]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: add trace linearity and charpoly homogeneity tests.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEJAElement
33 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEJA(CombinatorialFreeModule):
37 r"""
38 A finite-dimensional Euclidean Jordan algebra.
39
40 INPUT:
41
42 - basis -- a tuple of basis elements in their matrix form.
43
44 - jordan_product -- function of two elements (in matrix form)
45 that returns their jordan product in this algebra; this will
46 be applied to ``basis`` to compute a multiplication table for
47 the algebra.
48
49 - inner_product -- function of two elements (in matrix form) that
50 returns their inner product. This will be applied to ``basis`` to
51 compute an inner-product table (basically a matrix) for this algebra.
52
53 """
54 Element = FiniteDimensionalEJAElement
55
56 def __init__(self,
57 basis,
58 jordan_product,
59 inner_product,
60 field=AA,
61 orthonormalize=True,
62 associative=False,
63 check_field=True,
64 check_axioms=True,
65 prefix='e'):
66
67 if check_field:
68 if not field.is_subring(RR):
69 # Note: this does return true for the real algebraic
70 # field, the rationals, and any quadratic field where
71 # we've specified a real embedding.
72 raise ValueError("scalar field is not real")
73
74 # If the basis given to us wasn't over the field that it's
75 # supposed to be over, fix that. Or, you know, crash.
76 basis = tuple( b.change_ring(field) for b in basis )
77
78 if check_axioms:
79 # Check commutativity of the Jordan and inner-products.
80 # This has to be done before we build the multiplication
81 # and inner-product tables/matrices, because we take
82 # advantage of symmetry in the process.
83 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
84 for bi in basis
85 for bj in basis ):
86 raise ValueError("Jordan product is not commutative")
87
88 if not all( inner_product(bi,bj) == inner_product(bj,bi)
89 for bi in basis
90 for bj in basis ):
91 raise ValueError("inner-product is not commutative")
92
93
94 category = MagmaticAlgebras(field).FiniteDimensional()
95 category = category.WithBasis().Unital()
96 if associative:
97 # Element subalgebras can take advantage of this.
98 category = category.Associative()
99
100 # Call the superclass constructor so that we can use its from_vector()
101 # method to build our multiplication table.
102 n = len(basis)
103 super().__init__(field,
104 range(n),
105 prefix=prefix,
106 category=category,
107 bracket=False)
108
109 # Now comes all of the hard work. We'll be constructing an
110 # ambient vector space V that our (vectorized) basis lives in,
111 # as well as a subspace W of V spanned by those (vectorized)
112 # basis elements. The W-coordinates are the coefficients that
113 # we see in things like x = 1*e1 + 2*e2.
114 vector_basis = basis
115
116 degree = 0
117 if n > 0:
118 # Works on both column and square matrices...
119 degree = len(basis[0].list())
120
121 # Build an ambient space that fits our matrix basis when
122 # written out as "long vectors."
123 V = VectorSpace(field, degree)
124
125 # The matrix that will hole the orthonormal -> unorthonormal
126 # coordinate transformation.
127 self._deortho_matrix = None
128
129 if orthonormalize:
130 # Save a copy of the un-orthonormalized basis for later.
131 # Convert it to ambient V (vector) coordinates while we're
132 # at it, because we'd have to do it later anyway.
133 deortho_vector_basis = tuple( V(b.list()) for b in basis )
134
135 from mjo.eja.eja_utils import gram_schmidt
136 basis = tuple(gram_schmidt(basis, inner_product))
137
138 # Save the (possibly orthonormalized) matrix basis for
139 # later...
140 self._matrix_basis = basis
141
142 # Now create the vector space for the algebra, which will have
143 # its own set of non-ambient coordinates (in terms of the
144 # supplied basis).
145 vector_basis = tuple( V(b.list()) for b in basis )
146 W = V.span_of_basis( vector_basis, check=check_axioms)
147
148 if orthonormalize:
149 # Now "W" is the vector space of our algebra coordinates. The
150 # variables "X1", "X2",... refer to the entries of vectors in
151 # W. Thus to convert back and forth between the orthonormal
152 # coordinates and the given ones, we need to stick the original
153 # basis in W.
154 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
155 self._deortho_matrix = matrix( U.coordinate_vector(q)
156 for q in vector_basis )
157
158
159 # Now we actually compute the multiplication and inner-product
160 # tables/matrices using the possibly-orthonormalized basis.
161 self._inner_product_matrix = matrix.identity(field, n)
162 self._multiplication_table = [ [0 for j in range(i+1)]
163 for i in range(n) ]
164
165 # Note: the Jordan and inner-products are defined in terms
166 # of the ambient basis. It's important that their arguments
167 # are in ambient coordinates as well.
168 for i in range(n):
169 for j in range(i+1):
170 # ortho basis w.r.t. ambient coords
171 q_i = basis[i]
172 q_j = basis[j]
173
174 # The jordan product returns a matrixy answer, so we
175 # have to convert it to the algebra coordinates.
176 elt = jordan_product(q_i, q_j)
177 elt = W.coordinate_vector(V(elt.list()))
178 self._multiplication_table[i][j] = self.from_vector(elt)
179
180 if not orthonormalize:
181 # If we're orthonormalizing the basis with respect
182 # to an inner-product, then the inner-product
183 # matrix with respect to the resulting basis is
184 # just going to be the identity.
185 ip = inner_product(q_i, q_j)
186 self._inner_product_matrix[i,j] = ip
187 self._inner_product_matrix[j,i] = ip
188
189 self._inner_product_matrix._cache = {'hermitian': True}
190 self._inner_product_matrix.set_immutable()
191
192 if check_axioms:
193 if not self._is_jordanian():
194 raise ValueError("Jordan identity does not hold")
195 if not self._inner_product_is_associative():
196 raise ValueError("inner product is not associative")
197
198
199 def _coerce_map_from_base_ring(self):
200 """
201 Disable the map from the base ring into the algebra.
202
203 Performing a nonsense conversion like this automatically
204 is counterpedagogical. The fallback is to try the usual
205 element constructor, which should also fail.
206
207 SETUP::
208
209 sage: from mjo.eja.eja_algebra import random_eja
210
211 TESTS::
212
213 sage: set_random_seed()
214 sage: J = random_eja()
215 sage: J(1)
216 Traceback (most recent call last):
217 ...
218 ValueError: not an element of this algebra
219
220 """
221 return None
222
223
224 def product_on_basis(self, i, j):
225 # We only stored the lower-triangular portion of the
226 # multiplication table.
227 if j <= i:
228 return self._multiplication_table[i][j]
229 else:
230 return self._multiplication_table[j][i]
231
232 def inner_product(self, x, y):
233 """
234 The inner product associated with this Euclidean Jordan algebra.
235
236 Defaults to the trace inner product, but can be overridden by
237 subclasses if they are sure that the necessary properties are
238 satisfied.
239
240 SETUP::
241
242 sage: from mjo.eja.eja_algebra import (random_eja,
243 ....: HadamardEJA,
244 ....: BilinearFormEJA)
245
246 EXAMPLES:
247
248 Our inner product is "associative," which means the following for
249 a symmetric bilinear form::
250
251 sage: set_random_seed()
252 sage: J = random_eja()
253 sage: x,y,z = J.random_elements(3)
254 sage: (x*y).inner_product(z) == y.inner_product(x*z)
255 True
256
257 TESTS:
258
259 Ensure that this is the usual inner product for the algebras
260 over `R^n`::
261
262 sage: set_random_seed()
263 sage: J = HadamardEJA.random_instance()
264 sage: x,y = J.random_elements(2)
265 sage: actual = x.inner_product(y)
266 sage: expected = x.to_vector().inner_product(y.to_vector())
267 sage: actual == expected
268 True
269
270 Ensure that this is one-half of the trace inner-product in a
271 BilinearFormEJA that isn't just the reals (when ``n`` isn't
272 one). This is in Faraut and Koranyi, and also my "On the
273 symmetry..." paper::
274
275 sage: set_random_seed()
276 sage: J = BilinearFormEJA.random_instance()
277 sage: n = J.dimension()
278 sage: x = J.random_element()
279 sage: y = J.random_element()
280 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
281 True
282 """
283 B = self._inner_product_matrix
284 return (B*x.to_vector()).inner_product(y.to_vector())
285
286
287 def _is_commutative(self):
288 r"""
289 Whether or not this algebra's multiplication table is commutative.
290
291 This method should of course always return ``True``, unless
292 this algebra was constructed with ``check_axioms=False`` and
293 passed an invalid multiplication table.
294 """
295 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
296 for i in range(self.dimension())
297 for j in range(self.dimension()) )
298
299 def _is_jordanian(self):
300 r"""
301 Whether or not this algebra's multiplication table respects the
302 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
303
304 We only check one arrangement of `x` and `y`, so for a
305 ``True`` result to be truly true, you should also check
306 :meth:`_is_commutative`. This method should of course always
307 return ``True``, unless this algebra was constructed with
308 ``check_axioms=False`` and passed an invalid multiplication table.
309 """
310 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
311 ==
312 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
313 for i in range(self.dimension())
314 for j in range(self.dimension()) )
315
316 def _inner_product_is_associative(self):
317 r"""
318 Return whether or not this algebra's inner product `B` is
319 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
320
321 This method should of course always return ``True``, unless
322 this algebra was constructed with ``check_axioms=False`` and
323 passed an invalid Jordan or inner-product.
324 """
325
326 # Used to check whether or not something is zero in an inexact
327 # ring. This number is sufficient to allow the construction of
328 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
329 epsilon = 1e-16
330
331 for i in range(self.dimension()):
332 for j in range(self.dimension()):
333 for k in range(self.dimension()):
334 x = self.monomial(i)
335 y = self.monomial(j)
336 z = self.monomial(k)
337 diff = (x*y).inner_product(z) - x.inner_product(y*z)
338
339 if self.base_ring().is_exact():
340 if diff != 0:
341 return False
342 else:
343 if diff.abs() > epsilon:
344 return False
345
346 return True
347
348 def _element_constructor_(self, elt):
349 """
350 Construct an element of this algebra from its vector or matrix
351 representation.
352
353 This gets called only after the parent element _call_ method
354 fails to find a coercion for the argument.
355
356 SETUP::
357
358 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
359 ....: HadamardEJA,
360 ....: RealSymmetricEJA)
361
362 EXAMPLES:
363
364 The identity in `S^n` is converted to the identity in the EJA::
365
366 sage: J = RealSymmetricEJA(3)
367 sage: I = matrix.identity(QQ,3)
368 sage: J(I) == J.one()
369 True
370
371 This skew-symmetric matrix can't be represented in the EJA::
372
373 sage: J = RealSymmetricEJA(3)
374 sage: A = matrix(QQ,3, lambda i,j: i-j)
375 sage: J(A)
376 Traceback (most recent call last):
377 ...
378 ValueError: not an element of this algebra
379
380 TESTS:
381
382 Ensure that we can convert any element of the two non-matrix
383 simple algebras (whose matrix representations are columns)
384 back and forth faithfully::
385
386 sage: set_random_seed()
387 sage: J = HadamardEJA.random_instance()
388 sage: x = J.random_element()
389 sage: J(x.to_vector().column()) == x
390 True
391 sage: J = JordanSpinEJA.random_instance()
392 sage: x = J.random_element()
393 sage: J(x.to_vector().column()) == x
394 True
395
396 """
397 msg = "not an element of this algebra"
398 if elt == 0:
399 # The superclass implementation of random_element()
400 # needs to be able to coerce "0" into the algebra.
