]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: fix representation of "zero" in MatrixAlgebra.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide two other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. The Albert EJA is simply a special
47 case of the :class:`OctonionHermitianEJA` where the matrices are
48 three-by-three and the resulting space has dimension 27. And
49 last/least, the trivial EJA is exactly what you think it is; it could
50 also be obtained by constructing a dimension-zero instance of any of
51 the other algebras. Cartesian products of these are also supported
52 using the usual ``cartesian_product()`` function; as a result, we
53 support (up to isomorphism) all Euclidean Jordan algebras.
54
55 SETUP::
56
57 sage: from mjo.eja.eja_algebra import random_eja
58
59 EXAMPLES::
60
61 sage: random_eja()
62 Euclidean Jordan algebra of dimension...
63 """
64
65 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
66 from sage.categories.magmatic_algebras import MagmaticAlgebras
67 from sage.categories.sets_cat import cartesian_product
68 from sage.combinat.free_module import CombinatorialFreeModule
69 from sage.matrix.constructor import matrix
70 from sage.matrix.matrix_space import MatrixSpace
71 from sage.misc.cachefunc import cached_method
72 from sage.misc.table import table
73 from sage.modules.free_module import FreeModule, VectorSpace
74 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
75 PolynomialRing,
76 QuadraticField)
77 from mjo.eja.eja_element import FiniteDimensionalEJAElement
78 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
79 from mjo.eja.eja_utils import _all2list, _mat2vec
80
81 class FiniteDimensionalEJA(CombinatorialFreeModule):
82 r"""
83 A finite-dimensional Euclidean Jordan algebra.
84
85 INPUT:
86
87 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
88 form," which must be the same form as the arguments to
89 ``jordan_product`` and ``inner_product``. In reality, "matrix
90 form" can be either vectors, matrices, or a Cartesian product
91 (ordered tuple) of vectors or matrices. All of these would
92 ideally be vector spaces in sage with no special-casing
93 needed; but in reality we turn vectors into column-matrices
94 and Cartesian products `(a,b)` into column matrices
95 `(a,b)^{T}` after converting `a` and `b` themselves.
96
97 - ``jordan_product`` -- a function; afunction of two ``basis``
98 elements (in matrix form) that returns their jordan product,
99 also in matrix form; this will be applied to ``basis`` to
100 compute a multiplication table for the algebra.
101
102 - ``inner_product`` -- a function; a function of two ``basis``
103 elements (in matrix form) that returns their inner
104 product. This will be applied to ``basis`` to compute an
105 inner-product table (basically a matrix) for this algebra.
106
107 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
108 field for the algebra.
109
110 - ``orthonormalize`` -- boolean (default: ``True``); whether or
111 not to orthonormalize the basis. Doing so is expensive and
112 generally rules out using the rationals as your ``field``, but
113 is required for spectral decompositions.
114
115 SETUP::
116
117 sage: from mjo.eja.eja_algebra import random_eja
118
119 TESTS:
120
121 We should compute that an element subalgebra is associative even
122 if we circumvent the element method::
123
124 sage: set_random_seed()
125 sage: J = random_eja(field=QQ,orthonormalize=False)
126 sage: x = J.random_element()
127 sage: A = x.subalgebra_generated_by(orthonormalize=False)
128 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
129 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
130 True
131
132 """
133 Element = FiniteDimensionalEJAElement
134
135 def __init__(self,
136 basis,
137 jordan_product,
138 inner_product,
139 field=AA,
140 orthonormalize=True,
141 associative=None,
142 cartesian_product=False,
143 check_field=True,
144 check_axioms=True,
145 prefix="b"):
146
147 n = len(basis)
148
149 if check_field:
150 if not field.is_subring(RR):
151 # Note: this does return true for the real algebraic
152 # field, the rationals, and any quadratic field where
153 # we've specified a real embedding.
154 raise ValueError("scalar field is not real")
155
156 if check_axioms:
157 # Check commutativity of the Jordan and inner-products.
158 # This has to be done before we build the multiplication
159 # and inner-product tables/matrices, because we take
160 # advantage of symmetry in the process.
161 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
162 for bi in basis
163 for bj in basis ):
164 raise ValueError("Jordan product is not commutative")
165
166 if not all( inner_product(bi,bj) == inner_product(bj,bi)
167 for bi in basis
168 for bj in basis ):
169 raise ValueError("inner-product is not commutative")
170
171
172 category = MagmaticAlgebras(field).FiniteDimensional()
173 category = category.WithBasis().Unital().Commutative()
174
175 if n <= 1:
176 # All zero- and one-dimensional algebras are just the real
177 # numbers with (some positive multiples of) the usual
178 # multiplication as its Jordan and inner-product.
179 associative = True
180 if associative is None:
181 # We should figure it out. As with check_axioms, we have to do
182 # this without the help of the _jordan_product_is_associative()
183 # method because we need to know the category before we
184 # initialize the algebra.
185 associative = all( jordan_product(jordan_product(bi,bj),bk)
186 ==
187 jordan_product(bi,jordan_product(bj,bk))
188 for bi in basis
189 for bj in basis
190 for bk in basis)
191
192 if associative:
193 # Element subalgebras can take advantage of this.
194 category = category.Associative()
195 if cartesian_product:
196 # Use join() here because otherwise we only get the
197 # "Cartesian product of..." and not the things themselves.
198 category = category.join([category,
199 category.CartesianProducts()])
200
201 # Call the superclass constructor so that we can use its from_vector()
202 # method to build our multiplication table.
203 CombinatorialFreeModule.__init__(self,
204 field,
205 range(n),
206 prefix=prefix,
207 category=category,
208 bracket=False)
209
210 # Now comes all of the hard work. We'll be constructing an
211 # ambient vector space V that our (vectorized) basis lives in,
212 # as well as a subspace W of V spanned by those (vectorized)
213 # basis elements. The W-coordinates are the coefficients that
214 # we see in things like x = 1*b1 + 2*b2.
215 vector_basis = basis
216
217 degree = 0
218 if n > 0:
219 degree = len(_all2list(basis[0]))
220
221 # Build an ambient space that fits our matrix basis when
222 # written out as "long vectors."
223 V = VectorSpace(field, degree)
224
225 # The matrix that will hole the orthonormal -> unorthonormal
226 # coordinate transformation.
227 self._deortho_matrix = None
228
229 if orthonormalize:
230 # Save a copy of the un-orthonormalized basis for later.
231 # Convert it to ambient V (vector) coordinates while we're
232 # at it, because we'd have to do it later anyway.
233 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
234
235 from mjo.eja.eja_utils import gram_schmidt
236 basis = tuple(gram_schmidt(basis, inner_product))
237
238 # Save the (possibly orthonormalized) matrix basis for
239 # later...
240 self._matrix_basis = basis
241
242 # Now create the vector space for the algebra, which will have
243 # its own set of non-ambient coordinates (in terms of the
244 # supplied basis).
245 vector_basis = tuple( V(_all2list(b)) for b in basis )
246 W = V.span_of_basis( vector_basis, check=check_axioms)
247
248 if orthonormalize:
249 # Now "W" is the vector space of our algebra coordinates. The
250 # variables "X1", "X2",... refer to the entries of vectors in
251 # W. Thus to convert back and forth between the orthonormal
252 # coordinates and the given ones, we need to stick the original
253 # basis in W.
254 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
255 self._deortho_matrix = matrix( U.coordinate_vector(q)
256 for q in vector_basis )
257
258
259 # Now we actually compute the multiplication and inner-product
260 # tables/matrices using the possibly-orthonormalized basis.
261 self._inner_product_matrix = matrix.identity(field, n)
262 self._multiplication_table = [ [0 for j in range(i+1)]
263 for i in range(n) ]
264
265 # Note: the Jordan and inner-products are defined in terms
266 # of the ambient basis. It's important that their arguments
267 # are in ambient coordinates as well.
268 for i in range(n):
269 for j in range(i+1):
270 # ortho basis w.r.t. ambient coords
271 q_i = basis[i]
272 q_j = basis[j]
273
274 # The jordan product returns a matrixy answer, so we
275 # have to convert it to the algebra coordinates.
276 elt = jordan_product(q_i, q_j)
277 elt = W.coordinate_vector(V(_all2list(elt)))
278 self._multiplication_table[i][j] = self.from_vector(elt)
279
280 if not orthonormalize:
281 # If we're orthonormalizing the basis with respect
282 # to an inner-product, then the inner-product
283 # matrix with respect to the resulting basis is
284 # just going to be the identity.
285 ip = inner_product(q_i, q_j)
286 self._inner_product_matrix[i,j] = ip
287 self._inner_product_matrix[j,i] = ip
288
289 self._inner_product_matrix._cache = {'hermitian': True}
290 self._inner_product_matrix.set_immutable()
291
292 if check_axioms:
293 if not self._is_jordanian():
294 raise ValueError("Jordan identity does not hold")
295 if not self._inner_product_is_associative():
296 raise ValueError("inner product is not associative")
297
298
299 def _coerce_map_from_base_ring(self):
300 """
301 Disable the map from the base ring into the algebra.
302
303 Performing a nonsense conversion like this automatically
304 is counterpedagogical. The fallback is to try the usual
305 element constructor, which should also fail.
306
307 SETUP::
308
309 sage: from mjo.eja.eja_algebra import random_eja
310
311 TESTS::
312
313 sage: set_random_seed()
314 sage: J = random_eja()
315 sage: J(1)
316 Traceback (most recent call last):
317 ...
318 ValueError: not an element of this algebra
319
320 """
321 return None
322
323
324 def product_on_basis(self, i, j):
325 r"""
326 Returns the Jordan product of the `i` and `j`th basis elements.
327
328 This completely defines the Jordan product on the algebra, and
329 is used direclty by our superclass machinery to implement
330 :meth:`product`.
331
332 SETUP::
333
334 sage: from mjo.eja.eja_algebra import random_eja
335
336 TESTS::
337
338 sage: set_random_seed()
339 sage: J = random_eja()
340 sage: n = J.dimension()
341 sage: bi = J.zero()
342 sage: bj = J.zero()
343 sage: bi_bj = J.zero()*J.zero()
344 sage: if n > 0:
345 ....: i = ZZ.random_element(n)
346 ....: j = ZZ.random_element(n)
347 ....: bi = J.monomial(i)
348 ....: bj = J.monomial(j)
349 ....: bi_bj = J.product_on_basis(i,j)
350 sage: bi*bj == bi_bj
351 True
352
353 """
354 # We only stored the lower-triangular portion of the
355 # multiplication table.
356 if j <= i:
357 return self._multiplication_table[i][j]
358 else:
359 return self._multiplication_table[j][i]
360
361 def inner_product(self, x, y):
362 """
363 The inner product associated with this Euclidean Jordan algebra.
364
365 Defaults to the trace inner product, but can be overridden by
366 subclasses if they are sure that the necessary properties are
367 satisfied.
368
369 SETUP::
370
371 sage: from mjo.eja.eja_algebra import (random_eja,
372 ....: HadamardEJA,
373 ....: BilinearFormEJA)
374
375 EXAMPLES:
376
377 Our inner product is "associative," which means the following for
378 a symmetric bilinear form::
379
380 sage: set_random_seed()
381 sage: J = random_eja()
382 sage: x,y,z = J.random_elements(3)
383 sage: (x*y).inner_product(z) == y.inner_product(x*z)
384 True
385
386 TESTS:
387
388 Ensure that this is the usual inner product for the algebras
389 over `R^n`::
390
391 sage: set_random_seed()
392 sage: J = HadamardEJA.random_instance()
393 sage: x,y = J.random_elements(2)
394 sage: actual = x.inner_product(y)
395 sage: expected = x.to_vector().inner_product(y.to_vector())
396 sage: actual == expected
397 True
398
399 Ensure that this is one-half of the trace inner-product in a
400 BilinearFormEJA that isn't just the reals (when ``n`` isn't
401 one). This is in Faraut and Koranyi, and also my "On the
402 symmetry..." paper::
403
404 sage: set_random_seed()
405 sage: J = BilinearFormEJA.random_instance()
406 sage: n = J.dimension()
407 sage: x = J.random_element()
408 sage: y = J.random_element()
409 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
410 True
411
412 """
413 B = self._inner_product_matrix
414 return (B*x.to_vector()).inner_product(y.to_vector())
415
416
417 def is_associative(self):
418 r"""
419 Return whether or not this algebra's Jordan product is associative.
420
421 SETUP::
422
423 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
424
425 EXAMPLES::
426
427 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
428 sage: J.is_associative()
429 False
430 sage: x = sum(J.gens())
431 sage: A = x.subalgebra_generated_by(orthonormalize=False)
432 sage: A.is_associative()
433 True
434
435 """
436 return "Associative" in self.category().axioms()
437
438 def _is_commutative(self):
439 r"""
440 Whether or not this algebra's multiplication table is commutative.
441
442 This method should of course always return ``True``, unless
443 this algebra was constructed with ``check_axioms=False`` and
444 passed an invalid multiplication table.
