]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: fix recently broken doctests.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
37 r"""
38 The lowest-level class for representing a Euclidean Jordan algebra.
39 """
40 def _coerce_map_from_base_ring(self):
41 """
42 Disable the map from the base ring into the algebra.
43
44 Performing a nonsense conversion like this automatically
45 is counterpedagogical. The fallback is to try the usual
46 element constructor, which should also fail.
47
48 SETUP::
49
50 sage: from mjo.eja.eja_algebra import random_eja
51
52 TESTS::
53
54 sage: set_random_seed()
55 sage: J = random_eja()
56 sage: J(1)
57 Traceback (most recent call last):
58 ...
59 ValueError: not an element of this algebra
60
61 """
62 return None
63
64 def __init__(self,
65 field,
66 multiplication_table,
67 inner_product_table,
68 prefix='e',
69 category=None,
70 matrix_basis=None,
71 check_field=True,
72 check_axioms=True):
73 """
74 INPUT:
75
76 * field -- the scalar field for this algebra (must be real)
77
78 * multiplication_table -- the multiplication table for this
79 algebra's implicit basis. Only the lower-triangular portion
80 of the table is used, since the multiplication is assumed
81 to be commutative.
82
83 SETUP::
84
85 sage: from mjo.eja.eja_algebra import (
86 ....: FiniteDimensionalEuclideanJordanAlgebra,
87 ....: JordanSpinEJA,
88 ....: random_eja)
89
90 EXAMPLES:
91
92 By definition, Jordan multiplication commutes::
93
94 sage: set_random_seed()
95 sage: J = random_eja()
96 sage: x,y = J.random_elements(2)
97 sage: x*y == y*x
98 True
99
100 An error is raised if the Jordan product is not commutative::
101
102 sage: JP = ((1,2),(0,0))
103 sage: IP = ((1,0),(0,1))
104 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
105 Traceback (most recent call last):
106 ...
107 ValueError: Jordan product is not commutative
108
109 An error is raised if the inner-product is not commutative::
110
111 sage: JP = ((1,0),(0,1))
112 sage: IP = ((1,2),(0,0))
113 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
114 Traceback (most recent call last):
115 ...
116 ValueError: inner-product is not commutative
117
118 TESTS:
119
120 The ``field`` we're given must be real with ``check_field=True``::
121
122 sage: JordanSpinEJA(2, field=QQbar)
123 Traceback (most recent call last):
124 ...
125 ValueError: scalar field is not real
126 sage: JordanSpinEJA(2, field=QQbar, check_field=False)
127 Euclidean Jordan algebra of dimension 2 over Algebraic Field
128
129 The multiplication table must be square with ``check_axioms=True``::
130
131 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
132 Traceback (most recent call last):
133 ...
134 ValueError: multiplication table is not square
135
136 The multiplication and inner-product tables must be the same
137 size (and in particular, the inner-product table must also be
138 square) with ``check_axioms=True``::
139
140 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
141 Traceback (most recent call last):
142 ...
143 ValueError: multiplication and inner-product tables are
144 different sizes
145 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
146 Traceback (most recent call last):
147 ...
148 ValueError: multiplication and inner-product tables are
149 different sizes
150
151 """
152 if check_field:
153 if not field.is_subring(RR):
154 # Note: this does return true for the real algebraic
155 # field, the rationals, and any quadratic field where
156 # we've specified a real embedding.
157 raise ValueError("scalar field is not real")
158
159
160 # The multiplication and inner-product tables should be square
161 # if the user wants us to verify them. And we verify them as
162 # soon as possible, because we want to exploit their symmetry.
163 n = len(multiplication_table)
164 if check_axioms:
165 if not all( len(l) == n for l in multiplication_table ):
166 raise ValueError("multiplication table is not square")
167
168 # If the multiplication table is square, we can check if
169 # the inner-product table is square by comparing it to the
170 # multiplication table's dimensions.
