]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: speed up _charpoly_coefficients when rank is cached.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 @cached_method
239 def characteristic_polynomial(self):
240 """
241 Return a characteristic polynomial that works for all elements
242 of this algebra.
243
244 The resulting polynomial has `n+1` variables, where `n` is the
245 dimension of this algebra. The first `n` variables correspond to
246 the coordinates of an algebra element: when evaluated at the
247 coordinates of an algebra element with respect to a certain
248 basis, the result is a univariate polynomial (in the one
249 remaining variable ``t``), namely the characteristic polynomial
250 of that element.
251
252 SETUP::
253
254 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
255
256 EXAMPLES:
257
258 The characteristic polynomial in the spin algebra is given in
259 Alizadeh, Example 11.11::
260
261 sage: J = JordanSpinEJA(3)
262 sage: p = J.characteristic_polynomial(); p
263 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
264 sage: xvec = J.one().to_vector()
265 sage: p(*xvec)
266 t^2 - 2*t + 1
267
268 By definition, the characteristic polynomial is a monic
269 degree-zero polynomial in a rank-zero algebra. Note that
270 Cayley-Hamilton is indeed satisfied since the polynomial
271 ``1`` evaluates to the identity element of the algebra on
272 any argument::
273
274 sage: J = TrivialEJA()
275 sage: J.characteristic_polynomial()
276 1
277
278 """
279 r = self.rank()
280 n = self.dimension()
281
282 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
283 a = self._charpoly_coefficients()
284
285 # We go to a bit of trouble here to reorder the
286 # indeterminates, so that it's easier to evaluate the
287 # characteristic polynomial at x's coordinates and get back
288 # something in terms of t, which is what we want.
289 S = PolynomialRing(self.base_ring(),'t')
290 t = S.gen(0)
291 if r > 0:
292 R = a[0].parent()
293 S = PolynomialRing(S, R.variable_names())
294 t = S(t)
295
296 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
297
298
299 def inner_product(self, x, y):
300 """
301 The inner product associated with this Euclidean Jordan algebra.
302
303 Defaults to the trace inner product, but can be overridden by
304 subclasses if they are sure that the necessary properties are
305 satisfied.
306
307 SETUP::
308
309 sage: from mjo.eja.eja_algebra import random_eja
310
311 EXAMPLES:
312
313 Our inner product is "associative," which means the following for
314 a symmetric bilinear form::
315
316 sage: set_random_seed()
317 sage: J = random_eja()
318 sage: x,y,z = J.random_elements(3)
319 sage: (x*y).inner_product(z) == y.inner_product(x*z)
320 True
321
322 """
323 X = x.natural_representation()
324 Y = y.natural_representation()
325 return self.natural_inner_product(X,Y)
326
327
328 def is_trivial(self):
329 """
330 Return whether or not this algebra is trivial.
331
332 A trivial algebra contains only the zero element.
333
334 SETUP::
335
336 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
337 ....: TrivialEJA)
338
339 EXAMPLES::
340
341 sage: J = ComplexHermitianEJA(3)
342 sage: J.is_trivial()
343 False
344
345 ::
346
347 sage: J = TrivialEJA()
348 sage: J.is_trivial()
349 True
350
351 """
352 return self.dimension() == 0
353
354
355 def multiplication_table(self):
356 """
357 Return a visual representation of this algebra's multiplication
358 table (on basis elements).
359
360 SETUP::
361
362 sage: from mjo.eja.eja_algebra import JordanSpinEJA
363
364 EXAMPLES::
365
366 sage: J = JordanSpinEJA(4)
367 sage: J.multiplication_table()
368 +----++----+----+----+----+
369 | * || e0 | e1 | e2 | e3 |
370 +====++====+====+====+====+
371 | e0 || e0 | e1 | e2 | e3 |
372 +----++----+----+----+----+
373 | e1 || e1 | e0 | 0 | 0 |
374 +----++----+----+----+----+
375 | e2 || e2 | 0 | e0 | 0 |
376 +----++----+----+----+----+
377 | e3 || e3 | 0 | 0 | e0 |
378 +----++----+----+----+----+
379
380 """
381 M = list(self._multiplication_table) # copy
382 for i in range(len(M)):
383 # M had better be "square"
384 M[i] = [self.monomial(i)] + M[i]
385 M = [["*"] + list(self.gens())] + M
386 return table(M, header_row=True, header_column=True, frame=True)
387
388
389 def natural_basis(self):
390 """
391 Return a more-natural representation of this algebra's basis.
392
393 Every finite-dimensional Euclidean Jordan Algebra is a direct
394 sum of five simple algebras, four of which comprise Hermitian
395 matrices. This method returns the original "natural" basis
396 for our underlying vector space. (Typically, the natural basis
397 is used to construct the multiplication table in the first place.)
398
399 Note that this will always return a matrix. The standard basis
400 in `R^n` will be returned as `n`-by-`1` column matrices.
401
402 SETUP::
403
404 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
405 ....: RealSymmetricEJA)
406
407 EXAMPLES::
408
409 sage: J = RealSymmetricEJA(2)
410 sage: J.basis()
411 Finite family {0: e0, 1: e1, 2: e2}
412 sage: J.natural_basis()
413 (
414 [1 0] [ 0 0.7071067811865475?] [0 0]
415 [0 0], [0.7071067811865475? 0], [0 1]
416 )
417
418 ::
419
420 sage: J = JordanSpinEJA(2)
421 sage: J.basis()
422 Finite family {0: e0, 1: e1}
423 sage: J.natural_basis()
424 (
425 [1] [0]
426 [0], [1]
427 )
428
429 """
430 if self._natural_basis is None:
431 M = self.natural_basis_space()
432 return tuple( M(b.to_vector()) for b in self.basis() )
433 else:
434 return self._natural_basis
435
436
437 def natural_basis_space(self):
438 """
439 Return the matrix space in which this algebra's natural basis
440 elements live.
441 """
442 if self._natural_basis is None or len(self._natural_basis) == 0:
443 return MatrixSpace(self.base_ring(), self.dimension(), 1)
444 else:
445 return self._natural_basis[0].matrix_space()
446
447
448 @staticmethod
449 def natural_inner_product(X,Y):
450 """
451 Compute the inner product of two naturally-represented elements.
452
453 For example in the real symmetric matrix EJA, this will compute
454 the trace inner-product of two n-by-n symmetric matrices. The
455 default should work for the real cartesian product EJA, the
456 Jordan spin EJA, and the real symmetric matrices. The others
457 will have to be overridden.