401 return self.zero()
402 elif elt in self.base_ring():
403 # Ensure that no base ring -> algebra coercion is performed
404 # by this method. There's some stupidity in sage that would
405 # otherwise propagate to this method; for example, sage thinks
406 # that the integer 3 belongs to the space of 2-by-2 matrices.
407 raise ValueError(msg)
408
409 try:
410 elt = elt.column()
411 except (AttributeError, TypeError):
412 # Try to convert a vector into a column-matrix
413 pass
414
415 if elt not in self.matrix_space():
416 raise ValueError(msg)
417
418 # Thanks for nothing! Matrix spaces aren't vector spaces in
419 # Sage, so we have to figure out its matrix-basis coordinates
420 # ourselves. We use the basis space's ring instead of the
421 # element's ring because the basis space might be an algebraic
422 # closure whereas the base ring of the 3-by-3 identity matrix
423 # could be QQ instead of QQbar.
424 #
425 # We pass check=False because the matrix basis is "guaranteed"
426 # to be linearly independent... right? Ha ha.
427 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
428 W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
429 check=False)
430
431 try:
432 coords = W.coordinate_vector(_mat2vec(elt))
433 except ArithmeticError: # vector is not in free module
434 raise ValueError(msg)
435
436 return self.from_vector(coords)
437
438 def _repr_(self):
439 """
440 Return a string representation of ``self``.
441
442 SETUP::
443
444 sage: from mjo.eja.eja_algebra import JordanSpinEJA
445
446 TESTS:
447
448 Ensure that it says what we think it says::
449
450 sage: JordanSpinEJA(2, field=AA)
451 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
452 sage: JordanSpinEJA(3, field=RDF)
453 Euclidean Jordan algebra of dimension 3 over Real Double Field
454
455 """
456 fmt = "Euclidean Jordan algebra of dimension {} over {}"
457 return fmt.format(self.dimension(), self.base_ring())
458
459
460 @cached_method
461 def characteristic_polynomial_of(self):
462 """
463 Return the algebra's "characteristic polynomial of" function,
464 which is itself a multivariate polynomial that, when evaluated
465 at the coordinates of some algebra element, returns that
466 element's characteristic polynomial.
467
468 The resulting polynomial has `n+1` variables, where `n` is the
469 dimension of this algebra. The first `n` variables correspond to
470 the coordinates of an algebra element: when evaluated at the
471 coordinates of an algebra element with respect to a certain
472 basis, the result is a univariate polynomial (in the one
473 remaining variable ``t``), namely the characteristic polynomial
474 of that element.
475
476 SETUP::
477
478 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
479
480 EXAMPLES:
481
482 The characteristic polynomial in the spin algebra is given in
483 Alizadeh, Example 11.11::
484
485 sage: J = JordanSpinEJA(3)
486 sage: p = J.characteristic_polynomial_of(); p
487 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
488 sage: xvec = J.one().to_vector()
489 sage: p(*xvec)
490 t^2 - 2*t + 1
491
492 By definition, the characteristic polynomial is a monic
493 degree-zero polynomial in a rank-zero algebra. Note that
494 Cayley-Hamilton is indeed satisfied since the polynomial
495 ``1`` evaluates to the identity element of the algebra on
496 any argument::
497
498 sage: J = TrivialEJA()
499 sage: J.characteristic_polynomial_of()
500 1
501
502 """
503 r = self.rank()
504 n = self.dimension()
505
506 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
507 a = self._charpoly_coefficients()
508
509 # We go to a bit of trouble here to reorder the
510 # indeterminates, so that it's easier to evaluate the
511 # characteristic polynomial at x's coordinates and get back
512 # something in terms of t, which is what we want.
513 S = PolynomialRing(self.base_ring(),'t')
514 t = S.gen(0)
515 if r > 0:
516 R = a[0].parent()
517 S = PolynomialRing(S, R.variable_names())
518 t = S(t)
519
520 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
521
522 def coordinate_polynomial_ring(self):
523 r"""
524 The multivariate polynomial ring in which this algebra's
525 :meth:`characteristic_polynomial_of` lives.
526
527 SETUP::
528
529 sage: from mjo.eja.eja_algebra import (HadamardEJA,
530 ....: RealSymmetricEJA)
531
532 EXAMPLES::
533
534 sage: J = HadamardEJA(2)
535 sage: J.coordinate_polynomial_ring()
536 Multivariate Polynomial Ring in X1, X2...
537 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
538 sage: J.coordinate_polynomial_ring()
539 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
540
541 """
542 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
543 return PolynomialRing(self.base_ring(), var_names)
544
545 def inner_product(self, x, y):
546 """
547 The inner product associated with this Euclidean Jordan algebra.
548
549 Defaults to the trace inner product, but can be overridden by
550 subclasses if they are sure that the necessary properties are
551 satisfied.
552
553 SETUP::
554
555 sage: from mjo.eja.eja_algebra import (random_eja,
556 ....: HadamardEJA,
557 ....: BilinearFormEJA)
558
559 EXAMPLES:
560
561 Our inner product is "associative," which means the following for
562 a symmetric bilinear form::
563
564 sage: set_random_seed()
565 sage: J = random_eja()
566 sage: x,y,z = J.random_elements(3)
567 sage: (x*y).inner_product(z) == y.inner_product(x*z)
568 True
569
570 TESTS:
571
572 Ensure that this is the usual inner product for the algebras
573 over `R^n`::
574
575 sage: set_random_seed()
576 sage: J = HadamardEJA.random_instance()
577 sage: x,y = J.random_elements(2)
578 sage: actual = x.inner_product(y)
579 sage: expected = x.to_vector().inner_product(y.to_vector())
580 sage: actual == expected
581 True
582
583 Ensure that this is one-half of the trace inner-product in a
584 BilinearFormEJA that isn't just the reals (when ``n`` isn't
585 one). This is in Faraut and Koranyi, and also my "On the
586 symmetry..." paper::
587
588 sage: set_random_seed()
589 sage: J = BilinearFormEJA.random_instance()
590 sage: n = J.dimension()
591 sage: x = J.random_element()
592 sage: y = J.random_element()
593 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
594 True
595 """
596 B = self._inner_product_matrix
597 return (B*x.to_vector()).inner_product(y.to_vector())
598
599
600 def is_trivial(self):
601 """
602 Return whether or not this algebra is trivial.
603
604 A trivial algebra contains only the zero element.
605
606 SETUP::
607
608 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
609 ....: TrivialEJA)
610
611 EXAMPLES::
612
613 sage: J = ComplexHermitianEJA(3)
614 sage: J.is_trivial()
615 False
616
617 ::
618
619 sage: J = TrivialEJA()
620 sage: J.is_trivial()
621 True
622
623 """
624 return self.dimension() == 0
625
626
627 def multiplication_table(self):
628 """
629 Return a visual representation of this algebra's multiplication
630 table (on basis elements).
631
632 SETUP::
633
634 sage: from mjo.eja.eja_algebra import JordanSpinEJA
635
636 EXAMPLES::
637
638 sage: J = JordanSpinEJA(4)
639 sage: J.multiplication_table()
640 +----++----+----+----+----+
641 | * || e0 | e1 | e2 | e3 |
642 +====++====+====+====+====+
643 | e0 || e0 | e1 | e2 | e3 |
644 +----++----+----+----+----+
645 | e1 || e1 | e0 | 0 | 0 |
646 +----++----+----+----+----+
647 | e2 || e2 | 0 | e0 | 0 |
648 +----++----+----+----+----+
649 | e3 || e3 | 0 | 0 | e0 |
650 +----++----+----+----+----+
651
652 """
653 n = self.dimension()
654 # Prepend the header row.
655 M = [["*"] + list(self.gens())]
656
657 # And to each subsequent row, prepend an entry that belongs to
658 # the left-side "header column."
659 M += [ [self.monomial(i)] + [ self.product_on_basis(i,j)
660 for j in range(n) ]
661 for i in range(n) ]
662
663 return table(M, header_row=True, header_column=True, frame=True)
664
665
666 def matrix_basis(self):
667 """
668 Return an (often more natural) representation of this algebras
669 basis as an ordered tuple of matrices.
670
671 Every finite-dimensional Euclidean Jordan Algebra is a, up to
672 Jordan isomorphism, a direct sum of five simple
673 algebras---four of which comprise Hermitian matrices. And the
674 last type of algebra can of course be thought of as `n`-by-`1`
675 column matrices (ambiguusly called column vectors) to avoid
676 special cases. As a result, matrices (and column vectors) are
677 a natural representation format for Euclidean Jordan algebra
678 elements.
679
680 But, when we construct an algebra from a basis of matrices,
681 those matrix representations are lost in favor of coordinate
682 vectors *with respect to* that basis. We could eventually
683 convert back if we tried hard enough, but having the original
684 representations handy is valuable enough that we simply store
685 them and return them from this method.
686
687 Why implement this for non-matrix algebras? Avoiding special
688 cases for the :class:`BilinearFormEJA` pays with simplicity in
689 its own right. But mainly, we would like to be able to assume
690 that elements of a :class:`DirectSumEJA` can be displayed
691 nicely, without having to have special classes for direct sums
692 one of whose components was a matrix algebra.
693
694 SETUP::
695
696 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
697 ....: RealSymmetricEJA)
698
699 EXAMPLES::
700
701 sage: J = RealSymmetricEJA(2)
702 sage: J.basis()
703 Finite family {0: e0, 1: e1, 2: e2}
704 sage: J.matrix_basis()
705 (
706 [1 0] [ 0 0.7071067811865475?] [0 0]
707 [0 0], [0.7071067811865475? 0], [0 1]
708 )
709
710 ::
711
712 sage: J = JordanSpinEJA(2)
713 sage: J.basis()
714 Finite family {0: e0, 1: e1}
715 sage: J.matrix_basis()
716 (
717 [1] [0]
718 [0], [1]
719 )
720 """
721 return self._matrix_basis
722
723
724 def matrix_space(self):
725 """
726 Return the matrix space in which this algebra's elements live, if
727 we think of them as matrices (including column vectors of the
728 appropriate size).
729
730 Generally this will be an `n`-by-`1` column-vector space,
731 except when the algebra is trivial. There it's `n`-by-`n`
732 (where `n` is zero), to ensure that two elements of the matrix
733 space (empty matrices) can be multiplied.
