]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: add inclusion maps for DirectSumEJA.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check_field=True,
61 check_axioms=True):
62 """
63 SETUP::
64
65 sage: from mjo.eja.eja_algebra import (
66 ....: FiniteDimensionalEuclideanJordanAlgebra,
67 ....: JordanSpinEJA,
68 ....: random_eja)
69
70 EXAMPLES:
71
72 By definition, Jordan multiplication commutes::
73
74 sage: set_random_seed()
75 sage: J = random_eja()
76 sage: x,y = J.random_elements(2)
77 sage: x*y == y*x
78 True
79
80 TESTS:
81
82 The ``field`` we're given must be real with ``check_field=True``::
83
84 sage: JordanSpinEJA(2,QQbar)
85 Traceback (most recent call last):
86 ...
87 ValueError: scalar field is not real
88
89 The multiplication table must be square with ``check_axioms=True``::
90
91 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
92 Traceback (most recent call last):
93 ...
94 ValueError: multiplication table is not square
95
96 """
97 if check_field:
98 if not field.is_subring(RR):
99 # Note: this does return true for the real algebraic
100 # field, the rationals, and any quadratic field where
101 # we've specified a real embedding.
102 raise ValueError("scalar field is not real")
103
104 # The multiplication table had better be square
105 n = len(mult_table)
106 if check_axioms:
107 if not all( len(l) == n for l in mult_table ):
108 raise ValueError("multiplication table is not square")
109
110 self._natural_basis = natural_basis
111
112 if category is None:
113 category = MagmaticAlgebras(field).FiniteDimensional()
114 category = category.WithBasis().Unital()
115
116 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
117 fda.__init__(field,
118 range(n),
119 prefix=prefix,
120 category=category)
121 self.print_options(bracket='')
122
123 # The multiplication table we're given is necessarily in terms
124 # of vectors, because we don't have an algebra yet for
125 # anything to be an element of. However, it's faster in the
126 # long run to have the multiplication table be in terms of
127 # algebra elements. We do this after calling the superclass
128 # constructor so that from_vector() knows what to do.
129 self._multiplication_table = [
130 list(map(lambda x: self.from_vector(x), ls))
131 for ls in mult_table
132 ]
133
134 if check_axioms:
135 if not self._is_commutative():
136 raise ValueError("algebra is not commutative")
137 if not self._is_jordanian():
138 raise ValueError("Jordan identity does not hold")
139 if not self._inner_product_is_associative():
140 raise ValueError("inner product is not associative")
141
142 def _element_constructor_(self, elt):
143 """
144 Construct an element of this algebra from its natural
145 representation.
146
147 This gets called only after the parent element _call_ method
148 fails to find a coercion for the argument.
149
150 SETUP::
151
152 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
153 ....: HadamardEJA,
154 ....: RealSymmetricEJA)
155
156 EXAMPLES:
157
158 The identity in `S^n` is converted to the identity in the EJA::
159
160 sage: J = RealSymmetricEJA(3)
161 sage: I = matrix.identity(QQ,3)
162 sage: J(I) == J.one()
163 True
164
165 This skew-symmetric matrix can't be represented in the EJA::
166
167 sage: J = RealSymmetricEJA(3)
168 sage: A = matrix(QQ,3, lambda i,j: i-j)
169 sage: J(A)
170 Traceback (most recent call last):
171 ...
172 ArithmeticError: vector is not in free module
173
174 TESTS:
175
176 Ensure that we can convert any element of the two non-matrix
177 simple algebras (whose natural representations are their usual
178 vector representations) back and forth faithfully::
179
180 sage: set_random_seed()
181 sage: J = HadamardEJA.random_instance()
182 sage: x = J.random_element()
183 sage: J(x.to_vector().column()) == x
184 True
185 sage: J = JordanSpinEJA.random_instance()
186 sage: x = J.random_element()
187 sage: J(x.to_vector().column()) == x
188 True
189
190 """
191 msg = "not a naturally-represented algebra element"
192 if elt == 0:
193 # The superclass implementation of random_element()
194 # needs to be able to coerce "0" into the algebra.
195 return self.zero()
196 elif elt in self.base_ring():
197 # Ensure that no base ring -> algebra coercion is performed
198 # by this method. There's some stupidity in sage that would
199 # otherwise propagate to this method; for example, sage thinks
200 # that the integer 3 belongs to the space of 2-by-2 matrices.
201 raise ValueError(msg)
202
203 natural_basis = self.natural_basis()
204 basis_space = natural_basis[0].matrix_space()
205 if elt not in basis_space:
206 raise ValueError(msg)
207
208 # Thanks for nothing! Matrix spaces aren't vector spaces in
209 # Sage, so we have to figure out its natural-basis coordinates
210 # ourselves. We use the basis space's ring instead of the
211 # element's ring because the basis space might be an algebraic
212 # closure whereas the base ring of the 3-by-3 identity matrix
213 # could be QQ instead of QQbar.
214 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
215 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
216 coords = W.coordinate_vector(_mat2vec(elt))
217 return self.from_vector(coords)
218
219 @staticmethod
220 def _max_test_case_size():
221 """
222 Return an integer "size" that is an upper bound on the size of
223 this algebra when it is used in a random test
224 case. Unfortunately, the term "size" is quite vague -- when
225 dealing with `R^n` under either the Hadamard or Jordan spin
226 product, the "size" refers to the dimension `n`. When dealing
227 with a matrix algebra (real symmetric or complex/quaternion
228 Hermitian), it refers to the size of the matrix, which is
229 far less than the dimension of the underlying vector space.
230
231 We default to five in this class, which is safe in `R^n`. The
232 matrix algebra subclasses (or any class where the "size" is
233 interpreted to be far less than the dimension) should override
234 with a smaller number.
235 """
236 return 5
237
238 def _repr_(self):
239 """
240 Return a string representation of ``self``.
241
242 SETUP::
243
244 sage: from mjo.eja.eja_algebra import JordanSpinEJA
245
246 TESTS:
247
248 Ensure that it says what we think it says::
249
250 sage: JordanSpinEJA(2, field=AA)
251 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
252 sage: JordanSpinEJA(3, field=RDF)
253 Euclidean Jordan algebra of dimension 3 over Real Double Field
254
255 """
256 fmt = "Euclidean Jordan algebra of dimension {} over {}"
257 return fmt.format(self.dimension(), self.base_ring())
258
259 def product_on_basis(self, i, j):
260 return self._multiplication_table[i][j]
261
262 def _is_commutative(self):
263 r"""
264 Whether or not this algebra's multiplication table is commutative.
265
266 This method should of course always return ``True``, unless
267 this algebra was constructed with ``check_axioms=False`` and
268 passed an invalid multiplication table.
269 """
270 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
271 for i in range(self.dimension())
272 for j in range(self.dimension()) )
273
274 def _is_jordanian(self):
275 r"""
276 Whether or not this algebra's multiplication table respects the
277 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
278
279 We only check one arrangement of `x` and `y`, so for a
280 ``True`` result to be truly true, you should also check
281 :meth:`_is_commutative`. This method should of course always
282 return ``True``, unless this algebra was constructed with
283 ``check_axioms=False`` and passed an invalid multiplication table.
284 """
285 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
286 ==
287 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
288 for i in range(self.dimension())
289 for j in range(self.dimension()) )
290
291 def _inner_product_is_associative(self):
292 r"""
293 Return whether or not this algebra's inner product `B` is
294 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
295
296 This method should of course always return ``True``, unless
297 this algebra was constructed with ``check_axioms=False`` and
298 passed an invalid multiplication table.
299 """
300
301 # Used to check whether or not something is zero in an inexact
302 # ring. This number is sufficient to allow the construction of
303 # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
304 epsilon = 1e-16
305
306 for i in range(self.dimension()):
307 for j in range(self.dimension()):
308 for k in range(self.dimension()):
309 x = self.monomial(i)
310 y = self.monomial(j)
311 z = self.monomial(k)
312 diff = (x*y).inner_product(z) - x.inner_product(y*z)
313
314 if self.base_ring().is_exact():
315 if diff != 0:
316 return False
317 else:
318 if diff.abs() > epsilon:
319 return False
320
321 return True
322
323 @cached_method
324 def characteristic_polynomial_of(self):
325 """
326 Return the algebra's "characteristic polynomial of" function,
327 which is itself a multivariate polynomial that, when evaluated
328 at the coordinates of some algebra element, returns that
329 element's characteristic polynomial.
330
331 The resulting polynomial has `n+1` variables, where `n` is the
332 dimension of this algebra. The first `n` variables correspond to
333 the coordinates of an algebra element: when evaluated at the
334 coordinates of an algebra element with respect to a certain
335 basis, the result is a univariate polynomial (in the one
336 remaining variable ``t``), namely the characteristic polynomial
337 of that element.