458 """
459 return (X.conjugate_transpose()*Y).trace()
460
461
462 @cached_method
463 def one(self):
464 """
465 Return the unit element of this algebra.
466
467 SETUP::
468
469 sage: from mjo.eja.eja_algebra import (HadamardEJA,
470 ....: random_eja)
471
472 EXAMPLES::
473
474 sage: J = HadamardEJA(5)
475 sage: J.one()
476 e0 + e1 + e2 + e3 + e4
477
478 TESTS:
479
480 The identity element acts like the identity::
481
482 sage: set_random_seed()
483 sage: J = random_eja()
484 sage: x = J.random_element()
485 sage: J.one()*x == x and x*J.one() == x
486 True
487
488 The matrix of the unit element's operator is the identity::
489
490 sage: set_random_seed()
491 sage: J = random_eja()
492 sage: actual = J.one().operator().matrix()
493 sage: expected = matrix.identity(J.base_ring(), J.dimension())
494 sage: actual == expected
495 True
496
497 """
498 # We can brute-force compute the matrices of the operators
499 # that correspond to the basis elements of this algebra.
500 # If some linear combination of those basis elements is the
501 # algebra identity, then the same linear combination of
502 # their matrices has to be the identity matrix.
503 #
504 # Of course, matrices aren't vectors in sage, so we have to
505 # appeal to the "long vectors" isometry.
506 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
507
508 # Now we use basis linear algebra to find the coefficients,
509 # of the matrices-as-vectors-linear-combination, which should
510 # work for the original algebra basis too.
511 A = matrix.column(self.base_ring(), oper_vecs)
512
513 # We used the isometry on the left-hand side already, but we
514 # still need to do it for the right-hand side. Recall that we
515 # wanted something that summed to the identity matrix.
516 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
517
518 # Now if there's an identity element in the algebra, this should work.
519 coeffs = A.solve_right(b)
520 return self.linear_combination(zip(self.gens(), coeffs))
521
522
523 def peirce_decomposition(self, c):
524 """
525 The Peirce decomposition of this algebra relative to the
526 idempotent ``c``.
527
528 In the future, this can be extended to a complete system of
529 orthogonal idempotents.
530
531 INPUT:
532
533 - ``c`` -- an idempotent of this algebra.
534
535 OUTPUT:
536
537 A triple (J0, J5, J1) containing two subalgebras and one subspace
538 of this algebra,
539
540 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
541 corresponding to the eigenvalue zero.
542
543 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
544 corresponding to the eigenvalue one-half.
545
546 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
547 corresponding to the eigenvalue one.
548
549 These are the only possible eigenspaces for that operator, and this
550 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
551 orthogonal, and are subalgebras of this algebra with the appropriate
552 restrictions.
553
554 SETUP::
555
556 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
557
558 EXAMPLES:
559
560 The canonical example comes from the symmetric matrices, which
561 decompose into diagonal and off-diagonal parts::
562
563 sage: J = RealSymmetricEJA(3)
564 sage: C = matrix(QQ, [ [1,0,0],
565 ....: [0,1,0],
566 ....: [0,0,0] ])
567 sage: c = J(C)
568 sage: J0,J5,J1 = J.peirce_decomposition(c)
569 sage: J0
570 Euclidean Jordan algebra of dimension 1...
571 sage: J5
572 Vector space of degree 6 and dimension 2...
573 sage: J1
574 Euclidean Jordan algebra of dimension 3...
575
576 TESTS:
577
578 Every algebra decomposes trivially with respect to its identity
579 element::
580
581 sage: set_random_seed()
582 sage: J = random_eja()
583 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
584 sage: J0.dimension() == 0 and J5.dimension() == 0
585 True
586 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
587 True
588
589 The identity elements in the two subalgebras are the
590 projections onto their respective subspaces of the
591 superalgebra's identity element::
592
593 sage: set_random_seed()
594 sage: J = random_eja()
595 sage: x = J.random_element()
596 sage: if not J.is_trivial():
597 ....: while x.is_nilpotent():
598 ....: x = J.random_element()
599 sage: c = x.subalgebra_idempotent()
600 sage: J0,J5,J1 = J.peirce_decomposition(c)
601 sage: J1(c) == J1.one()
602 True
603 sage: J0(J.one() - c) == J0.one()
604 True
605
606 """
607 if not c.is_idempotent():
608 raise ValueError("element is not idempotent: %s" % c)
609
610 # Default these to what they should be if they turn out to be
611 # trivial, because eigenspaces_left() won't return eigenvalues
612 # corresponding to trivial spaces (e.g. it returns only the
613 # eigenspace corresponding to lambda=1 if you take the
614 # decomposition relative to the identity element).
615 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
616 J0 = trivial # eigenvalue zero
617 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
618 J1 = trivial # eigenvalue one
619
620 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
621 if eigval == ~(self.base_ring()(2)):
622 J5 = eigspace
623 else:
624 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
625 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
626 if eigval == 0:
627 J0 = subalg
628 elif eigval == 1:
629 J1 = subalg
630 else:
631 raise ValueError("unexpected eigenvalue: %s" % eigval)
632
633 return (J0, J5, J1)
634
635
636 def random_elements(self, count):
637 """
638 Return ``count`` random elements as a tuple.
639
640 SETUP::
641
642 sage: from mjo.eja.eja_algebra import JordanSpinEJA
643
644 EXAMPLES::
645
646 sage: J = JordanSpinEJA(3)
647 sage: x,y,z = J.random_elements(3)
648 sage: all( [ x in J, y in J, z in J ])
649 True
650 sage: len( J.random_elements(10) ) == 10
651 True
652
653 """
654 return tuple( self.random_element() for idx in range(count) )
655
656 @classmethod
657 def random_instance(cls, field=AA, **kwargs):
658 """
659 Return a random instance of this type of algebra.
660
661 Beware, this will crash for "most instances" because the
662 constructor below looks wrong.
663 """
664 if cls is TrivialEJA:
665 # The TrivialEJA class doesn't take an "n" argument because
666 # there's only one.
667 return cls(field)
668
669 n = ZZ.random_element(cls._max_test_case_size()) + 1
670 return cls(n, field, **kwargs)
671
672 @cached_method
673 def _charpoly_coefficients(self):
674 r"""
675 The `r` polynomial coefficients of the "characteristic polynomial
676 of" function.
677 """
678 n = self.dimension()
679 var_names = [ "X" + str(z) for z in range(1,n+1) ]
680 R = PolynomialRing(self.base_ring(), var_names)
681 vars = R.gens()
682 F = R.fraction_field()
683
684 def L_x_i_j(i,j):
685 # From a result in my book, these are the entries of the
686 # basis representation of L_x.