734
735 Matrix algebras override this with something more useful.
736 """
737 if self.is_trivial():
738 return MatrixSpace(self.base_ring(), 0)
739 else:
740 return self.matrix_basis()[0].parent()
741
742
743 @cached_method
744 def one(self):
745 """
746 Return the unit element of this algebra.
747
748 SETUP::
749
750 sage: from mjo.eja.eja_algebra import (HadamardEJA,
751 ....: random_eja)
752
753 EXAMPLES:
754
755 We can compute unit element in the Hadamard EJA::
756
757 sage: J = HadamardEJA(5)
758 sage: J.one()
759 e0 + e1 + e2 + e3 + e4
760
761 The unit element in the Hadamard EJA is inherited in the
762 subalgebras generated by its elements::
763
764 sage: J = HadamardEJA(5)
765 sage: J.one()
766 e0 + e1 + e2 + e3 + e4
767 sage: x = sum(J.gens())
768 sage: A = x.subalgebra_generated_by(orthonormalize=False)
769 sage: A.one()
770 f0
771 sage: A.one().superalgebra_element()
772 e0 + e1 + e2 + e3 + e4
773
774 TESTS:
775
776 The identity element acts like the identity, regardless of
777 whether or not we orthonormalize::
778
779 sage: set_random_seed()
780 sage: J = random_eja()
781 sage: x = J.random_element()
782 sage: J.one()*x == x and x*J.one() == x
783 True
784 sage: A = x.subalgebra_generated_by()
785 sage: y = A.random_element()
786 sage: A.one()*y == y and y*A.one() == y
787 True
788
789 ::
790
791 sage: set_random_seed()
792 sage: J = random_eja(field=QQ, orthonormalize=False)
793 sage: x = J.random_element()
794 sage: J.one()*x == x and x*J.one() == x
795 True
796 sage: A = x.subalgebra_generated_by(orthonormalize=False)
797 sage: y = A.random_element()
798 sage: A.one()*y == y and y*A.one() == y
799 True
800
801 The matrix of the unit element's operator is the identity,
802 regardless of the base field and whether or not we
803 orthonormalize::
804
805 sage: set_random_seed()
806 sage: J = random_eja()
807 sage: actual = J.one().operator().matrix()
808 sage: expected = matrix.identity(J.base_ring(), J.dimension())
809 sage: actual == expected
810 True
811 sage: x = J.random_element()
812 sage: A = x.subalgebra_generated_by()
813 sage: actual = A.one().operator().matrix()
814 sage: expected = matrix.identity(A.base_ring(), A.dimension())
815 sage: actual == expected
816 True
817
818 ::
819
820 sage: set_random_seed()
821 sage: J = random_eja(field=QQ, orthonormalize=False)
822 sage: actual = J.one().operator().matrix()
823 sage: expected = matrix.identity(J.base_ring(), J.dimension())
824 sage: actual == expected
825 True
826 sage: x = J.random_element()
827 sage: A = x.subalgebra_generated_by(orthonormalize=False)
828 sage: actual = A.one().operator().matrix()
829 sage: expected = matrix.identity(A.base_ring(), A.dimension())
830 sage: actual == expected
831 True
832
833 Ensure that the cached unit element (often precomputed by
834 hand) agrees with the computed one::
835
836 sage: set_random_seed()
837 sage: J = random_eja()
838 sage: cached = J.one()
839 sage: J.one.clear_cache()
840 sage: J.one() == cached
841 True
842
843 ::
844
845 sage: set_random_seed()
846 sage: J = random_eja(field=QQ, orthonormalize=False)
847 sage: cached = J.one()
848 sage: J.one.clear_cache()
849 sage: J.one() == cached
850 True
851
852 """
853 # We can brute-force compute the matrices of the operators
854 # that correspond to the basis elements of this algebra.
855 # If some linear combination of those basis elements is the
856 # algebra identity, then the same linear combination of
857 # their matrices has to be the identity matrix.
858 #
859 # Of course, matrices aren't vectors in sage, so we have to
860 # appeal to the "long vectors" isometry.
861 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
862
863 # Now we use basic linear algebra to find the coefficients,
864 # of the matrices-as-vectors-linear-combination, which should
865 # work for the original algebra basis too.
866 A = matrix(self.base_ring(), oper_vecs)
867
868 # We used the isometry on the left-hand side already, but we
869 # still need to do it for the right-hand side. Recall that we
870 # wanted something that summed to the identity matrix.
871 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
872
873 # Now if there's an identity element in the algebra, this
874 # should work. We solve on the left to avoid having to
875 # transpose the matrix "A".
876 return self.from_vector(A.solve_left(b))
877
878
879 def peirce_decomposition(self, c):
880 """
881 The Peirce decomposition of this algebra relative to the
882 idempotent ``c``.
883
884 In the future, this can be extended to a complete system of
885 orthogonal idempotents.
886
887 INPUT:
888
889 - ``c`` -- an idempotent of this algebra.
890
891 OUTPUT:
892
893 A triple (J0, J5, J1) containing two subalgebras and one subspace
894 of this algebra,
895
896 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
897 corresponding to the eigenvalue zero.
898
899 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
900 corresponding to the eigenvalue one-half.
901
902 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
903 corresponding to the eigenvalue one.
904
905 These are the only possible eigenspaces for that operator, and this
906 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
907 orthogonal, and are subalgebras of this algebra with the appropriate
908 restrictions.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
913
914 EXAMPLES:
915
916 The canonical example comes from the symmetric matrices, which
917 decompose into diagonal and off-diagonal parts::
918
919 sage: J = RealSymmetricEJA(3)
920 sage: C = matrix(QQ, [ [1,0,0],
921 ....: [0,1,0],
922 ....: [0,0,0] ])
923 sage: c = J(C)
924 sage: J0,J5,J1 = J.peirce_decomposition(c)
925 sage: J0
926 Euclidean Jordan algebra of dimension 1...
927 sage: J5
928 Vector space of degree 6 and dimension 2...
929 sage: J1
930 Euclidean Jordan algebra of dimension 3...
931 sage: J0.one().to_matrix()
932 [0 0 0]
933 [0 0 0]
934 [0 0 1]
935 sage: orig_df = AA.options.display_format
936 sage: AA.options.display_format = 'radical'
937 sage: J.from_vector(J5.basis()[0]).to_matrix()
938 [ 0 0 1/2*sqrt(2)]
939 [ 0 0 0]
940 [1/2*sqrt(2) 0 0]
941 sage: J.from_vector(J5.basis()[1]).to_matrix()
942 [ 0 0 0]
943 [ 0 0 1/2*sqrt(2)]
944 [ 0 1/2*sqrt(2) 0]
945 sage: AA.options.display_format = orig_df
946 sage: J1.one().to_matrix()
947 [1 0 0]
948 [0 1 0]
949 [0 0 0]
950
951 TESTS:
952
953 Every algebra decomposes trivially with respect to its identity
954 element::
955
956 sage: set_random_seed()
957 sage: J = random_eja()
958 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
959 sage: J0.dimension() == 0 and J5.dimension() == 0
960 True
961 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
962 True
963
964 The decomposition is into eigenspaces, and its components are
965 therefore necessarily orthogonal. Moreover, the identity
966 elements in the two subalgebras are the projections onto their
967 respective subspaces of the superalgebra's identity element::
968
969 sage: set_random_seed()
970 sage: J = random_eja()
971 sage: x = J.random_element()
972 sage: if not J.is_trivial():
973 ....: while x.is_nilpotent():
974 ....: x = J.random_element()
975 sage: c = x.subalgebra_idempotent()
976 sage: J0,J5,J1 = J.peirce_decomposition(c)
977 sage: ipsum = 0
978 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
979 ....: w = w.superalgebra_element()
980 ....: y = J.from_vector(y)
981 ....: z = z.superalgebra_element()
982 ....: ipsum += w.inner_product(y).abs()
983 ....: ipsum += w.inner_product(z).abs()
984 ....: ipsum += y.inner_product(z).abs()
985 sage: ipsum
986 0
987 sage: J1(c) == J1.one()
988 True
989 sage: J0(J.one() - c) == J0.one()
990 True
991
992 """
993 if not c.is_idempotent():
994 raise ValueError("element is not idempotent: %s" % c)
995
996 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
997
998 # Default these to what they should be if they turn out to be
999 # trivial, because eigenspaces_left() won't return eigenvalues
1000 # corresponding to trivial spaces (e.g. it returns only the
1001 # eigenspace corresponding to lambda=1 if you take the
1002 # decomposition relative to the identity element).
1003 trivial = FiniteDimensionalEJASubalgebra(self, ())
1004 J0 = trivial # eigenvalue zero
1005 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1006 J1 = trivial # eigenvalue one
1007
1008 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1009 if eigval == ~(self.base_ring()(2)):
1010 J5 = eigspace
1011 else:
1012 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1013 subalg = FiniteDimensionalEJASubalgebra(self,
1014 gens,
1015 check_axioms=False)
1016 if eigval == 0:
1017 J0 = subalg
1018 elif eigval == 1:
1019 J1 = subalg
1020 else:
1021 raise ValueError("unexpected eigenvalue: %s" % eigval)
1022
1023 return (J0, J5, J1)
1024
1025
1026 def random_element(self, thorough=False):
1027 r"""
1028 Return a random element of this algebra.
1029
1030 Our algebra superclass method only returns a linear
1031 combination of at most two basis elements. We instead
1032 want the vector space "random element" method that
1033 returns a more diverse selection.
1034
1035 INPUT:
1036
1037 - ``thorough`` -- (boolean; default False) whether or not we
1038 should generate irrational coefficients for the random
1039 element when our base ring is irrational; this slows the
1040 algebra operations to a crawl, but any truly random method
1041 should include them
1042
1043 """
1044 # For a general base ring... maybe we can trust this to do the
1045 # right thing? Unlikely, but.
1046 V = self.vector_space()
1047 v = V.random_element()
1048
1049 if self.base_ring() is AA:
1050 # The "random element" method of the algebraic reals is
1051 # stupid at the moment, and only returns integers between
1052 # -2 and 2, inclusive:
1053 #
1054 # https://trac.sagemath.org/ticket/30875
1055 #
1056 # Instead, we implement our own "random vector" method,
1057 # and then coerce that into the algebra. We use the vector
1058 # space degree here instead of the dimension because a
1059 # subalgebra could (for example) be spanned by only two
1060 # vectors, each with five coordinates. We need to
1061 # generate all five coordinates.
1062 if thorough:
1063 v *= QQbar.random_element().real()
1064 else:
1065 v *= QQ.random_element()
1066
1067 return self.from_vector(V.coordinate_vector(v))
1068
1069 def random_elements(self, count, thorough=False):
1070 """
1071 Return ``count`` random elements as a tuple.
1072
1073 INPUT:
1074
1075 - ``thorough`` -- (boolean; default False) whether or not we
1076 should generate irrational coefficients for the random
1077 elements when our base ring is irrational; this slows the
1078 algebra operations to a crawl, but any truly random method
1079 should include them
1080
1081 SETUP::
1082
1083 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1084
1085 EXAMPLES::
1086
1087 sage: J = JordanSpinEJA(3)
1088 sage: x,y,z = J.random_elements(3)
1089 sage: all( [ x in J, y in J, z in J ])
1090 True
1091 sage: len( J.random_elements(10) ) == 10
1092 True
1093
1094 """
1095 return tuple( self.random_element(thorough)
1096 for idx in range(count) )
1097
1098
1099 @cached_method
1100 def _charpoly_coefficients(self):
1101 r"""
1102 The `r` polynomial coefficients of the "characteristic polynomial
1103 of" function.
1104
1105 SETUP::
1106
1107 sage: from mjo.eja.eja_algebra import random_eja
1108
1109 TESTS:
1110
1111 The theory shows that these are all homogeneous polynomials of
1112 a known degree::
1113
1114 sage: set_random_seed()
1115 sage: J = random_eja()
1116 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1117 True
1118
1119 """
1120 n = self.dimension()
1121 R = self.coordinate_polynomial_ring()
1122 vars = R.gens()
1123 F = R.fraction_field()
1124
1125 def L_x_i_j(i,j):
1126 # From a result in my book, these are the entries of the
1127 # basis representation of L_x.
1128 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1129 for k in range(n) )
1130
1131 L_x = matrix(F, n, n, L_x_i_j)
1132
1133 r = None
1134 if self.rank.is_in_cache():
1135 r = self.rank()
1136 # There's no need to pad the system with redundant
1137 # columns if we *know* they'll be redundant.
1138 n = r
1139
1140 # Compute an extra power in case the rank is equal to
1141 # the dimension (otherwise, we would stop at x^(r-1)).