445 """
446 return all( x*y == y*x for x in self.gens() for y in self.gens() )
447
448 def _is_jordanian(self):
449 r"""
450 Whether or not this algebra's multiplication table respects the
451 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
452
453 We only check one arrangement of `x` and `y`, so for a
454 ``True`` result to be truly true, you should also check
455 :meth:`_is_commutative`. This method should of course always
456 return ``True``, unless this algebra was constructed with
457 ``check_axioms=False`` and passed an invalid multiplication table.
458 """
459 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
460 ==
461 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
462 for i in range(self.dimension())
463 for j in range(self.dimension()) )
464
465 def _jordan_product_is_associative(self):
466 r"""
467 Return whether or not this algebra's Jordan product is
468 associative; that is, whether or not `x*(y*z) = (x*y)*z`
469 for all `x,y,x`.
470
471 This method should agree with :meth:`is_associative` unless
472 you lied about the value of the ``associative`` parameter
473 when you constructed the algebra.
474
475 SETUP::
476
477 sage: from mjo.eja.eja_algebra import (random_eja,
478 ....: RealSymmetricEJA,
479 ....: ComplexHermitianEJA,
480 ....: QuaternionHermitianEJA)
481
482 EXAMPLES::
483
484 sage: J = RealSymmetricEJA(4, orthonormalize=False)
485 sage: J._jordan_product_is_associative()
486 False
487 sage: x = sum(J.gens())
488 sage: A = x.subalgebra_generated_by()
489 sage: A._jordan_product_is_associative()
490 True
491
492 ::
493
494 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
495 sage: J._jordan_product_is_associative()
496 False
497 sage: x = sum(J.gens())
498 sage: A = x.subalgebra_generated_by(orthonormalize=False)
499 sage: A._jordan_product_is_associative()
500 True
501
502 ::
503
504 sage: J = QuaternionHermitianEJA(2)
505 sage: J._jordan_product_is_associative()
506 False
507 sage: x = sum(J.gens())
508 sage: A = x.subalgebra_generated_by()
509 sage: A._jordan_product_is_associative()
510 True
511
512 TESTS:
513
514 The values we've presupplied to the constructors agree with
515 the computation::
516
517 sage: set_random_seed()
518 sage: J = random_eja()
519 sage: J.is_associative() == J._jordan_product_is_associative()
520 True
521
522 """
523 R = self.base_ring()
524
525 # Used to check whether or not something is zero.
526 epsilon = R.zero()
527 if not R.is_exact():
528 # I don't know of any examples that make this magnitude
529 # necessary because I don't know how to make an
530 # associative algebra when the element subalgebra
531 # construction is unreliable (as it is over RDF; we can't
532 # find the degree of an element because we can't compute
533 # the rank of a matrix). But even multiplication of floats
534 # is non-associative, so *some* epsilon is needed... let's
535 # just take the one from _inner_product_is_associative?
536 epsilon = 1e-15
537
538 for i in range(self.dimension()):
539 for j in range(self.dimension()):
540 for k in range(self.dimension()):
541 x = self.monomial(i)
542 y = self.monomial(j)
543 z = self.monomial(k)
544 diff = (x*y)*z - x*(y*z)
545
546 if diff.norm() > epsilon:
547 return False
548
549 return True
550
551 def _inner_product_is_associative(self):
552 r"""
553 Return whether or not this algebra's inner product `B` is
554 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
555
556 This method should of course always return ``True``, unless
557 this algebra was constructed with ``check_axioms=False`` and
558 passed an invalid Jordan or inner-product.
559 """
560 R = self.base_ring()
561
562 # Used to check whether or not something is zero.
563 epsilon = R.zero()
564 if not R.is_exact():
565 # This choice is sufficient to allow the construction of
566 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
567 epsilon = 1e-15
568
569 for i in range(self.dimension()):
570 for j in range(self.dimension()):
571 for k in range(self.dimension()):
572 x = self.monomial(i)
573 y = self.monomial(j)
574 z = self.monomial(k)
575 diff = (x*y).inner_product(z) - x.inner_product(y*z)
576
577 if diff.abs() > epsilon:
578 return False
579
580 return True
581
582 def _element_constructor_(self, elt):
583 """
584 Construct an element of this algebra from its vector or matrix
585 representation.
586
587 This gets called only after the parent element _call_ method
588 fails to find a coercion for the argument.
589
590 SETUP::
591
592 sage: from mjo.eja.eja_algebra import (random_eja,
593 ....: JordanSpinEJA,
594 ....: HadamardEJA,
595 ....: RealSymmetricEJA)
596
597 EXAMPLES:
598
599 The identity in `S^n` is converted to the identity in the EJA::
600
601 sage: J = RealSymmetricEJA(3)
602 sage: I = matrix.identity(QQ,3)
603 sage: J(I) == J.one()
604 True
605
606 This skew-symmetric matrix can't be represented in the EJA::
607
608 sage: J = RealSymmetricEJA(3)
609 sage: A = matrix(QQ,3, lambda i,j: i-j)
610 sage: J(A)
611 Traceback (most recent call last):
612 ...
613 ValueError: not an element of this algebra
614
615 Tuples work as well, provided that the matrix basis for the
616 algebra consists of them::
617
618 sage: J1 = HadamardEJA(3)
619 sage: J2 = RealSymmetricEJA(2)
620 sage: J = cartesian_product([J1,J2])
621 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
622 b1 + b5
623
624 TESTS:
625
626 Ensure that we can convert any element back and forth
627 faithfully between its matrix and algebra representations::
628
629 sage: set_random_seed()
630 sage: J = random_eja()
631 sage: x = J.random_element()
632 sage: J(x.to_matrix()) == x
633 True
634
635 We cannot coerce elements between algebras just because their
636 matrix representations are compatible::
637
638 sage: J1 = HadamardEJA(3)
639 sage: J2 = JordanSpinEJA(3)
640 sage: J2(J1.one())
641 Traceback (most recent call last):
642 ...
643 ValueError: not an element of this algebra
644 sage: J1(J2.zero())
645 Traceback (most recent call last):
646 ...
647 ValueError: not an element of this algebra
648 """
649 msg = "not an element of this algebra"
650 if elt in self.base_ring():
651 # Ensure that no base ring -> algebra coercion is performed
652 # by this method. There's some stupidity in sage that would
653 # otherwise propagate to this method; for example, sage thinks
654 # that the integer 3 belongs to the space of 2-by-2 matrices.
655 raise ValueError(msg)
656
657 try:
658 # Try to convert a vector into a column-matrix...
659 elt = elt.column()
660 except (AttributeError, TypeError):
661 # and ignore failure, because we weren't really expecting
662 # a vector as an argument anyway.
663 pass
664
665 if elt not in self.matrix_space():
666 raise ValueError(msg)
667
668 # Thanks for nothing! Matrix spaces aren't vector spaces in
669 # Sage, so we have to figure out its matrix-basis coordinates
670 # ourselves. We use the basis space's ring instead of the
671 # element's ring because the basis space might be an algebraic
672 # closure whereas the base ring of the 3-by-3 identity matrix
673 # could be QQ instead of QQbar.
674 #
675 # And, we also have to handle Cartesian product bases (when
676 # the matrix basis consists of tuples) here. The "good news"
677 # is that we're already converting everything to long vectors,
678 # and that strategy works for tuples as well.
679 #
680 # We pass check=False because the matrix basis is "guaranteed"
681 # to be linearly independent... right? Ha ha.
682 elt = _all2list(elt)
683 V = VectorSpace(self.base_ring(), len(elt))
684 W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
685 check=False)
686
687 try:
688 coords = W.coordinate_vector(V(elt))
689 except ArithmeticError: # vector is not in free module
690 raise ValueError(msg)
691
692 return self.from_vector(coords)
693
694 def _repr_(self):
695 """
696 Return a string representation of ``self``.
697
698 SETUP::
699
700 sage: from mjo.eja.eja_algebra import JordanSpinEJA
701
702 TESTS:
703
704 Ensure that it says what we think it says::
705
706 sage: JordanSpinEJA(2, field=AA)
707 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
708 sage: JordanSpinEJA(3, field=RDF)
709 Euclidean Jordan algebra of dimension 3 over Real Double Field
710
711 """
712 fmt = "Euclidean Jordan algebra of dimension {} over {}"
713 return fmt.format(self.dimension(), self.base_ring())
714
715
716 @cached_method
717 def characteristic_polynomial_of(self):
718 """
719 Return the algebra's "characteristic polynomial of" function,
720 which is itself a multivariate polynomial that, when evaluated
721 at the coordinates of some algebra element, returns that
722 element's characteristic polynomial.
723
724 The resulting polynomial has `n+1` variables, where `n` is the
725 dimension of this algebra. The first `n` variables correspond to
726 the coordinates of an algebra element: when evaluated at the
727 coordinates of an algebra element with respect to a certain
728 basis, the result is a univariate polynomial (in the one
729 remaining variable ``t``), namely the characteristic polynomial
730 of that element.
731
732 SETUP::
733
734 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
735
736 EXAMPLES:
737
738 The characteristic polynomial in the spin algebra is given in
739 Alizadeh, Example 11.11::
740
741 sage: J = JordanSpinEJA(3)
742 sage: p = J.characteristic_polynomial_of(); p
743 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
744 sage: xvec = J.one().to_vector()
745 sage: p(*xvec)
746 t^2 - 2*t + 1
747
748 By definition, the characteristic polynomial is a monic
749 degree-zero polynomial in a rank-zero algebra. Note that
750 Cayley-Hamilton is indeed satisfied since the polynomial
751 ``1`` evaluates to the identity element of the algebra on
752 any argument::
753
754 sage: J = TrivialEJA()
755 sage: J.characteristic_polynomial_of()
756 1
757
758 """
759 r = self.rank()
760 n = self.dimension()
761
762 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
763 a = self._charpoly_coefficients()
764
765 # We go to a bit of trouble here to reorder the
766 # indeterminates, so that it's easier to evaluate the
767 # characteristic polynomial at x's coordinates and get back
768 # something in terms of t, which is what we want.
769 S = PolynomialRing(self.base_ring(),'t')
770 t = S.gen(0)
771 if r > 0:
772 R = a[0].parent()
773 S = PolynomialRing(S, R.variable_names())
774 t = S(t)
775
776 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
777
778 def coordinate_polynomial_ring(self):
779 r"""
780 The multivariate polynomial ring in which this algebra's
781 :meth:`characteristic_polynomial_of` lives.
782
783 SETUP::
784
785 sage: from mjo.eja.eja_algebra import (HadamardEJA,
786 ....: RealSymmetricEJA)
787
788 EXAMPLES::
789
790 sage: J = HadamardEJA(2)
791 sage: J.coordinate_polynomial_ring()
792 Multivariate Polynomial Ring in X1, X2...
793 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
794 sage: J.coordinate_polynomial_ring()
795 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
796
797 """
798 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
799 return PolynomialRing(self.base_ring(), var_names)
800
801 def inner_product(self, x, y):
802 """
803 The inner product associated with this Euclidean Jordan algebra.
804
805 Defaults to the trace inner product, but can be overridden by
806 subclasses if they are sure that the necessary properties are
807 satisfied.
808
809 SETUP::
810
811 sage: from mjo.eja.eja_algebra import (random_eja,
812 ....: HadamardEJA,
813 ....: BilinearFormEJA)
814
815 EXAMPLES:
816
817 Our inner product is "associative," which means the following for
818 a symmetric bilinear form::
819
820 sage: set_random_seed()
821 sage: J = random_eja()
822 sage: x,y,z = J.random_elements(3)
823 sage: (x*y).inner_product(z) == y.inner_product(x*z)
824 True
825
826 TESTS:
827
828 Ensure that this is the usual inner product for the algebras
829 over `R^n`::
830
831 sage: set_random_seed()
832 sage: J = HadamardEJA.random_instance()
833 sage: x,y = J.random_elements(2)
834 sage: actual = x.inner_product(y)
835 sage: expected = x.to_vector().inner_product(y.to_vector())
836 sage: actual == expected
837 True
838
839 Ensure that this is one-half of the trace inner-product in a
840 BilinearFormEJA that isn't just the reals (when ``n`` isn't
841 one). This is in Faraut and Koranyi, and also my "On the
842 symmetry..." paper::
843
844 sage: set_random_seed()
845 sage: J = BilinearFormEJA.random_instance()
846 sage: n = J.dimension()
847 sage: x = J.random_element()
848 sage: y = J.random_element()
849 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
850 True
851 """
852 B = self._inner_product_matrix
853 return (B*x.to_vector()).inner_product(y.to_vector())
854
855
856 def is_trivial(self):
857 """
858 Return whether or not this algebra is trivial.
859
860 A trivial algebra contains only the zero element.
861
862 SETUP::
863
864 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
865 ....: TrivialEJA)
866
867 EXAMPLES::
868
869 sage: J = ComplexHermitianEJA(3)
870 sage: J.is_trivial()
871 False
872
873 ::
874
875 sage: J = TrivialEJA()
876 sage: J.is_trivial()
877 True
878
879 """
880 return self.dimension() == 0
881
882
883 def multiplication_table(self):
884 """
885 Return a visual representation of this algebra's multiplication
886 table (on basis elements).