687 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
688 for k in range(n) )
689
690 L_x = matrix(F, n, n, L_x_i_j)
691
692 r = None
693 if self.rank.is_in_cache():
694 r = self.rank()
695 # There's no need to pad the system with redundant
696 # columns if we *know* they'll be redundant.
697 n = r
698
699 # Compute an extra power in case the rank is equal to
700 # the dimension (otherwise, we would stop at x^(r-1)).
701 x_powers = [ (L_x**k)*self.one().to_vector()
702 for k in range(n+1) ]
703 A = matrix.column(F, x_powers[:n])
704 AE = A.extended_echelon_form()
705 E = AE[:,n:]
706 A_rref = AE[:,:n]
707 if r is None:
708 r = A_rref.rank()
709 b = x_powers[r]
710
711 # The theory says that only the first "r" coefficients are
712 # nonzero, and they actually live in the original polynomial
713 # ring and not the fraction field. We negate them because
714 # in the actual characteristic polynomial, they get moved
715 # to the other side where x^r lives.
716 return -A_rref.solve_right(E*b).change_ring(R)[:r]
717
718 @cached_method
719 def rank(self):
720 r"""
721 Return the rank of this EJA.
722
723 This is a cached method because we know the rank a priori for
724 all of the algebras we can construct. Thus we can avoid the
725 expensive ``_charpoly_coefficients()`` call unless we truly
726 need to compute the whole characteristic polynomial.
727
728 SETUP::
729
730 sage: from mjo.eja.eja_algebra import (HadamardEJA,
731 ....: JordanSpinEJA,
732 ....: RealSymmetricEJA,
733 ....: ComplexHermitianEJA,
734 ....: QuaternionHermitianEJA,
735 ....: random_eja)
736
737 EXAMPLES:
738
739 The rank of the Jordan spin algebra is always two::
740
741 sage: JordanSpinEJA(2).rank()
742 2
743 sage: JordanSpinEJA(3).rank()
744 2
745 sage: JordanSpinEJA(4).rank()
746 2
747
748 The rank of the `n`-by-`n` Hermitian real, complex, or
749 quaternion matrices is `n`::
750
751 sage: RealSymmetricEJA(4).rank()
752 4
753 sage: ComplexHermitianEJA(3).rank()
754 3
755 sage: QuaternionHermitianEJA(2).rank()
756 2
757
758 TESTS:
759
760 Ensure that every EJA that we know how to construct has a
761 positive integer rank, unless the algebra is trivial in
762 which case its rank will be zero::
763
764 sage: set_random_seed()
765 sage: J = random_eja()
766 sage: r = J.rank()
767 sage: r in ZZ
768 True
769 sage: r > 0 or (r == 0 and J.is_trivial())
770 True
771
772 Ensure that computing the rank actually works, since the ranks
773 of all simple algebras are known and will be cached by default::
774
775 sage: J = HadamardEJA(4)
776 sage: J.rank.clear_cache()
777 sage: J.rank()
778 4
779
780 ::
781
782 sage: J = JordanSpinEJA(4)
783 sage: J.rank.clear_cache()
784 sage: J.rank()
785 2
786
787 ::
788
789 sage: J = RealSymmetricEJA(3)
790 sage: J.rank.clear_cache()
791 sage: J.rank()
792 3
793
794 ::
795
796 sage: J = ComplexHermitianEJA(2)
797 sage: J.rank.clear_cache()
798 sage: J.rank()
799 2
800
801 ::
802
803 sage: J = QuaternionHermitianEJA(2)
804 sage: J.rank.clear_cache()
805 sage: J.rank()
806 2
807 """
808 return len(self._charpoly_coefficients())
809
810
811 def vector_space(self):
812 """
813 Return the vector space that underlies this algebra.
814
815 SETUP::
816
817 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
818
819 EXAMPLES::
820
821 sage: J = RealSymmetricEJA(2)
822 sage: J.vector_space()
823 Vector space of dimension 3 over...
824
825 """
826 return self.zero().to_vector().parent().ambient_vector_space()
827
828
829 Element = FiniteDimensionalEuclideanJordanAlgebraElement
830
831
832 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
833 """
834 Return the Euclidean Jordan Algebra corresponding to the set
835 `R^n` under the Hadamard product.
836
837 Note: this is nothing more than the Cartesian product of ``n``
838 copies of the spin algebra. Once Cartesian product algebras
839 are implemented, this can go.
840
841 SETUP::
842
843 sage: from mjo.eja.eja_algebra import HadamardEJA
844
845 EXAMPLES:
846
847 This multiplication table can be verified by hand::
848
849 sage: J = HadamardEJA(3)
850 sage: e0,e1,e2 = J.gens()
851 sage: e0*e0
852 e0
853 sage: e0*e1
854 0
855 sage: e0*e2
856 0
857 sage: e1*e1
858 e1
859 sage: e1*e2
860 0
861 sage: e2*e2
862 e2
863
864 TESTS:
865
866 We can change the generator prefix::
867
868 sage: HadamardEJA(3, prefix='r').gens()
869 (r0, r1, r2)
870
871 """
872 def __init__(self, n, field=AA, **kwargs):
873 V = VectorSpace(field, n)
874 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
875 for i in range(n) ]
876
877 fdeja = super(HadamardEJA, self)
878 fdeja.__init__(field, mult_table, **kwargs)
879 self.rank.set_cache(n)
880
881 def inner_product(self, x, y):
882 """
883 Faster to reimplement than to use natural representations.
884
885 SETUP::
886
887 sage: from mjo.eja.eja_algebra import HadamardEJA
888
889 TESTS:
890
891 Ensure that this is the usual inner product for the algebras
892 over `R^n`::
893
894 sage: set_random_seed()
895 sage: J = HadamardEJA.random_instance()
896 sage: x,y = J.random_elements(2)
897 sage: X = x.natural_representation()
898 sage: Y = y.natural_representation()
899 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
900 True
901
902 """
903 return x.to_vector().inner_product(y.to_vector())
904
905
906 def random_eja(field=AA, nontrivial=False):
907 """
908 Return a "random" finite-dimensional Euclidean Jordan Algebra.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import random_eja
913
914 TESTS::
915
916 sage: random_eja()
917 Euclidean Jordan algebra of dimension...
918
919 """
920 eja_classes = [HadamardEJA,
921 JordanSpinEJA,
922 RealSymmetricEJA,
923 ComplexHermitianEJA,
924 QuaternionHermitianEJA]
925 if not nontrivial:
926 eja_classes.append(TrivialEJA)
927 classname = choice(eja_classes)
928 return classname.random_instance(field=field)
929
930
931
932
933
934
935 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
936 @staticmethod
937 def _max_test_case_size():
938 # Play it safe, since this will be squared and the underlying
939 # field can have dimension 4 (quaternions) too.