1142 x_powers = [ (L_x**k)*self.one().to_vector()
1143 for k in range(n+1) ]
1144 A = matrix.column(F, x_powers[:n])
1145 AE = A.extended_echelon_form()
1146 E = AE[:,n:]
1147 A_rref = AE[:,:n]
1148 if r is None:
1149 r = A_rref.rank()
1150 b = x_powers[r]
1151
1152 # The theory says that only the first "r" coefficients are
1153 # nonzero, and they actually live in the original polynomial
1154 # ring and not the fraction field. We negate them because
1155 # in the actual characteristic polynomial, they get moved
1156 # to the other side where x^r lives.
1157 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1158
1159 @cached_method
1160 def rank(self):
1161 r"""
1162 Return the rank of this EJA.
1163
1164 This is a cached method because we know the rank a priori for
1165 all of the algebras we can construct. Thus we can avoid the
1166 expensive ``_charpoly_coefficients()`` call unless we truly
1167 need to compute the whole characteristic polynomial.
1168
1169 SETUP::
1170
1171 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1172 ....: JordanSpinEJA,
1173 ....: RealSymmetricEJA,
1174 ....: ComplexHermitianEJA,
1175 ....: QuaternionHermitianEJA,
1176 ....: random_eja)
1177
1178 EXAMPLES:
1179
1180 The rank of the Jordan spin algebra is always two::
1181
1182 sage: JordanSpinEJA(2).rank()
1183 2
1184 sage: JordanSpinEJA(3).rank()
1185 2
1186 sage: JordanSpinEJA(4).rank()
1187 2
1188
1189 The rank of the `n`-by-`n` Hermitian real, complex, or
1190 quaternion matrices is `n`::
1191
1192 sage: RealSymmetricEJA(4).rank()
1193 4
1194 sage: ComplexHermitianEJA(3).rank()
1195 3
1196 sage: QuaternionHermitianEJA(2).rank()
1197 2
1198
1199 TESTS:
1200
1201 Ensure that every EJA that we know how to construct has a
1202 positive integer rank, unless the algebra is trivial in
1203 which case its rank will be zero::
1204
1205 sage: set_random_seed()
1206 sage: J = random_eja()
1207 sage: r = J.rank()
1208 sage: r in ZZ
1209 True
1210 sage: r > 0 or (r == 0 and J.is_trivial())
1211 True
1212
1213 Ensure that computing the rank actually works, since the ranks
1214 of all simple algebras are known and will be cached by default::
1215
1216 sage: set_random_seed() # long time
1217 sage: J = random_eja() # long time
1218 sage: caches = J.rank() # long time
1219 sage: J.rank.clear_cache() # long time
1220 sage: J.rank() == cached # long time
1221 True
1222
1223 """
1224 return len(self._charpoly_coefficients())
1225
1226
1227 def vector_space(self):
1228 """
1229 Return the vector space that underlies this algebra.
1230
1231 SETUP::
1232
1233 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1234
1235 EXAMPLES::
1236
1237 sage: J = RealSymmetricEJA(2)
1238 sage: J.vector_space()
1239 Vector space of dimension 3 over...
1240
1241 """
1242 return self.zero().to_vector().parent().ambient_vector_space()
1243
1244
1245 Element = FiniteDimensionalEJAElement
1246
1247 class RationalBasisEJA(FiniteDimensionalEJA):
1248 r"""
1249 New class for algebras whose supplied basis elements have all rational entries.
1250
1251 SETUP::
1252
1253 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1254
1255 EXAMPLES:
1256
1257 The supplied basis is orthonormalized by default::
1258
1259 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1260 sage: J = BilinearFormEJA(B)
1261 sage: J.matrix_basis()
1262 (
1263 [1] [ 0] [ 0]
1264 [0] [1/5] [32/5]
1265 [0], [ 0], [ 5]
1266 )
1267
1268 """
1269 def __init__(self,
1270 basis,
1271 jordan_product,
1272 inner_product,
1273 field=AA,
1274 check_field=True,
1275 **kwargs):
1276
1277 if check_field:
1278 # Abuse the check_field parameter to check that the entries of
1279 # out basis (in ambient coordinates) are in the field QQ.
1280 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1281 raise TypeError("basis not rational")
1282
1283 self._rational_algebra = None
1284 if field is not QQ:
1285 # There's no point in constructing the extra algebra if this
1286 # one is already rational.
1287 #
1288 # Note: the same Jordan and inner-products work here,
1289 # because they are necessarily defined with respect to
1290 # ambient coordinates and not any particular basis.
1291 self._rational_algebra = FiniteDimensionalEJA(
1292 basis,
1293 jordan_product,
1294 inner_product,
1295 field=QQ,
1296 orthonormalize=False,
1297 check_field=False,
1298 check_axioms=False)
1299
1300 super().__init__(basis,
1301 jordan_product,
1302 inner_product,
1303 field=field,
1304 check_field=check_field,
1305 **kwargs)
1306
1307 @cached_method
1308 def _charpoly_coefficients(self):
1309 r"""
1310 SETUP::
1311
1312 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1313 ....: JordanSpinEJA)
1314
1315 EXAMPLES:
1316
1317 The base ring of the resulting polynomial coefficients is what
1318 it should be, and not the rationals (unless the algebra was
1319 already over the rationals)::
1320
1321 sage: J = JordanSpinEJA(3)
1322 sage: J._charpoly_coefficients()
1323 (X1^2 - X2^2 - X3^2, -2*X1)
1324 sage: a0 = J._charpoly_coefficients()[0]
1325 sage: J.base_ring()
1326 Algebraic Real Field
1327 sage: a0.base_ring()
1328 Algebraic Real Field
1329
1330 """
1331 if self._rational_algebra is None:
1332 # There's no need to construct *another* algebra over the
1333 # rationals if this one is already over the
1334 # rationals. Likewise, if we never orthonormalized our
1335 # basis, we might as well just use the given one.
1336 return super()._charpoly_coefficients()
1337
1338 # Do the computation over the rationals. The answer will be
1339 # the same, because all we've done is a change of basis.
1340 # Then, change back from QQ to our real base ring
1341 a = ( a_i.change_ring(self.base_ring())
1342 for a_i in self._rational_algebra._charpoly_coefficients() )
1343
1344 if self._deortho_matrix is None:
1345 # This can happen if our base ring was, say, AA and we
1346 # chose not to (or didn't need to) orthonormalize. It's
1347 # still faster to do the computations over QQ even if
1348 # the numbers in the boxes stay the same.
1349 return tuple(a)
1350
1351 # Otherwise, convert the coordinate variables back to the
1352 # deorthonormalized ones.
1353 R = self.coordinate_polynomial_ring()
1354 from sage.modules.free_module_element import vector
1355 X = vector(R, R.gens())
1356 BX = self._deortho_matrix*X
1357
1358 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1359 return tuple( a_i.subs(subs_dict) for a_i in a )
1360
1361 class ConcreteEJA(RationalBasisEJA):
1362 r"""
1363 A class for the Euclidean Jordan algebras that we know by name.
1364
1365 These are the Jordan algebras whose basis, multiplication table,
1366 rank, and so on are known a priori. More to the point, they are
1367 the Euclidean Jordan algebras for which we are able to conjure up
1368 a "random instance."
1369
1370 SETUP::
1371
1372 sage: from mjo.eja.eja_algebra import ConcreteEJA
1373
1374 TESTS:
1375
1376 Our basis is normalized with respect to the algebra's inner
1377 product, unless we specify otherwise::
1378
1379 sage: set_random_seed()
1380 sage: J = ConcreteEJA.random_instance()
1381 sage: all( b.norm() == 1 for b in J.gens() )
1382 True
1383
1384 Since our basis is orthonormal with respect to the algebra's inner
1385 product, and since we know that this algebra is an EJA, any
1386 left-multiplication operator's matrix will be symmetric because
1387 natural->EJA basis representation is an isometry and within the
1388 EJA the operator is self-adjoint by the Jordan axiom::
1389
1390 sage: set_random_seed()
1391 sage: J = ConcreteEJA.random_instance()
1392 sage: x = J.random_element()
1393 sage: x.operator().is_self_adjoint()
1394 True
1395 """
1396
1397 @staticmethod
1398 def _max_random_instance_size():
1399 """
1400 Return an integer "size" that is an upper bound on the size of
1401 this algebra when it is used in a random test
1402 case. Unfortunately, the term "size" is ambiguous -- when
1403 dealing with `R^n` under either the Hadamard or Jordan spin
1404 product, the "size" refers to the dimension `n`. When dealing
1405 with a matrix algebra (real symmetric or complex/quaternion
1406 Hermitian), it refers to the size of the matrix, which is far
1407 less than the dimension of the underlying vector space.
1408
1409 This method must be implemented in each subclass.
1410 """
1411 raise NotImplementedError
1412
1413 @classmethod
1414 def random_instance(cls, *args, **kwargs):
1415 """
1416 Return a random instance of this type of algebra.
1417
1418 This method should be implemented in each subclass.
1419 """
1420 from sage.misc.prandom import choice
1421 eja_class = choice(cls.__subclasses__())
1422
1423 # These all bubble up to the RationalBasisEJA superclass
1424 # constructor, so any (kw)args valid there are also valid
1425 # here.
1426 return eja_class.random_instance(*args, **kwargs)
1427
1428
1429 class MatrixEJA:
1430 @staticmethod
1431 def dimension_over_reals():
1432 r"""
1433 The dimension of this matrix's base ring over the reals.
1434
1435 The reals are dimension one over themselves, obviously; that's
1436 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1437 have dimension two. Finally, the quaternions have dimension
1438 four over the reals.
1439
1440 This is used to determine the size of the matrix returned from
1441 :meth:`real_embed`, among other things.
1442 """
1443 raise NotImplementedError
1444
1445 @classmethod
1446 def real_embed(cls,M):
1447 """
1448 Embed the matrix ``M`` into a space of real matrices.
1449
1450 The matrix ``M`` can have entries in any field at the moment:
1451 the real numbers, complex numbers, or quaternions. And although
1452 they are not a field, we can probably support octonions at some
1453 point, too. This function returns a real matrix that "acts like"
1454 the original with respect to matrix multiplication; i.e.
1455
1456 real_embed(M*N) = real_embed(M)*real_embed(N)
1457
1458 """
1459 if M.ncols() != M.nrows():
1460 raise ValueError("the matrix 'M' must be square")
1461 return M
1462
1463
1464 @classmethod
1465 def real_unembed(cls,M):
1466 """
1467 The inverse of :meth:`real_embed`.
1468 """
1469 if M.ncols() != M.nrows():
1470 raise ValueError("the matrix 'M' must be square")
1471 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1472 raise ValueError("the matrix 'M' must be a real embedding")
1473 return M
1474
1475 @staticmethod
1476 def jordan_product(X,Y):
1477 return (X*Y + Y*X)/2
1478
1479 @classmethod
1480 def trace_inner_product(cls,X,Y):
1481 r"""
1482 Compute the trace inner-product of two real-embeddings.
1483
1484 SETUP::
1485
1486 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1487 ....: ComplexHermitianEJA,
1488 ....: QuaternionHermitianEJA)
1489
1490 EXAMPLES::
1491
1492 This gives the same answer as it would if we computed the trace
1493 from the unembedded (original) matrices::
1494
1495 sage: set_random_seed()
1496 sage: J = RealSymmetricEJA.random_instance()
1497 sage: x,y = J.random_elements(2)
1498 sage: Xe = x.to_matrix()
1499 sage: Ye = y.to_matrix()
1500 sage: X = J.real_unembed(Xe)
1501 sage: Y = J.real_unembed(Ye)
1502 sage: expected = (X*Y).trace()
1503 sage: actual = J.trace_inner_product(Xe,Ye)
1504 sage: actual == expected
1505 True
1506
1507 ::
1508
1509 sage: set_random_seed()
1510 sage: J = ComplexHermitianEJA.random_instance()
1511 sage: x,y = J.random_elements(2)
1512 sage: Xe = x.to_matrix()
1513 sage: Ye = y.to_matrix()
1514 sage: X = J.real_unembed(Xe)
1515 sage: Y = J.real_unembed(Ye)
1516 sage: expected = (X*Y).trace().real()
1517 sage: actual = J.trace_inner_product(Xe,Ye)
1518 sage: actual == expected
1519 True
1520
1521 ::
1522
1523 sage: set_random_seed()
1524 sage: J = QuaternionHermitianEJA.random_instance()
1525 sage: x,y = J.random_elements(2)
1526 sage: Xe = x.to_matrix()
1527 sage: Ye = y.to_matrix()
1528 sage: X = J.real_unembed(Xe)
1529 sage: Y = J.real_unembed(Ye)
1530 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1531 sage: actual = J.trace_inner_product(Xe,Ye)
1532 sage: actual == expected
1533 True
1534
1535 """
1536 Xu = cls.real_unembed(X)
1537 Yu = cls.real_unembed(Y)
1538 tr = (Xu*Yu).trace()
1539
1540 try:
1541 # Works in QQ, AA, RDF, et cetera.