338
339 SETUP::
340
341 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
342
343 EXAMPLES:
344
345 The characteristic polynomial in the spin algebra is given in
346 Alizadeh, Example 11.11::
347
348 sage: J = JordanSpinEJA(3)
349 sage: p = J.characteristic_polynomial_of(); p
350 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
351 sage: xvec = J.one().to_vector()
352 sage: p(*xvec)
353 t^2 - 2*t + 1
354
355 By definition, the characteristic polynomial is a monic
356 degree-zero polynomial in a rank-zero algebra. Note that
357 Cayley-Hamilton is indeed satisfied since the polynomial
358 ``1`` evaluates to the identity element of the algebra on
359 any argument::
360
361 sage: J = TrivialEJA()
362 sage: J.characteristic_polynomial_of()
363 1
364
365 """
366 r = self.rank()
367 n = self.dimension()
368
369 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
370 a = self._charpoly_coefficients()
371
372 # We go to a bit of trouble here to reorder the
373 # indeterminates, so that it's easier to evaluate the
374 # characteristic polynomial at x's coordinates and get back
375 # something in terms of t, which is what we want.
376 S = PolynomialRing(self.base_ring(),'t')
377 t = S.gen(0)
378 if r > 0:
379 R = a[0].parent()
380 S = PolynomialRing(S, R.variable_names())
381 t = S(t)
382
383 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
384
385
386 def inner_product(self, x, y):
387 """
388 The inner product associated with this Euclidean Jordan algebra.
389
390 Defaults to the trace inner product, but can be overridden by
391 subclasses if they are sure that the necessary properties are
392 satisfied.
393
394 SETUP::
395
396 sage: from mjo.eja.eja_algebra import random_eja
397
398 EXAMPLES:
399
400 Our inner product is "associative," which means the following for
401 a symmetric bilinear form::
402
403 sage: set_random_seed()
404 sage: J = random_eja()
405 sage: x,y,z = J.random_elements(3)
406 sage: (x*y).inner_product(z) == y.inner_product(x*z)
407 True
408
409 """
410 X = x.natural_representation()
411 Y = y.natural_representation()
412 return self.natural_inner_product(X,Y)
413
414
415 def is_trivial(self):
416 """
417 Return whether or not this algebra is trivial.
418
419 A trivial algebra contains only the zero element.
420
421 SETUP::
422
423 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
424 ....: TrivialEJA)
425
426 EXAMPLES::
427
428 sage: J = ComplexHermitianEJA(3)
429 sage: J.is_trivial()
430 False
431
432 ::
433
434 sage: J = TrivialEJA()
435 sage: J.is_trivial()
436 True
437
438 """
439 return self.dimension() == 0
440
441
442 def multiplication_table(self):
443 """
444 Return a visual representation of this algebra's multiplication
445 table (on basis elements).
446
447 SETUP::
448
449 sage: from mjo.eja.eja_algebra import JordanSpinEJA
450
451 EXAMPLES::
452
453 sage: J = JordanSpinEJA(4)
454 sage: J.multiplication_table()
455 +----++----+----+----+----+
456 | * || e0 | e1 | e2 | e3 |
457 +====++====+====+====+====+
458 | e0 || e0 | e1 | e2 | e3 |
459 +----++----+----+----+----+
460 | e1 || e1 | e0 | 0 | 0 |
461 +----++----+----+----+----+
462 | e2 || e2 | 0 | e0 | 0 |
463 +----++----+----+----+----+
464 | e3 || e3 | 0 | 0 | e0 |
465 +----++----+----+----+----+
466
467 """
468 M = list(self._multiplication_table) # copy
469 for i in range(len(M)):
470 # M had better be "square"
471 M[i] = [self.monomial(i)] + M[i]
472 M = [["*"] + list(self.gens())] + M
473 return table(M, header_row=True, header_column=True, frame=True)
474
475
476 def natural_basis(self):
477 """
478 Return a more-natural representation of this algebra's basis.
479
480 Every finite-dimensional Euclidean Jordan Algebra is a direct
481 sum of five simple algebras, four of which comprise Hermitian
482 matrices. This method returns the original "natural" basis
483 for our underlying vector space. (Typically, the natural basis
484 is used to construct the multiplication table in the first place.)
485
486 Note that this will always return a matrix. The standard basis
487 in `R^n` will be returned as `n`-by-`1` column matrices.
488
489 SETUP::
490
491 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
492 ....: RealSymmetricEJA)
493
494 EXAMPLES::
495
496 sage: J = RealSymmetricEJA(2)
497 sage: J.basis()
498 Finite family {0: e0, 1: e1, 2: e2}
499 sage: J.natural_basis()
500 (
501 [1 0] [ 0 0.7071067811865475?] [0 0]
502 [0 0], [0.7071067811865475? 0], [0 1]
503 )
504
505 ::
506
507 sage: J = JordanSpinEJA(2)
508 sage: J.basis()
509 Finite family {0: e0, 1: e1}
510 sage: J.natural_basis()
511 (
512 [1] [0]
513 [0], [1]
514 )
515
516 """
517 if self._natural_basis is None:
518 M = self.natural_basis_space()
519 return tuple( M(b.to_vector()) for b in self.basis() )
520 else:
521 return self._natural_basis
522
523
524 def natural_basis_space(self):
525 """
526 Return the matrix space in which this algebra's natural basis
527 elements live.
528
529 Generally this will be an `n`-by-`1` column-vector space,
530 except when the algebra is trivial. There it's `n`-by-`n`
531 (where `n` is zero), to ensure that two elements of the
532 natural basis space (empty matrices) can be multiplied.
533 """
534 if self.is_trivial():
535 return MatrixSpace(self.base_ring(), 0)
536 elif self._natural_basis is None or len(self._natural_basis) == 0:
537 return MatrixSpace(self.base_ring(), self.dimension(), 1)
538 else:
539 return self._natural_basis[0].matrix_space()
540
541
542 @staticmethod
543 def natural_inner_product(X,Y):
544 """
545 Compute the inner product of two naturally-represented elements.
546
547 For example in the real symmetric matrix EJA, this will compute
548 the trace inner-product of two n-by-n symmetric matrices. The
549 default should work for the real cartesian product EJA, the
550 Jordan spin EJA, and the real symmetric matrices. The others
551 will have to be overridden.
552 """
553 return (X.conjugate_transpose()*Y).trace()
554
555
556 @cached_method
557 def one(self):
558 """
559 Return the unit element of this algebra.
560
561 SETUP::
562
563 sage: from mjo.eja.eja_algebra import (HadamardEJA,
564 ....: random_eja)
565
566 EXAMPLES::
567
568 sage: J = HadamardEJA(5)
569 sage: J.one()
570 e0 + e1 + e2 + e3 + e4
571
572 TESTS:
573
574 The identity element acts like the identity::
575
576 sage: set_random_seed()
577 sage: J = random_eja()
578 sage: x = J.random_element()
579 sage: J.one()*x == x and x*J.one() == x
580 True
581
582 The matrix of the unit element's operator is the identity::
583
584 sage: set_random_seed()
585 sage: J = random_eja()
586 sage: actual = J.one().operator().matrix()
587 sage: expected = matrix.identity(J.base_ring(), J.dimension())
588 sage: actual == expected
589 True
590
591 """
592 # We can brute-force compute the matrices of the operators
593 # that correspond to the basis elements of this algebra.
594 # If some linear combination of those basis elements is the
595 # algebra identity, then the same linear combination of
596 # their matrices has to be the identity matrix.
597 #
598 # Of course, matrices aren't vectors in sage, so we have to
599 # appeal to the "long vectors" isometry.
600 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
601
602 # Now we use basis linear algebra to find the coefficients,
603 # of the matrices-as-vectors-linear-combination, which should
604 # work for the original algebra basis too.
605 A = matrix.column(self.base_ring(), oper_vecs)
606
607 # We used the isometry on the left-hand side already, but we
608 # still need to do it for the right-hand side. Recall that we
609 # wanted something that summed to the identity matrix.
610 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
611
612 # Now if there's an identity element in the algebra, this should work.
613 coeffs = A.solve_right(b)
614 return self.linear_combination(zip(self.gens(), coeffs))
615
616
617 def peirce_decomposition(self, c):
618 """
619 The Peirce decomposition of this algebra relative to the
620 idempotent ``c``.
621
622 In the future, this can be extended to a complete system of
623 orthogonal idempotents.
624
625 INPUT:
626
627 - ``c`` -- an idempotent of this algebra.
628
629 OUTPUT:
630
631 A triple (J0, J5, J1) containing two subalgebras and one subspace
632 of this algebra,
633
634 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
635 corresponding to the eigenvalue zero.
636
637 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
638 corresponding to the eigenvalue one-half.
639
640 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
641 corresponding to the eigenvalue one.
642
643 These are the only possible eigenspaces for that operator, and this
644 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
645 orthogonal, and are subalgebras of this algebra with the appropriate
646 restrictions.