940 return 2
941
942 def __init__(self, field, basis, normalize_basis=True, **kwargs):
943 """
944 Compared to the superclass constructor, we take a basis instead of
945 a multiplication table because the latter can be computed in terms
946 of the former when the product is known (like it is here).
947 """
948 # Used in this class's fast _charpoly_coefficients() override.
949 self._basis_normalizers = None
950
951 # We're going to loop through this a few times, so now's a good
952 # time to ensure that it isn't a generator expression.
953 basis = tuple(basis)
954
955 if len(basis) > 1 and normalize_basis:
956 # We'll need sqrt(2) to normalize the basis, and this
957 # winds up in the multiplication table, so the whole
958 # algebra needs to be over the field extension.
959 R = PolynomialRing(field, 'z')
960 z = R.gen()
961 p = z**2 - 2
962 if p.is_irreducible():
963 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
964 basis = tuple( s.change_ring(field) for s in basis )
965 self._basis_normalizers = tuple(
966 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
967 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
968
969 Qs = self.multiplication_table_from_matrix_basis(basis)
970
971 fdeja = super(MatrixEuclideanJordanAlgebra, self)
972 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
973 return
974
975
976 @cached_method
977 def _charpoly_coefficients(self):
978 r"""
979 Override the parent method with something that tries to compute
980 over a faster (non-extension) field.
981 """
982 if self._basis_normalizers is None:
983 # We didn't normalize, so assume that the basis we started
984 # with had entries in a nice field.
985 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
986 else:
987 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
988 self._basis_normalizers) )
989
990 # Do this over the rationals and convert back at the end.
991 # Only works because we know the entries of the basis are
992 # integers.
993 J = MatrixEuclideanJordanAlgebra(QQ,
994 basis,
995 normalize_basis=False)
996 return J._charpoly_coefficients()
997
998
999 @staticmethod
1000 def multiplication_table_from_matrix_basis(basis):
1001 """
1002 At least three of the five simple Euclidean Jordan algebras have the
1003 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1004 multiplication on the right is matrix multiplication. Given a basis
1005 for the underlying matrix space, this function returns a
1006 multiplication table (obtained by looping through the basis
1007 elements) for an algebra of those matrices.
1008 """
1009 # In S^2, for example, we nominally have four coordinates even
1010 # though the space is of dimension three only. The vector space V
1011 # is supposed to hold the entire long vector, and the subspace W
1012 # of V will be spanned by the vectors that arise from symmetric
1013 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1014 field = basis[0].base_ring()
1015 dimension = basis[0].nrows()
1016
1017 V = VectorSpace(field, dimension**2)
1018 W = V.span_of_basis( _mat2vec(s) for s in basis )
1019 n = len(basis)
1020 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1021 for i in range(n):
1022 for j in range(n):
1023 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1024 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1025
1026 return mult_table
1027
1028
1029 @staticmethod
1030 def real_embed(M):
1031 """
1032 Embed the matrix ``M`` into a space of real matrices.
1033
1034 The matrix ``M`` can have entries in any field at the moment:
1035 the real numbers, complex numbers, or quaternions. And although
1036 they are not a field, we can probably support octonions at some
1037 point, too. This function returns a real matrix that "acts like"
1038 the original with respect to matrix multiplication; i.e.
1039
1040 real_embed(M*N) = real_embed(M)*real_embed(N)
1041
1042 """
1043 raise NotImplementedError
1044
1045
1046 @staticmethod
1047 def real_unembed(M):
1048 """
1049 The inverse of :meth:`real_embed`.
1050 """
1051 raise NotImplementedError
1052
1053
1054 @classmethod
1055 def natural_inner_product(cls,X,Y):
1056 Xu = cls.real_unembed(X)
1057 Yu = cls.real_unembed(Y)
1058 tr = (Xu*Yu).trace()
1059
1060 if tr in RLF:
1061 # It's real already.
1062 return tr
1063
1064 # Otherwise, try the thing that works for complex numbers; and
1065 # if that doesn't work, the thing that works for quaternions.
1066 try:
1067 return tr.vector()[0] # real part, imag part is index 1
1068 except AttributeError:
1069 # A quaternions doesn't have a vector() method, but does
1070 # have coefficient_tuple() method that returns the
1071 # coefficients of 1, i, j, and k -- in that order.
1072 return tr.coefficient_tuple()[0]
1073
1074
1075 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1076 @staticmethod
1077 def real_embed(M):
1078 """
1079 The identity function, for embedding real matrices into real
1080 matrices.
1081 """
1082 return M
1083
1084 @staticmethod
1085 def real_unembed(M):
1086 """
1087 The identity function, for unembedding real matrices from real
1088 matrices.
1089 """
1090 return M
1091
1092
1093 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1094 """
1095 The rank-n simple EJA consisting of real symmetric n-by-n
1096 matrices, the usual symmetric Jordan product, and the trace inner
1097 product. It has dimension `(n^2 + n)/2` over the reals.
1098
1099 SETUP::
1100
1101 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1102
1103 EXAMPLES::
1104
1105 sage: J = RealSymmetricEJA(2)
1106 sage: e0, e1, e2 = J.gens()
1107 sage: e0*e0
1108 e0
1109 sage: e1*e1
1110 1/2*e0 + 1/2*e2
1111 sage: e2*e2
1112 e2
1113
1114 In theory, our "field" can be any subfield of the reals::
1115
1116 sage: RealSymmetricEJA(2, RDF)
1117 Euclidean Jordan algebra of dimension 3 over Real Double Field
1118 sage: RealSymmetricEJA(2, RR)
1119 Euclidean Jordan algebra of dimension 3 over Real Field with
1120 53 bits of precision
1121
1122 TESTS:
1123
1124 The dimension of this algebra is `(n^2 + n) / 2`::
1125
1126 sage: set_random_seed()
1127 sage: n_max = RealSymmetricEJA._max_test_case_size()
1128 sage: n = ZZ.random_element(1, n_max)
1129 sage: J = RealSymmetricEJA(n)
1130 sage: J.dimension() == (n^2 + n)/2
1131 True
1132
1133 The Jordan multiplication is what we think it is::
1134
1135 sage: set_random_seed()
1136 sage: J = RealSymmetricEJA.random_instance()
1137 sage: x,y = J.random_elements(2)
1138 sage: actual = (x*y).natural_representation()
1139 sage: X = x.natural_representation()
1140 sage: Y = y.natural_representation()
1141 sage: expected = (X*Y + Y*X)/2
1142 sage: actual == expected
1143 True
1144 sage: J(expected) == x*y
1145 True
1146
1147 We can change the generator prefix::
1148
1149 sage: RealSymmetricEJA(3, prefix='q').gens()
1150 (q0, q1, q2, q3, q4, q5)
1151
1152 Our natural basis is normalized with respect to the natural inner
1153 product unless we specify otherwise::
1154
1155 sage: set_random_seed()
1156 sage: J = RealSymmetricEJA.random_instance()
1157 sage: all( b.norm() == 1 for b in J.gens() )
1158 True
1159
1160 Since our natural basis is normalized with respect to the natural
1161 inner product, and since we know that this algebra is an EJA, any
1162 left-multiplication operator's matrix will be symmetric because
1163 natural->EJA basis representation is an isometry and within the EJA
1164 the operator is self-adjoint by the Jordan axiom::
1165
1166 sage: set_random_seed()
1167 sage: x = RealSymmetricEJA.random_instance().random_element()
1168 sage: x.operator().matrix().is_symmetric()
1169 True
1170
1171 """
1172 @classmethod
1173 def _denormalized_basis(cls, n, field):
1174 """