1542 return tr.real()
1543 except AttributeError:
1544 # A quaternion doesn't have a real() method, but does
1545 # have coefficient_tuple() method that returns the
1546 # coefficients of 1, i, j, and k -- in that order.
1547 return tr.coefficient_tuple()[0]
1548
1549
1550 class RealMatrixEJA(MatrixEJA):
1551 @staticmethod
1552 def dimension_over_reals():
1553 return 1
1554
1555
1556 class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
1557 """
1558 The rank-n simple EJA consisting of real symmetric n-by-n
1559 matrices, the usual symmetric Jordan product, and the trace inner
1560 product. It has dimension `(n^2 + n)/2` over the reals.
1561
1562 SETUP::
1563
1564 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1565
1566 EXAMPLES::
1567
1568 sage: J = RealSymmetricEJA(2)
1569 sage: e0, e1, e2 = J.gens()
1570 sage: e0*e0
1571 e0
1572 sage: e1*e1
1573 1/2*e0 + 1/2*e2
1574 sage: e2*e2
1575 e2
1576
1577 In theory, our "field" can be any subfield of the reals::
1578
1579 sage: RealSymmetricEJA(2, field=RDF)
1580 Euclidean Jordan algebra of dimension 3 over Real Double Field
1581 sage: RealSymmetricEJA(2, field=RR)
1582 Euclidean Jordan algebra of dimension 3 over Real Field with
1583 53 bits of precision
1584
1585 TESTS:
1586
1587 The dimension of this algebra is `(n^2 + n) / 2`::
1588
1589 sage: set_random_seed()
1590 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1591 sage: n = ZZ.random_element(1, n_max)
1592 sage: J = RealSymmetricEJA(n)
1593 sage: J.dimension() == (n^2 + n)/2
1594 True
1595
1596 The Jordan multiplication is what we think it is::
1597
1598 sage: set_random_seed()
1599 sage: J = RealSymmetricEJA.random_instance()
1600 sage: x,y = J.random_elements(2)
1601 sage: actual = (x*y).to_matrix()
1602 sage: X = x.to_matrix()
1603 sage: Y = y.to_matrix()
1604 sage: expected = (X*Y + Y*X)/2
1605 sage: actual == expected
1606 True
1607 sage: J(expected) == x*y
1608 True
1609
1610 We can change the generator prefix::
1611
1612 sage: RealSymmetricEJA(3, prefix='q').gens()
1613 (q0, q1, q2, q3, q4, q5)
1614
1615 We can construct the (trivial) algebra of rank zero::
1616
1617 sage: RealSymmetricEJA(0)
1618 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1619
1620 """
1621 @classmethod
1622 def _denormalized_basis(cls, n):
1623 """
1624 Return a basis for the space of real symmetric n-by-n matrices.
1625
1626 SETUP::
1627
1628 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1629
1630 TESTS::
1631
1632 sage: set_random_seed()
1633 sage: n = ZZ.random_element(1,5)
1634 sage: B = RealSymmetricEJA._denormalized_basis(n)
1635 sage: all( M.is_symmetric() for M in B)
1636 True
1637
1638 """
1639 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1640 # coordinates.
1641 S = []
1642 for i in range(n):
1643 for j in range(i+1):
1644 Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
1645 if i == j:
1646 Sij = Eij
1647 else:
1648 Sij = Eij + Eij.transpose()
1649 S.append(Sij)
1650 return tuple(S)
1651
1652
1653 @staticmethod
1654 def _max_random_instance_size():
1655 return 4 # Dimension 10
1656
1657 @classmethod
1658 def random_instance(cls, **kwargs):
1659 """
1660 Return a random instance of this type of algebra.
1661 """
1662 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1663 return cls(n, **kwargs)
1664
1665 def __init__(self, n, **kwargs):
1666 # We know this is a valid EJA, but will double-check
1667 # if the user passes check_axioms=True.
1668 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1669
1670 super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
1671 self.jordan_product,
1672 self.trace_inner_product,
1673 **kwargs)
1674
1675 # TODO: this could be factored out somehow, but is left here
1676 # because the MatrixEJA is not presently a subclass of the
1677 # FDEJA class that defines rank() and one().
1678 self.rank.set_cache(n)
1679 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1680 self.one.set_cache(self(idV))
1681
1682
1683
1684 class ComplexMatrixEJA(MatrixEJA):
1685 # A manual dictionary-cache for the complex_extension() method,
1686 # since apparently @classmethods can't also be @cached_methods.
1687 _complex_extension = {}
1688
1689 @classmethod
1690 def complex_extension(cls,field):
1691 r"""
1692 The complex field that we embed/unembed, as an extension
1693 of the given ``field``.
1694 """
1695 if field in cls._complex_extension:
1696 return cls._complex_extension[field]
1697
1698 # Sage doesn't know how to adjoin the complex "i" (the root of
1699 # x^2 + 1) to a field in a general way. Here, we just enumerate
1700 # all of the cases that I have cared to support so far.
1701 if field is AA:
1702 # Sage doesn't know how to embed AA into QQbar, i.e. how
1703 # to adjoin sqrt(-1) to AA.
1704 F = QQbar
1705 elif not field.is_exact():
1706 # RDF or RR
1707 F = field.complex_field()
1708 else:
1709 # Works for QQ and... maybe some other fields.
1710 R = PolynomialRing(field, 'z')
1711 z = R.gen()
1712 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1713
1714 cls._complex_extension[field] = F
1715 return F
1716
1717 @staticmethod
1718 def dimension_over_reals():
1719 return 2
1720
1721 @classmethod
1722 def real_embed(cls,M):
1723 """
1724 Embed the n-by-n complex matrix ``M`` into the space of real
1725 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1726 bi` to the block matrix ``[[a,b],[-b,a]]``.
1727
1728 SETUP::
1729
1730 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
1731
1732 EXAMPLES::
1733
1734 sage: F = QuadraticField(-1, 'I')
1735 sage: x1 = F(4 - 2*i)
1736 sage: x2 = F(1 + 2*i)
1737 sage: x3 = F(-i)
1738 sage: x4 = F(6)
1739 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1740 sage: ComplexMatrixEJA.real_embed(M)
1741 [ 4 -2| 1 2]
1742 [ 2 4|-2 1]
1743 [-----+-----]
1744 [ 0 -1| 6 0]
1745 [ 1 0| 0 6]
1746
1747 TESTS:
1748
1749 Embedding is a homomorphism (isomorphism, in fact)::
1750
1751 sage: set_random_seed()
1752 sage: n = ZZ.random_element(3)
1753 sage: F = QuadraticField(-1, 'I')
1754 sage: X = random_matrix(F, n)
1755 sage: Y = random_matrix(F, n)
1756 sage: Xe = ComplexMatrixEJA.real_embed(X)
1757 sage: Ye = ComplexMatrixEJA.real_embed(Y)
1758 sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
1759 sage: Xe*Ye == XYe
1760 True
1761
1762 """
1763 super(ComplexMatrixEJA,cls).real_embed(M)
1764 n = M.nrows()
1765
1766 # We don't need any adjoined elements...
1767 field = M.base_ring().base_ring()
1768
1769 blocks = []
1770 for z in M.list():
1771 a = z.real()
1772 b = z.imag()
1773 blocks.append(matrix(field, 2, [ [ a, b],
1774 [-b, a] ]))
1775
1776 return matrix.block(field, n, blocks)
1777
1778
1779 @classmethod
1780 def real_unembed(cls,M):
1781 """
1782 The inverse of _embed_complex_matrix().
1783
1784 SETUP::
1785
1786 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
1787
1788 EXAMPLES::
1789
1790 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1791 ....: [-2, 1, -4, 3],
1792 ....: [ 9, 10, 11, 12],
1793 ....: [-10, 9, -12, 11] ])
1794 sage: ComplexMatrixEJA.real_unembed(A)
1795 [ 2*I + 1 4*I + 3]
1796 [ 10*I + 9 12*I + 11]
1797
1798 TESTS:
1799
1800 Unembedding is the inverse of embedding::
1801
1802 sage: set_random_seed()
1803 sage: F = QuadraticField(-1, 'I')
1804 sage: M = random_matrix(F, 3)
1805 sage: Me = ComplexMatrixEJA.real_embed(M)
1806 sage: ComplexMatrixEJA.real_unembed(Me) == M
1807 True
1808
1809 """
1810 super(ComplexMatrixEJA,cls).real_unembed(M)
1811 n = ZZ(M.nrows())
1812 d = cls.dimension_over_reals()
1813 F = cls.complex_extension(M.base_ring())
1814 i = F.gen()
1815
1816 # Go top-left to bottom-right (reading order), converting every
1817 # 2-by-2 block we see to a single complex element.
1818 elements = []
1819 for k in range(n/d):
1820 for j in range(n/d):
1821 submat = M[d*k:d*k+d,d*j:d*j+d]
1822 if submat[0,0] != submat[1,1]:
1823 raise ValueError('bad on-diagonal submatrix')
1824 if submat[0,1] != -submat[1,0]:
1825 raise ValueError('bad off-diagonal submatrix')
1826 z = submat[0,0] + submat[0,1]*i
1827 elements.append(z)
1828
1829 return matrix(F, n/d, elements)
1830
1831
1832 class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
1833 """
1834 The rank-n simple EJA consisting of complex Hermitian n-by-n
1835 matrices over the real numbers, the usual symmetric Jordan product,
1836 and the real-part-of-trace inner product. It has dimension `n^2` over
1837 the reals.