171 msg = "multiplication and inner-product tables are different sizes"
172 if not len(inner_product_table) == n:
173 raise ValueError(msg)
174
175 if not all( len(l) == n for l in inner_product_table ):
176 raise ValueError(msg)
177
178 # Check commutativity of the Jordan product (symmetry of
179 # the multiplication table) and the commutativity of the
180 # inner-product (symmetry of the inner-product table)
181 # first if we're going to check them at all.. This has to
182 # be done before we define product_on_basis(), because
183 # that method assumes that self._multiplication_table is
184 # symmetric. And it has to be done before we build
185 # self._inner_product_matrix, because the process used to
186 # construct it assumes symmetry as well.
187 if not all( multiplication_table[j][i]
188 == multiplication_table[i][j]
189 for i in range(n)
190 for j in range(i+1) ):
191 raise ValueError("Jordan product is not commutative")
192
193 if not all( inner_product_table[j][i]
194 == inner_product_table[i][j]
195 for i in range(n)
196 for j in range(i+1) ):
197 raise ValueError("inner-product is not commutative")
198
199 self._matrix_basis = matrix_basis
200
201 if category is None:
202 category = MagmaticAlgebras(field).FiniteDimensional()
203 category = category.WithBasis().Unital()
204
205 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
206 fda.__init__(field,
207 range(n),
208 prefix=prefix,
209 category=category)
210 self.print_options(bracket='')
211
212 # The multiplication table we're given is necessarily in terms
213 # of vectors, because we don't have an algebra yet for
214 # anything to be an element of. However, it's faster in the
215 # long run to have the multiplication table be in terms of
216 # algebra elements. We do this after calling the superclass
217 # constructor so that from_vector() knows what to do.
218 #
219 # Note: we take advantage of symmetry here, and only store
220 # the lower-triangular portion of the table.
221 self._multiplication_table = [ [ self.vector_space().zero()
222 for j in range(i+1) ]
223 for i in range(n) ]
224
225 for i in range(n):
226 for j in range(i+1):
227 elt = self.from_vector(multiplication_table[i][j])
228 self._multiplication_table[i][j] = elt
229
230 self._multiplication_table = tuple(map(tuple, self._multiplication_table))
231
232 # Save our inner product as a matrix, since the efficiency of
233 # matrix multiplication will usually outweigh the fact that we
234 # have to store a redundant upper- or lower-triangular part.
235 # Pre-cache the fact that these are Hermitian (real symmetric,
236 # in fact) in case some e.g. matrix multiplication routine can
237 # take advantage of it.
238 ip_matrix_constructor = lambda i,j: inner_product_table[i][j] if j <= i else inner_product_table[j][i]
239 self._inner_product_matrix = matrix(field, n, ip_matrix_constructor)
240 self._inner_product_matrix._cache = {'hermitian': True}
241 self._inner_product_matrix.set_immutable()
242
243 if check_axioms:
244 if not self._is_jordanian():
245 raise ValueError("Jordan identity does not hold")
246 if not self._inner_product_is_associative():
247 raise ValueError("inner product is not associative")
248
249 def _element_constructor_(self, elt):
250 """
251 Construct an element of this algebra from its vector or matrix
252 representation.
253
254 This gets called only after the parent element _call_ method
255 fails to find a coercion for the argument.
256
257 SETUP::
258
259 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
260 ....: HadamardEJA,
261 ....: RealSymmetricEJA)
262
263 EXAMPLES:
264
265 The identity in `S^n` is converted to the identity in the EJA::
266
267 sage: J = RealSymmetricEJA(3)
268 sage: I = matrix.identity(QQ,3)
269 sage: J(I) == J.one()
270 True
271
272 This skew-symmetric matrix can't be represented in the EJA::
273
274 sage: J = RealSymmetricEJA(3)
275 sage: A = matrix(QQ,3, lambda i,j: i-j)
276 sage: J(A)
277 Traceback (most recent call last):
278 ...