1175 Return a basis for the space of real symmetric n-by-n matrices.
1176
1177 SETUP::
1178
1179 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1180
1181 TESTS::
1182
1183 sage: set_random_seed()
1184 sage: n = ZZ.random_element(1,5)
1185 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1186 sage: all( M.is_symmetric() for M in B)
1187 True
1188
1189 """
1190 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1191 # coordinates.
1192 S = []
1193 for i in range(n):
1194 for j in range(i+1):
1195 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1196 if i == j:
1197 Sij = Eij
1198 else:
1199 Sij = Eij + Eij.transpose()
1200 S.append(Sij)
1201 return S
1202
1203
1204 @staticmethod
1205 def _max_test_case_size():
1206 return 4 # Dimension 10
1207
1208
1209 def __init__(self, n, field=AA, **kwargs):
1210 basis = self._denormalized_basis(n, field)
1211 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1212 self.rank.set_cache(n)
1213
1214
1215 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1216 @staticmethod
1217 def real_embed(M):
1218 """
1219 Embed the n-by-n complex matrix ``M`` into the space of real
1220 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1221 bi` to the block matrix ``[[a,b],[-b,a]]``.
1222
1223 SETUP::
1224
1225 sage: from mjo.eja.eja_algebra import \
1226 ....: ComplexMatrixEuclideanJordanAlgebra
1227
1228 EXAMPLES::
1229
1230 sage: F = QuadraticField(-1, 'I')
1231 sage: x1 = F(4 - 2*i)
1232 sage: x2 = F(1 + 2*i)
1233 sage: x3 = F(-i)
1234 sage: x4 = F(6)
1235 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1236 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1237 [ 4 -2| 1 2]
1238 [ 2 4|-2 1]
1239 [-----+-----]
1240 [ 0 -1| 6 0]
1241 [ 1 0| 0 6]
1242
1243 TESTS:
1244
1245 Embedding is a homomorphism (isomorphism, in fact)::
1246
1247 sage: set_random_seed()
1248 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1249 sage: n = ZZ.random_element(n_max)
1250 sage: F = QuadraticField(-1, 'I')
1251 sage: X = random_matrix(F, n)
1252 sage: Y = random_matrix(F, n)
1253 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1254 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1255 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1256 sage: Xe*Ye == XYe
1257 True
1258
1259 """
1260 n = M.nrows()
1261 if M.ncols() != n:
1262 raise ValueError("the matrix 'M' must be square")
1263
1264 # We don't need any adjoined elements...
1265 field = M.base_ring().base_ring()
1266
1267 blocks = []
1268 for z in M.list():
1269 a = z.list()[0] # real part, I guess
1270 b = z.list()[1] # imag part, I guess
1271 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1272
1273 return matrix.block(field, n, blocks)
1274
1275
1276 @staticmethod
1277 def real_unembed(M):
1278 """
1279 The inverse of _embed_complex_matrix().
1280
1281 SETUP::
1282
1283 sage: from mjo.eja.eja_algebra import \
1284 ....: ComplexMatrixEuclideanJordanAlgebra
1285
1286 EXAMPLES::
1287
1288 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1289 ....: [-2, 1, -4, 3],
1290 ....: [ 9, 10, 11, 12],
1291 ....: [-10, 9, -12, 11] ])
1292 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1293 [ 2*I + 1 4*I + 3]
1294 [ 10*I + 9 12*I + 11]
1295
1296 TESTS:
1297
1298 Unembedding is the inverse of embedding::
1299
1300 sage: set_random_seed()
1301 sage: F = QuadraticField(-1, 'I')
1302 sage: M = random_matrix(F, 3)
1303 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1304 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1305 True
1306
1307 """
1308 n = ZZ(M.nrows())
1309 if M.ncols() != n:
1310 raise ValueError("the matrix 'M' must be square")
1311 if not n.mod(2).is_zero():
1312 raise ValueError("the matrix 'M' must be a complex embedding")
1313
1314 # If "M" was normalized, its base ring might have roots
1315 # adjoined and they can stick around after unembedding.
1316 field = M.base_ring()
1317 R = PolynomialRing(field, 'z')
1318 z = R.gen()
1319 if field is AA:
1320 # Sage doesn't know how to embed AA into QQbar, i.e. how
1321 # to adjoin sqrt(-1) to AA.
1322 F = QQbar
1323 else:
1324 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1325 i = F.gen()
1326
1327 # Go top-left to bottom-right (reading order), converting every
1328 # 2-by-2 block we see to a single complex element.
1329 elements = []
1330 for k in range(n/2):
1331 for j in range(n/2):
1332 submat = M[2*k:2*k+2,2*j:2*j+2]
1333 if submat[0,0] != submat[1,1]:
1334 raise ValueError('bad on-diagonal submatrix')
1335 if submat[0,1] != -submat[1,0]:
1336 raise ValueError('bad off-diagonal submatrix')
1337 z = submat[0,0] + submat[0,1]*i
1338 elements.append(z)
1339
1340 return matrix(F, n/2, elements)
1341
1342
1343 @classmethod
1344 def natural_inner_product(cls,X,Y):
1345 """
1346 Compute a natural inner product in this algebra directly from
1347 its real embedding.
1348
1349 SETUP::
1350
1351 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1352
1353 TESTS:
1354
1355 This gives the same answer as the slow, default method implemented
1356 in :class:`MatrixEuclideanJordanAlgebra`::
1357
1358 sage: set_random_seed()
1359 sage: J = ComplexHermitianEJA.random_instance()
1360 sage: x,y = J.random_elements(2)
1361 sage: Xe = x.natural_representation()
1362 sage: Ye = y.natural_representation()
1363 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1364 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1365 sage: expected = (X*Y).trace().real()
1366 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1367 sage: actual == expected
1368 True
1369
1370 """
1371 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1372
1373
1374 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1375 """
1376 The rank-n simple EJA consisting of complex Hermitian n-by-n
1377 matrices over the real numbers, the usual symmetric Jordan product,
1378 and the real-part-of-trace inner product. It has dimension `n^2` over
1379 the reals.