1838
1839 SETUP::
1840
1841 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1842
1843 EXAMPLES:
1844
1845 In theory, our "field" can be any subfield of the reals::
1846
1847 sage: ComplexHermitianEJA(2, field=RDF)
1848 Euclidean Jordan algebra of dimension 4 over Real Double Field
1849 sage: ComplexHermitianEJA(2, field=RR)
1850 Euclidean Jordan algebra of dimension 4 over Real Field with
1851 53 bits of precision
1852
1853 TESTS:
1854
1855 The dimension of this algebra is `n^2`::
1856
1857 sage: set_random_seed()
1858 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1859 sage: n = ZZ.random_element(1, n_max)
1860 sage: J = ComplexHermitianEJA(n)
1861 sage: J.dimension() == n^2
1862 True
1863
1864 The Jordan multiplication is what we think it is::
1865
1866 sage: set_random_seed()
1867 sage: J = ComplexHermitianEJA.random_instance()
1868 sage: x,y = J.random_elements(2)
1869 sage: actual = (x*y).to_matrix()
1870 sage: X = x.to_matrix()
1871 sage: Y = y.to_matrix()
1872 sage: expected = (X*Y + Y*X)/2
1873 sage: actual == expected
1874 True
1875 sage: J(expected) == x*y
1876 True
1877
1878 We can change the generator prefix::
1879
1880 sage: ComplexHermitianEJA(2, prefix='z').gens()
1881 (z0, z1, z2, z3)
1882
1883 We can construct the (trivial) algebra of rank zero::
1884
1885 sage: ComplexHermitianEJA(0)
1886 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1887
1888 """
1889
1890 @classmethod
1891 def _denormalized_basis(cls, n):
1892 """
1893 Returns a basis for the space of complex Hermitian n-by-n matrices.
1894
1895 Why do we embed these? Basically, because all of numerical linear
1896 algebra assumes that you're working with vectors consisting of `n`
1897 entries from a field and scalars from the same field. There's no way
1898 to tell SageMath that (for example) the vectors contain complex
1899 numbers, while the scalar field is real.
1900
1901 SETUP::
1902
1903 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1904
1905 TESTS::
1906
1907 sage: set_random_seed()
1908 sage: n = ZZ.random_element(1,5)
1909 sage: B = ComplexHermitianEJA._denormalized_basis(n)
1910 sage: all( M.is_symmetric() for M in B)
1911 True
1912
1913 """
1914 field = ZZ
1915 R = PolynomialRing(field, 'z')
1916 z = R.gen()
1917 F = field.extension(z**2 + 1, 'I')
1918 I = F.gen(1)
1919
1920 # This is like the symmetric case, but we need to be careful:
1921 #
1922 # * We want conjugate-symmetry, not just symmetry.
1923 # * The diagonal will (as a result) be real.
1924 #
1925 S = []
1926 Eij = matrix.zero(F,n)
1927 for i in range(n):
1928 for j in range(i+1):
1929 # "build" E_ij
1930 Eij[i,j] = 1
1931 if i == j:
1932 Sij = cls.real_embed(Eij)
1933 S.append(Sij)
1934 else:
1935 # The second one has a minus because it's conjugated.
1936 Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
1937 Sij_real = cls.real_embed(Eij)
1938 S.append(Sij_real)
1939 # Eij = I*Eij - I*Eij.transpose()
1940 Eij[i,j] = I
1941 Eij[j,i] = -I
1942 Sij_imag = cls.real_embed(Eij)
1943 S.append(Sij_imag)
1944 Eij[j,i] = 0
1945 # "erase" E_ij
1946 Eij[i,j] = 0
1947
1948 # Since we embedded these, we can drop back to the "field" that we
1949 # started with instead of the complex extension "F".
1950 return tuple( s.change_ring(field) for s in S )
1951
1952
1953 def __init__(self, n, **kwargs):
1954 # We know this is a valid EJA, but will double-check
1955 # if the user passes check_axioms=True.
1956 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1957
1958 super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
1959 self.jordan_product,
1960 self.trace_inner_product,
1961 **kwargs)
1962 # TODO: this could be factored out somehow, but is left here
1963 # because the MatrixEJA is not presently a subclass of the
1964 # FDEJA class that defines rank() and one().
1965 self.rank.set_cache(n)
1966 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1967 self.one.set_cache(self(idV))
1968
1969 @staticmethod
1970 def _max_random_instance_size():
1971 return 3 # Dimension 9
1972
1973 @classmethod
1974 def random_instance(cls, **kwargs):
1975 """
1976 Return a random instance of this type of algebra.
1977 """
1978 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1979 return cls(n, **kwargs)
1980
1981 class QuaternionMatrixEJA(MatrixEJA):
1982
1983 # A manual dictionary-cache for the quaternion_extension() method,
1984 # since apparently @classmethods can't also be @cached_methods.
1985 _quaternion_extension = {}
1986
1987 @classmethod
1988 def quaternion_extension(cls,field):
1989 r"""
1990 The quaternion field that we embed/unembed, as an extension
1991 of the given ``field``.
1992 """
1993 if field in cls._quaternion_extension:
1994 return cls._quaternion_extension[field]
1995
1996 Q = QuaternionAlgebra(field,-1,-1)
1997
1998 cls._quaternion_extension[field] = Q
1999 return Q
2000
2001 @staticmethod
2002 def dimension_over_reals():
2003 return 4
2004
2005 @classmethod
2006 def real_embed(cls,M):
2007 """
2008 Embed the n-by-n quaternion matrix ``M`` into the space of real
2009 matrices of size 4n-by-4n by first sending each quaternion entry `z
2010 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
2011 c+di],[-c + di, a-bi]]`, and then embedding those into a real
2012 matrix.
2013
2014 SETUP::
2015
2016 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2017
2018 EXAMPLES::
2019
2020 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2021 sage: i,j,k = Q.gens()
2022 sage: x = 1 + 2*i + 3*j + 4*k
2023 sage: M = matrix(Q, 1, [[x]])
2024 sage: QuaternionMatrixEJA.real_embed(M)
2025 [ 1 2 3 4]
2026 [-2 1 -4 3]
2027 [-3 4 1 -2]
2028 [-4 -3 2 1]
2029
2030 Embedding is a homomorphism (isomorphism, in fact)::
2031
2032 sage: set_random_seed()
2033 sage: n = ZZ.random_element(2)
2034 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2035 sage: X = random_matrix(Q, n)
2036 sage: Y = random_matrix(Q, n)
2037 sage: Xe = QuaternionMatrixEJA.real_embed(X)
2038 sage: Ye = QuaternionMatrixEJA.real_embed(Y)
2039 sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
2040 sage: Xe*Ye == XYe
2041 True
2042
2043 """
2044 super(QuaternionMatrixEJA,cls).real_embed(M)
2045 quaternions = M.base_ring()
2046 n = M.nrows()
2047
2048 F = QuadraticField(-1, 'I')
2049 i = F.gen()
2050
2051 blocks = []
2052 for z in M.list():
2053 t = z.coefficient_tuple()
2054 a = t[0]
2055 b = t[1]
2056 c = t[2]
2057 d = t[3]
2058 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2059 [-c + d*i, a - b*i]])
2060 realM = ComplexMatrixEJA.real_embed(cplxM)
2061 blocks.append(realM)
2062
2063 # We should have real entries by now, so use the realest field
2064 # we've got for the return value.
2065 return matrix.block(quaternions.base_ring(), n, blocks)
2066
2067
2068
2069 @classmethod
2070 def real_unembed(cls,M):
2071 """
2072 The inverse of _embed_quaternion_matrix().
2073
2074 SETUP::
2075
2076 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2077
2078 EXAMPLES::
2079
2080 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2081 ....: [-2, 1, -4, 3],
2082 ....: [-3, 4, 1, -2],
2083 ....: [-4, -3, 2, 1]])
2084 sage: QuaternionMatrixEJA.real_unembed(M)
2085 [1 + 2*i + 3*j + 4*k]
2086
2087 TESTS:
2088
2089 Unembedding is the inverse of embedding::
2090
2091 sage: set_random_seed()
2092 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2093 sage: M = random_matrix(Q, 3)
2094 sage: Me = QuaternionMatrixEJA.real_embed(M)
2095 sage: QuaternionMatrixEJA.real_unembed(Me) == M
2096 True
2097
2098 """
2099 super(QuaternionMatrixEJA,cls).real_unembed(M)
2100 n = ZZ(M.nrows())
2101 d = cls.dimension_over_reals()
2102
2103 # Use the base ring of the matrix to ensure that its entries can be
2104 # multiplied by elements of the quaternion algebra.
2105 Q = cls.quaternion_extension(M.base_ring())
2106 i,j,k = Q.gens()
2107
2108 # Go top-left to bottom-right (reading order), converting every
2109 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2110 # quaternion block.
2111 elements = []
2112 for l in range(n/d):
2113 for m in range(n/d):
2114 submat = ComplexMatrixEJA.real_unembed(
2115 M[d*l:d*l+d,d*m:d*m+d] )
2116 if submat[0,0] != submat[1,1].conjugate():
2117 raise ValueError('bad on-diagonal submatrix')
2118 if submat[0,1] != -submat[1,0].conjugate():
2119 raise ValueError('bad off-diagonal submatrix')
2120 z = submat[0,0].real()
2121 z += submat[0,0].imag()*i
2122 z += submat[0,1].real()*j
2123 z += submat[0,1].imag()*k
2124 elements.append(z)
2125
2126 return matrix(Q, n/d, elements)
2127
2128
2129 class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
2130 r"""
2131 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2132 matrices, the usual symmetric Jordan product, and the
2133 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2134 the reals.
2135
2136 SETUP::
2137
2138 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2139
2140 EXAMPLES:
2141
2142 In theory, our "field" can be any subfield of the reals::
2143
2144 sage: QuaternionHermitianEJA(2, field=RDF)
2145 Euclidean Jordan algebra of dimension 6 over Real Double Field
2146 sage: QuaternionHermitianEJA(2, field=RR)
2147 Euclidean Jordan algebra of dimension 6 over Real Field with
2148 53 bits of precision
2149
2150 TESTS:
2151
2152 The dimension of this algebra is `2*n^2 - n`::
2153
2154 sage: set_random_seed()
2155 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2156 sage: n = ZZ.random_element(1, n_max)
2157 sage: J = QuaternionHermitianEJA(n)
2158 sage: J.dimension() == 2*(n^2) - n
2159 True
2160
2161 The Jordan multiplication is what we think it is::
2162
2163 sage: set_random_seed()
2164 sage: J = QuaternionHermitianEJA.random_instance()
2165 sage: x,y = J.random_elements(2)
2166 sage: actual = (x*y).to_matrix()
2167 sage: X = x.to_matrix()
2168 sage: Y = y.to_matrix()
2169 sage: expected = (X*Y + Y*X)/2
2170 sage: actual == expected
2171 True
2172 sage: J(expected) == x*y
2173 True
2174
2175 We can change the generator prefix::
2176
2177 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2178 (a0, a1, a2, a3, a4, a5)
2179
2180 We can construct the (trivial) algebra of rank zero::
2181
2182 sage: QuaternionHermitianEJA(0)
2183 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2184
2185 """
2186 @classmethod
2187 def _denormalized_basis(cls, n):
2188 """
2189 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2190
2191 Why do we embed these? Basically, because all of numerical
2192 linear algebra assumes that you're working with vectors consisting
2193 of `n` entries from a field and scalars from the same field. There's
2194 no way to tell SageMath that (for example) the vectors contain
2195 complex numbers, while the scalar field is real.
2196
2197 SETUP::
2198
2199 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2200
2201 TESTS::
2202
2203 sage: set_random_seed()
2204 sage: n = ZZ.random_element(1,5)
2205 sage: B = QuaternionHermitianEJA._denormalized_basis(n)
2206 sage: all( M.is_symmetric() for M in B )
2207 True
2208
2209 """
2210 field = ZZ
2211 Q = QuaternionAlgebra(QQ,-1,-1)
2212 I,J,K = Q.gens()
2213
2214 # This is like the symmetric case, but we need to be careful:
2215 #
2216 # * We want conjugate-symmetry, not just symmetry.
2217 # * The diagonal will (as a result) be real.
2218 #
2219 S = []
2220 Eij = matrix.zero(Q,n)
2221 for i in range(n):
2222 for j in range(i+1):
2223 # "build" E_ij
2224 Eij[i,j] = 1
2225 if i == j:
2226 Sij = cls.real_embed(Eij)
2227 S.append(Sij)
2228 else:
2229 # The second, third, and fourth ones have a minus
2230 # because they're conjugated.