887
888 SETUP::
889
890 sage: from mjo.eja.eja_algebra import JordanSpinEJA
891
892 EXAMPLES::
893
894 sage: J = JordanSpinEJA(4)
895 sage: J.multiplication_table()
896 +----++----+----+----+----+
897 | * || b0 | b1 | b2 | b3 |
898 +====++====+====+====+====+
899 | b0 || b0 | b1 | b2 | b3 |
900 +----++----+----+----+----+
901 | b1 || b1 | b0 | 0 | 0 |
902 +----++----+----+----+----+
903 | b2 || b2 | 0 | b0 | 0 |
904 +----++----+----+----+----+
905 | b3 || b3 | 0 | 0 | b0 |
906 +----++----+----+----+----+
907
908 """
909 n = self.dimension()
910 # Prepend the header row.
911 M = [["*"] + list(self.gens())]
912
913 # And to each subsequent row, prepend an entry that belongs to
914 # the left-side "header column."
915 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
916 for j in range(n) ]
917 for i in range(n) ]
918
919 return table(M, header_row=True, header_column=True, frame=True)
920
921
922 def matrix_basis(self):
923 """
924 Return an (often more natural) representation of this algebras
925 basis as an ordered tuple of matrices.
926
927 Every finite-dimensional Euclidean Jordan Algebra is a, up to
928 Jordan isomorphism, a direct sum of five simple
929 algebras---four of which comprise Hermitian matrices. And the
930 last type of algebra can of course be thought of as `n`-by-`1`
931 column matrices (ambiguusly called column vectors) to avoid
932 special cases. As a result, matrices (and column vectors) are
933 a natural representation format for Euclidean Jordan algebra
934 elements.
935
936 But, when we construct an algebra from a basis of matrices,
937 those matrix representations are lost in favor of coordinate
938 vectors *with respect to* that basis. We could eventually
939 convert back if we tried hard enough, but having the original
940 representations handy is valuable enough that we simply store
941 them and return them from this method.
942
943 Why implement this for non-matrix algebras? Avoiding special
944 cases for the :class:`BilinearFormEJA` pays with simplicity in
945 its own right. But mainly, we would like to be able to assume
946 that elements of a :class:`CartesianProductEJA` can be displayed
947 nicely, without having to have special classes for direct sums
948 one of whose components was a matrix algebra.
949
950 SETUP::
951
952 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
953 ....: RealSymmetricEJA)
954
955 EXAMPLES::
956
957 sage: J = RealSymmetricEJA(2)
958 sage: J.basis()
959 Finite family {0: b0, 1: b1, 2: b2}
960 sage: J.matrix_basis()
961 (
962 [1 0] [ 0 0.7071067811865475?] [0 0]
963 [0 0], [0.7071067811865475? 0], [0 1]
964 )
965
966 ::
967
968 sage: J = JordanSpinEJA(2)
969 sage: J.basis()
970 Finite family {0: b0, 1: b1}
971 sage: J.matrix_basis()
972 (
973 [1] [0]
974 [0], [1]
975 )
976 """
977 return self._matrix_basis
978
979
980 def matrix_space(self):
981 """
982 Return the matrix space in which this algebra's elements live, if
983 we think of them as matrices (including column vectors of the
984 appropriate size).
985
986 "By default" this will be an `n`-by-`1` column-matrix space,
987 except when the algebra is trivial. There it's `n`-by-`n`
988 (where `n` is zero), to ensure that two elements of the matrix
989 space (empty matrices) can be multiplied. For algebras of
990 matrices, this returns the space in which their
991 real embeddings live.
992
993 SETUP::
994
995 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
996 ....: JordanSpinEJA,
997 ....: QuaternionHermitianEJA,
998 ....: TrivialEJA)
999
1000 EXAMPLES:
1001
1002 By default, the matrix representation is just a column-matrix
1003 equivalent to the vector representation::
1004
1005 sage: J = JordanSpinEJA(3)
1006 sage: J.matrix_space()
1007 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1008 Real Field
1009
1010 The matrix representation in the trivial algebra is
1011 zero-by-zero instead of the usual `n`-by-one::
1012
1013 sage: J = TrivialEJA()
1014 sage: J.matrix_space()
1015 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1016 Real Field
1017
1018 The matrix space for complex/quaternion Hermitian matrix EJA
1019 is the space in which their real-embeddings live, not the
1020 original complex/quaternion matrix space::
1021
1022 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1023 sage: J.matrix_space()
1024 Module of 2 by 2 matrices with entries in Algebraic Field over
1025 the scalar ring Rational Field
1026 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1027 sage: J.matrix_space()
1028 Module of 1 by 1 matrices with entries in Quaternion
1029 Algebra (-1, -1) with base ring Rational Field over
1030 the scalar ring Rational Field
1031
1032 """
1033 if self.is_trivial():
1034 return MatrixSpace(self.base_ring(), 0)
1035 else:
1036 return self.matrix_basis()[0].parent()
1037
1038
1039 @cached_method
1040 def one(self):
1041 """
1042 Return the unit element of this algebra.
1043
1044 SETUP::
1045
1046 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1047 ....: random_eja)
1048
1049 EXAMPLES:
1050
1051 We can compute unit element in the Hadamard EJA::
1052
1053 sage: J = HadamardEJA(5)
1054 sage: J.one()
1055 b0 + b1 + b2 + b3 + b4
1056
1057 The unit element in the Hadamard EJA is inherited in the
1058 subalgebras generated by its elements::
1059
1060 sage: J = HadamardEJA(5)
1061 sage: J.one()
1062 b0 + b1 + b2 + b3 + b4
1063 sage: x = sum(J.gens())
1064 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1065 sage: A.one()
1066 c0
1067 sage: A.one().superalgebra_element()
1068 b0 + b1 + b2 + b3 + b4
1069
1070 TESTS:
1071
1072 The identity element acts like the identity, regardless of
1073 whether or not we orthonormalize::
1074
1075 sage: set_random_seed()
1076 sage: J = random_eja()
1077 sage: x = J.random_element()
1078 sage: J.one()*x == x and x*J.one() == x
1079 True
1080 sage: A = x.subalgebra_generated_by()
1081 sage: y = A.random_element()
1082 sage: A.one()*y == y and y*A.one() == y
1083 True
1084
1085 ::
1086
1087 sage: set_random_seed()
1088 sage: J = random_eja(field=QQ, orthonormalize=False)
1089 sage: x = J.random_element()
1090 sage: J.one()*x == x and x*J.one() == x
1091 True
1092 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1093 sage: y = A.random_element()
1094 sage: A.one()*y == y and y*A.one() == y
1095 True
1096
1097 The matrix of the unit element's operator is the identity,
1098 regardless of the base field and whether or not we
1099 orthonormalize::
1100
1101 sage: set_random_seed()
1102 sage: J = random_eja()
1103 sage: actual = J.one().operator().matrix()
1104 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1105 sage: actual == expected
1106 True
1107 sage: x = J.random_element()
1108 sage: A = x.subalgebra_generated_by()
1109 sage: actual = A.one().operator().matrix()
1110 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1111 sage: actual == expected
1112 True
1113
1114 ::
1115
1116 sage: set_random_seed()
1117 sage: J = random_eja(field=QQ, orthonormalize=False)
1118 sage: actual = J.one().operator().matrix()
1119 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1120 sage: actual == expected
1121 True
1122 sage: x = J.random_element()
1123 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1124 sage: actual = A.one().operator().matrix()
1125 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1126 sage: actual == expected
1127 True
1128
1129 Ensure that the cached unit element (often precomputed by
1130 hand) agrees with the computed one::
1131
1132 sage: set_random_seed()
1133 sage: J = random_eja()
1134 sage: cached = J.one()
1135 sage: J.one.clear_cache()
1136 sage: J.one() == cached
1137 True
1138
1139 ::
1140
1141 sage: set_random_seed()
1142 sage: J = random_eja(field=QQ, orthonormalize=False)
1143 sage: cached = J.one()
1144 sage: J.one.clear_cache()
1145 sage: J.one() == cached
1146 True
1147
1148 """
1149 # We can brute-force compute the matrices of the operators
1150 # that correspond to the basis elements of this algebra.
1151 # If some linear combination of those basis elements is the
1152 # algebra identity, then the same linear combination of
1153 # their matrices has to be the identity matrix.
1154 #
1155 # Of course, matrices aren't vectors in sage, so we have to
1156 # appeal to the "long vectors" isometry.
1157 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1158
1159 # Now we use basic linear algebra to find the coefficients,
1160 # of the matrices-as-vectors-linear-combination, which should
1161 # work for the original algebra basis too.
1162 A = matrix(self.base_ring(), oper_vecs)
1163
1164 # We used the isometry on the left-hand side already, but we
1165 # still need to do it for the right-hand side. Recall that we
1166 # wanted something that summed to the identity matrix.
1167 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1168
1169 # Now if there's an identity element in the algebra, this
1170 # should work. We solve on the left to avoid having to
1171 # transpose the matrix "A".
1172 return self.from_vector(A.solve_left(b))
1173
1174
1175 def peirce_decomposition(self, c):
1176 """
1177 The Peirce decomposition of this algebra relative to the
1178 idempotent ``c``.
1179
1180 In the future, this can be extended to a complete system of
1181 orthogonal idempotents.
1182
1183 INPUT:
1184
1185 - ``c`` -- an idempotent of this algebra.
1186
1187 OUTPUT:
1188
1189 A triple (J0, J5, J1) containing two subalgebras and one subspace
1190 of this algebra,
1191
1192 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1193 corresponding to the eigenvalue zero.
1194
1195 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1196 corresponding to the eigenvalue one-half.
1197
1198 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1199 corresponding to the eigenvalue one.
1200
1201 These are the only possible eigenspaces for that operator, and this
1202 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1203 orthogonal, and are subalgebras of this algebra with the appropriate
1204 restrictions.
1205
1206 SETUP::
1207
1208 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1209
1210 EXAMPLES:
1211
1212 The canonical example comes from the symmetric matrices, which
1213 decompose into diagonal and off-diagonal parts::
1214
1215 sage: J = RealSymmetricEJA(3)
1216 sage: C = matrix(QQ, [ [1,0,0],
1217 ....: [0,1,0],
1218 ....: [0,0,0] ])
1219 sage: c = J(C)
1220 sage: J0,J5,J1 = J.peirce_decomposition(c)
1221 sage: J0
1222 Euclidean Jordan algebra of dimension 1...
1223 sage: J5
1224 Vector space of degree 6 and dimension 2...
1225 sage: J1
1226 Euclidean Jordan algebra of dimension 3...
1227 sage: J0.one().to_matrix()
1228 [0 0 0]
1229 [0 0 0]
1230 [0 0 1]
1231 sage: orig_df = AA.options.display_format
1232 sage: AA.options.display_format = 'radical'
1233 sage: J.from_vector(J5.basis()[0]).to_matrix()
1234 [ 0 0 1/2*sqrt(2)]
1235 [ 0 0 0]
1236 [1/2*sqrt(2) 0 0]
1237 sage: J.from_vector(J5.basis()[1]).to_matrix()
1238 [ 0 0 0]
1239 [ 0 0 1/2*sqrt(2)]
1240 [ 0 1/2*sqrt(2) 0]
1241 sage: AA.options.display_format = orig_df
1242 sage: J1.one().to_matrix()
1243 [1 0 0]
1244 [0 1 0]
1245 [0 0 0]
1246
1247 TESTS:
1248
1249 Every algebra decomposes trivially with respect to its identity
1250 element::
1251
1252 sage: set_random_seed()
1253 sage: J = random_eja()
1254 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1255 sage: J0.dimension() == 0 and J5.dimension() == 0
1256 True
1257 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1258 True
1259
1260 The decomposition is into eigenspaces, and its components are
1261 therefore necessarily orthogonal. Moreover, the identity
1262 elements in the two subalgebras are the projections onto their
1263 respective subspaces of the superalgebra's identity element::
1264
1265 sage: set_random_seed()
1266 sage: J = random_eja()
1267 sage: x = J.random_element()
1268 sage: if not J.is_trivial():
1269 ....: while x.is_nilpotent():
1270 ....: x = J.random_element()
1271 sage: c = x.subalgebra_idempotent()
1272 sage: J0,J5,J1 = J.peirce_decomposition(c)
1273 sage: ipsum = 0
1274 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1275 ....: w = w.superalgebra_element()
1276 ....: y = J.from_vector(y)
1277 ....: z = z.superalgebra_element()
1278 ....: ipsum += w.inner_product(y).abs()
1279 ....: ipsum += w.inner_product(z).abs()
1280 ....: ipsum += y.inner_product(z).abs()
1281 sage: ipsum
1282 0
1283 sage: J1(c) == J1.one()
1284 True
1285 sage: J0(J.one() - c) == J0.one()
1286 True
1287
1288 """
1289 if not c.is_idempotent():
1290 raise ValueError("element is not idempotent: %s" % c)
1291
1292 # Default these to what they should be if they turn out to be
1293 # trivial, because eigenspaces_left() won't return eigenvalues
1294 # corresponding to trivial spaces (e.g. it returns only the
1295 # eigenspace corresponding to lambda=1 if you take the
1296 # decomposition relative to the identity element).