1380
1381 SETUP::
1382
1383 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1384
1385 EXAMPLES:
1386
1387 In theory, our "field" can be any subfield of the reals::
1388
1389 sage: ComplexHermitianEJA(2, RDF)
1390 Euclidean Jordan algebra of dimension 4 over Real Double Field
1391 sage: ComplexHermitianEJA(2, RR)
1392 Euclidean Jordan algebra of dimension 4 over Real Field with
1393 53 bits of precision
1394
1395 TESTS:
1396
1397 The dimension of this algebra is `n^2`::
1398
1399 sage: set_random_seed()
1400 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1401 sage: n = ZZ.random_element(1, n_max)
1402 sage: J = ComplexHermitianEJA(n)
1403 sage: J.dimension() == n^2
1404 True
1405
1406 The Jordan multiplication is what we think it is::
1407
1408 sage: set_random_seed()
1409 sage: J = ComplexHermitianEJA.random_instance()
1410 sage: x,y = J.random_elements(2)
1411 sage: actual = (x*y).natural_representation()
1412 sage: X = x.natural_representation()
1413 sage: Y = y.natural_representation()
1414 sage: expected = (X*Y + Y*X)/2
1415 sage: actual == expected
1416 True
1417 sage: J(expected) == x*y
1418 True
1419
1420 We can change the generator prefix::
1421
1422 sage: ComplexHermitianEJA(2, prefix='z').gens()
1423 (z0, z1, z2, z3)
1424
1425 Our natural basis is normalized with respect to the natural inner
1426 product unless we specify otherwise::
1427
1428 sage: set_random_seed()
1429 sage: J = ComplexHermitianEJA.random_instance()
1430 sage: all( b.norm() == 1 for b in J.gens() )
1431 True
1432
1433 Since our natural basis is normalized with respect to the natural
1434 inner product, and since we know that this algebra is an EJA, any
1435 left-multiplication operator's matrix will be symmetric because
1436 natural->EJA basis representation is an isometry and within the EJA
1437 the operator is self-adjoint by the Jordan axiom::
1438
1439 sage: set_random_seed()
1440 sage: x = ComplexHermitianEJA.random_instance().random_element()
1441 sage: x.operator().matrix().is_symmetric()
1442 True
1443
1444 """
1445
1446 @classmethod
1447 def _denormalized_basis(cls, n, field):
1448 """
1449 Returns a basis for the space of complex Hermitian n-by-n matrices.
1450
1451 Why do we embed these? Basically, because all of numerical linear
1452 algebra assumes that you're working with vectors consisting of `n`
1453 entries from a field and scalars from the same field. There's no way
1454 to tell SageMath that (for example) the vectors contain complex
1455 numbers, while the scalar field is real.
1456
1457 SETUP::
1458
1459 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1460
1461 TESTS::
1462
1463 sage: set_random_seed()
1464 sage: n = ZZ.random_element(1,5)
1465 sage: field = QuadraticField(2, 'sqrt2')
1466 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1467 sage: all( M.is_symmetric() for M in B)
1468 True
1469
1470 """
1471 R = PolynomialRing(field, 'z')
1472 z = R.gen()
1473 F = field.extension(z**2 + 1, 'I')
1474 I = F.gen()
1475
1476 # This is like the symmetric case, but we need to be careful:
1477 #
1478 # * We want conjugate-symmetry, not just symmetry.
1479 # * The diagonal will (as a result) be real.
1480 #
1481 S = []
1482 for i in range(n):
1483 for j in range(i+1):
1484 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1485 if i == j:
1486 Sij = cls.real_embed(Eij)
1487 S.append(Sij)
1488 else:
1489 # The second one has a minus because it's conjugated.
1490 Sij_real = cls.real_embed(Eij + Eij.transpose())
1491 S.append(Sij_real)
1492 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1493 S.append(Sij_imag)
1494
1495 # Since we embedded these, we can drop back to the "field" that we
1496 # started with instead of the complex extension "F".
1497 return ( s.change_ring(field) for s in S )
1498
1499
1500 def __init__(self, n, field=AA, **kwargs):
1501 basis = self._denormalized_basis(n,field)
1502 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1503 self.rank.set_cache(n)
1504
1505
1506 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1507 @staticmethod
1508 def real_embed(M):
1509 """
1510 Embed the n-by-n quaternion matrix ``M`` into the space of real
1511 matrices of size 4n-by-4n by first sending each quaternion entry `z
1512 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1513 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1514 matrix.
1515
1516 SETUP::
1517
1518 sage: from mjo.eja.eja_algebra import \
1519 ....: QuaternionMatrixEuclideanJordanAlgebra
1520
1521 EXAMPLES::
1522
1523 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1524 sage: i,j,k = Q.gens()
1525 sage: x = 1 + 2*i + 3*j + 4*k
1526 sage: M = matrix(Q, 1, [[x]])
1527 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1528 [ 1 2 3 4]
1529 [-2 1 -4 3]
1530 [-3 4 1 -2]
1531 [-4 -3 2 1]
1532
1533 Embedding is a homomorphism (isomorphism, in fact)::
1534
1535 sage: set_random_seed()
1536 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1537 sage: n = ZZ.random_element(n_max)
1538 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1539 sage: X = random_matrix(Q, n)
1540 sage: Y = random_matrix(Q, n)
1541 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1542 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1543 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1544 sage: Xe*Ye == XYe
1545 True
1546
1547 """
1548 quaternions = M.base_ring()
1549 n = M.nrows()
1550 if M.ncols() != n:
1551 raise ValueError("the matrix 'M' must be square")
1552
1553 F = QuadraticField(-1, 'I')
1554 i = F.gen()
1555
1556 blocks = []
1557 for z in M.list():
1558 t = z.coefficient_tuple()
1559 a = t[0]
1560 b = t[1]
1561 c = t[2]
1562 d = t[3]
1563 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1564 [-c + d*i, a - b*i]])
1565 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1566 blocks.append(realM)
1567
1568 # We should have real entries by now, so use the realest field
1569 # we've got for the return value.