279 ValueError: not an element of this algebra
280
281 TESTS:
282
283 Ensure that we can convert any element of the two non-matrix
284 simple algebras (whose matrix representations are columns)
285 back and forth faithfully::
286
287 sage: set_random_seed()
288 sage: J = HadamardEJA.random_instance()
289 sage: x = J.random_element()
290 sage: J(x.to_vector().column()) == x
291 True
292 sage: J = JordanSpinEJA.random_instance()
293 sage: x = J.random_element()
294 sage: J(x.to_vector().column()) == x
295 True
296
297 """
298 msg = "not an element of this algebra"
299 if elt == 0:
300 # The superclass implementation of random_element()
301 # needs to be able to coerce "0" into the algebra.
302 return self.zero()
303 elif elt in self.base_ring():
304 # Ensure that no base ring -> algebra coercion is performed
305 # by this method. There's some stupidity in sage that would
306 # otherwise propagate to this method; for example, sage thinks
307 # that the integer 3 belongs to the space of 2-by-2 matrices.
308 raise ValueError(msg)
309
310 if elt not in self.matrix_space():
311 raise ValueError(msg)
312
313 # Thanks for nothing! Matrix spaces aren't vector spaces in
314 # Sage, so we have to figure out its matrix-basis coordinates
315 # ourselves. We use the basis space's ring instead of the
316 # element's ring because the basis space might be an algebraic
317 # closure whereas the base ring of the 3-by-3 identity matrix
318 # could be QQ instead of QQbar.
319 #
320 # We pass check=False because the matrix basis is "guaranteed"
321 # to be linearly independent... right? Ha ha.
322 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
323 W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
324 check=False)
325
326 try:
327 coords = W.coordinate_vector(_mat2vec(elt))
328 except ArithmeticError: # vector is not in free module
329 raise ValueError(msg)
330
331 return self.from_vector(coords)
332
333 def _repr_(self):
334 """
335 Return a string representation of ``self``.
336
337 SETUP::
338
339 sage: from mjo.eja.eja_algebra import JordanSpinEJA
340
341 TESTS:
342
343 Ensure that it says what we think it says::
344
345 sage: JordanSpinEJA(2, field=AA)
346 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
347 sage: JordanSpinEJA(3, field=RDF)
348 Euclidean Jordan algebra of dimension 3 over Real Double Field
349
350 """
351 fmt = "Euclidean Jordan algebra of dimension {} over {}"
352 return fmt.format(self.dimension(), self.base_ring())
353
354 def product_on_basis(self, i, j):
355 # We only stored the lower-triangular portion of the
356 # multiplication table.
357 if j <= i:
358 return self._multiplication_table[i][j]
359 else:
360 return self._multiplication_table[j][i]
361
362 def _is_commutative(self):
363 r"""
364 Whether or not this algebra's multiplication table is commutative.
365
366 This method should of course always return ``True``, unless
367 this algebra was constructed with ``check_axioms=False`` and
368 passed an invalid multiplication table.
369 """
370 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
371 for i in range(self.dimension())
372 for j in range(self.dimension()) )
373
374 def _is_jordanian(self):
375 r"""
376 Whether or not this algebra's multiplication table respects the
377 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
378
379 We only check one arrangement of `x` and `y`, so for a
380 ``True`` result to be truly true, you should also check
381 :meth:`_is_commutative`. This method should of course always
382 return ``True``, unless this algebra was constructed with
383 ``check_axioms=False`` and passed an invalid multiplication table.
384 """
385 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
386 ==
387 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
388 for i in range(self.dimension())
389 for j in range(self.dimension()) )
390
391 def _inner_product_is_associative(self):
392 r"""
393 Return whether or not this algebra's inner product `B` is
394 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
395
396 This method should of course always return ``True``, unless
397 this algebra was constructed with ``check_axioms=False`` and
398 passed an invalid multiplication table.