1297 trivial = self.subalgebra(())
1298 J0 = trivial # eigenvalue zero
1299 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1300 J1 = trivial # eigenvalue one
1301
1302 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1303 if eigval == ~(self.base_ring()(2)):
1304 J5 = eigspace
1305 else:
1306 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1307 subalg = self.subalgebra(gens, check_axioms=False)
1308 if eigval == 0:
1309 J0 = subalg
1310 elif eigval == 1:
1311 J1 = subalg
1312 else:
1313 raise ValueError("unexpected eigenvalue: %s" % eigval)
1314
1315 return (J0, J5, J1)
1316
1317
1318 def random_element(self, thorough=False):
1319 r"""
1320 Return a random element of this algebra.
1321
1322 Our algebra superclass method only returns a linear
1323 combination of at most two basis elements. We instead
1324 want the vector space "random element" method that
1325 returns a more diverse selection.
1326
1327 INPUT:
1328
1329 - ``thorough`` -- (boolean; default False) whether or not we
1330 should generate irrational coefficients for the random
1331 element when our base ring is irrational; this slows the
1332 algebra operations to a crawl, but any truly random method
1333 should include them
1334
1335 """
1336 # For a general base ring... maybe we can trust this to do the
1337 # right thing? Unlikely, but.
1338 V = self.vector_space()
1339 v = V.random_element()
1340
1341 if self.base_ring() is AA:
1342 # The "random element" method of the algebraic reals is
1343 # stupid at the moment, and only returns integers between
1344 # -2 and 2, inclusive:
1345 #
1346 # https://trac.sagemath.org/ticket/30875
1347 #
1348 # Instead, we implement our own "random vector" method,
1349 # and then coerce that into the algebra. We use the vector
1350 # space degree here instead of the dimension because a
1351 # subalgebra could (for example) be spanned by only two
1352 # vectors, each with five coordinates. We need to
1353 # generate all five coordinates.
1354 if thorough:
1355 v *= QQbar.random_element().real()
1356 else:
1357 v *= QQ.random_element()
1358
1359 return self.from_vector(V.coordinate_vector(v))
1360
1361 def random_elements(self, count, thorough=False):
1362 """
1363 Return ``count`` random elements as a tuple.
1364
1365 INPUT:
1366
1367 - ``thorough`` -- (boolean; default False) whether or not we
1368 should generate irrational coefficients for the random
1369 elements when our base ring is irrational; this slows the
1370 algebra operations to a crawl, but any truly random method
1371 should include them
1372
1373 SETUP::
1374
1375 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1376
1377 EXAMPLES::
1378
1379 sage: J = JordanSpinEJA(3)
1380 sage: x,y,z = J.random_elements(3)
1381 sage: all( [ x in J, y in J, z in J ])
1382 True
1383 sage: len( J.random_elements(10) ) == 10
1384 True
1385
1386 """
1387 return tuple( self.random_element(thorough)
1388 for idx in range(count) )
1389
1390
1391 @cached_method
1392 def _charpoly_coefficients(self):
1393 r"""
1394 The `r` polynomial coefficients of the "characteristic polynomial
1395 of" function.
1396
1397 SETUP::
1398
1399 sage: from mjo.eja.eja_algebra import random_eja
1400
1401 TESTS:
1402
1403 The theory shows that these are all homogeneous polynomials of
1404 a known degree::
1405
1406 sage: set_random_seed()
1407 sage: J = random_eja()
1408 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1409 True
1410
1411 """
1412 n = self.dimension()
1413 R = self.coordinate_polynomial_ring()
1414 vars = R.gens()
1415 F = R.fraction_field()
1416
1417 def L_x_i_j(i,j):
1418 # From a result in my book, these are the entries of the
1419 # basis representation of L_x.
1420 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1421 for k in range(n) )
1422
1423 L_x = matrix(F, n, n, L_x_i_j)
1424
1425 r = None
1426 if self.rank.is_in_cache():
1427 r = self.rank()
1428 # There's no need to pad the system with redundant
1429 # columns if we *know* they'll be redundant.
1430 n = r
1431
1432 # Compute an extra power in case the rank is equal to
1433 # the dimension (otherwise, we would stop at x^(r-1)).
1434 x_powers = [ (L_x**k)*self.one().to_vector()
1435 for k in range(n+1) ]
1436 A = matrix.column(F, x_powers[:n])
1437 AE = A.extended_echelon_form()
1438 E = AE[:,n:]
1439 A_rref = AE[:,:n]
1440 if r is None:
1441 r = A_rref.rank()
1442 b = x_powers[r]
1443
1444 # The theory says that only the first "r" coefficients are
1445 # nonzero, and they actually live in the original polynomial
1446 # ring and not the fraction field. We negate them because in
1447 # the actual characteristic polynomial, they get moved to the
1448 # other side where x^r lives. We don't bother to trim A_rref
1449 # down to a square matrix and solve the resulting system,
1450 # because the upper-left r-by-r portion of A_rref is
1451 # guaranteed to be the identity matrix, so e.g.
1452 #
1453 # A_rref.solve_right(Y)
1454 #
1455 # would just be returning Y.
1456 return (-E*b)[:r].change_ring(R)
1457
1458 @cached_method
1459 def rank(self):
1460 r"""
1461 Return the rank of this EJA.
1462
1463 This is a cached method because we know the rank a priori for
1464 all of the algebras we can construct. Thus we can avoid the
1465 expensive ``_charpoly_coefficients()`` call unless we truly
1466 need to compute the whole characteristic polynomial.
1467
1468 SETUP::
1469
1470 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1471 ....: JordanSpinEJA,
1472 ....: RealSymmetricEJA,
1473 ....: ComplexHermitianEJA,
1474 ....: QuaternionHermitianEJA,
1475 ....: random_eja)
1476
1477 EXAMPLES:
1478
1479 The rank of the Jordan spin algebra is always two::
1480
1481 sage: JordanSpinEJA(2).rank()
1482 2
1483 sage: JordanSpinEJA(3).rank()
1484 2
1485 sage: JordanSpinEJA(4).rank()
1486 2
1487
1488 The rank of the `n`-by-`n` Hermitian real, complex, or
1489 quaternion matrices is `n`::
1490
1491 sage: RealSymmetricEJA(4).rank()
1492 4
1493 sage: ComplexHermitianEJA(3).rank()
1494 3
1495 sage: QuaternionHermitianEJA(2).rank()
1496 2
1497
1498 TESTS:
1499
1500 Ensure that every EJA that we know how to construct has a
1501 positive integer rank, unless the algebra is trivial in
1502 which case its rank will be zero::
1503
1504 sage: set_random_seed()
1505 sage: J = random_eja()
1506 sage: r = J.rank()
1507 sage: r in ZZ
1508 True
1509 sage: r > 0 or (r == 0 and J.is_trivial())
1510 True
1511
1512 Ensure that computing the rank actually works, since the ranks
1513 of all simple algebras are known and will be cached by default::
1514
1515 sage: set_random_seed() # long time
1516 sage: J = random_eja() # long time
1517 sage: cached = J.rank() # long time
1518 sage: J.rank.clear_cache() # long time
1519 sage: J.rank() == cached # long time
1520 True
1521
1522 """
1523 return len(self._charpoly_coefficients())
1524
1525
1526 def subalgebra(self, basis, **kwargs):
1527 r"""
1528 Create a subalgebra of this algebra from the given basis.
1529 """
1530 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1531 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1532
1533
1534 def vector_space(self):
1535 """
1536 Return the vector space that underlies this algebra.
1537
1538 SETUP::
1539
1540 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1541
1542 EXAMPLES::
1543
1544 sage: J = RealSymmetricEJA(2)
1545 sage: J.vector_space()
1546 Vector space of dimension 3 over...
1547
1548 """
1549 return self.zero().to_vector().parent().ambient_vector_space()
1550
1551
1552
1553 class RationalBasisEJA(FiniteDimensionalEJA):
1554 r"""
1555 Algebras whose supplied basis elements have all rational entries.
1556
1557 SETUP::
1558
1559 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1560
1561 EXAMPLES:
1562
1563 The supplied basis is orthonormalized by default::
1564
1565 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1566 sage: J = BilinearFormEJA(B)
1567 sage: J.matrix_basis()
1568 (
1569 [1] [ 0] [ 0]
1570 [0] [1/5] [32/5]
1571 [0], [ 0], [ 5]
1572 )
1573
1574 """
1575 def __init__(self,
1576 basis,
1577 jordan_product,
1578 inner_product,
1579 field=AA,
1580 check_field=True,
1581 **kwargs):
1582
1583 if check_field:
1584 # Abuse the check_field parameter to check that the entries of
1585 # out basis (in ambient coordinates) are in the field QQ.
1586 # Use _all2list to get the vector coordinates of octonion
1587 # entries and not the octonions themselves (which are not
1588 # rational).
1589 if not all( all(b_i in QQ for b_i in _all2list(b))
1590 for b in basis ):
1591 raise TypeError("basis not rational")
1592
1593 super().__init__(basis,
1594 jordan_product,
1595 inner_product,
1596 field=field,
1597 check_field=check_field,
1598 **kwargs)
1599
1600 self._rational_algebra = None
1601 if field is not QQ:
1602 # There's no point in constructing the extra algebra if this
1603 # one is already rational.
1604 #
1605 # Note: the same Jordan and inner-products work here,
1606 # because they are necessarily defined with respect to
1607 # ambient coordinates and not any particular basis.
1608 self._rational_algebra = FiniteDimensionalEJA(
1609 basis,
1610 jordan_product,
1611 inner_product,
1612 field=QQ,
1613 associative=self.is_associative(),
1614 orthonormalize=False,
1615 check_field=False,
1616 check_axioms=False)
1617
1618 @cached_method
1619 def _charpoly_coefficients(self):
1620 r"""
1621 SETUP::
1622
1623 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1624 ....: JordanSpinEJA)
1625
1626 EXAMPLES:
1627
1628 The base ring of the resulting polynomial coefficients is what
1629 it should be, and not the rationals (unless the algebra was
1630 already over the rationals)::
1631
1632 sage: J = JordanSpinEJA(3)
1633 sage: J._charpoly_coefficients()
1634 (X1^2 - X2^2 - X3^2, -2*X1)
1635 sage: a0 = J._charpoly_coefficients()[0]
1636 sage: J.base_ring()
1637 Algebraic Real Field
1638 sage: a0.base_ring()
1639 Algebraic Real Field
1640
1641 """
1642 if self._rational_algebra is None:
1643 # There's no need to construct *another* algebra over the
1644 # rationals if this one is already over the
1645 # rationals. Likewise, if we never orthonormalized our
1646 # basis, we might as well just use the given one.
1647 return super()._charpoly_coefficients()
1648
1649 # Do the computation over the rationals. The answer will be
1650 # the same, because all we've done is a change of basis.
1651 # Then, change back from QQ to our real base ring
1652 a = ( a_i.change_ring(self.base_ring())
1653 for a_i in self._rational_algebra._charpoly_coefficients() )
1654
1655 if self._deortho_matrix is None:
1656 # This can happen if our base ring was, say, AA and we
1657 # chose not to (or didn't need to) orthonormalize. It's
1658 # still faster to do the computations over QQ even if
1659 # the numbers in the boxes stay the same.
1660 return tuple(a)
1661
1662 # Otherwise, convert the coordinate variables back to the
1663 # deorthonormalized ones.
1664 R = self.coordinate_polynomial_ring()
1665 from sage.modules.free_module_element import vector
1666 X = vector(R, R.gens())
1667 BX = self._deortho_matrix*X
1668
1669 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1670 return tuple( a_i.subs(subs_dict) for a_i in a )
1671
1672 class ConcreteEJA(FiniteDimensionalEJA):
1673 r"""
1674 A class for the Euclidean Jordan algebras that we know by name.
1675
1676 These are the Jordan algebras whose basis, multiplication table,
1677 rank, and so on are known a priori. More to the point, they are
1678 the Euclidean Jordan algebras for which we are able to conjure up
1679 a "random instance."
