base ring; an error is raised otherwise::
2628
2629 # sage: set_random_seed()
2630 # sage: J1 = random_eja(field=AA)
2631 # sage: J2 = random_eja(field=QQ,orthonormalize=False)
2632 # sage: J = DirectSumEJA(J1,J2)
2633 # Traceback (most recent call last):
2634 # ...
2635 # ValueError: algebras must share the same base field
2636
2637 # """
2638 # def __init__(self, J1, J2, **kwargs):
2639 # if J1.base_ring() != J2.base_ring():
2640 # raise ValueError("algebras must share the same base field")
2641 # field = J1.base_ring()
2642
2643 # self._factors = (J1, J2)
2644 # n1 = J1.dimension()
2645 # n2 = J2.dimension()
2646 # n = n1+n2
2647 # V = VectorSpace(field, n)
2648 # mult_table = [ [ V.zero() for j in range(i+1) ]
2649 # for i in range(n) ]
2650 # for i in range(n1):
2651 # for j in range(i+1):
2652 # p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2653 # mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2654
2655 # for i in range(n2):
2656 # for j in range(i+1):
2657 # p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2658 # mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2659
2660 # # TODO: build the IP table here from the two constituent IP
2661 # # matrices (it'll be block diagonal, I think).
2662 # ip_table = [ [ field.zero() for j in range(i+1) ]
2663 # for i in range(n) ]
2664 # super(DirectSumEJA, self).__init__(field,
2665 # mult_table,
2666 # ip_table,
2667 # check_axioms=False,
2668 # **kwargs)
2669 # self.rank.set_cache(J1.rank() + J2.rank())
2670
2671
2672 # def factors(self):
2673 # r"""
2674 # Return the pair of this algebra's factors.
2675
2676 # SETUP::
2677
2678 # sage: from mjo.eja.eja_algebra import (HadamardEJA,
2679 # ....: JordanSpinEJA,
2680 # ....: DirectSumEJA)
2681
2682 # EXAMPLES::
2683
2684 # sage: J1 = HadamardEJA(2, field=QQ)
2685 # sage: J2 = JordanSpinEJA(3, field=QQ)
2686 # sage: J = DirectSumEJA(J1,J2)
2687 # sage: J.factors()
2688 # (Euclidean Jordan algebra of dimension 2 over Rational Field,
2689 # Euclidean Jordan algebra of dimension 3 over Rational Field)
2690
2691 # """
2692 # return self._factors
2693
2694 # def projections(self):
2695 # r"""
2696 # Return a pair of projections onto this algebra's factors.
2697
2698 # SETUP::
2699
2700 # sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2701 # ....: ComplexHermitianEJA,
2702 # ....: DirectSumEJA)
2703
2704 # EXAMPLES::
2705
2706 # sage: J1 = JordanSpinEJA(2)
2707 # sage: J2 = ComplexHermitianEJA(2)
2708 # sage: J = DirectSumEJA(J1,J2)
2709 # sage: (pi_left, pi_right) = J.projections()
2710 # sage: J.one().to_vector()
2711 # (1, 0, 1, 0, 0, 1)
2712 # sage: pi_left(J.one()).to_vector()
2713 # (1, 0)
2714 # sage: pi_right(J.one()).to_vector()
2715 # (1, 0, 0, 1)
2716
2717 # """
2718 # (J1,J2) = self.factors()
2719 # m = J1.dimension()
2720 # n = J2.dimension()
2721 # V_basis = self.vector_space().basis()
2722 # # Need to specify the dimensions explicitly so that we don't
2723 # # wind up with a zero-by-zero matrix when we want e.g. a
2724 # # zero-by-two matrix (important for composing things).
2725 # P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2726 # P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2727 # pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
2728 # pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
2729 # return (pi_left, pi_right)
2730
2731 # def inclusions(self):
2732 # r"""
2733 # Return the pair of inclusion maps from our factors into us.