647
648 SETUP::
649
650 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
651
652 EXAMPLES:
653
654 The canonical example comes from the symmetric matrices, which
655 decompose into diagonal and off-diagonal parts::
656
657 sage: J = RealSymmetricEJA(3)
658 sage: C = matrix(QQ, [ [1,0,0],
659 ....: [0,1,0],
660 ....: [0,0,0] ])
661 sage: c = J(C)
662 sage: J0,J5,J1 = J.peirce_decomposition(c)
663 sage: J0
664 Euclidean Jordan algebra of dimension 1...
665 sage: J5
666 Vector space of degree 6 and dimension 2...
667 sage: J1
668 Euclidean Jordan algebra of dimension 3...
669 sage: J0.one().natural_representation()
670 [0 0 0]
671 [0 0 0]
672 [0 0 1]
673 sage: orig_df = AA.options.display_format
674 sage: AA.options.display_format = 'radical'
675 sage: J.from_vector(J5.basis()[0]).natural_representation()
676 [ 0 0 1/2*sqrt(2)]
677 [ 0 0 0]
678 [1/2*sqrt(2) 0 0]
679 sage: J.from_vector(J5.basis()[1]).natural_representation()
680 [ 0 0 0]
681 [ 0 0 1/2*sqrt(2)]
682 [ 0 1/2*sqrt(2) 0]
683 sage: AA.options.display_format = orig_df
684 sage: J1.one().natural_representation()
685 [1 0 0]
686 [0 1 0]
687 [0 0 0]
688
689 TESTS:
690
691 Every algebra decomposes trivially with respect to its identity
692 element::
693
694 sage: set_random_seed()
695 sage: J = random_eja()
696 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
697 sage: J0.dimension() == 0 and J5.dimension() == 0
698 True
699 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
700 True
701
702 The decomposition is into eigenspaces, and its components are
703 therefore necessarily orthogonal. Moreover, the identity
704 elements in the two subalgebras are the projections onto their
705 respective subspaces of the superalgebra's identity element::
706
707 sage: set_random_seed()
708 sage: J = random_eja()
709 sage: x = J.random_element()
710 sage: if not J.is_trivial():
711 ....: while x.is_nilpotent():
712 ....: x = J.random_element()
713 sage: c = x.subalgebra_idempotent()
714 sage: J0,J5,J1 = J.peirce_decomposition(c)
715 sage: ipsum = 0
716 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
717 ....: w = w.superalgebra_element()
718 ....: y = J.from_vector(y)
719 ....: z = z.superalgebra_element()
720 ....: ipsum += w.inner_product(y).abs()
721 ....: ipsum += w.inner_product(z).abs()
722 ....: ipsum += y.inner_product(z).abs()
723 sage: ipsum
724 0
725 sage: J1(c) == J1.one()
726 True
727 sage: J0(J.one() - c) == J0.one()
728 True
729
730 """
731 if not c.is_idempotent():
732 raise ValueError("element is not idempotent: %s" % c)
733
734 # Default these to what they should be if they turn out to be
735 # trivial, because eigenspaces_left() won't return eigenvalues
736 # corresponding to trivial spaces (e.g. it returns only the
737 # eigenspace corresponding to lambda=1 if you take the
738 # decomposition relative to the identity element).
739 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
740 J0 = trivial # eigenvalue zero
741 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
742 J1 = trivial # eigenvalue one
743
744 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
745 if eigval == ~(self.base_ring()(2)):
746 J5 = eigspace
747 else:
748 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
749 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
750 gens,
751 check_axioms=False)
752 if eigval == 0:
753 J0 = subalg
754 elif eigval == 1:
755 J1 = subalg
756 else:
757 raise ValueError("unexpected eigenvalue: %s" % eigval)
758
759 return (J0, J5, J1)
760
761
762 def random_element(self, thorough=False):
763 r"""
764 Return a random element of this algebra.
765
766 Our algebra superclass method only returns a linear
767 combination of at most two basis elements. We instead
768 want the vector space "random element" method that
769 returns a more diverse selection.
770
771 INPUT:
772
773 - ``thorough`` -- (boolean; default False) whether or not we
774 should generate irrational coefficients for the random
775 element when our base ring is irrational; this slows the
776 algebra operations to a crawl, but any truly random method
777 should include them
778
779 """
780 # For a general base ring... maybe we can trust this to do the
781 # right thing? Unlikely, but.
782 V = self.vector_space()
783 v = V.random_element()
784
785 if self.base_ring() is AA:
786 # The "random element" method of the algebraic reals is
787 # stupid at the moment, and only returns integers between
788 # -2 and 2, inclusive:
789 #
790 # https://trac.sagemath.org/ticket/30875
791 #
792 # Instead, we implement our own "random vector" method,
793 # and then coerce that into the algebra. We use the vector
794 # space degree here instead of the dimension because a
795 # subalgebra could (for example) be spanned by only two
796 # vectors, each with five coordinates. We need to
797 # generate all five coordinates.
798 if thorough:
799 v *= QQbar.random_element().real()
800 else:
801 v *= QQ.random_element()
802
803 return self.from_vector(V.coordinate_vector(v))
804
805 def random_elements(self, count, thorough=False):
806 """
807 Return ``count`` random elements as a tuple.
808
809 INPUT:
810
811 - ``thorough`` -- (boolean; default False) whether or not we
812 should generate irrational coefficients for the random
813 elements when our base ring is irrational; this slows the
814 algebra operations to a crawl, but any truly random method
815 should include them
816
817 SETUP::
818
819 sage: from mjo.eja.eja_algebra import JordanSpinEJA
820
821 EXAMPLES::
822
823 sage: J = JordanSpinEJA(3)
824 sage: x,y,z = J.random_elements(3)
825 sage: all( [ x in J, y in J, z in J ])
826 True
827 sage: len( J.random_elements(10) ) == 10
828 True
829
830 """
831 return tuple( self.random_element(thorough)
832 for idx in range(count) )
833
834 @classmethod
835 def random_instance(cls, field=AA, **kwargs):
836 """
837 Return a random instance of this type of algebra.
838
839 Beware, this will crash for "most instances" because the
840 constructor below looks wrong.
841 """
842 if cls is TrivialEJA:
843 # The TrivialEJA class doesn't take an "n" argument because
844 # there's only one.
845 return cls(field)
846
847 n = ZZ.random_element(cls._max_test_case_size() + 1)
848 return cls(n, field, **kwargs)
849
850 @cached_method
851 def _charpoly_coefficients(self):
852 r"""
853 The `r` polynomial coefficients of the "characteristic polynomial
854 of" function.
855 """
856 n = self.dimension()
857 var_names = [ "X" + str(z) for z in range(1,n+1) ]
858 R = PolynomialRing(self.base_ring(), var_names)
859 vars = R.gens()
860 F = R.fraction_field()
861
862 def L_x_i_j(i,j):
863 # From a result in my book, these are the entries of the
864 # basis representation of L_x.
865 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
866 for k in range(n) )
867
868 L_x = matrix(F, n, n, L_x_i_j)
869
870 r = None
871 if self.rank.is_in_cache():
872 r = self.rank()
873 # There's no need to pad the system with redundant
874 # columns if we *know* they'll be redundant.
875 n = r
876
877 # Compute an extra power in case the rank is equal to
878 # the dimension (otherwise, we would stop at x^(r-1)).
879 x_powers = [ (L_x**k)*self.one().to_vector()
880 for k in range(n+1) ]
881 A = matrix.column(F, x_powers[:n])
882 AE = A.extended_echelon_form()
883 E = AE[:,n:]
884 A_rref = AE[:,:n]
885 if r is None:
886 r = A_rref.rank()
887 b = x_powers[r]
888
889 # The theory says that only the first "r" coefficients are
890 # nonzero, and they actually live in the original polynomial
891 # ring and not the fraction field. We negate them because
892 # in the actual characteristic polynomial, they get moved
893 # to the other side where x^r lives.
894 return -A_rref.solve_right(E*b).change_ring(R)[:r]
895
896 @cached_method
897 def rank(self):
898 r"""
899 Return the rank of this EJA.
900
901 This is a cached method because we know the rank a priori for
902 all of the algebras we can construct. Thus we can avoid the
903 expensive ``_charpoly_coefficients()`` call unless we truly
904 need to compute the whole characteristic polynomial.
905
906 SETUP::
907
908 sage: from mjo.eja.eja_algebra import (HadamardEJA,
909 ....: JordanSpinEJA,
910 ....: RealSymmetricEJA,
911 ....: ComplexHermitianEJA,
912 ....: QuaternionHermitianEJA,
913 ....: random_eja)
914
915 EXAMPLES:
916
917 The rank of the Jordan spin algebra is always two::
918
919 sage: JordanSpinEJA(2).rank()
920 2
921 sage: JordanSpinEJA(3).rank()
922 2
923 sage: JordanSpinEJA(4).rank()
924 2
925
926 The rank of the `n`-by-`n` Hermitian real, complex, or
927 quaternion matrices is `n`::
928
929 sage: RealSymmetricEJA(4).rank()
930 4
931 sage: ComplexHermitianEJA(3).rank()
932 3
933 sage: QuaternionHermitianEJA(2).rank()
934 2
935
936 TESTS:
937
938 Ensure that every EJA that we know how to construct has a
939 positive integer rank, unless the algebra is trivial in
940 which case its rank will be zero::
941
942 sage: set_random_seed()
943 sage: J = random_eja()
944 sage: r = J.rank()
945 sage: r in ZZ
946 True
947 sage: r > 0 or (r == 0 and J.is_trivial())
948 True
949
950 Ensure that computing the rank actually works, since the ranks
951 of all simple algebras are known and will be cached by default::
952
953 sage: J = HadamardEJA(4)
954 sage: J.rank.clear_cache()
955 sage: J.rank()
956 4
957
958 ::
959
960 sage: J = JordanSpinEJA(4)
961 sage: J.rank.clear_cache()
962 sage: J.rank()
963 2
964
965 ::
966
967 sage: J = RealSymmetricEJA(3)
968 sage: J.rank.clear_cache()
969 sage: J.rank()
970 3
971
972 ::
973
974 sage: J = ComplexHermitianEJA(2)
975 sage: J.rank.clear_cache()
976 sage: J.rank()
977 2
978
979 ::
980
981 sage: J = QuaternionHermitianEJA(2)
982 sage: J.rank.clear_cache()
983 sage: J.rank()
984 2
985 """
986 return len(self._charpoly_coefficients())
987
988
989 def vector_space(self):
990 """