1680
1681 SETUP::
1682
1683 sage: from mjo.eja.eja_algebra import ConcreteEJA
1684
1685 TESTS:
1686
1687 Our basis is normalized with respect to the algebra's inner
1688 product, unless we specify otherwise::
1689
1690 sage: set_random_seed()
1691 sage: J = ConcreteEJA.random_instance()
1692 sage: all( b.norm() == 1 for b in J.gens() )
1693 True
1694
1695 Since our basis is orthonormal with respect to the algebra's inner
1696 product, and since we know that this algebra is an EJA, any
1697 left-multiplication operator's matrix will be symmetric because
1698 natural->EJA basis representation is an isometry and within the
1699 EJA the operator is self-adjoint by the Jordan axiom::
1700
1701 sage: set_random_seed()
1702 sage: J = ConcreteEJA.random_instance()
1703 sage: x = J.random_element()
1704 sage: x.operator().is_self_adjoint()
1705 True
1706 """
1707
1708 @staticmethod
1709 def _max_random_instance_size():
1710 """
1711 Return an integer "size" that is an upper bound on the size of
1712 this algebra when it is used in a random test
1713 case. Unfortunately, the term "size" is ambiguous -- when
1714 dealing with `R^n` under either the Hadamard or Jordan spin
1715 product, the "size" refers to the dimension `n`. When dealing
1716 with a matrix algebra (real symmetric or complex/quaternion
1717 Hermitian), it refers to the size of the matrix, which is far
1718 less than the dimension of the underlying vector space.
1719
1720 This method must be implemented in each subclass.
1721 """
1722 raise NotImplementedError
1723
1724 @classmethod
1725 def random_instance(cls, *args, **kwargs):
1726 """
1727 Return a random instance of this type of algebra.
1728
1729 This method should be implemented in each subclass.
1730 """
1731 from sage.misc.prandom import choice
1732 eja_class = choice(cls.__subclasses__())
1733
1734 # These all bubble up to the RationalBasisEJA superclass
1735 # constructor, so any (kw)args valid there are also valid
1736 # here.
1737 return eja_class.random_instance(*args, **kwargs)
1738
1739
1740 class MatrixEJA:
1741 @staticmethod
1742 def _denormalized_basis(A):
1743 """
1744 Returns a basis for the space of complex Hermitian n-by-n matrices.
1745
1746 Why do we embed these? Basically, because all of numerical linear
1747 algebra assumes that you're working with vectors consisting of `n`
1748 entries from a field and scalars from the same field. There's no way
1749 to tell SageMath that (for example) the vectors contain complex
1750 numbers, while the scalar field is real.
1751
1752 SETUP::
1753
1754 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1755 ....: QuaternionMatrixAlgebra,
1756 ....: OctonionMatrixAlgebra)
1757 sage: from mjo.eja.eja_algebra import MatrixEJA
1758
1759 TESTS::
1760
1761 sage: set_random_seed()
1762 sage: n = ZZ.random_element(1,5)
1763 sage: A = MatrixSpace(QQ, n)
1764 sage: B = MatrixEJA._denormalized_basis(A)
1765 sage: all( M.is_hermitian() for M in B)
1766 True
1767
1768 ::
1769
1770 sage: set_random_seed()
1771 sage: n = ZZ.random_element(1,5)
1772 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1773 sage: B = MatrixEJA._denormalized_basis(A)
1774 sage: all( M.is_hermitian() for M in B)
1775 True
1776
1777 ::
1778
1779 sage: set_random_seed()
1780 sage: n = ZZ.random_element(1,5)
1781 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1782 sage: B = MatrixEJA._denormalized_basis(A)
1783 sage: all( M.is_hermitian() for M in B )
1784 True
1785
1786 ::
1787
1788 sage: set_random_seed()
1789 sage: n = ZZ.random_element(1,5)
1790 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1791 sage: B = MatrixEJA._denormalized_basis(A)
1792 sage: all( M.is_hermitian() for M in B )
1793 True
1794
1795 """
1796 # These work for real MatrixSpace, whose monomials only have
1797 # two coordinates (because the last one would always be "1").
1798 es = A.base_ring().gens()
1799 gen = lambda A,m: A.monomial(m[:2])
1800
1801 if hasattr(A, 'entry_algebra_gens'):
1802 # We've got a MatrixAlgebra, and its monomials will have
1803 # three coordinates.
1804 es = A.entry_algebra_gens()
1805 gen = lambda A,m: A.monomial(m)
1806
1807 basis = []
1808 for i in range(A.nrows()):
1809 for j in range(i+1):
1810 if i == j:
1811 E_ii = gen(A, (i,j,es[0]))
1812 basis.append(E_ii)
1813 else:
1814 for e in es:
1815 E_ij = gen(A, (i,j,e))
1816 E_ij += E_ij.conjugate_transpose()
1817 basis.append(E_ij)
1818
1819 return tuple( basis )
1820
1821 @staticmethod
1822 def jordan_product(X,Y):
1823 return (X*Y + Y*X)/2
1824
1825 @staticmethod
1826 def trace_inner_product(X,Y):
1827 r"""
1828 A trace inner-product for matrices that aren't embedded in the
1829 reals. It takes MATRICES as arguments, not EJA elements.
1830
1831 SETUP::
1832
1833 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1834 ....: ComplexHermitianEJA,
1835 ....: QuaternionHermitianEJA,
1836 ....: OctonionHermitianEJA)
1837
1838 EXAMPLES::
1839
1840 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
1841 sage: I = J.one().to_matrix()
1842 sage: J.trace_inner_product(I, -I)
1843 -2
1844
1845 ::
1846
1847 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1848 sage: I = J.one().to_matrix()
1849 sage: J.trace_inner_product(I, -I)
1850 -2
1851
1852 ::
1853
1854 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
1855 sage: I = J.one().to_matrix()
1856 sage: J.trace_inner_product(I, -I)
1857 -2
1858
1859 ::
1860
1861 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
1862 sage: I = J.one().to_matrix()
1863 sage: J.trace_inner_product(I, -I)
1864 -2
1865
1866 """
1867 tr = (X*Y).trace()
1868 if hasattr(tr, 'coefficient'):
1869 # Works for octonions, and has to come first because they
1870 # also have a "real()" method that doesn't return an
1871 # element of the scalar ring.
1872 return tr.coefficient(0)
1873 elif hasattr(tr, 'coefficient_tuple'):
1874 # Works for quaternions.
1875 return tr.coefficient_tuple()[0]
1876
1877 # Works for real and complex numbers.
1878 return tr.real()
1879
1880
1881
1882 class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
1883 """
1884 The rank-n simple EJA consisting of real symmetric n-by-n
1885 matrices, the usual symmetric Jordan product, and the trace inner
1886 product. It has dimension `(n^2 + n)/2` over the reals.
1887
1888 SETUP::
1889
1890 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1891
1892 EXAMPLES::
1893
1894 sage: J = RealSymmetricEJA(2)
1895 sage: b0, b1, b2 = J.gens()
1896 sage: b0*b0
1897 b0
1898 sage: b1*b1
1899 1/2*b0 + 1/2*b2
1900 sage: b2*b2
1901 b2
1902
1903 In theory, our "field" can be any subfield of the reals::
1904
1905 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
1906 Euclidean Jordan algebra of dimension 3 over Real Double Field
1907 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
1908 Euclidean Jordan algebra of dimension 3 over Real Field with
1909 53 bits of precision
1910
1911 TESTS:
1912
1913 The dimension of this algebra is `(n^2 + n) / 2`::
1914
1915 sage: set_random_seed()
1916 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1917 sage: n = ZZ.random_element(1, n_max)
1918 sage: J = RealSymmetricEJA(n)
1919 sage: J.dimension() == (n^2 + n)/2
1920 True
1921
1922 The Jordan multiplication is what we think it is::
1923
1924 sage: set_random_seed()
1925 sage: J = RealSymmetricEJA.random_instance()
1926 sage: x,y = J.random_elements(2)
1927 sage: actual = (x*y).to_matrix()
1928 sage: X = x.to_matrix()
1929 sage: Y = y.to_matrix()
1930 sage: expected = (X*Y + Y*X)/2
1931 sage: actual == expected
1932 True
1933 sage: J(expected) == x*y
1934 True
1935
1936 We can change the generator prefix::
1937
1938 sage: RealSymmetricEJA(3, prefix='q').gens()
1939 (q0, q1, q2, q3, q4, q5)
1940
1941 We can construct the (trivial) algebra of rank zero::
1942
1943 sage: RealSymmetricEJA(0)
1944 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1945
1946 """
1947 @staticmethod
1948 def _max_random_instance_size():
1949 return 4 # Dimension 10
1950
1951 @classmethod
1952 def random_instance(cls, **kwargs):
1953 """
1954 Return a random instance of this type of algebra.
1955 """
1956 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1957 return cls(n, **kwargs)
1958
1959 def __init__(self, n, field=AA, **kwargs):
1960 # We know this is a valid EJA, but will double-check
1961 # if the user passes check_axioms=True.
1962 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1963
1964 A = MatrixSpace(field, n)
1965 super().__init__(self._denormalized_basis(A),
1966 self.jordan_product,
1967 self.trace_inner_product,
1968 field=field,
1969 **kwargs)
1970
1971 # TODO: this could be factored out somehow, but is left here
1972 # because the MatrixEJA is not presently a subclass of the
1973 # FDEJA class that defines rank() and one().
1974 self.rank.set_cache(n)
1975 if n == 0:
1976 self.one.set_cache( self.zero() )
1977 else:
1978 self.one.set_cache(self(A.one()))
1979
1980
1981
1982 class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
1983 """
1984 The rank-n simple EJA consisting of complex Hermitian n-by-n
1985 matrices over the real numbers, the usual symmetric Jordan product,
1986 and the real-part-of-trace inner product. It has dimension `n^2` over
1987 the reals.
1988
1989 SETUP::
1990
1991 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1992
1993 EXAMPLES:
1994
1995 In theory, our "field" can be any subfield of the reals::
1996
1997 sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
1998 Euclidean Jordan algebra of dimension 4 over Real Double Field
1999 sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
2000 Euclidean Jordan algebra of dimension 4 over Real Field with
2001 53 bits of precision
2002
2003 TESTS:
2004
2005 The dimension of this algebra is `n^2`::
2006
2007 sage: set_random_seed()
2008 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
2009 sage: n = ZZ.random_element(1, n_max)
2010 sage: J = ComplexHermitianEJA(n)
2011 sage: J.dimension() == n^2
2012 True
2013
2014 The Jordan multiplication is what we think it is::
2015
2016 sage: set_random_seed()
2017 sage: J = ComplexHermitianEJA.random_instance()
2018 sage: x,y = J.random_elements(2)
2019 sage: actual = (x*y).to_matrix()
2020 sage: X = x.to_matrix()
2021 sage: Y = y.to_matrix()
2022 sage: expected = (X*Y + Y*X)/2
2023 sage: actual == expected
2024 True
2025 sage: J(expected) == x*y
2026 True
2027
2028 We can change the generator prefix::
2029
2030 sage: ComplexHermitianEJA(2, prefix='z').gens()
2031 (z0, z1, z2, z3)
2032
2033 We can construct the (trivial) algebra of rank zero::
2034
2035 sage: ComplexHermitianEJA(0)
2036 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2037
2038 """
2039 def __init__(self, n, field=AA, **kwargs):
2040 # We know this is a valid EJA, but will double-check
2041 # if the user passes check_axioms=True.
2042 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2043
2044 from mjo.hurwitz import ComplexMatrixAlgebra
2045 A = ComplexMatrixAlgebra(n, scalars=field)
2046 super().__init__(self._denormalized_basis(A),
2047 self.jordan_product,
2048 self.trace_inner_product,
2049 field=field,
2050 **kwargs)
2051
2052 # TODO: this could be factored out somehow, but is left here
2053 # because the MatrixEJA is not presently a subclass of the
2054 # FDEJA class that defines rank() and one().
2055 self.rank.set_cache(n)
2056 if n == 0:
2057 self.one.set_cache( self.zero() )
2058 else:
2059 self.one.set_cache(self(A.one()))
2060
2061 @staticmethod
2062 def _max_random_instance_size():
2063 return 3 # Dimension 9
2064
2065 @classmethod
2066 def random_instance(cls, **kwargs):
2067 """
2068 Return a random instance of this type of algebra.
2069 """
2070 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2071 return cls(n, **kwargs)
2072
2073
2074 class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
2075 r"""
2076 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2077 matrices, the usual symmetric Jordan product, and the
2078 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2079 the reals.