2734
2735 # SETUP::
2736
2737 # sage: from mjo.eja.eja_algebra import (random_eja,
2738 # ....: JordanSpinEJA,
2739 # ....: RealSymmetricEJA,
2740 # ....: DirectSumEJA)
2741
2742 # EXAMPLES::
2743
2744 # sage: J1 = JordanSpinEJA(3)
2745 # sage: J2 = RealSymmetricEJA(2)
2746 # sage: J = DirectSumEJA(J1,J2)
2747 # sage: (iota_left, iota_right) = J.inclusions()
2748 # sage: iota_left(J1.zero()) == J.zero()
2749 # True
2750 # sage: iota_right(J2.zero()) == J.zero()
2751 # True
2752 # sage: J1.one().to_vector()
2753 # (1, 0, 0)
2754 # sage: iota_left(J1.one()).to_vector()
2755 # (1, 0, 0, 0, 0, 0)
2756 # sage: J2.one().to_vector()
2757 # (1, 0, 1)
2758 # sage: iota_right(J2.one()).to_vector()
2759 # (0, 0, 0, 1, 0, 1)
2760 # sage: J.one().to_vector()
2761 # (1, 0, 0, 1, 0, 1)
2762
2763 # TESTS:
2764
2765 # Composing a projection with the corresponding inclusion should
2766 # produce the identity map, and mismatching them should produce
2767 # the zero map::
2768
2769 # sage: set_random_seed()
2770 # sage: J1 = random_eja()
2771 # sage: J2 = random_eja()
2772 # sage: J = DirectSumEJA(J1,J2)
2773 # sage: (iota_left, iota_right) = J.inclusions()
2774 # sage: (pi_left, pi_right) = J.projections()
2775 # sage: pi_left*iota_left == J1.one().operator()
2776 # True
2777 # sage: pi_right*iota_right == J2.one().operator()
2778 # True
2779 # sage: (pi_left*iota_right).is_zero()
2780 # True
2781 # sage: (pi_right*iota_left).is_zero()
2782 # True
2783
2784 # """
2785 # (J1,J2) = self.factors()
2786 # m = J1.dimension()
2787 # n = J2.dimension()
2788 # V_basis = self.vector_space().basis()
2789 # # Need to specify the dimensions explicitly so that we don't
2790 # # wind up with a zero-by-zero matrix when we want e.g. a
2791 # # two-by-zero matrix (important for composing things).
2792 # I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2793 # I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2794 # iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
2795 # iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
2796 # return (iota_left, iota_right)
2797
2798 # def inner_product(self, x, y):
2799 # r"""
2800 # The standard Cartesian inner-product.
2801
2802 # We project ``x`` and ``y`` onto our factors, and add up the
2803 # inner-products from the subalgebras.
2804
2805 # SETUP::
2806
2807
2808 # sage: from mjo.eja.eja_algebra import (HadamardEJA,
2809 # ....: QuaternionHermitianEJA,
2810 # ....: DirectSumEJA)
2811
2812 # EXAMPLE::
2813
2814 # sage: J1 = HadamardEJA(3,field=QQ)
2815 # sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2816 # sage: J = DirectSumEJA(J1,J2)
2817 # sage: x1 = J1.one()
2818 # sage: x2 = x1
2819 # sage: y1 = J2.one()
2820 # sage: y2 = y1
2821 # sage: x1.inner_product(x2)
2822 # 3
2823 # sage: y1.inner_product(y2)
2824 # 2
2825 # sage: J.one().inner_product(J.one())
2826 # 5
2827
2828 # """
2829 # (pi_left, pi_right) = self.projections()
2830 # x1 = pi_left(x)
2831 # x2 = pi_right(x)
2832 # y1 = pi_left(y)
2833 # y2 = pi_right(y)
2834
2835 # return (x1.inner_product(y1) + x2.inner_product(y2))
2836
2837
2838
2839 random_eja = ConcreteEJA.random_instance