2231 # Eij = Eij + Eij.transpose()
2232 Eij[j,i] = 1
2233 Sij_real = cls.real_embed(Eij)
2234 S.append(Sij_real)
2235 # Eij = I*(Eij - Eij.transpose())
2236 Eij[i,j] = I
2237 Eij[j,i] = -I
2238 Sij_I = cls.real_embed(Eij)
2239 S.append(Sij_I)
2240 # Eij = J*(Eij - Eij.transpose())
2241 Eij[i,j] = J
2242 Eij[j,i] = -J
2243 Sij_J = cls.real_embed(Eij)
2244 S.append(Sij_J)
2245 # Eij = K*(Eij - Eij.transpose())
2246 Eij[i,j] = K
2247 Eij[j,i] = -K
2248 Sij_K = cls.real_embed(Eij)
2249 S.append(Sij_K)
2250 Eij[j,i] = 0
2251 # "erase" E_ij
2252 Eij[i,j] = 0
2253
2254 # Since we embedded these, we can drop back to the "field" that we
2255 # started with instead of the quaternion algebra "Q".
2256 return tuple( s.change_ring(field) for s in S )
2257
2258
2259 def __init__(self, n, **kwargs):
2260 # We know this is a valid EJA, but will double-check
2261 # if the user passes check_axioms=True.
2262 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2263
2264 super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
2265 self.jordan_product,
2266 self.trace_inner_product,
2267 **kwargs)
2268 # TODO: this could be factored out somehow, but is left here
2269 # because the MatrixEJA is not presently a subclass of the
2270 # FDEJA class that defines rank() and one().
2271 self.rank.set_cache(n)
2272 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2273 self.one.set_cache(self(idV))
2274
2275
2276 @staticmethod
2277 def _max_random_instance_size():
2278 r"""
2279 The maximum rank of a random QuaternionHermitianEJA.
2280 """
2281 return 2 # Dimension 6
2282
2283 @classmethod
2284 def random_instance(cls, **kwargs):
2285 """
2286 Return a random instance of this type of algebra.
2287 """
2288 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2289 return cls(n, **kwargs)
2290
2291
2292 class HadamardEJA(ConcreteEJA):
2293 """
2294 Return the Euclidean Jordan Algebra corresponding to the set
2295 `R^n` under the Hadamard product.
2296
2297 Note: this is nothing more than the Cartesian product of ``n``
2298 copies of the spin algebra. Once Cartesian product algebras
2299 are implemented, this can go.
2300
2301 SETUP::
2302
2303 sage: from mjo.eja.eja_algebra import HadamardEJA
2304
2305 EXAMPLES:
2306
2307 This multiplication table can be verified by hand::
2308
2309 sage: J = HadamardEJA(3)
2310 sage: e0,e1,e2 = J.gens()
2311 sage: e0*e0
2312 e0
2313 sage: e0*e1
2314 0
2315 sage: e0*e2
2316 0
2317 sage: e1*e1
2318 e1
2319 sage: e1*e2
2320 0
2321 sage: e2*e2
2322 e2
2323
2324 TESTS:
2325
2326 We can change the generator prefix::
2327
2328 sage: HadamardEJA(3, prefix='r').gens()
2329 (r0, r1, r2)
2330
2331 """
2332 def __init__(self, n, **kwargs):
2333 if n == 0:
2334 jordan_product = lambda x,y: x
2335 inner_product = lambda x,y: x
2336 else:
2337 def jordan_product(x,y):
2338 P = x.parent()
2339 return P( xi*yi for (xi,yi) in zip(x,y) )
2340
2341 def inner_product(x,y):
2342 return (x.T*y)[0,0]
2343
2344 # New defaults for keyword arguments. Don't orthonormalize
2345 # because our basis is already orthonormal with respect to our
2346 # inner-product. Don't check the axioms, because we know this
2347 # is a valid EJA... but do double-check if the user passes
2348 # check_axioms=True. Note: we DON'T override the "check_field"
2349 # default here, because the user can pass in a field!
2350 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2351 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2352
2353 column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
2354 super().__init__(column_basis, jordan_product, inner_product, **kwargs)
2355 self.rank.set_cache(n)
2356
2357 if n == 0:
2358 self.one.set_cache( self.zero() )
2359 else:
2360 self.one.set_cache( sum(self.gens()) )
2361
2362 @staticmethod
2363 def _max_random_instance_size():
2364 r"""
2365 The maximum dimension of a random HadamardEJA.
2366 """
2367 return 5
2368
2369 @classmethod
2370 def random_instance(cls, **kwargs):
2371 """
2372 Return a random instance of this type of algebra.
2373 """
2374 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2375 return cls(n, **kwargs)
2376
2377
2378 class BilinearFormEJA(ConcreteEJA):
2379 r"""
2380 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2381 with the half-trace inner product and jordan product ``x*y =
2382 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2383 a symmetric positive-definite "bilinear form" matrix. Its
2384 dimension is the size of `B`, and it has rank two in dimensions
2385 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2386 the identity matrix of order ``n``.
2387
2388 We insist that the one-by-one upper-left identity block of `B` be
2389 passed in as well so that we can be passed a matrix of size zero
2390 to construct a trivial algebra.
2391
2392 SETUP::
2393
2394 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2395 ....: JordanSpinEJA)
2396
2397 EXAMPLES:
2398
2399 When no bilinear form is specified, the identity matrix is used,
2400 and the resulting algebra is the Jordan spin algebra::
2401
2402 sage: B = matrix.identity(AA,3)
2403 sage: J0 = BilinearFormEJA(B)
2404 sage: J1 = JordanSpinEJA(3)
2405 sage: J0.multiplication_table() == J0.multiplication_table()
2406 True
2407
2408 An error is raised if the matrix `B` does not correspond to a
2409 positive-definite bilinear form::
2410
2411 sage: B = matrix.random(QQ,2,3)
2412 sage: J = BilinearFormEJA(B)
2413 Traceback (most recent call last):
2414 ...
2415 ValueError: bilinear form is not positive-definite
2416 sage: B = matrix.zero(QQ,3)
2417 sage: J = BilinearFormEJA(B)
2418 Traceback (most recent call last):
2419 ...
2420 ValueError: bilinear form is not positive-definite
2421
2422 TESTS:
2423
2424 We can create a zero-dimensional algebra::
2425
2426 sage: B = matrix.identity(AA,0)
2427 sage: J = BilinearFormEJA(B)
2428 sage: J.basis()
2429 Finite family {}
2430
2431 We can check the multiplication condition given in the Jordan, von
2432 Neumann, and Wigner paper (and also discussed on my "On the
2433 symmetry..." paper). Note that this relies heavily on the standard
2434 choice of basis, as does anything utilizing the bilinear form
2435 matrix. We opt not to orthonormalize the basis, because if we
2436 did, we would have to normalize the `s_{i}` in a similar manner::
2437
2438 sage: set_random_seed()
2439 sage: n = ZZ.random_element(5)
2440 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2441 sage: B11 = matrix.identity(QQ,1)
2442 sage: B22 = M.transpose()*M
2443 sage: B = block_matrix(2,2,[ [B11,0 ],
2444 ....: [0, B22 ] ])
2445 sage: J = BilinearFormEJA(B, orthonormalize=False)
2446 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2447 sage: V = J.vector_space()
2448 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2449 ....: for ei in eis ]
2450 sage: actual = [ sis[i]*sis[j]
2451 ....: for i in range(n-1)
2452 ....: for j in range(n-1) ]
2453 sage: expected = [ J.one() if i == j else J.zero()
2454 ....: for i in range(n-1)
2455 ....: for j in range(n-1) ]
2456 sage: actual == expected
2457 True
2458
2459 """
2460 def __init__(self, B, **kwargs):
2461 # The matrix "B" is supplied by the user in most cases,
2462 # so it makes sense to check whether or not its positive-
2463 # definite unless we are specifically asked not to...
2464 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2465 if not B.is_positive_definite():
2466 raise ValueError("bilinear form is not positive-definite")
2467
2468 # However, all of the other data for this EJA is computed
2469 # by us in manner that guarantees the axioms are
2470 # satisfied. So, again, unless we are specifically asked to
2471 # verify things, we'll skip the rest of the checks.
2472 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2473
2474 def inner_product(x,y):
2475 return (y.T*B*x)[0,0]
2476
2477 def jordan_product(x,y):
2478 P = x.parent()
2479 x0 = x[0,0]
2480 xbar = x[1:,0]
2481 y0 = y[0,0]
2482 ybar = y[1:,0]
2483 z0 = inner_product(y,x)
2484 zbar = y0*xbar + x0*ybar
2485 return P([z0] + zbar.list())
2486
2487 n = B.nrows()
2488 column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
2489 super(BilinearFormEJA, self).__init__(column_basis,
2490 jordan_product,
2491 inner_product,
2492 **kwargs)
2493
2494 # The rank of this algebra is two, unless we're in a
2495 # one-dimensional ambient space (because the rank is bounded
2496 # by the ambient dimension).
2497 self.rank.set_cache(min(n,2))
2498
2499 if n == 0:
2500 self.one.set_cache( self.zero() )
2501 else:
2502 self.one.set_cache( self.monomial(0) )
2503
2504 @staticmethod
2505 def _max_random_instance_size():
2506 r"""
2507 The maximum dimension of a random BilinearFormEJA.
2508 """
2509 return 5
2510
2511 @classmethod
2512 def random_instance(cls, **kwargs):
2513 """
2514 Return a random instance of this algebra.
2515 """
2516 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2517 if n.is_zero():
2518 B = matrix.identity(ZZ, n)
2519 return cls(B, **kwargs)
2520
2521 B11 = matrix.identity(ZZ, 1)
2522 M = matrix.random(ZZ, n-1)
2523 I = matrix.identity(ZZ, n-1)
2524 alpha = ZZ.zero()
2525 while alpha.is_zero():
2526 alpha = ZZ.random_element().abs()
2527 B22 = M.transpose()*M + alpha*I
2528
2529 from sage.matrix.special import block_matrix
2530 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2531 [ZZ(0), B22 ] ])
2532
2533 return cls(B, **kwargs)
2534
2535
2536 class JordanSpinEJA(BilinearFormEJA):
2537 """
2538 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2539 with the usual inner product and jordan product ``x*y =
2540 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2541 the reals.
2542
2543 SETUP::
2544
2545 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2546
2547 EXAMPLES:
2548
2549 This multiplication table can be verified by hand::
2550
2551 sage: J = JordanSpinEJA(4)
2552 sage: e0,e1,e2,e3 = J.gens()
2553 sage: e0*e0
2554 e0
2555 sage: e0*e1
2556 e1
2557 sage: e0*e2
2558 e2
2559 sage: e0*e3
2560 e3
2561 sage: e1*e2
2562 0
2563 sage: e1*e3
2564 0
2565 sage: e2*e3
2566 0
2567
2568 We can change the generator prefix::
2569
2570 sage: JordanSpinEJA(2, prefix='B').gens()
2571 (B0, B1)
2572
2573 TESTS:
2574
2575 Ensure that we have the usual inner product on `R^n`::
2576
2577 sage: set_random_seed()
2578 sage: J = JordanSpinEJA.random_instance()
2579 sage: x,y = J.random_elements(2)
2580 sage: actual = x.inner_product(y)
2581 sage: expected = x.to_vector().inner_product(y.to_vector())
2582 sage: actual == expected
2583 True
2584
2585 """
2586 def __init__(self, n, **kwargs):
2587 # This is a special case of the BilinearFormEJA with the
2588 # identity matrix as its bilinear form.