2080
2081 SETUP::
2082
2083 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2084
2085 EXAMPLES:
2086
2087 In theory, our "field" can be any subfield of the reals::
2088
2089 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2090 Euclidean Jordan algebra of dimension 6 over Real Double Field
2091 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2092 Euclidean Jordan algebra of dimension 6 over Real Field with
2093 53 bits of precision
2094
2095 TESTS:
2096
2097 The dimension of this algebra is `2*n^2 - n`::
2098
2099 sage: set_random_seed()
2100 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2101 sage: n = ZZ.random_element(1, n_max)
2102 sage: J = QuaternionHermitianEJA(n)
2103 sage: J.dimension() == 2*(n^2) - n
2104 True
2105
2106 The Jordan multiplication is what we think it is::
2107
2108 sage: set_random_seed()
2109 sage: J = QuaternionHermitianEJA.random_instance()
2110 sage: x,y = J.random_elements(2)
2111 sage: actual = (x*y).to_matrix()
2112 sage: X = x.to_matrix()
2113 sage: Y = y.to_matrix()
2114 sage: expected = (X*Y + Y*X)/2
2115 sage: actual == expected
2116 True
2117 sage: J(expected) == x*y
2118 True
2119
2120 We can change the generator prefix::
2121
2122 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2123 (a0, a1, a2, a3, a4, a5)
2124
2125 We can construct the (trivial) algebra of rank zero::
2126
2127 sage: QuaternionHermitianEJA(0)
2128 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2129
2130 """
2131 def __init__(self, n, field=AA, **kwargs):
2132 # We know this is a valid EJA, but will double-check
2133 # if the user passes check_axioms=True.
2134 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2135
2136 from mjo.hurwitz import QuaternionMatrixAlgebra
2137 A = QuaternionMatrixAlgebra(n, scalars=field)
2138 super().__init__(self._denormalized_basis(A),
2139 self.jordan_product,
2140 self.trace_inner_product,
2141 field=field,
2142 **kwargs)
2143
2144 # TODO: this could be factored out somehow, but is left here
2145 # because the MatrixEJA is not presently a subclass of the
2146 # FDEJA class that defines rank() and one().
2147 self.rank.set_cache(n)
2148 if n == 0:
2149 self.one.set_cache( self.zero() )
2150 else:
2151 self.one.set_cache(self(A.one()))
2152
2153
2154 @staticmethod
2155 def _max_random_instance_size():
2156 r"""
2157 The maximum rank of a random QuaternionHermitianEJA.
2158 """
2159 return 2 # Dimension 6
2160
2161 @classmethod
2162 def random_instance(cls, **kwargs):
2163 """
2164 Return a random instance of this type of algebra.
2165 """
2166 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2167 return cls(n, **kwargs)
2168
2169 class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
2170 r"""
2171 SETUP::
2172
2173 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2174 ....: OctonionHermitianEJA)
2175 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2176
2177 EXAMPLES:
2178
2179 The 3-by-3 algebra satisfies the axioms of an EJA::
2180
2181 sage: OctonionHermitianEJA(3, # long time
2182 ....: field=QQ, # long time
2183 ....: orthonormalize=False, # long time
2184 ....: check_axioms=True) # long time
2185 Euclidean Jordan algebra of dimension 27 over Rational Field
2186
2187 After a change-of-basis, the 2-by-2 algebra has the same
2188 multiplication table as the ten-dimensional Jordan spin algebra::
2189
2190 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2191 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2192 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2193 sage: jp = OctonionHermitianEJA.jordan_product
2194 sage: ip = OctonionHermitianEJA.trace_inner_product
2195 sage: J = FiniteDimensionalEJA(basis,
2196 ....: jp,
2197 ....: ip,
2198 ....: field=QQ,
2199 ....: orthonormalize=False)
2200 sage: J.multiplication_table()
2201 +----++----+----+----+----+----+----+----+----+----+----+
2202 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2203 +====++====+====+====+====+====+====+====+====+====+====+
2204 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2205 +----++----+----+----+----+----+----+----+----+----+----+
2206 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2207 +----++----+----+----+----+----+----+----+----+----+----+
2208 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2209 +----++----+----+----+----+----+----+----+----+----+----+
2210 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2211 +----++----+----+----+----+----+----+----+----+----+----+
2212 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2213 +----++----+----+----+----+----+----+----+----+----+----+
2214 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2215 +----++----+----+----+----+----+----+----+----+----+----+
2216 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2217 +----++----+----+----+----+----+----+----+----+----+----+
2218 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2219 +----++----+----+----+----+----+----+----+----+----+----+
2220 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2221 +----++----+----+----+----+----+----+----+----+----+----+
2222 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2223 +----++----+----+----+----+----+----+----+----+----+----+
2224
2225 TESTS:
2226
2227 We can actually construct the 27-dimensional Albert algebra,
2228 and we get the right unit element if we recompute it::
2229
2230 sage: J = OctonionHermitianEJA(3, # long time
2231 ....: field=QQ, # long time
2232 ....: orthonormalize=False) # long time
2233 sage: J.one.clear_cache() # long time
2234 sage: J.one() # long time
2235 b0 + b9 + b26
2236 sage: J.one().to_matrix() # long time
2237 +----+----+----+
2238 | e0 | 0 | 0 |
2239 +----+----+----+
2240 | 0 | e0 | 0 |
2241 +----+----+----+
2242 | 0 | 0 | e0 |
2243 +----+----+----+
2244
2245 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2246 spin algebra, but just to be sure, we recompute its rank::
2247
2248 sage: J = OctonionHermitianEJA(2, # long time
2249 ....: field=QQ, # long time
2250 ....: orthonormalize=False) # long time
2251 sage: J.rank.clear_cache() # long time
2252 sage: J.rank() # long time
2253 2
2254
2255 """
2256 @staticmethod
2257 def _max_random_instance_size():
2258 r"""
2259 The maximum rank of a random QuaternionHermitianEJA.
2260 """
2261 return 1 # Dimension 1
2262
2263 @classmethod
2264 def random_instance(cls, **kwargs):
2265 """
2266 Return a random instance of this type of algebra.
2267 """
2268 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2269 return cls(n, **kwargs)
2270
2271 def __init__(self, n, field=AA, **kwargs):
2272 if n > 3:
2273 # Otherwise we don't get an EJA.
2274 raise ValueError("n cannot exceed 3")
2275
2276 # We know this is a valid EJA, but will double-check
2277 # if the user passes check_axioms=True.
2278 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2279
2280 from mjo.hurwitz import OctonionMatrixAlgebra
2281 A = OctonionMatrixAlgebra(n, scalars=field)
2282 super().__init__(self._denormalized_basis(A),
2283 self.jordan_product,
2284 self.trace_inner_product,
2285 field=field,
2286 **kwargs)
2287
2288 # TODO: this could be factored out somehow, but is left here
2289 # because the MatrixEJA is not presently a subclass of the
2290 # FDEJA class that defines rank() and one().
2291 self.rank.set_cache(n)
2292 if n == 0:
2293 self.one.set_cache( self.zero() )
2294 else:
2295 self.one.set_cache(self(A.one()))
2296
2297
2298 class AlbertEJA(OctonionHermitianEJA):
2299 r"""
2300 The Albert algebra is the algebra of three-by-three Hermitian
2301 matrices whose entries are octonions.
2302
2303 SETUP::
2304
2305 sage: from mjo.eja.eja_algebra import AlbertEJA
2306
2307 EXAMPLES::
2308
2309 sage: AlbertEJA(field=QQ, orthonormalize=False)
2310 Euclidean Jordan algebra of dimension 27 over Rational Field
2311 sage: AlbertEJA() # long time
2312 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2313
2314 """
2315 def __init__(self, *args, **kwargs):
2316 super().__init__(3, *args, **kwargs)
2317
2318
2319 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2320 """
2321 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2322 (pointwise real-number multiplication) Jordan product and the
2323 usual inner-product.
2324
2325 This is nothing more than the Cartesian product of ``n`` copies of
2326 the one-dimensional Jordan spin algebra, and is the most common
2327 example of a non-simple Euclidean Jordan algebra.
2328
2329 SETUP::
2330
2331 sage: from mjo.eja.eja_algebra import HadamardEJA
2332
2333 EXAMPLES:
2334
2335 This multiplication table can be verified by hand::
2336
2337 sage: J = HadamardEJA(3)
2338 sage: b0,b1,b2 = J.gens()
2339 sage: b0*b0
2340 b0
2341 sage: b0*b1
2342 0
2343 sage: b0*b2
2344 0
2345 sage: b1*b1
2346 b1
2347 sage: b1*b2
2348 0
2349 sage: b2*b2
2350 b2
2351
2352 TESTS:
2353
2354 We can change the generator prefix::
2355
2356 sage: HadamardEJA(3, prefix='r').gens()
2357 (r0, r1, r2)
2358 """
2359 def __init__(self, n, field=AA, **kwargs):
2360 if n == 0:
2361 jordan_product = lambda x,y: x
2362 inner_product = lambda x,y: x
2363 else:
2364 def jordan_product(x,y):
2365 P = x.parent()
2366 return P( xi*yi for (xi,yi) in zip(x,y) )
2367
2368 def inner_product(x,y):
2369 return (x.T*y)[0,0]
2370
2371 # New defaults for keyword arguments. Don't orthonormalize
2372 # because our basis is already orthonormal with respect to our
2373 # inner-product. Don't check the axioms, because we know this
2374 # is a valid EJA... but do double-check if the user passes
2375 # check_axioms=True. Note: we DON'T override the "check_field"
2376 # default here, because the user can pass in a field!
2377 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2378 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2379
2380 column_basis = tuple( b.column()
2381 for b in FreeModule(field, n).basis() )
2382 super().__init__(column_basis,
2383 jordan_product,
2384 inner_product,
2385 field=field,
2386 associative=True,
2387 **kwargs)
2388 self.rank.set_cache(n)
2389
2390 if n == 0:
2391 self.one.set_cache( self.zero() )
2392 else:
2393 self.one.set_cache( sum(self.gens()) )
2394
2395 @staticmethod
2396 def _max_random_instance_size():
2397 r"""
2398 The maximum dimension of a random HadamardEJA.
2399 """
2400 return 5
2401
2402 @classmethod
2403 def random_instance(cls, **kwargs):
2404 """
2405 Return a random instance of this type of algebra.
2406 """
2407 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2408 return cls(n, **kwargs)
2409
2410
2411 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2412 r"""
2413 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2414 with the half-trace inner product and jordan product ``x*y =
2415 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2416 a symmetric positive-definite "bilinear form" matrix. Its
2417 dimension is the size of `B`, and it has rank two in dimensions
2418 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2419 the identity matrix of order ``n``.
2420
2421 We insist that the one-by-one upper-left identity block of `B` be
2422 passed in as well so that we can be passed a matrix of size zero
2423 to construct a trivial algebra.
2424
2425 SETUP::
2426
2427 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2428 ....: JordanSpinEJA)
2429
2430 EXAMPLES:
2431
2432 When no bilinear form is specified, the identity matrix is used,
2433 and the resulting algebra is the Jordan spin algebra::
2434
2435 sage: B = matrix.identity(AA,3)
2436 sage: J0 = BilinearFormEJA(B)
2437 sage: J1 = JordanSpinEJA(3)
2438 sage: J0.multiplication_table() == J0.multiplication_table()
2439 True
2440
2441 An error is raised if the matrix `B` does not correspond to a
2442 positive-definite bilinear form::
2443
2444 sage: B = matrix.random(QQ,2,3)
2445 sage: J = BilinearFormEJA(B)
2446 Traceback (most recent call last):
2447 ...
2448 ValueError: bilinear form is not positive-definite
2449 sage: B = matrix.zero(QQ,3)
2450 sage: J = BilinearFormEJA(B)
2451 Traceback (most recent call last):
2452 ...
2453 ValueError: bilinear form is not positive-definite
2454
2455 TESTS:
2456
2457 We can create a zero-dimensional algebra::
2458
2459 sage: B = matrix.identity(AA,0)
2460 sage: J = BilinearFormEJA(B)
2461 sage: J.basis()
2462 Finite family {}
2463
2464 We can check the multiplication condition given in the Jordan, von
2465 Neumann, and Wigner paper (and also discussed on my "On the
2466 symmetry..." paper). Note that this relies heavily on the standard
2467 choice of basis, as does anything utilizing the bilinear form
2468 matrix. We opt not to orthonormalize the basis, because if we
2469 did, we would have to normalize the `s_{i}` in a similar manner::
2470
2471 sage: set_random_seed()
2472 sage: n = ZZ.random_element(5)
2473 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2474 sage: B11 = matrix.identity(QQ,1)
2475 sage: B22 = M.transpose()*M
2476 sage: B = block_matrix(2,2,[ [B11,0 ],
2477 ....: [0, B22 ] ])
2478 sage: J = BilinearFormEJA(B, orthonormalize=False)
2479 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2480 sage: V = J.vector_space()
2481 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2482 ....: for ei in eis ]
2483 sage: actual = [ sis[i]*sis[j]
2484 ....: for i in range(n-1)
2485 ....: for j in range(n-1) ]
2486 sage: expected = [ J.one() if i == j else J.zero()
2487 ....: for i in range(n-1)
2488 ....: for j in range(n-1) ]
2489 sage: actual == expected
2490 True
2491
2492 """
2493 def __init__(self, B, field=AA, **kwargs):
2494 # The matrix "B" is supplied by the user in most cases,
2495 # so it makes sense to check whether or not its positive-
2496 # definite unless we are specifically asked not to...