1570 return matrix.block(quaternions.base_ring(), n, blocks)
1571
1572
1573
1574 @staticmethod
1575 def real_unembed(M):
1576 """
1577 The inverse of _embed_quaternion_matrix().
1578
1579 SETUP::
1580
1581 sage: from mjo.eja.eja_algebra import \
1582 ....: QuaternionMatrixEuclideanJordanAlgebra
1583
1584 EXAMPLES::
1585
1586 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1587 ....: [-2, 1, -4, 3],
1588 ....: [-3, 4, 1, -2],
1589 ....: [-4, -3, 2, 1]])
1590 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1591 [1 + 2*i + 3*j + 4*k]
1592
1593 TESTS:
1594
1595 Unembedding is the inverse of embedding::
1596
1597 sage: set_random_seed()
1598 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1599 sage: M = random_matrix(Q, 3)
1600 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1601 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1602 True
1603
1604 """
1605 n = ZZ(M.nrows())
1606 if M.ncols() != n:
1607 raise ValueError("the matrix 'M' must be square")
1608 if not n.mod(4).is_zero():
1609 raise ValueError("the matrix 'M' must be a quaternion embedding")
1610
1611 # Use the base ring of the matrix to ensure that its entries can be
1612 # multiplied by elements of the quaternion algebra.
1613 field = M.base_ring()
1614 Q = QuaternionAlgebra(field,-1,-1)
1615 i,j,k = Q.gens()
1616
1617 # Go top-left to bottom-right (reading order), converting every
1618 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1619 # quaternion block.
1620 elements = []
1621 for l in range(n/4):
1622 for m in range(n/4):
1623 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1624 M[4*l:4*l+4,4*m:4*m+4] )
1625 if submat[0,0] != submat[1,1].conjugate():
1626 raise ValueError('bad on-diagonal submatrix')
1627 if submat[0,1] != -submat[1,0].conjugate():
1628 raise ValueError('bad off-diagonal submatrix')
1629 z = submat[0,0].real()
1630 z += submat[0,0].imag()*i
1631 z += submat[0,1].real()*j
1632 z += submat[0,1].imag()*k
1633 elements.append(z)
1634
1635 return matrix(Q, n/4, elements)
1636
1637
1638 @classmethod
1639 def natural_inner_product(cls,X,Y):
1640 """
1641 Compute a natural inner product in this algebra directly from
1642 its real embedding.
1643
1644 SETUP::
1645
1646 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1647
1648 TESTS:
1649
1650 This gives the same answer as the slow, default method implemented
1651 in :class:`MatrixEuclideanJordanAlgebra`::
1652
1653 sage: set_random_seed()
1654 sage: J = QuaternionHermitianEJA.random_instance()
1655 sage: x,y = J.random_elements(2)
1656 sage: Xe = x.natural_representation()
1657 sage: Ye = y.natural_representation()
1658 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1659 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1660 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1661 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1662 sage: actual == expected
1663 True
1664
1665 """
1666 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1667
1668
1669 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1670 """
1671 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1672 matrices, the usual symmetric Jordan product, and the
1673 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1674 the reals.
1675
1676 SETUP::
1677
1678 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1679
1680 EXAMPLES:
1681
1682 In theory, our "field" can be any subfield of the reals::
1683
1684 sage: QuaternionHermitianEJA(2, RDF)
1685 Euclidean Jordan algebra of dimension 6 over Real Double Field
1686 sage: QuaternionHermitianEJA(2, RR)
1687 Euclidean Jordan algebra of dimension 6 over Real Field with
1688 53 bits of precision
1689
1690 TESTS:
1691
1692 The dimension of this algebra is `2*n^2 - n`::
1693
1694 sage: set_random_seed()
1695 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1696 sage: n = ZZ.random_element(1, n_max)
1697 sage: J = QuaternionHermitianEJA(n)
1698 sage: J.dimension() == 2*(n^2) - n
1699 True
1700
1701 The Jordan multiplication is what we think it is::
1702
1703 sage: set_random_seed()
1704 sage: J = QuaternionHermitianEJA.random_instance()
1705 sage: x,y = J.random_elements(2)
1706 sage: actual = (x*y).natural_representation()
1707 sage: X = x.natural_representation()
1708 sage: Y = y.natural_representation()
1709 sage: expected = (X*Y + Y*X)/2
1710 sage: actual == expected
1711 True
1712 sage: J(expected) == x*y
1713 True
1714
1715 We can change the generator prefix::
1716
1717 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1718 (a0, a1, a2, a3, a4, a5)
1719
1720 Our natural basis is normalized with respect to the natural inner
1721 product unless we specify otherwise::
1722
1723 sage: set_random_seed()
1724 sage: J = QuaternionHermitianEJA.random_instance()
1725 sage: all( b.norm() == 1 for b in J.gens() )
1726 True
1727
1728 Since our natural basis is normalized with respect to the natural
1729 inner product, and since we know that this algebra is an EJA, any
1730 left-multiplication operator's matrix will be symmetric because
1731 natural->EJA basis representation is an isometry and within the EJA
1732 the operator is self-adjoint by the Jordan axiom::
1733
1734 sage: set_random_seed()
1735 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1736 sage: x.operator().matrix().is_symmetric()
1737 True
1738
1739 """
1740 @classmethod
1741 def _denormalized_basis(cls, n, field):
1742 """
1743 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1744
1745 Why do we embed these? Basically, because all of numerical
1746 linear algebra assumes that you're working with vectors consisting
1747 of `n` entries from a field and scalars from the same field. There's
1748 no way to tell SageMath that (for example) the vectors contain
1749 complex numbers, while the scalar field is real.
1750
1751 SETUP::
1752
1753 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1754
1755 TESTS::
1756
1757 sage: set_random_seed()
1758 sage: n = ZZ.random_element(1,5)
1759 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1760 sage: all( M.is_symmetric() for M in B )
1761 True
1762
1763 """
1764 Q = QuaternionAlgebra(QQ,-1,-1)
1765 I,J,K = Q.gens()
1766
1767 # This is like the symmetric case, but we need to be careful:
1768 #
1769 # * We want conjugate-symmetry, not just symmetry.
1770 # * The diagonal will (as a result) be real.
1771 #
1772 S = []
1773 for i in range(n):
1774 for j in range(i+1):
1775 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1776 if i == j:
1777 Sij = cls.real_embed(Eij)
1778 S.append(Sij)
1779 else:
1780 # The second, third, and fourth ones have a minus
1781 # because they're conjugated.
1782 Sij_real = cls.real_embed(Eij + Eij.transpose())
1783 S.append(Sij_real)
1784 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1785 S.append(Sij_I)
1786 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1787 S.append(Sij_J)
1788 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1789 S.append(Sij_K)
1790
1791 # Since we embedded these, we can drop back to the "field" that we
1792 # started with instead of the quaternion algebra "Q".