991 Return the vector space that underlies this algebra.
992
993 SETUP::
994
995 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
996
997 EXAMPLES::
998
999 sage: J = RealSymmetricEJA(2)
1000 sage: J.vector_space()
1001 Vector space of dimension 3 over...
1002
1003 """
1004 return self.zero().to_vector().parent().ambient_vector_space()
1005
1006
1007 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1008
1009
1010
1011 def random_eja(field=AA):
1012 """
1013 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1014
1015 SETUP::
1016
1017 sage: from mjo.eja.eja_algebra import random_eja
1018
1019 TESTS::
1020
1021 sage: random_eja()
1022 Euclidean Jordan algebra of dimension...
1023
1024 """
1025 classname = choice([TrivialEJA,
1026 HadamardEJA,
1027 JordanSpinEJA,
1028 RealSymmetricEJA,
1029 ComplexHermitianEJA,
1030 QuaternionHermitianEJA])
1031 return classname.random_instance(field=field)
1032
1033
1034
1035
1036 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1037 r"""
1038 Algebras whose basis consists of vectors with rational
1039 entries. Equivalently, algebras whose multiplication tables
1040 contain only rational coefficients.
1041
1042 When an EJA has a basis that can be made rational, we can speed up
1043 the computation of its characteristic polynomial by doing it over
1044 ``QQ``. All of the named EJA constructors that we provide fall
1045 into this category.
1046 """
1047 @cached_method
1048 def _charpoly_coefficients(self):
1049 r"""
1050 Override the parent method with something that tries to compute
1051 over a faster (non-extension) field.
1052
1053 SETUP::
1054
1055 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1056
1057 EXAMPLES:
1058
1059 The base ring of the resulting polynomial coefficients is what
1060 it should be, and not the rationals (unless the algebra was
1061 already over the rationals)::
1062
1063 sage: J = JordanSpinEJA(3)
1064 sage: J._charpoly_coefficients()
1065 (X1^2 - X2^2 - X3^2, -2*X1)
1066 sage: a0 = J._charpoly_coefficients()[0]
1067 sage: J.base_ring()
1068 Algebraic Real Field
1069 sage: a0.base_ring()
1070 Algebraic Real Field
1071
1072 """
1073 if self.base_ring() is QQ:
1074 # There's no need to construct *another* algebra over the
1075 # rationals if this one is already over the rationals.
1076 superclass = super(RationalBasisEuclideanJordanAlgebra, self)
1077 return superclass._charpoly_coefficients()
1078
1079 mult_table = tuple(
1080 map(lambda x: x.to_vector(), ls)
1081 for ls in self._multiplication_table
1082 )
1083
1084 # Do the computation over the rationals. The answer will be
1085 # the same, because our basis coordinates are (essentially)
1086 # rational.
1087 J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
1088 mult_table,
1089 check_field=False,
1090 check_axioms=False)
1091 a = J._charpoly_coefficients()
1092 return tuple(map(lambda x: x.change_ring(self.base_ring()), a))
1093
1094
1095 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1096 @staticmethod
1097 def _max_test_case_size():
1098 # Play it safe, since this will be squared and the underlying
1099 # field can have dimension 4 (quaternions) too.
1100 return 2
1101
1102 def __init__(self, field, basis, normalize_basis=True, **kwargs):
1103 """
1104 Compared to the superclass constructor, we take a basis instead of
1105 a multiplication table because the latter can be computed in terms
1106 of the former when the product is known (like it is here).
1107 """
1108 # Used in this class's fast _charpoly_coefficients() override.
1109 self._basis_normalizers = None
1110
1111 # We're going to loop through this a few times, so now's a good
1112 # time to ensure that it isn't a generator expression.
1113 basis = tuple(basis)
1114
1115 if len(basis) > 1 and normalize_basis:
1116 # We'll need sqrt(2) to normalize the basis, and this
1117 # winds up in the multiplication table, so the whole
1118 # algebra needs to be over the field extension.
1119 R = PolynomialRing(field, 'z')
1120 z = R.gen()
1121 p = z**2 - 2
1122 if p.is_irreducible():
1123 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1124 basis = tuple( s.change_ring(field) for s in basis )
1125 self._basis_normalizers = tuple(
1126 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1127 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1128
1129 Qs = self.multiplication_table_from_matrix_basis(basis)
1130
1131 super(MatrixEuclideanJordanAlgebra, self).__init__(field,
1132 Qs,
1133 natural_basis=basis,
1134 **kwargs)
1135
1136
1137 @cached_method
1138 def _charpoly_coefficients(self):
1139 r"""
1140 Override the parent method with something that tries to compute
1141 over a faster (non-extension) field.
1142 """
1143 if self._basis_normalizers is None or self.base_ring() is QQ:
1144 # We didn't normalize, or the basis we started with had
1145 # entries in a nice field already. Just compute the thing.
1146 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
1147
1148 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1149 self._basis_normalizers) )
1150
1151 # Do this over the rationals and convert back at the end.
1152 # Only works because we know the entries of the basis are
1153 # integers. The argument ``check_axioms=False`` is required
1154 # because the trace inner-product method for this
1155 # class is a stub and can't actually be checked.
1156 J = MatrixEuclideanJordanAlgebra(QQ,
1157 basis,
1158 normalize_basis=False,
1159 check_field=False,
1160 check_axioms=False)
1161 a = J._charpoly_coefficients()
1162
1163 # Unfortunately, changing the basis does change the
1164 # coefficients of the characteristic polynomial, but since
1165 # these are really the coefficients of the "characteristic
1166 # polynomial of" function, everything is still nice and
1167 # unevaluated. It's therefore "obvious" how scaling the
1168 # basis affects the coordinate variables X1, X2, et
1169 # cetera. Scaling the first basis vector up by "n" adds a
1170 # factor of 1/n into every "X1" term, for example. So here
1171 # we simply undo the basis_normalizer scaling that we
1172 # performed earlier.
1173 #
1174 # The a[0] access here is safe because trivial algebras
1175 # won't have any basis normalizers and therefore won't
1176 # make it to this "else" branch.
1177 XS = a[0].parent().gens()
1178 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1179 for i in range(len(XS)) }
1180 return tuple( a_i.subs(subs_dict) for a_i in a )
1181
1182
1183 @staticmethod
1184 def multiplication_table_from_matrix_basis(basis):
1185 """
1186 At least three of the five simple Euclidean Jordan algebras have the
1187 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1188 multiplication on the right is matrix multiplication. Given a basis
1189 for the underlying matrix space, this function returns a
1190 multiplication table (obtained by looping through the basis
1191 elements) for an algebra of those matrices.
1192 """
1193 # In S^2, for example, we nominally have four coordinates even
1194 # though the space is of dimension three only. The vector space V
1195 # is supposed to hold the entire long vector, and the subspace W
1196 # of V will be spanned by the vectors that arise from symmetric
1197 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1198 if len(basis) == 0:
1199 return []
1200
1201 field = basis[0].base_ring()
1202 dimension = basis[0].nrows()
1203
1204 V = VectorSpace(field, dimension**2)
1205 W = V.span_of_basis( _mat2vec(s) for s in basis )
1206 n = len(basis)
1207 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1208 for i in range(n):
1209 for j in range(n):
1210 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1211 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1212
1213 return mult_table
1214
1215
1216 @staticmethod
1217 def real_embed(M):
1218 """
1219 Embed the matrix ``M`` into a space of real matrices.
1220
1221 The matrix ``M`` can have entries in any field at the moment:
1222 the real numbers, complex numbers, or quaternions. And although
1223 they are not a field, we can probably support octonions at some
1224 point, too. This function returns a real matrix that "acts like"
1225 the original with respect to matrix multiplication; i.e.
1226
1227 real_embed(M*N) = real_embed(M)*real_embed(N)
1228
1229 """
1230 raise NotImplementedError
1231
1232
1233 @staticmethod
1234 def real_unembed(M):
1235 """
1236 The inverse of :meth:`real_embed`.
1237 """
1238 raise NotImplementedError
1239
1240
1241 @classmethod
1242 def natural_inner_product(cls,X,Y):
1243 Xu = cls.real_unembed(X)
1244 Yu = cls.real_unembed(Y)
1245 tr = (Xu*Yu).trace()
1246
1247 try:
1248 # Works in QQ, AA, RDF, et cetera.