399 """
400
401 # Used to check whether or not something is zero in an inexact
402 # ring. This number is sufficient to allow the construction of
403 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
404 epsilon = 1e-16
405
406 for i in range(self.dimension()):
407 for j in range(self.dimension()):
408 for k in range(self.dimension()):
409 x = self.monomial(i)
410 y = self.monomial(j)
411 z = self.monomial(k)
412 diff = (x*y).inner_product(z) - x.inner_product(y*z)
413
414 if self.base_ring().is_exact():
415 if diff != 0:
416 return False
417 else:
418 if diff.abs() > epsilon:
419 return False
420
421 return True
422
423 @cached_method
424 def characteristic_polynomial_of(self):
425 """
426 Return the algebra's "characteristic polynomial of" function,
427 which is itself a multivariate polynomial that, when evaluated
428 at the coordinates of some algebra element, returns that
429 element's characteristic polynomial.
430
431 The resulting polynomial has `n+1` variables, where `n` is the
432 dimension of this algebra. The first `n` variables correspond to
433 the coordinates of an algebra element: when evaluated at the
434 coordinates of an algebra element with respect to a certain
435 basis, the result is a univariate polynomial (in the one
436 remaining variable ``t``), namely the characteristic polynomial
437 of that element.
438
439 SETUP::
440
441 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
442
443 EXAMPLES:
444
445 The characteristic polynomial in the spin algebra is given in
446 Alizadeh, Example 11.11::
447
448 sage: J = JordanSpinEJA(3)
449 sage: p = J.characteristic_polynomial_of(); p
450 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
451 sage: xvec = J.one().to_vector()
452 sage: p(*xvec)
453 t^2 - 2*t + 1
454
455 By definition, the characteristic polynomial is a monic
456 degree-zero polynomial in a rank-zero algebra. Note that
457 Cayley-Hamilton is indeed satisfied since the polynomial
458 ``1`` evaluates to the identity element of the algebra on
459 any argument::
460
461 sage: J = TrivialEJA()
462 sage: J.characteristic_polynomial_of()
463 1
464
465 """
466 r = self.rank()
467 n = self.dimension()
468
469 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
470 a = self._charpoly_coefficients()
471
472 # We go to a bit of trouble here to reorder the
473 # indeterminates, so that it's easier to evaluate the
474 # characteristic polynomial at x's coordinates and get back
475 # something in terms of t, which is what we want.
476 S = PolynomialRing(self.base_ring(),'t')
477 t = S.gen(0)
478 if r > 0:
479 R = a[0].parent()
480 S = PolynomialRing(S, R.variable_names())
481 t = S(t)
482
483 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
484
485 def coordinate_polynomial_ring(self):
486 r"""
487 The multivariate polynomial ring in which this algebra's
488 :meth:`characteristic_polynomial_of` lives.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (HadamardEJA,
493 ....: RealSymmetricEJA)
494
495 EXAMPLES::
496
497 sage: J = HadamardEJA(2)
498 sage: J.coordinate_polynomial_ring()
499 Multivariate Polynomial Ring in X1, X2...
500 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
501 sage: J.coordinate_polynomial_ring()
502 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
503
504 """
505 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
506 return PolynomialRing(self.base_ring(), var_names)
507
508 def inner_product(self, x, y):
509 """
510 The inner product associated with this Euclidean Jordan algebra.
511
512 Defaults to the trace inner product, but can be overridden by
513 subclasses if they are sure that the necessary properties are
514 satisfied.