2497 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2498 if not B.is_positive_definite():
2499 raise ValueError("bilinear form is not positive-definite")
2500
2501 # However, all of the other data for this EJA is computed
2502 # by us in manner that guarantees the axioms are
2503 # satisfied. So, again, unless we are specifically asked to
2504 # verify things, we'll skip the rest of the checks.
2505 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2506
2507 def inner_product(x,y):
2508 return (y.T*B*x)[0,0]
2509
2510 def jordan_product(x,y):
2511 P = x.parent()
2512 x0 = x[0,0]
2513 xbar = x[1:,0]
2514 y0 = y[0,0]
2515 ybar = y[1:,0]
2516 z0 = inner_product(y,x)
2517 zbar = y0*xbar + x0*ybar
2518 return P([z0] + zbar.list())
2519
2520 n = B.nrows()
2521 column_basis = tuple( b.column()
2522 for b in FreeModule(field, n).basis() )
2523
2524 # TODO: I haven't actually checked this, but it seems legit.
2525 associative = False
2526 if n <= 2:
2527 associative = True
2528
2529 super().__init__(column_basis,
2530 jordan_product,
2531 inner_product,
2532 field=field,
2533 associative=associative,
2534 **kwargs)
2535
2536 # The rank of this algebra is two, unless we're in a
2537 # one-dimensional ambient space (because the rank is bounded
2538 # by the ambient dimension).
2539 self.rank.set_cache(min(n,2))
2540
2541 if n == 0:
2542 self.one.set_cache( self.zero() )
2543 else:
2544 self.one.set_cache( self.monomial(0) )
2545
2546 @staticmethod
2547 def _max_random_instance_size():
2548 r"""
2549 The maximum dimension of a random BilinearFormEJA.
2550 """
2551 return 5
2552
2553 @classmethod
2554 def random_instance(cls, **kwargs):
2555 """
2556 Return a random instance of this algebra.
2557 """
2558 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2559 if n.is_zero():
2560 B = matrix.identity(ZZ, n)
2561 return cls(B, **kwargs)
2562
2563 B11 = matrix.identity(ZZ, 1)
2564 M = matrix.random(ZZ, n-1)
2565 I = matrix.identity(ZZ, n-1)
2566 alpha = ZZ.zero()
2567 while alpha.is_zero():
2568 alpha = ZZ.random_element().abs()
2569 B22 = M.transpose()*M + alpha*I
2570
2571 from sage.matrix.special import block_matrix
2572 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2573 [ZZ(0), B22 ] ])
2574
2575 return cls(B, **kwargs)
2576
2577
2578 class JordanSpinEJA(BilinearFormEJA):
2579 """
2580 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2581 with the usual inner product and jordan product ``x*y =
2582 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2583 the reals.
2584
2585 SETUP::
2586
2587 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2588
2589 EXAMPLES:
2590
2591 This multiplication table can be verified by hand::
2592
2593 sage: J = JordanSpinEJA(4)
2594 sage: b0,b1,b2,b3 = J.gens()
2595 sage: b0*b0
2596 b0
2597 sage: b0*b1
2598 b1
2599 sage: b0*b2
2600 b2
2601 sage: b0*b3
2602 b3
2603 sage: b1*b2
2604 0
2605 sage: b1*b3
2606 0
2607 sage: b2*b3
2608 0
2609
2610 We can change the generator prefix::
2611
2612 sage: JordanSpinEJA(2, prefix='B').gens()
2613 (B0, B1)
2614
2615 TESTS:
2616
2617 Ensure that we have the usual inner product on `R^n`::
2618
2619 sage: set_random_seed()
2620 sage: J = JordanSpinEJA.random_instance()
2621 sage: x,y = J.random_elements(2)
2622 sage: actual = x.inner_product(y)
2623 sage: expected = x.to_vector().inner_product(y.to_vector())
2624 sage: actual == expected
2625 True
2626
2627 """
2628 def __init__(self, n, *args, **kwargs):
2629 # This is a special case of the BilinearFormEJA with the
2630 # identity matrix as its bilinear form.
2631 B = matrix.identity(ZZ, n)
2632
2633 # Don't orthonormalize because our basis is already
2634 # orthonormal with respect to our inner-product.
2635 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2636
2637 # But also don't pass check_field=False here, because the user
2638 # can pass in a field!
2639 super().__init__(B, *args, **kwargs)
2640
2641 @staticmethod
2642 def _max_random_instance_size():
2643 r"""
2644 The maximum dimension of a random JordanSpinEJA.
2645 """
2646 return 5
2647
2648 @classmethod
2649 def random_instance(cls, **kwargs):
2650 """
2651 Return a random instance of this type of algebra.
2652
2653 Needed here to override the implementation for ``BilinearFormEJA``.
2654 """
2655 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2656 return cls(n, **kwargs)
2657
2658
2659 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2660 """
2661 The trivial Euclidean Jordan algebra consisting of only a zero element.
2662
2663 SETUP::
2664
2665 sage: from mjo.eja.eja_algebra import TrivialEJA
2666
2667 EXAMPLES::
2668
2669 sage: J = TrivialEJA()
2670 sage: J.dimension()
2671 0
2672 sage: J.zero()
2673 0
2674 sage: J.one()
2675 0
2676 sage: 7*J.one()*12*J.one()
2677 0
2678 sage: J.one().inner_product(J.one())
2679 0
2680 sage: J.one().norm()
2681 0
2682 sage: J.one().subalgebra_generated_by()
2683 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2684 sage: J.rank()
2685 0
2686
2687 """
2688 def __init__(self, **kwargs):
2689 jordan_product = lambda x,y: x
2690 inner_product = lambda x,y: 0
2691 basis = ()
2692
2693 # New defaults for keyword arguments
2694 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2695 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2696
2697 super().__init__(basis,
2698 jordan_product,
2699 inner_product,
2700 associative=True,
2701 **kwargs)
2702
2703 # The rank is zero using my definition, namely the dimension of the
2704 # largest subalgebra generated by any element.
2705 self.rank.set_cache(0)
2706 self.one.set_cache( self.zero() )
2707
2708 @classmethod
2709 def random_instance(cls, **kwargs):
2710 # We don't take a "size" argument so the superclass method is
2711 # inappropriate for us.
2712 return cls(**kwargs)
2713
2714
2715 class CartesianProductEJA(FiniteDimensionalEJA):
2716 r"""
2717 The external (orthogonal) direct sum of two or more Euclidean
2718 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2719 orthogonal direct sum of simple Euclidean Jordan algebras which is
2720 then isometric to a Cartesian product, so no generality is lost by
2721 providing only this construction.
2722
2723 SETUP::
2724
2725 sage: from mjo.eja.eja_algebra import (random_eja,
2726 ....: CartesianProductEJA,
2727 ....: HadamardEJA,
2728 ....: JordanSpinEJA,
2729 ....: RealSymmetricEJA)
2730
2731 EXAMPLES:
2732
2733 The Jordan product is inherited from our factors and implemented by
2734 our CombinatorialFreeModule Cartesian product superclass::
2735
2736 sage: set_random_seed()
2737 sage: J1 = HadamardEJA(2)
2738 sage: J2 = RealSymmetricEJA(2)
2739 sage: J = cartesian_product([J1,J2])
2740 sage: x,y = J.random_elements(2)
2741 sage: x*y in J
2742 True
2743
2744 The ability to retrieve the original factors is implemented by our
2745 CombinatorialFreeModule Cartesian product superclass::
2746
2747 sage: J1 = HadamardEJA(2, field=QQ)
2748 sage: J2 = JordanSpinEJA(3, field=QQ)
2749 sage: J = cartesian_product([J1,J2])
2750 sage: J.cartesian_factors()
2751 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2752 Euclidean Jordan algebra of dimension 3 over Rational Field)
2753
2754 You can provide more than two factors::
2755
2756 sage: J1 = HadamardEJA(2)
2757 sage: J2 = JordanSpinEJA(3)
2758 sage: J3 = RealSymmetricEJA(3)
2759 sage: cartesian_product([J1,J2,J3])
2760 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2761 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2762 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2763 Algebraic Real Field
2764
2765 Rank is additive on a Cartesian product::
2766
2767 sage: J1 = HadamardEJA(1)
2768 sage: J2 = RealSymmetricEJA(2)
2769 sage: J = cartesian_product([J1,J2])
2770 sage: J1.rank.clear_cache()
2771 sage: J2.rank.clear_cache()
2772 sage: J.rank.clear_cache()
2773 sage: J.rank()
2774 3
2775 sage: J.rank() == J1.rank() + J2.rank()
2776 True
2777
2778 The same rank computation works over the rationals, with whatever
2779 basis you like::
2780
2781 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
2782 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
2783 sage: J = cartesian_product([J1,J2])
2784 sage: J1.rank.clear_cache()
2785 sage: J2.rank.clear_cache()
2786 sage: J.rank.clear_cache()
2787 sage: J.rank()
2788 3
2789 sage: J.rank() == J1.rank() + J2.rank()
2790 True
2791
2792 The product algebra will be associative if and only if all of its
2793 components are associative::
2794
2795 sage: J1 = HadamardEJA(2)
2796 sage: J1.is_associative()
2797 True
2798 sage: J2 = HadamardEJA(3)
2799 sage: J2.is_associative()
2800 True
2801 sage: J3 = RealSymmetricEJA(3)
2802 sage: J3.is_associative()
2803 False
2804 sage: CP1 = cartesian_product([J1,J2])
2805 sage: CP1.is_associative()
2806 True
2807 sage: CP2 = cartesian_product([J1,J3])
2808 sage: CP2.is_associative()
2809 False
2810
2811 Cartesian products of Cartesian products work::
2812
2813 sage: J1 = JordanSpinEJA(1)
2814 sage: J2 = JordanSpinEJA(1)
2815 sage: J3 = JordanSpinEJA(1)
2816 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
2817 sage: J.multiplication_table()
2818 +----++----+----+----+
2819 | * || b0 | b1 | b2 |
2820 +====++====+====+====+
2821 | b0 || b0 | 0 | 0 |
2822 +----++----+----+----+
2823 | b1 || 0 | b1 | 0 |
2824 +----++----+----+----+
2825 | b2 || 0 | 0 | b2 |
2826 +----++----+----+----+
2827 sage: HadamardEJA(3).multiplication_table()
2828 +----++----+----+----+
2829 | * || b0 | b1 | b2 |
2830 +====++====+====+====+
2831 | b0 || b0 | 0 | 0 |
2832 +----++----+----+----+
2833 | b1 || 0 | b1 | 0 |
2834 +----++----+----+----+
2835 | b2 || 0 | 0 | b2 |
2836 +----++----+----+----+
2837
2838 TESTS:
2839
2840 All factors must share the same base field::
2841
2842 sage: J1 = HadamardEJA(2, field=QQ)
2843 sage: J2 = RealSymmetricEJA(2)
2844 sage: CartesianProductEJA((J1,J2))
2845 Traceback (most recent call last):
2846 ...
2847 ValueError: all factors must share the same base field
2848
2849 The cached unit element is the same one that would be computed::
2850
2851 sage: set_random_seed() # long time
2852 sage: J1 = random_eja() # long time
2853 sage: J2 = random_eja() # long time
2854 sage: J = cartesian_product([J1,J2]) # long time
2855 sage: actual = J.one() # long time
2856 sage: J.one.clear_cache() # long time
2857 sage: expected = J.one() # long time
2858 sage: actual == expected # long time
2859 True
2860
2861 """
2862 Element = FiniteDimensionalEJAElement
2863
2864
2865 def __init__(self, factors, **kwargs):
2866 m = len(factors)
2867 if m == 0:
2868 return TrivialEJA()
2869
2870 self._sets = factors
2871
2872 field = factors[0].base_ring()
2873 if not all( J.base_ring() == field for J in factors ):
2874 raise ValueError("all factors must share the same base field")
2875
2876 associative = all( f.is_associative() for f in factors )
2877
2878 MS = self.matrix_space()
2879 basis = []
2880 zero = MS.zero()
2881 for i in range(m):
2882 for b in factors[i].matrix_basis():
2883 z = list(zero)
2884 z[i] = b
2885 basis.append(z)
2886
2887 basis = tuple( MS(b) for b in basis )
2888
2889 # Define jordan/inner products that operate on that matrix_basis.