1249 return tr.real()
1250 except AttributeError:
1251 # A quaternion doesn't have a real() method, but does
1252 # have coefficient_tuple() method that returns the
1253 # coefficients of 1, i, j, and k -- in that order.
1254 return tr.coefficient_tuple()[0]
1255
1256
1257 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1258 @staticmethod
1259 def real_embed(M):
1260 """
1261 The identity function, for embedding real matrices into real
1262 matrices.
1263 """
1264 return M
1265
1266 @staticmethod
1267 def real_unembed(M):
1268 """
1269 The identity function, for unembedding real matrices from real
1270 matrices.
1271 """
1272 return M
1273
1274
1275 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1276 """
1277 The rank-n simple EJA consisting of real symmetric n-by-n
1278 matrices, the usual symmetric Jordan product, and the trace inner
1279 product. It has dimension `(n^2 + n)/2` over the reals.
1280
1281 SETUP::
1282
1283 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1284
1285 EXAMPLES::
1286
1287 sage: J = RealSymmetricEJA(2)
1288 sage: e0, e1, e2 = J.gens()
1289 sage: e0*e0
1290 e0
1291 sage: e1*e1
1292 1/2*e0 + 1/2*e2
1293 sage: e2*e2
1294 e2
1295
1296 In theory, our "field" can be any subfield of the reals::
1297
1298 sage: RealSymmetricEJA(2, RDF)
1299 Euclidean Jordan algebra of dimension 3 over Real Double Field
1300 sage: RealSymmetricEJA(2, RR)
1301 Euclidean Jordan algebra of dimension 3 over Real Field with
1302 53 bits of precision
1303
1304 TESTS:
1305
1306 The dimension of this algebra is `(n^2 + n) / 2`::
1307
1308 sage: set_random_seed()
1309 sage: n_max = RealSymmetricEJA._max_test_case_size()
1310 sage: n = ZZ.random_element(1, n_max)
1311 sage: J = RealSymmetricEJA(n)
1312 sage: J.dimension() == (n^2 + n)/2
1313 True
1314
1315 The Jordan multiplication is what we think it is::
1316
1317 sage: set_random_seed()
1318 sage: J = RealSymmetricEJA.random_instance()
1319 sage: x,y = J.random_elements(2)
1320 sage: actual = (x*y).natural_representation()
1321 sage: X = x.natural_representation()
1322 sage: Y = y.natural_representation()
1323 sage: expected = (X*Y + Y*X)/2
1324 sage: actual == expected
1325 True
1326 sage: J(expected) == x*y
1327 True
1328
1329 We can change the generator prefix::
1330
1331 sage: RealSymmetricEJA(3, prefix='q').gens()
1332 (q0, q1, q2, q3, q4, q5)
1333
1334 Our natural basis is normalized with respect to the natural inner
1335 product unless we specify otherwise::
1336
1337 sage: set_random_seed()
1338 sage: J = RealSymmetricEJA.random_instance()
1339 sage: all( b.norm() == 1 for b in J.gens() )
1340 True
1341
1342 Since our natural basis is normalized with respect to the natural
1343 inner product, and since we know that this algebra is an EJA, any
1344 left-multiplication operator's matrix will be symmetric because
1345 natural->EJA basis representation is an isometry and within the EJA
1346 the operator is self-adjoint by the Jordan axiom::
1347
1348 sage: set_random_seed()
1349 sage: x = RealSymmetricEJA.random_instance().random_element()
1350 sage: x.operator().matrix().is_symmetric()
1351 True
1352
1353 We can construct the (trivial) algebra of rank zero::
1354
1355 sage: RealSymmetricEJA(0)
1356 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1357
1358 """
1359 @classmethod
1360 def _denormalized_basis(cls, n, field):
1361 """
1362 Return a basis for the space of real symmetric n-by-n matrices.
1363
1364 SETUP::
1365
1366 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1367
1368 TESTS::
1369
1370 sage: set_random_seed()
1371 sage: n = ZZ.random_element(1,5)
1372 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1373 sage: all( M.is_symmetric() for M in B)
1374 True
1375
1376 """
1377 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1378 # coordinates.
1379 S = []
1380 for i in range(n):
1381 for j in range(i+1):
1382 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1383 if i == j:
1384 Sij = Eij
1385 else:
1386 Sij = Eij + Eij.transpose()
1387 S.append(Sij)
1388 return S
1389
1390
1391 @staticmethod
1392 def _max_test_case_size():
1393 return 4 # Dimension 10
1394
1395
1396 def __init__(self, n, field=AA, **kwargs):
1397 basis = self._denormalized_basis(n, field)
1398 super(RealSymmetricEJA, self).__init__(field,
1399 basis,
1400 check_axioms=False,
1401 **kwargs)
1402 self.rank.set_cache(n)
1403
1404
1405 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1406 @staticmethod
1407 def real_embed(M):
1408 """
1409 Embed the n-by-n complex matrix ``M`` into the space of real
1410 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1411 bi` to the block matrix ``[[a,b],[-b,a]]``.
1412
1413 SETUP::
1414
1415 sage: from mjo.eja.eja_algebra import \
1416 ....: ComplexMatrixEuclideanJordanAlgebra
1417
1418 EXAMPLES::
1419
1420 sage: F = QuadraticField(-1, 'I')
1421 sage: x1 = F(4 - 2*i)
1422 sage: x2 = F(1 + 2*i)
1423 sage: x3 = F(-i)
1424 sage: x4 = F(6)
1425 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1426 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1427 [ 4 -2| 1 2]
1428 [ 2 4|-2 1]
1429 [-----+-----]
1430 [ 0 -1| 6 0]
1431 [ 1 0| 0 6]
1432
1433 TESTS:
1434
1435 Embedding is a homomorphism (isomorphism, in fact)::
1436
1437 sage: set_random_seed()
1438 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1439 sage: n = ZZ.random_element(n_max)
1440 sage: F = QuadraticField(-1, 'I')
1441 sage: X = random_matrix(F, n)
1442 sage: Y = random_matrix(F, n)
1443 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1444 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1445 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1446 sage: Xe*Ye == XYe
1447 True
1448
1449 """
1450 n = M.nrows()
1451 if M.ncols() != n:
1452 raise ValueError("the matrix 'M' must be square")
1453
1454 # We don't need any adjoined elements...
1455 field = M.base_ring().base_ring()
1456
1457 blocks = []
1458 for z in M.list():
1459 a = z.list()[0] # real part, I guess
1460 b = z.list()[1] # imag part, I guess
1461 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1462
1463 return matrix.block(field, n, blocks)
1464
1465
1466 @staticmethod
1467 def real_unembed(M):
1468 """
1469 The inverse of _embed_complex_matrix().
1470
1471 SETUP::
1472
1473 sage: from mjo.eja.eja_algebra import \
1474 ....: ComplexMatrixEuclideanJordanAlgebra
1475
1476 EXAMPLES::
1477
1478 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1479 ....: [-2, 1, -4, 3],
1480 ....: [ 9, 10, 11, 12],
1481 ....: [-10, 9, -12, 11] ])
1482 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1483 [ 2*I + 1 4*I + 3]
1484 [ 10*I + 9 12*I + 11]
1485
1486 TESTS:
1487
1488 Unembedding is the inverse of embedding::
1489
1490 sage: set_random_seed()
1491 sage: F = QuadraticField(-1, 'I')
1492 sage: M = random_matrix(F, 3)
1493 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1494 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1495 True
1496
1497 """
1498 n = ZZ(M.nrows())
1499 if M.ncols() != n:
1500 raise ValueError("the matrix 'M' must be square")
1501 if not n.mod(2).is_zero():
1502 raise ValueError("the matrix 'M' must be a complex embedding")
1503
1504 # If "M" was normalized, its base ring might have roots
1505 # adjoined and they can stick around after unembedding.
1506 field = M.base_ring()
1507 R = PolynomialRing(field, 'z')
1508 z = R.gen()
1509 if field is AA:
1510 # Sage doesn't know how to embed AA into QQbar, i.e. how
1511 # to adjoin sqrt(-1) to AA.
1512 F = QQbar
1513 else:
1514 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1515 i = F.gen()
1516
1517 # Go top-left to bottom-right (reading order), converting every
1518 # 2-by-2 block we see to a single complex element.
1519 elements = []
1520 for k in range(n/2):
1521 for j in range(n/2):
1522 submat = M[2*k:2*k+2,2*j:2*j+2]
1523 if submat[0,0] != submat[1,1]:
1524 raise ValueError('bad on-diagonal submatrix')
1525 if submat[0,1] != -submat[1,0]:
1526 raise ValueError('bad off-diagonal submatrix')
1527 z = submat[0,0] + submat[0,1]*i
1528 elements.append(z)
1529
1530 return matrix(F, n/2, elements)
1531
1532
1533 @classmethod
1534 def natural_inner_product(cls,X,Y):
1535 """
1536 Compute a natural inner product in this algebra directly from
1537 its real embedding.