1793 return ( s.change_ring(field) for s in S )
1794
1795
1796 def __init__(self, n, field=AA, **kwargs):
1797 basis = self._denormalized_basis(n,field)
1798 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1799 self.rank.set_cache(n)
1800
1801
1802 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1803 r"""
1804 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1805 with the half-trace inner product and jordan product ``x*y =
1806 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1807 symmetric positive-definite "bilinear form" matrix. It has
1808 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1809 when ``B`` is the identity matrix of order ``n-1``.
1810
1811 SETUP::
1812
1813 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1814 ....: JordanSpinEJA)
1815
1816 EXAMPLES:
1817
1818 When no bilinear form is specified, the identity matrix is used,
1819 and the resulting algebra is the Jordan spin algebra::
1820
1821 sage: J0 = BilinearFormEJA(3)
1822 sage: J1 = JordanSpinEJA(3)
1823 sage: J0.multiplication_table() == J0.multiplication_table()
1824 True
1825
1826 TESTS:
1827
1828 We can create a zero-dimensional algebra::
1829
1830 sage: J = BilinearFormEJA(0)
1831 sage: J.basis()
1832 Finite family {}
1833
1834 We can check the multiplication condition given in the Jordan, von
1835 Neumann, and Wigner paper (and also discussed on my "On the
1836 symmetry..." paper). Note that this relies heavily on the standard
1837 choice of basis, as does anything utilizing the bilinear form matrix::
1838
1839 sage: set_random_seed()
1840 sage: n = ZZ.random_element(5)
1841 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1842 sage: B = M.transpose()*M
1843 sage: J = BilinearFormEJA(n, B=B)
1844 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
1845 sage: V = J.vector_space()
1846 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
1847 ....: for ei in eis ]
1848 sage: actual = [ sis[i]*sis[j]
1849 ....: for i in range(n-1)
1850 ....: for j in range(n-1) ]
1851 sage: expected = [ J.one() if i == j else J.zero()
1852 ....: for i in range(n-1)
1853 ....: for j in range(n-1) ]
1854 sage: actual == expected
1855 True
1856 """
1857 def __init__(self, n, field=AA, B=None, **kwargs):
1858 if B is None:
1859 self._B = matrix.identity(field, max(0,n-1))
1860 else:
1861 self._B = B
1862
1863 V = VectorSpace(field, n)
1864 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1865 for i in range(n):
1866 for j in range(n):
1867 x = V.gen(i)
1868 y = V.gen(j)
1869 x0 = x[0]
1870 xbar = x[1:]
1871 y0 = y[0]
1872 ybar = y[1:]
1873 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
1874 zbar = y0*xbar + x0*ybar
1875 z = V([z0] + zbar.list())
1876 mult_table[i][j] = z
1877
1878 # The rank of this algebra is two, unless we're in a
1879 # one-dimensional ambient space (because the rank is bounded
1880 # by the ambient dimension).
1881 fdeja = super(BilinearFormEJA, self)
1882 fdeja.__init__(field, mult_table, **kwargs)
1883 self.rank.set_cache(min(n,2))
1884
1885 def inner_product(self, x, y):
1886 r"""
1887 Half of the trace inner product.
1888
1889 This is defined so that the special case of the Jordan spin
1890 algebra gets the usual inner product.
1891
1892 SETUP::
1893
1894 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1895
1896 TESTS:
1897
1898 Ensure that this is one-half of the trace inner-product when
1899 the algebra isn't just the reals (when ``n`` isn't one). This
1900 is in Faraut and Koranyi, and also my "On the symmetry..."
1901 paper::
1902
1903 sage: set_random_seed()
1904 sage: n = ZZ.random_element(2,5)
1905 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1906 sage: B = M.transpose()*M
1907 sage: J = BilinearFormEJA(n, B=B)
1908 sage: x = J.random_element()
1909 sage: y = J.random_element()
1910 sage: x.inner_product(y) == (x*y).trace()/2
1911 True
1912
1913 """
1914 xvec = x.to_vector()
1915 xbar = xvec[1:]
1916 yvec = y.to_vector()
1917 ybar = yvec[1:]
1918 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
1919
1920
1921 class JordanSpinEJA(BilinearFormEJA):
1922 """
1923 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1924 with the usual inner product and jordan product ``x*y =
1925 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1926 the reals.
1927
1928 SETUP::
1929
1930 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1931
1932 EXAMPLES:
1933
1934 This multiplication table can be verified by hand::
1935
1936 sage: J = JordanSpinEJA(4)
1937 sage: e0,e1,e2,e3 = J.gens()
1938 sage: e0*e0
1939 e0
1940 sage: e0*e1
1941 e1
1942 sage: e0*e2
1943 e2
1944 sage: e0*e3
1945 e3
1946 sage: e1*e2
1947 0
1948 sage: e1*e3
1949 0
1950 sage: e2*e3
1951 0
1952
1953 We can change the generator prefix::
1954
1955 sage: JordanSpinEJA(2, prefix='B').gens()
1956 (B0, B1)
1957
1958 TESTS:
1959
1960 Ensure that we have the usual inner product on `R^n`::
1961
1962 sage: set_random_seed()
1963 sage: J = JordanSpinEJA.random_instance()
1964 sage: x,y = J.random_elements(2)
1965 sage: X = x.natural_representation()
1966 sage: Y = y.natural_representation()
1967 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1968 True
1969
1970 """
1971 def __init__(self, n, field=AA, **kwargs):
1972 # This is a special case of the BilinearFormEJA with the identity
1973 # matrix as its bilinear form.
1974 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
1975
1976
1977 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
1978 """
1979 The trivial Euclidean Jordan algebra consisting of only a zero element.
1980
1981 SETUP::
1982
1983 sage: from mjo.eja.eja_algebra import TrivialEJA
1984
1985 EXAMPLES::
1986
1987 sage: J = TrivialEJA()
1988 sage: J.dimension()
1989 0
1990 sage: J.zero()
1991 0
1992 sage: J.one()
1993 0
1994 sage: 7*J.one()*12*J.one()
1995 0
1996 sage: J.one().inner_product(J.one())
1997 0
1998 sage: J.one().norm()
1999 0
2000 sage: J.one().subalgebra_generated_by()
2001 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2002 sage: J.rank()
2003 0
2004
2005 """
2006 def __init__(self, field=AA, **kwargs):
2007 mult_table = []
2008 fdeja = super(TrivialEJA, self)
2009 # The rank is zero using my definition, namely the dimension of the
2010 # largest subalgebra generated by any element.
2011 fdeja.__init__(field, mult_table, **kwargs)
2012 self.rank.set_cache(0)