2890 def jordan_product(x,y):
2891 return MS(tuple(
2892 (factors[i](x[i])*factors[i](y[i])).to_matrix()
2893 for i in range(m)
2894 ))
2895
2896 def inner_product(x, y):
2897 return sum(
2898 factors[i](x[i]).inner_product(factors[i](y[i]))
2899 for i in range(m)
2900 )
2901
2902 # There's no need to check the field since it already came
2903 # from an EJA. Likewise the axioms are guaranteed to be
2904 # satisfied, unless the guy writing this class sucks.
2905 #
2906 # If you want the basis to be orthonormalized, orthonormalize
2907 # the factors.
2908 FiniteDimensionalEJA.__init__(self,
2909 basis,
2910 jordan_product,
2911 inner_product,
2912 field=field,
2913 orthonormalize=False,
2914 associative=associative,
2915 cartesian_product=True,
2916 check_field=False,
2917 check_axioms=False)
2918
2919 ones = tuple(J.one().to_matrix() for J in factors)
2920 self.one.set_cache(self(ones))
2921 self.rank.set_cache(sum(J.rank() for J in factors))
2922
2923 def cartesian_factors(self):
2924 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2925 return self._sets
2926
2927 def cartesian_factor(self, i):
2928 r"""
2929 Return the ``i``th factor of this algebra.
2930 """
2931 return self._sets[i]
2932
2933 def _repr_(self):
2934 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
2935 from sage.categories.cartesian_product import cartesian_product
2936 return cartesian_product.symbol.join("%s" % factor
2937 for factor in self._sets)
2938
2939 def matrix_space(self):
2940 r"""
2941 Return the space that our matrix basis lives in as a Cartesian
2942 product.
2943
2944 We don't simply use the ``cartesian_product()`` functor here
2945 because it acts differently on SageMath MatrixSpaces and our
2946 custom MatrixAlgebras, which are CombinatorialFreeModules. We
2947 always want the result to be represented (and indexed) as
2948 an ordered tuple.
2949
2950 SETUP::
2951
2952 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
2953 ....: HadamardEJA,
2954 ....: OctonionHermitianEJA,
2955 ....: RealSymmetricEJA)
2956
2957 EXAMPLES::
2958
2959 sage: J1 = HadamardEJA(1)
2960 sage: J2 = RealSymmetricEJA(2)
2961 sage: J = cartesian_product([J1,J2])
2962 sage: J.matrix_space()
2963 The Cartesian product of (Full MatrixSpace of 1 by 1 dense
2964 matrices over Algebraic Real Field, Full MatrixSpace of 2
2965 by 2 dense matrices over Algebraic Real Field)
2966
2967 ::
2968
2969 sage: J1 = ComplexHermitianEJA(1)
2970 sage: J2 = ComplexHermitianEJA(1)
2971 sage: J = cartesian_product([J1,J2])
2972 sage: J.one().to_matrix()[0]
2973 +---+
2974 | 1 |
2975 +---+
2976 sage: J.one().to_matrix()[1]
2977 +---+
2978 | 1 |
2979 +---+
2980
2981 ::
2982
2983 sage: J1 = OctonionHermitianEJA(1)
2984 sage: J2 = OctonionHermitianEJA(1)
2985 sage: J = cartesian_product([J1,J2])
2986 sage: J.one().to_matrix()[0]
2987 +----+
2988 | e0 |
2989 +----+
2990 sage: J.one().to_matrix()[1]
2991 +----+
2992 | e0 |
2993 +----+
2994
2995 """
2996 scalars = self.cartesian_factor(0).base_ring()
2997
2998 # This category isn't perfect, but is good enough for what we
2999 # need to do.
3000 cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis()
3001 cat = cat.Unital().CartesianProducts()
3002 factors = tuple( J.matrix_space() for J in self.cartesian_factors() )
3003
3004 from sage.sets.cartesian_product import CartesianProduct
3005 return CartesianProduct(factors, cat)
3006
3007
3008 @cached_method
3009 def cartesian_projection(self, i):
3010 r"""
3011 SETUP::
3012
3013 sage: from mjo.eja.eja_algebra import (random_eja,
3014 ....: JordanSpinEJA,
3015 ....: HadamardEJA,
3016 ....: RealSymmetricEJA,
3017 ....: ComplexHermitianEJA)
3018
3019 EXAMPLES:
3020
3021 The projection morphisms are Euclidean Jordan algebra
3022 operators::
3023
3024 sage: J1 = HadamardEJA(2)
3025 sage: J2 = RealSymmetricEJA(2)
3026 sage: J = cartesian_product([J1,J2])
3027 sage: J.cartesian_projection(0)
3028 Linear operator between finite-dimensional Euclidean Jordan
3029 algebras represented by the matrix:
3030 [1 0 0 0 0]
3031 [0 1 0 0 0]
3032 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3033 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3034 Algebraic Real Field
3035 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3036 Real Field
3037 sage: J.cartesian_projection(1)
3038 Linear operator between finite-dimensional Euclidean Jordan
3039 algebras represented by the matrix:
3040 [0 0 1 0 0]
3041 [0 0 0 1 0]
3042 [0 0 0 0 1]
3043 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3044 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3045 Algebraic Real Field
3046 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3047 Real Field
3048
3049 The projections work the way you'd expect on the vector
3050 representation of an element::
3051
3052 sage: J1 = JordanSpinEJA(2)
3053 sage: J2 = ComplexHermitianEJA(2)
3054 sage: J = cartesian_product([J1,J2])
3055 sage: pi_left = J.cartesian_projection(0)
3056 sage: pi_right = J.cartesian_projection(1)
3057 sage: pi_left(J.one()).to_vector()
3058 (1, 0)
3059 sage: pi_right(J.one()).to_vector()
3060 (1, 0, 0, 1)
3061 sage: J.one().to_vector()
3062 (1, 0, 1, 0, 0, 1)
3063
3064 TESTS:
3065
3066 The answer never changes::
3067
3068 sage: set_random_seed()
3069 sage: J1 = random_eja()
3070 sage: J2 = random_eja()
3071 sage: J = cartesian_product([J1,J2])
3072 sage: P0 = J.cartesian_projection(0)
3073 sage: P1 = J.cartesian_projection(0)
3074 sage: P0 == P1
3075 True
3076
3077 """
3078 offset = sum( self.cartesian_factor(k).dimension()
3079 for k in range(i) )
3080 Ji = self.cartesian_factor(i)
3081 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3082 codomain=Ji)
3083
3084 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3085
3086 @cached_method
3087 def cartesian_embedding(self, i):
3088 r"""
3089 SETUP::
3090
3091 sage: from mjo.eja.eja_algebra import (random_eja,
3092 ....: JordanSpinEJA,
3093 ....: HadamardEJA,
3094 ....: RealSymmetricEJA)
3095
3096 EXAMPLES:
3097
3098 The embedding morphisms are Euclidean Jordan algebra
3099 operators::
3100
3101 sage: J1 = HadamardEJA(2)
3102 sage: J2 = RealSymmetricEJA(2)
3103 sage: J = cartesian_product([J1,J2])
3104 sage: J.cartesian_embedding(0)
3105 Linear operator between finite-dimensional Euclidean Jordan
3106 algebras represented by the matrix:
3107 [1 0]
3108 [0 1]
3109 [0 0]
3110 [0 0]
3111 [0 0]
3112 Domain: Euclidean Jordan algebra of dimension 2 over
3113 Algebraic Real Field
3114 Codomain: Euclidean Jordan algebra of dimension 2 over
3115 Algebraic Real Field (+) Euclidean Jordan algebra of
3116 dimension 3 over Algebraic Real Field
3117 sage: J.cartesian_embedding(1)
3118 Linear operator between finite-dimensional Euclidean Jordan
3119 algebras represented by the matrix:
3120 [0 0 0]
3121 [0 0 0]
3122 [1 0 0]
3123 [0 1 0]
3124 [0 0 1]
3125 Domain: Euclidean Jordan algebra of dimension 3 over
3126 Algebraic Real Field
3127 Codomain: Euclidean Jordan algebra of dimension 2 over
3128 Algebraic Real Field (+) Euclidean Jordan algebra of
3129 dimension 3 over Algebraic Real Field
3130
3131 The embeddings work the way you'd expect on the vector
3132 representation of an element::
3133
3134 sage: J1 = JordanSpinEJA(3)
3135 sage: J2 = RealSymmetricEJA(2)
3136 sage: J = cartesian_product([J1,J2])
3137 sage: iota_left = J.cartesian_embedding(0)
3138 sage: iota_right = J.cartesian_embedding(1)
3139 sage: iota_left(J1.zero()) == J.zero()
3140 True
3141 sage: iota_right(J2.zero()) == J.zero()
3142 True
3143 sage: J1.one().to_vector()
3144 (1, 0, 0)
3145 sage: iota_left(J1.one()).to_vector()
3146 (1, 0, 0, 0, 0, 0)
3147 sage: J2.one().to_vector()
3148 (1, 0, 1)
3149 sage: iota_right(J2.one()).to_vector()
3150 (0, 0, 0, 1, 0, 1)
3151 sage: J.one().to_vector()
3152 (1, 0, 0, 1, 0, 1)
3153
3154 TESTS:
3155
3156 The answer never changes::
3157
3158 sage: set_random_seed()
3159 sage: J1 = random_eja()
3160 sage: J2 = random_eja()
3161 sage: J = cartesian_product([J1,J2])
3162 sage: E0 = J.cartesian_embedding(0)
3163 sage: E1 = J.cartesian_embedding(0)
3164 sage: E0 == E1
3165 True
3166
3167 Composing a projection with the corresponding inclusion should
3168 produce the identity map, and mismatching them should produce
3169 the zero map::
3170
3171 sage: set_random_seed()
3172 sage: J1 = random_eja()
3173 sage: J2 = random_eja()
3174 sage: J = cartesian_product([J1,J2])
3175 sage: iota_left = J.cartesian_embedding(0)
3176 sage: iota_right = J.cartesian_embedding(1)
3177 sage: pi_left = J.cartesian_projection(0)
3178 sage: pi_right = J.cartesian_projection(1)
3179 sage: pi_left*iota_left == J1.one().operator()
3180 True
3181 sage: pi_right*iota_right == J2.one().operator()
3182 True
3183 sage: (pi_left*iota_right).is_zero()
3184 True
3185 sage: (pi_right*iota_left).is_zero()
3186 True
3187
3188 """
3189 offset = sum( self.cartesian_factor(k).dimension()
3190 for k in range(i) )
3191 Ji = self.cartesian_factor(i)
3192 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3193 codomain=self)
3194 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3195
3196
3197
3198 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3199
3200 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3201 RationalBasisEJA):
3202 r"""
3203 A separate class for products of algebras for which we know a
3204 rational basis.
3205
3206 SETUP::
3207
3208 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3209 ....: JordanSpinEJA,
3210 ....: OctonionHermitianEJA,
3211 ....: RealSymmetricEJA)
3212
3213 EXAMPLES:
3214
3215 This gives us fast characteristic polynomial computations in
3216 product algebras, too::
3217
3218
3219 sage: J1 = JordanSpinEJA(2)
3220 sage: J2 = RealSymmetricEJA(3)
3221 sage: J = cartesian_product([J1,J2])
3222 sage: J.characteristic_polynomial_of().degree()
3223 5
3224 sage: J.rank()
3225 5
3226
3227 TESTS:
3228
3229 The ``cartesian_product()`` function only uses the first factor to
3230 decide where the result will live; thus we have to be careful to
3231 check that all factors do indeed have a `_rational_algebra` member
3232 before we try to access it::
3233
3234 sage: J1 = OctonionHermitianEJA(1) # no rational basis
3235 sage: J2 = HadamardEJA(2)
3236 sage: cartesian_product([J1,J2])
3237 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3238 (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3239 sage: cartesian_product([J2,J1])
3240 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3241 (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3242
3243 """
3244 def __init__(self, algebras, **kwargs):
3245 CartesianProductEJA.__init__(self, algebras, **kwargs)
3246
3247 self._rational_algebra = None
3248 if self.vector_space().base_field() is not QQ:
3249 if all( hasattr(r, "_rational_algebra") for r in algebras ):
3250 self._rational_algebra = cartesian_product([
3251 r._rational_algebra for r in algebras
3252 ])
3253
3254
3255 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3256
3257 def random_eja(*args, **kwargs):
3258 J1 = ConcreteEJA.random_instance(*args, **kwargs)
3259
3260 # This might make Cartesian products appear roughly as often as
3261 # any other ConcreteEJA.
3262 if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
3263 # Use random_eja() again so we can get more than two factors.
3264 J2 = random_eja(*args, **kwargs)
3265 J = cartesian_product([J1,J2])
3266 return J
3267 else:
3268 return J1