1538
1539 SETUP::
1540
1541 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1542
1543 TESTS:
1544
1545 This gives the same answer as the slow, default method implemented
1546 in :class:`MatrixEuclideanJordanAlgebra`::
1547
1548 sage: set_random_seed()
1549 sage: J = ComplexHermitianEJA.random_instance()
1550 sage: x,y = J.random_elements(2)
1551 sage: Xe = x.natural_representation()
1552 sage: Ye = y.natural_representation()
1553 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1554 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1555 sage: expected = (X*Y).trace().real()
1556 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1557 sage: actual == expected
1558 True
1559
1560 """
1561 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1562
1563
1564 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1565 """
1566 The rank-n simple EJA consisting of complex Hermitian n-by-n
1567 matrices over the real numbers, the usual symmetric Jordan product,
1568 and the real-part-of-trace inner product. It has dimension `n^2` over
1569 the reals.
1570
1571 SETUP::
1572
1573 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1574
1575 EXAMPLES:
1576
1577 In theory, our "field" can be any subfield of the reals::
1578
1579 sage: ComplexHermitianEJA(2, RDF)
1580 Euclidean Jordan algebra of dimension 4 over Real Double Field
1581 sage: ComplexHermitianEJA(2, RR)
1582 Euclidean Jordan algebra of dimension 4 over Real Field with
1583 53 bits of precision
1584
1585 TESTS:
1586
1587 The dimension of this algebra is `n^2`::
1588
1589 sage: set_random_seed()
1590 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1591 sage: n = ZZ.random_element(1, n_max)
1592 sage: J = ComplexHermitianEJA(n)
1593 sage: J.dimension() == n^2
1594 True
1595
1596 The Jordan multiplication is what we think it is::
1597
1598 sage: set_random_seed()
1599 sage: J = ComplexHermitianEJA.random_instance()
1600 sage: x,y = J.random_elements(2)
1601 sage: actual = (x*y).natural_representation()
1602 sage: X = x.natural_representation()
1603 sage: Y = y.natural_representation()
1604 sage: expected = (X*Y + Y*X)/2
1605 sage: actual == expected
1606 True
1607 sage: J(expected) == x*y
1608 True
1609
1610 We can change the generator prefix::
1611
1612 sage: ComplexHermitianEJA(2, prefix='z').gens()
1613 (z0, z1, z2, z3)
1614
1615 Our natural basis is normalized with respect to the natural inner
1616 product unless we specify otherwise::
1617
1618 sage: set_random_seed()
1619 sage: J = ComplexHermitianEJA.random_instance()
1620 sage: all( b.norm() == 1 for b in J.gens() )
1621 True
1622
1623 Since our natural basis is normalized with respect to the natural
1624 inner product, and since we know that this algebra is an EJA, any
1625 left-multiplication operator's matrix will be symmetric because
1626 natural->EJA basis representation is an isometry and within the EJA
1627 the operator is self-adjoint by the Jordan axiom::
1628
1629 sage: set_random_seed()
1630 sage: x = ComplexHermitianEJA.random_instance().random_element()
1631 sage: x.operator().matrix().is_symmetric()
1632 True
1633
1634 We can construct the (trivial) algebra of rank zero::
1635
1636 sage: ComplexHermitianEJA(0)
1637 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1638
1639 """
1640
1641 @classmethod
1642 def _denormalized_basis(cls, n, field):
1643 """
1644 Returns a basis for the space of complex Hermitian n-by-n matrices.
1645
1646 Why do we embed these? Basically, because all of numerical linear
1647 algebra assumes that you're working with vectors consisting of `n`
1648 entries from a field and scalars from the same field. There's no way
1649 to tell SageMath that (for example) the vectors contain complex
1650 numbers, while the scalar field is real.
1651
1652 SETUP::
1653
1654 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1655
1656 TESTS::
1657
1658 sage: set_random_seed()
1659 sage: n = ZZ.random_element(1,5)
1660 sage: field = QuadraticField(2, 'sqrt2')
1661 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1662 sage: all( M.is_symmetric() for M in B)
1663 True
1664
1665 """
1666 R = PolynomialRing(field, 'z')
1667 z = R.gen()
1668 F = field.extension(z**2 + 1, 'I')
1669 I = F.gen()
1670
1671 # This is like the symmetric case, but we need to be careful:
1672 #
1673 # * We want conjugate-symmetry, not just symmetry.
1674 # * The diagonal will (as a result) be real.
1675 #
1676 S = []
1677 for i in range(n):
1678 for j in range(i+1):
1679 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1680 if i == j:
1681 Sij = cls.real_embed(Eij)
1682 S.append(Sij)
1683 else:
1684 # The second one has a minus because it's conjugated.
1685 Sij_real = cls.real_embed(Eij + Eij.transpose())
1686 S.append(Sij_real)
1687 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1688 S.append(Sij_imag)
1689
1690 # Since we embedded these, we can drop back to the "field" that we
1691 # started with instead of the complex extension "F".
1692 return ( s.change_ring(field) for s in S )
1693
1694
1695 def __init__(self, n, field=AA, **kwargs):
1696 basis = self._denormalized_basis(n,field)
1697 super(ComplexHermitianEJA,self).__init__(field,
1698 basis,
1699 check_axioms=False,
1700 **kwargs)
1701 self.rank.set_cache(n)
1702
1703
1704 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1705 @staticmethod
1706 def real_embed(M):
1707 """
1708 Embed the n-by-n quaternion matrix ``M`` into the space of real
1709 matrices of size 4n-by-4n by first sending each quaternion entry `z
1710 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1711 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1712 matrix.
1713
1714 SETUP::
1715
1716 sage: from mjo.eja.eja_algebra import \
1717 ....: QuaternionMatrixEuclideanJordanAlgebra
1718
1719 EXAMPLES::
1720
1721 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1722 sage: i,j,k = Q.gens()
1723 sage: x = 1 + 2*i + 3*j + 4*k
1724 sage: M = matrix(Q, 1, [[x]])
1725 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1726 [ 1 2 3 4]
1727 [-2 1 -4 3]
1728 [-3 4 1 -2]
1729 [-4 -3 2 1]
1730
1731 Embedding is a homomorphism (isomorphism, in fact)::
1732
1733 sage: set_random_seed()
1734 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1735 sage: n = ZZ.random_element(n_max)
1736 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1737 sage: X = random_matrix(Q, n)
1738 sage: Y = random_matrix(Q, n)
1739 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1740 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1741 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1742 sage: Xe*Ye == XYe
1743 True
1744
1745 """
1746 quaternions = M.base_ring()
1747 n = M.nrows()
1748 if M.ncols() != n:
1749 raise ValueError("the matrix 'M' must be square")
1750
1751 F = QuadraticField(-1, 'I')
1752 i = F.gen()
1753
1754 blocks = []
1755 for z in M.list():
1756 t = z.coefficient_tuple()
1757 a = t[0]
1758 b = t[1]
1759 c = t[2]
1760 d = t[3]
1761 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1762 [-c + d*i, a - b*i]])
1763 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1764 blocks.append(realM)
1765
1766 # We should have real entries by now, so use the realest field
1767 # we've got for the return value.
1768 return matrix.block(quaternions.base_ring(), n, blocks)
1769
1770
1771
1772 @staticmethod
1773 def real_unembed(M):
1774 """
1775 The inverse of _embed_quaternion_matrix().
1776
1777 SETUP::
1778
1779 sage: from mjo.eja.eja_algebra import \
1780 ....: QuaternionMatrixEuclideanJordanAlgebra
1781
1782 EXAMPLES::
1783
1784 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1785 ....: [-2, 1, -4, 3],
1786 ....: [-3, 4, 1, -2],
1787 ....: [-4, -3, 2, 1]])
1788 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1789 [1 + 2*i + 3*j + 4*k]
1790
1791 TESTS:
1792
1793 Unembedding is the inverse of embedding::
1794
1795 sage: set_random_seed()
1796 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1797 sage: M = random_matrix(Q, 3)
1798 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1799 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1800 True
1801
1802 """
1803 n = ZZ(M.nrows())
1804 if M.ncols() != n:
1805 raise ValueError("the matrix 'M' must be square")
1806 if not n.mod(4).is_zero():
1807 raise ValueError("the matrix 'M' must be a quaternion embedding")
1808
1809 # Use the base ring of the matrix to ensure that its entries can be
1810 # multiplied by elements of the quaternion algebra.
1811 field = M.base_ring()
1812 Q = QuaternionAlgebra(field,-1,-1)
1813 i,j,k = Q.gens()
1814
1815 # Go top-left to bottom-right (reading order), converting every
1816 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1817 # quaternion block.
1818 elements = []
1819 for l in range(n/4):
1820 for m in range(n/4):
1821 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1822 M[4*l:4*l+4,4*m:4*m+4] )
1823 if submat[0,0] != submat[1,1].conjugate():
1824 raise ValueError('bad on-diagonal submatrix')
1825 if submat[0,1] != -submat[1,0].conjugate():
1826 raise ValueError('bad off-diagonal submatrix')
1827 z = submat[0,0].real()
1828 z += submat[0,0].imag()*i
1829 z += submat[0,1].real()*j
1830 z += submat[0,1].imag()*k
1831 elements.append(z)
1832
1833 return matrix(Q, n/4, elements)
1834
1835
1836 @classmethod
1837 def natural_inner_product(cls,X,Y):
1838 """
1839 Compute a natural inner product in this algebra directly from
1840 its real embedding.