2589 B = matrix.identity(ZZ, n)
2590
2591 # Don't orthonormalize because our basis is already
2592 # orthonormal with respect to our inner-product.
2593 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2594
2595 # But also don't pass check_field=False here, because the user
2596 # can pass in a field!
2597 super(JordanSpinEJA, self).__init__(B, **kwargs)
2598
2599 @staticmethod
2600 def _max_random_instance_size():
2601 r"""
2602 The maximum dimension of a random JordanSpinEJA.
2603 """
2604 return 5
2605
2606 @classmethod
2607 def random_instance(cls, **kwargs):
2608 """
2609 Return a random instance of this type of algebra.
2610
2611 Needed here to override the implementation for ``BilinearFormEJA``.
2612 """
2613 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2614 return cls(n, **kwargs)
2615
2616
2617 class TrivialEJA(ConcreteEJA):
2618 """
2619 The trivial Euclidean Jordan algebra consisting of only a zero element.
2620
2621 SETUP::
2622
2623 sage: from mjo.eja.eja_algebra import TrivialEJA
2624
2625 EXAMPLES::
2626
2627 sage: J = TrivialEJA()
2628 sage: J.dimension()
2629 0
2630 sage: J.zero()
2631 0
2632 sage: J.one()
2633 0
2634 sage: 7*J.one()*12*J.one()
2635 0
2636 sage: J.one().inner_product(J.one())
2637 0
2638 sage: J.one().norm()
2639 0
2640 sage: J.one().subalgebra_generated_by()
2641 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2642 sage: J.rank()
2643 0
2644
2645 """
2646 def __init__(self, **kwargs):
2647 jordan_product = lambda x,y: x
2648 inner_product = lambda x,y: 0
2649 basis = ()
2650
2651 # New defaults for keyword arguments
2652 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2653 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2654
2655 super(TrivialEJA, self).__init__(basis,
2656 jordan_product,
2657 inner_product,
2658 **kwargs)
2659 # The rank is zero using my definition, namely the dimension of the
2660 # largest subalgebra generated by any element.
2661 self.rank.set_cache(0)
2662 self.one.set_cache( self.zero() )
2663
2664 @classmethod
2665 def random_instance(cls, **kwargs):
2666 # We don't take a "size" argument so the superclass method is
2667 # inappropriate for us.
2668 return cls(**kwargs)
2669
2670
2671 class DirectSumEJA(FiniteDimensionalEJA):
2672 r"""
2673 The external (orthogonal) direct sum of two other Euclidean Jordan
2674 algebras. Essentially the Cartesian product of its two factors.
2675 Every Euclidean Jordan algebra decomposes into an orthogonal
2676 direct sum of simple Euclidean Jordan algebras, so no generality
2677 is lost by providing only this construction.
2678
2679 SETUP::
2680
2681 sage: from mjo.eja.eja_algebra import (random_eja,
2682 ....: HadamardEJA,
2683 ....: RealSymmetricEJA,
2684 ....: DirectSumEJA)
2685
2686 EXAMPLES::
2687
2688 sage: J1 = HadamardEJA(2)
2689 sage: J2 = RealSymmetricEJA(3)
2690 sage: J = DirectSumEJA(J1,J2)
2691 sage: J.dimension()
2692 8
2693 sage: J.rank()
2694 5
2695 sage: J.matrix_space()
2696 The Cartesian product of (Full MatrixSpace of 2 by 1 dense matrices
2697 over Algebraic Real Field, Full MatrixSpace of 3 by 3 dense matrices
2698 over Algebraic Real Field)
2699
2700 TESTS:
2701
2702 The external direct sum construction is only valid when the two factors
2703 have the same base ring; an error is raised otherwise::
2704
2705 sage: set_random_seed()
2706 sage: J1 = random_eja(field=AA)
2707 sage: J2 = random_eja(field=QQ,orthonormalize=False)
2708 sage: J = DirectSumEJA(J1,J2)
2709 Traceback (most recent call last):
2710 ...
2711 ValueError: algebras must share the same base field
2712
2713 """
2714 def __init__(self, J1, J2, **kwargs):
2715 if J1.base_ring() != J2.base_ring():
2716 raise ValueError("algebras must share the same base field")
2717 field = J1.base_ring()
2718
2719 M = J1.matrix_space().cartesian_product(J2.matrix_space())
2720 self._cartprod_algebra = J1.cartesian_product(J2)
2721
2722 self._matrix_basis = tuple( [M((a,0)) for a in J1.matrix_basis()] +
2723 [M((0,b)) for b in J2.matrix_basis()] )
2724
2725 n = len(self._matrix_basis)
2726 self._sets = None
2727 CombinatorialFreeModule.__init__(
2728 self,
2729 field,
2730 range(n),
2731 category=self._cartprod_algebra.category(),
2732 bracket=False,
2733 **kwargs)
2734 self.rank.set_cache(J1.rank() + J2.rank())
2735
2736
2737
2738 def product(self,x,y):
2739 r"""
2740 SETUP::
2741
2742 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2743 ....: ComplexHermitianEJA,
2744 ....: DirectSumEJA)
2745
2746 TESTS::
2747
2748 sage: set_random_seed()
2749 sage: J1 = JordanSpinEJA(3, field=QQ)
2750 sage: J2 = ComplexHermitianEJA(2, field=QQ, orthonormalize=False)
2751 sage: J = DirectSumEJA(J1,J2)
2752 sage: J.random_element()*J.random_element() in J
2753 True
2754
2755 """
2756 xv = self._cartprod_algebra.from_vector(x.to_vector())
2757 yv = self._cartprod_algebra.from_vector(y.to_vector())
2758 return self.from_vector((xv*yv).to_vector())
2759
2760
2761 def cartesian_factors(self):
2762 r"""
2763 Return the pair of this algebra's factors.
2764
2765 SETUP::
2766
2767 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2768 ....: JordanSpinEJA,
2769 ....: DirectSumEJA)
2770
2771 EXAMPLES::
2772
2773 sage: J1 = HadamardEJA(2, field=QQ)
2774 sage: J2 = JordanSpinEJA(3, field=QQ)
2775 sage: J = DirectSumEJA(J1,J2)
2776 sage: J.cartesian_factors()
2777 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2778 Euclidean Jordan algebra of dimension 3 over Rational Field)
2779
2780 """
2781 return self._cartprod_algebra.cartesian_factors()
2782
2783
2784 # def projections(self):
2785 # r"""
2786 # Return a pair of projections onto this algebra's factors.
2787
2788 # SETUP::
2789
2790 # sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2791 # ....: ComplexHermitianEJA,
2792 # ....: DirectSumEJA)
2793
2794 # EXAMPLES::
2795
2796 # sage: J1 = JordanSpinEJA(2)
2797 # sage: J2 = ComplexHermitianEJA(2)
2798 # sage: J = DirectSumEJA(J1,J2)
2799 # sage: (pi_left, pi_right) = J.projections()
2800 # sage: J.one().to_vector()
2801 # (1, 0, 1, 0, 0, 1)
2802 # sage: pi_left(J.one()).to_vector()
2803 # (1, 0)
2804 # sage: pi_right(J.one()).to_vector()
2805 # (1, 0, 0, 1)
2806
2807 # """
2808 # (J1,J2) = self.factors()
2809 # m = J1.dimension()
2810 # n = J2.dimension()
2811 # V_basis = self.vector_space().basis()
2812 # # Need to specify the dimensions explicitly so that we don't
2813 # # wind up with a zero-by-zero matrix when we want e.g. a
2814 # # zero-by-two matrix (important for composing things).
2815 # P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2816 # P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2817 # pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
2818 # pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
2819 # return (pi_left, pi_right)
2820
2821 # def inclusions(self):
2822 # r"""
2823 # Return the pair of inclusion maps from our factors into us.
2824
2825 # SETUP::
2826
2827 # sage: from mjo.eja.eja_algebra import (random_eja,
2828 # ....: JordanSpinEJA,
2829 # ....: RealSymmetricEJA,
2830 # ....: DirectSumEJA)
2831
2832 # EXAMPLES::
2833
2834 # sage: J1 = JordanSpinEJA(3)
2835 # sage: J2 = RealSymmetricEJA(2)
2836 # sage: J = DirectSumEJA(J1,J2)
2837 # sage: (iota_left, iota_right) = J.inclusions()
2838 # sage: iota_left(J1.zero()) == J.zero()
2839 # True
2840 # sage: iota_right(J2.zero()) == J.zero()
2841 # True
2842 # sage: J1.one().to_vector()
2843 # (1, 0, 0)
2844 # sage: iota_left(J1.one()).to_vector()
2845 # (1, 0, 0, 0, 0, 0)
2846 # sage: J2.one().to_vector()
2847 # (1, 0, 1)
2848 # sage: iota_right(J2.one()).to_vector()
2849 # (0, 0, 0, 1, 0, 1)
2850 # sage: J.one().to_vector()
2851 # (1, 0, 0, 1, 0, 1)
2852
2853 # TESTS:
2854
2855 # Composing a projection with the corresponding inclusion should
2856 # produce the identity map, and mismatching them should produce
2857 # the zero map::
2858
2859 # sage: set_random_seed()
2860 # sage: J1 = random_eja()
2861 # sage: J2 = random_eja()
2862 # sage: J = DirectSumEJA(J1,J2)
2863 # sage: (iota_left, iota_right) = J.inclusions()
2864 # sage: (pi_left, pi_right) = J.projections()
2865 # sage: pi_left*iota_left == J1.one().operator()
2866 # True
2867 # sage: pi_right*iota_right == J2.one().operator()
2868 # True
2869 # sage: (pi_left*iota_right).is_zero()
2870 # True
2871 # sage: (pi_right*iota_left).is_zero()
2872 # True
2873
2874 # """
2875 # (J1,J2) = self.factors()
2876 # m = J1.dimension()
2877 # n = J2.dimension()
2878 # V_basis = self.vector_space().basis()
2879 # # Need to specify the dimensions explicitly so that we don't
2880 # # wind up with a zero-by-zero matrix when we want e.g. a
2881 # # two-by-zero matrix (important for composing things).
2882 # I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2883 # I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2884 # iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
2885 # iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
2886 # return (iota_left, iota_right)
2887
2888 # def inner_product(self, x, y):
2889 # r"""
2890 # The standard Cartesian inner-product.
2891
2892 # We project ``x`` and ``y`` onto our factors, and add up the
2893 # inner-products from the subalgebras.
2894
2895 # SETUP::
2896
2897
2898 # sage: from mjo.eja.eja_algebra import (HadamardEJA,
2899 # ....: QuaternionHermitianEJA,
2900 # ....: DirectSumEJA)
2901
2902 # EXAMPLE::
2903
2904 # sage: J1 = HadamardEJA(3,field=QQ)
2905 # sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2906 # sage: J = DirectSumEJA(J1,J2)
2907 # sage: x1 = J1.one()
2908 # sage: x2 = x1
2909 # sage: y1 = J2.one()
2910 # sage: y2 = y1
2911 # sage: x1.inner_product(x2)
2912 # 3
2913 # sage: y1.inner_product(y2)
2914 # 2
2915 # sage: J.one().inner_product(J.one())
2916 # 5
2917
2918 # """
2919 # (pi_left, pi_right) = self.projections()
2920 # x1 = pi_left(x)
2921 # x2 = pi_right(x)
2922 # y1 = pi_left(y)
2923 # y2 = pi_right(y)
2924
2925 # return (x1.inner_product(y1) + x2.inner_product(y2))
2926
2927
2928
2929 random_eja = ConcreteEJA.random_instance