515
516 SETUP::
517
518 sage: from mjo.eja.eja_algebra import (random_eja,
519 ....: HadamardEJA,
520 ....: BilinearFormEJA)
521
522 EXAMPLES:
523
524 Our inner product is "associative," which means the following for
525 a symmetric bilinear form::
526
527 sage: set_random_seed()
528 sage: J = random_eja()
529 sage: x,y,z = J.random_elements(3)
530 sage: (x*y).inner_product(z) == y.inner_product(x*z)
531 True
532
533 TESTS:
534
535 Ensure that this is the usual inner product for the algebras
536 over `R^n`::
537
538 sage: set_random_seed()
539 sage: J = HadamardEJA.random_instance()
540 sage: x,y = J.random_elements(2)
541 sage: actual = x.inner_product(y)
542 sage: expected = x.to_vector().inner_product(y.to_vector())
543 sage: actual == expected
544 True
545
546 Ensure that this is one-half of the trace inner-product in a
547 BilinearFormEJA that isn't just the reals (when ``n`` isn't
548 one). This is in Faraut and Koranyi, and also my "On the
549 symmetry..." paper::
550
551 sage: set_random_seed()
552 sage: J = BilinearFormEJA.random_instance()
553 sage: n = J.dimension()
554 sage: x = J.random_element()
555 sage: y = J.random_element()
556 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
557 True
558 """
559 B = self._inner_product_matrix
560 return (B*x.to_vector()).inner_product(y.to_vector())
561
562
563 def is_trivial(self):
564 """
565 Return whether or not this algebra is trivial.
566
567 A trivial algebra contains only the zero element.
568
569 SETUP::
570
571 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
572 ....: TrivialEJA)
573
574 EXAMPLES::
575
576 sage: J = ComplexHermitianEJA(3)
577 sage: J.is_trivial()
578 False
579
580 ::
581
582 sage: J = TrivialEJA()
583 sage: J.is_trivial()
584 True
585
586 """
587 return self.dimension() == 0
588
589
590 def multiplication_table(self):
591 """
592 Return a visual representation of this algebra's multiplication
593 table (on basis elements).
594
595 SETUP::
596
597 sage: from mjo.eja.eja_algebra import JordanSpinEJA
598
599 EXAMPLES::
600
601 sage: J = JordanSpinEJA(4)
602 sage: J.multiplication_table()
603 +----++----+----+----+----+
604 | * || e0 | e1 | e2 | e3 |
605 +====++====+====+====+====+
606 | e0 || e0 | e1 | e2 | e3 |
607 +----++----+----+----+----+
608 | e1 || e1 | e0 | 0 | 0 |
609 +----++----+----+----+----+
610 | e2 || e2 | 0 | e0 | 0 |
611 +----++----+----+----+----+
612 | e3 || e3 | 0 | 0 | e0 |
613 +----++----+----+----+----+
614
615 """
616 n = self.dimension()
617 M = [ [ self.zero() for j in range(n) ]
618 for i in range(n) ]
619 for i in range(n):
620 for j in range(i+1):
621 M[i][j] = self._multiplication_table[i][j]
622 M[j][i] = M[i][j]
623
624 for i in range(n):
625 # Prepend the left "header" column entry Can't do this in
626 # the loop because it messes up the symmetry.
627 M[i] = [self.monomial(i)] + M[i]
628
629 # Prepend the header row.
630 M = [["*"] + list(self.gens())] + M
631 return table(M, header_row=True, header_column=True, frame=True)
632
633
634 def matrix_basis(self):
635 """
636 Return an (often more natural) representation of this algebras
637 basis as an ordered tuple of matrices.
638
639 Every finite-dimensional Euclidean Jordan Algebra is a, up to
640 Jordan isomorphism, a direct sum of five simple
641 algebras---four of which comprise Hermitian matrices. And the
642 last type of algebra can of course be thought of as `n`-by-`1`
643 column matrices (ambiguusly called column vectors) to avoid
644 special cases. As a result, matrices (and column vectors) are
645 a natural representation format for Euclidean Jordan algebra
646 elements.
647
648 But, when we construct an algebra from a basis of matrices,
649 those matrix representations are lost in favor of coordinate
650 vectors *with respect to* that basis. We could eventually
651 convert back if we tried hard enough, but having the original
652 representations handy is valuable enough that we simply store
653 them and return them from this method.