1841
1842 SETUP::
1843
1844 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1845
1846 TESTS:
1847
1848 This gives the same answer as the slow, default method implemented
1849 in :class:`MatrixEuclideanJordanAlgebra`::
1850
1851 sage: set_random_seed()
1852 sage: J = QuaternionHermitianEJA.random_instance()
1853 sage: x,y = J.random_elements(2)
1854 sage: Xe = x.natural_representation()
1855 sage: Ye = y.natural_representation()
1856 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1857 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1858 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1859 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1860 sage: actual == expected
1861 True
1862
1863 """
1864 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1865
1866
1867 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1868 """
1869 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1870 matrices, the usual symmetric Jordan product, and the
1871 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1872 the reals.
1873
1874 SETUP::
1875
1876 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1877
1878 EXAMPLES:
1879
1880 In theory, our "field" can be any subfield of the reals::
1881
1882 sage: QuaternionHermitianEJA(2, RDF)
1883 Euclidean Jordan algebra of dimension 6 over Real Double Field
1884 sage: QuaternionHermitianEJA(2, RR)
1885 Euclidean Jordan algebra of dimension 6 over Real Field with
1886 53 bits of precision
1887
1888 TESTS:
1889
1890 The dimension of this algebra is `2*n^2 - n`::
1891
1892 sage: set_random_seed()
1893 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1894 sage: n = ZZ.random_element(1, n_max)
1895 sage: J = QuaternionHermitianEJA(n)
1896 sage: J.dimension() == 2*(n^2) - n
1897 True
1898
1899 The Jordan multiplication is what we think it is::
1900
1901 sage: set_random_seed()
1902 sage: J = QuaternionHermitianEJA.random_instance()
1903 sage: x,y = J.random_elements(2)
1904 sage: actual = (x*y).natural_representation()
1905 sage: X = x.natural_representation()
1906 sage: Y = y.natural_representation()
1907 sage: expected = (X*Y + Y*X)/2
1908 sage: actual == expected
1909 True
1910 sage: J(expected) == x*y
1911 True
1912
1913 We can change the generator prefix::
1914
1915 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1916 (a0, a1, a2, a3, a4, a5)
1917
1918 Our natural basis is normalized with respect to the natural inner
1919 product unless we specify otherwise::
1920
1921 sage: set_random_seed()
1922 sage: J = QuaternionHermitianEJA.random_instance()
1923 sage: all( b.norm() == 1 for b in J.gens() )
1924 True
1925
1926 Since our natural basis is normalized with respect to the natural
1927 inner product, and since we know that this algebra is an EJA, any
1928 left-multiplication operator's matrix will be symmetric because
1929 natural->EJA basis representation is an isometry and within the EJA
1930 the operator is self-adjoint by the Jordan axiom::
1931
1932 sage: set_random_seed()
1933 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1934 sage: x.operator().matrix().is_symmetric()
1935 True
1936
1937 We can construct the (trivial) algebra of rank zero::
1938
1939 sage: QuaternionHermitianEJA(0)
1940 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1941
1942 """
1943 @classmethod
1944 def _denormalized_basis(cls, n, field):
1945 """
1946 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1947
1948 Why do we embed these? Basically, because all of numerical
1949 linear algebra assumes that you're working with vectors consisting
1950 of `n` entries from a field and scalars from the same field. There's
1951 no way to tell SageMath that (for example) the vectors contain
1952 complex numbers, while the scalar field is real.
1953
1954 SETUP::
1955
1956 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1957
1958 TESTS::
1959
1960 sage: set_random_seed()
1961 sage: n = ZZ.random_element(1,5)
1962 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1963 sage: all( M.is_symmetric() for M in B )
1964 True
1965
1966 """
1967 Q = QuaternionAlgebra(QQ,-1,-1)
1968 I,J,K = Q.gens()
1969
1970 # This is like the symmetric case, but we need to be careful:
1971 #
1972 # * We want conjugate-symmetry, not just symmetry.
1973 # * The diagonal will (as a result) be real.
1974 #
1975 S = []
1976 for i in range(n):
1977 for j in range(i+1):
1978 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1979 if i == j:
1980 Sij = cls.real_embed(Eij)
1981 S.append(Sij)
1982 else:
1983 # The second, third, and fourth ones have a minus
1984 # because they're conjugated.
1985 Sij_real = cls.real_embed(Eij + Eij.transpose())
1986 S.append(Sij_real)
1987 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1988 S.append(Sij_I)
1989 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1990 S.append(Sij_J)
1991 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1992 S.append(Sij_K)
1993
1994 # Since we embedded these, we can drop back to the "field" that we
1995 # started with instead of the quaternion algebra "Q".
1996 return ( s.change_ring(field) for s in S )
1997
1998
1999 def __init__(self, n, field=AA, **kwargs):
2000 basis = self._denormalized_basis(n,field)
2001 super(QuaternionHermitianEJA,self).__init__(field,
2002 basis,
2003 check_axioms=False,
2004 **kwargs)
2005 self.rank.set_cache(n)
2006
2007
2008 class HadamardEJA(RationalBasisEuclideanJordanAlgebra):
2009 """
2010 Return the Euclidean Jordan Algebra corresponding to the set
2011 `R^n` under the Hadamard product.
2012
2013 Note: this is nothing more than the Cartesian product of ``n``
2014 copies of the spin algebra. Once Cartesian product algebras
2015 are implemented, this can go.
2016
2017 SETUP::
2018
2019 sage: from mjo.eja.eja_algebra import HadamardEJA
2020
2021 EXAMPLES:
2022
2023 This multiplication table can be verified by hand::
2024
2025 sage: J = HadamardEJA(3)
2026 sage: e0,e1,e2 = J.gens()
2027 sage: e0*e0
2028 e0
2029 sage: e0*e1
2030 0
2031 sage: e0*e2
2032 0
2033 sage: e1*e1
2034 e1
2035 sage: e1*e2
2036 0
2037 sage: e2*e2
2038 e2
2039
2040 TESTS:
2041
2042 We can change the generator prefix::
2043
2044 sage: HadamardEJA(3, prefix='r').gens()
2045 (r0, r1, r2)
2046
2047 """
2048 def __init__(self, n, field=AA, **kwargs):
2049 V = VectorSpace(field, n)
2050 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
2051 for i in range(n) ]
2052
2053 super(HadamardEJA, self).__init__(field,
2054 mult_table,
2055 check_axioms=False,
2056 **kwargs)
2057 self.rank.set_cache(n)
2058
2059 def inner_product(self, x, y):
2060 """
2061 Faster to reimplement than to use natural representations.
2062
2063 SETUP::
2064
2065 sage: from mjo.eja.eja_algebra import HadamardEJA
2066
2067 TESTS:
2068
2069 Ensure that this is the usual inner product for the algebras
2070 over `R^n`::
2071
2072 sage: set_random_seed()
2073 sage: J = HadamardEJA.random_instance()
2074 sage: x,y = J.random_elements(2)
2075 sage: X = x.natural_representation()
2076 sage: Y = y.natural_representation()
2077 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2078 True
2079
2080 """
2081 return x.to_vector().inner_product(y.to_vector())
2082
2083
2084 class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra):
2085 r"""
2086 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2087 with the half-trace inner product and jordan product ``x*y =
2088 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
2089 symmetric positive-definite "bilinear form" matrix. It has
2090 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
2091 when ``B`` is the identity matrix of order ``n-1``.
2092
2093 SETUP::
2094
2095 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2096 ....: JordanSpinEJA)
2097
2098 EXAMPLES:
2099
2100 When no bilinear form is specified, the identity matrix is used,
2101 and the resulting algebra is the Jordan spin algebra::
2102
2103 sage: J0 = BilinearFormEJA(3)
2104 sage: J1 = JordanSpinEJA(3)
2105 sage: J0.multiplication_table() == J0.multiplication_table()
2106 True
2107
2108 TESTS:
2109
2110 We can create a zero-dimensional algebra::
2111
2112 sage: J = BilinearFormEJA(0)
2113 sage: J.basis()
2114 Finite family {}
2115
2116 We can check the multiplication condition given in the Jordan, von
2117 Neumann, and Wigner paper (and also discussed on my "On the
2118 symmetry..." paper). Note that this relies heavily on the standard
2119 choice of basis, as does anything utilizing the bilinear form matrix::
2120
2121 sage: set_random_seed()
2122 sage: n = ZZ.random_element(5)
2123 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2124 sage: B = M.transpose()*M
2125 sage: J = BilinearFormEJA(n, B=B)
2126 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2127 sage: V = J.vector_space()
2128 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2129 ....: for ei in eis ]
2130 sage: actual = [ sis[i]*sis[j]
2131 ....: for i in range(n-1)
2132 ....: for j in range(n-1) ]
2133 sage: expected = [ J.one() if i == j else J.zero()
2134 ....: for i in range(n-1)
2135 ....: for j in range(n-1) ]
2136 sage: actual == expected
2137 True
2138 """
2139 def __init__(self, n, field=AA, B=None, **kwargs):
2140 if B is None:
2141 self._B = matrix.identity(field, max(0,n-1))
2142 else:
2143 self._B = B
2144
2145 V = VectorSpace(field, n)
2146 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
2147 for i in range(n):
2148 for j in range(n):
2149 x = V.gen(i)
2150 y = V.gen(j)
2151 x0 = x[0]
2152 xbar = x[1:]
2153 y0 = y[0]
2154 ybar = y[1:]
2155 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
2156 zbar = y0*xbar + x0*ybar
2157 z = V([z0] + zbar.list())
2158 mult_table[i][j] = z
2159
2160 # The rank of this algebra is two, unless we're in a
2161 # one-dimensional ambient space (because the rank is bounded
2162 # by the ambient dimension).
2163 super(BilinearFormEJA, self).__init__(field,
2164 mult_table,
2165 check_axioms=False,
2166 **kwargs)
2167 self.rank.set_cache(min(n,2))
2168
2169 def inner_product(self, x, y):
2170 r"""
2171 Half of the trace inner product.
2172
2173 This is defined so that the special case of the Jordan spin
2174 algebra gets the usual inner product.
2175
2176 SETUP::
2177
2178 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2179
2180 TESTS:
2181
2182 Ensure that this is one-half of the trace inner-product when
2183 the algebra isn't just the reals (when ``n`` isn't one). This
2184 is in Faraut and Koranyi, and also my "On the symmetry..."
2185 paper::
2186
2187 sage: set_random_seed()
2188 sage: n = ZZ.random_element(2,5)
2189 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2190 sage: B = M.transpose()*M
2191 sage: J = BilinearFormEJA(n, B=B)
2192 sage: x = J.random_element()
2193 sage: y = J.random_element()
2194 sage: x.inner_product(y) == (x*y).trace()/2
2195 True
2196
2197 """
2198 xvec = x.to_vector()
2199 xbar = xvec[1:]
2200 yvec = y.to_vector()
2201 ybar = yvec[1:]
2202 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2203
2204
2205 class JordanSpinEJA(BilinearFormEJA):
2206 """
2207 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2208 with the usual inner product and jordan product ``x*y =
2209 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2210 the reals.
2211
2212 SETUP::
2213
2214 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2215
2216 EXAMPLES:
2217
2218 This multiplication table can be verified by hand::
2219
2220 sage: J = JordanSpinEJA(4)
2221 sage: e0,e1,e2,e3 = J.gens()
2222 sage: e0*e0
2223 e0
2224 sage: e0*e1
2225 e1
2226 sage: e0*e2
2227 e2
2228 sage: e0*e3
2229 e3
2230 sage: e1*e2
2231 0
2232 sage: e1*e3
2233 0
2234 sage: e2*e3
2235 0
2236
2237 We can change the generator prefix::
2238
2239 sage: JordanSpinEJA(2, prefix='B').gens()
2240 (B0, B1)
2241
2242 TESTS:
2243
2244 Ensure that we have the usual inner product on `R^n`::
2245
2246 sage: set_random_seed()
2247 sage: J = JordanSpinEJA.random_instance()
2248 sage: x,y = J.random_elements(2)
2249 sage: X = x.natural_representation()
2250 sage: Y = y.natural_representation()
2251 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2252 True
2253
2254 """
2255 def __init__(self, n, field=AA, **kwargs):
2256 # This is a special case of the BilinearFormEJA with the identity
2257 # matrix as its bilinear form.
2258 super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2259
2260
2261 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2262 """
2263 The trivial Euclidean Jordan algebra consisting of only a zero element.
2264
2265 SETUP::
2266
2267 sage: from mjo.eja.eja_algebra import TrivialEJA
2268
2269 EXAMPLES::
2270
2271 sage: J = TrivialEJA()
2272 sage: J.dimension()
2273 0
2274 sage: J.zero()
2275 0
2276 sage: J.one()
2277 0
2278 sage: 7*J.one()*12*J.one()
2279 0
2280 sage: J.one().inner_product(J.one())
2281 0
2282 sage: J.one().norm()
2283 0
2284 sage: J.one().subalgebra_generated_by()
2285 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2286 sage: J.rank()
2287 0
2288
2289 """
2290 def __init__(self, field=AA, **kwargs):
2291 mult_table = []
2292 super(TrivialEJA, self).__init__(field,
2293 mult_table,
2294 check_axioms=False,
2295 **kwargs)
2296 # The rank is zero using my definition, namely the dimension of the
2297 # largest subalgebra generated by any element.
2298 self.rank.set_cache(0)
2299
2300
2301 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2302 r"""
2303 The external (orthogonal) direct sum of two other Euclidean Jordan
2304 algebras. Essentially the Cartesian product of its two factors.
2305 Every Euclidean Jordan algebra decomposes into an orthogonal
2306 direct sum of simple Euclidean Jordan algebras, so no generality
2307 is lost by providing only this construction.
2308
2309 SETUP::
2310
2311 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2312 ....: RealSymmetricEJA,
2313 ....: DirectSumEJA)
2314
2315 EXAMPLES::
2316
2317 sage: J1 = HadamardEJA(2)
2318 sage: J2 = RealSymmetricEJA(3)
2319 sage: J = DirectSumEJA(J1,J2)
2320 sage: J.dimension()
2321 8
2322 sage: J.rank()
2323 5
2324
2325 """
2326 def __init__(self, J1, J2, field=AA, **kwargs):
2327 self._factors = (J1, J2)
2328 n1 = J1.dimension()
2329 n2 = J2.dimension()
2330 n = n1+n2
2331 V = VectorSpace(field, n)
2332 mult_table = [ [ V.zero() for j in range(n) ]
2333 for i in range(n) ]
2334 for i in range(n1):
2335 for j in range(n1):
2336 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2337 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2338
2339 for i in range(n2):
2340 for j in range(n2):
2341 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2342 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2343
2344 super(DirectSumEJA, self).__init__(field,
2345 mult_table,
2346 check_axioms=False,
2347 **kwargs)
2348 self.rank.set_cache(J1.rank() + J2.rank())
2349
2350
2351 def factors(self):
2352 r"""
2353 Return the pair of this algebra's factors.
2354
2355 SETUP::
2356
2357 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2358 ....: JordanSpinEJA,
2359 ....: DirectSumEJA)
2360
2361 EXAMPLES::
2362
2363 sage: J1 = HadamardEJA(2,QQ)
2364 sage: J2 = JordanSpinEJA(3,QQ)
2365 sage: J = DirectSumEJA(J1,J2)
2366 sage: J.factors()
2367 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2368 Euclidean Jordan algebra of dimension 3 over Rational Field)
2369
2370 """
2371 return self._factors
2372
2373 def projections(self):
2374 r"""
2375 Return a pair of projections onto this algebra's factors.
2376
2377 SETUP::
2378
2379 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2380 ....: ComplexHermitianEJA,
2381 ....: DirectSumEJA)
2382
2383 EXAMPLES::
2384
2385 sage: J1 = JordanSpinEJA(2)
2386 sage: J2 = ComplexHermitianEJA(2)
2387 sage: J = DirectSumEJA(J1,J2)
2388 sage: (pi_left, pi_right) = J.projections()
2389 sage: J.one().to_vector()
2390 (1, 0, 1, 0, 0, 1)
2391 sage: pi_left(J.one()).to_vector()
2392 (1, 0)
2393 sage: pi_right(J.one()).to_vector()
2394 (1, 0, 0, 1)
2395
2396 """
2397 (J1,J2) = self.factors()
2398 n = J1.dimension()
2399 pi_left = lambda x: J1.from_vector(x.to_vector()[:n])
2400 pi_right = lambda x: J2.from_vector(x.to_vector()[n:])
2401 return (pi_left, pi_right)
2402
2403 def inclusions(self):
2404 r"""
2405 Return the pair of inclusion maps from our factors into us.
2406
2407 SETUP::
2408
2409 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2410 ....: RealSymmetricEJA,
2411 ....: DirectSumEJA)
2412
2413 EXAMPLES::
2414
2415 sage: J1 = JordanSpinEJA(3)
2416 sage: J2 = RealSymmetricEJA(2)
2417 sage: J = DirectSumEJA(J1,J2)
2418 sage: (iota_left, iota_right) = J.inclusions()
2419 sage: iota_left(J1.zero()) == J.zero()
2420 True
2421 sage: iota_right(J2.zero()) == J.zero()
2422 True
2423 sage: J1.one().to_vector()
2424 (1, 0, 0)
2425 sage: iota_left(J1.one()).to_vector()
2426 (1, 0, 0, 0, 0, 0)
2427 sage: J2.one().to_vector()
2428 (1, 0, 1)
2429 sage: iota_right(J2.one()).to_vector()
2430 (0, 0, 0, 1, 0, 1)
2431 sage: J.one().to_vector()
2432 (1, 0, 0, 1, 0, 1)
2433
2434 """
2435 (J1,J2) = self.factors()
2436 n = J1.dimension()
2437 V_basis = self.vector_space().basis()
2438 I1 = matrix.column(self.base_ring(), V_basis[:n])
2439 I2 = matrix.column(self.base_ring(), V_basis[n:])
2440 iota_left = lambda x: self.from_vector(I1*x.to_vector())
2441 iota_right = lambda x: self.from_vector(I2*+x.to_vector())
2442 return (iota_left, iota_right)