654
655 Why implement this for non-matrix algebras? Avoiding special
656 cases for the :class:`BilinearFormEJA` pays with simplicity in
657 its own right. But mainly, we would like to be able to assume
658 that elements of a :class:`DirectSumEJA` can be displayed
659 nicely, without having to have special classes for direct sums
660 one of whose components was a matrix algebra.
661
662 SETUP::
663
664 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
665 ....: RealSymmetricEJA)
666
667 EXAMPLES::
668
669 sage: J = RealSymmetricEJA(2)
670 sage: J.basis()
671 Finite family {0: e0, 1: e1, 2: e2}
672 sage: J.matrix_basis()
673 (
674 [1 0] [ 0 0.7071067811865475?] [0 0]
675 [0 0], [0.7071067811865475? 0], [0 1]
676 )
677
678 ::
679
680 sage: J = JordanSpinEJA(2)
681 sage: J.basis()
682 Finite family {0: e0, 1: e1}
683 sage: J.matrix_basis()
684 (
685 [1] [0]
686 [0], [1]
687 )
688 """
689 if self._matrix_basis is None:
690 M = self.matrix_space()
691 return tuple( M(b.to_vector()) for b in self.basis() )
692 else:
693 return self._matrix_basis
694
695
696 def matrix_space(self):
697 """
698 Return the matrix space in which this algebra's elements live, if
699 we think of them as matrices (including column vectors of the
700 appropriate size).
701
702 Generally this will be an `n`-by-`1` column-vector space,
703 except when the algebra is trivial. There it's `n`-by-`n`
704 (where `n` is zero), to ensure that two elements of the matrix
705 space (empty matrices) can be multiplied.
706
707 Matrix algebras override this with something more useful.
708 """
709 if self.is_trivial():
710 return MatrixSpace(self.base_ring(), 0)
711 elif self._matrix_basis is None or len(self._matrix_basis) == 0:
712 return MatrixSpace(self.base_ring(), self.dimension(), 1)
713 else:
714 return self._matrix_basis[0].matrix_space()
715
716
717 @cached_method
718 def one(self):
719 """
720 Return the unit element of this algebra.
721
722 SETUP::
723
724 sage: from mjo.eja.eja_algebra import (HadamardEJA,
725 ....: random_eja)
726
727 EXAMPLES::
728
729 sage: J = HadamardEJA(5)
730 sage: J.one()
731 e0 + e1 + e2 + e3 + e4
732
733 TESTS:
734
735 The identity element acts like the identity::
736
737 sage: set_random_seed()
738 sage: J = random_eja()
739 sage: x = J.random_element()
740 sage: J.one()*x == x and x*J.one() == x
741 True
742
743 The matrix of the unit element's operator is the identity::
744
745 sage: set_random_seed()
746 sage: J = random_eja()
747 sage: actual = J.one().operator().matrix()
748 sage: expected = matrix.identity(J.base_ring(), J.dimension())
749 sage: actual == expected
750 True
751
752 Ensure that the cached unit element (often precomputed by
753 hand) agrees with the computed one::
754
755 sage: set_random_seed()
756 sage: J = random_eja()
757 sage: cached = J.one()
758 sage: J.one.clear_cache()
759 sage: J.one() == cached
760 True
761
762 """
763 # We can brute-force compute the matrices of the operators
764 # that correspond to the basis elements of this algebra.
765 # If some linear combination of those basis elements is the
766 # algebra identity, then the same linear combination of
767 # their matrices has to be the identity matrix.
768 #
769 # Of course, matrices aren't vectors in sage, so we have to
770 # appeal to the "long vectors" isometry.
771 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
772
773 # Now we use basic linear algebra to find the coefficients,
774 # of the matrices-as-vectors-linear-combination, which should
775 # work for the original algebra basis too.
776 A = matrix(self.base_ring(), oper_vecs)
777
778 # We used the isometry on the left-hand side already, but we
779 # still need to do it for the right-hand side. Recall that we
780 # wanted something that summed to the identity matrix.
781 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
782
783 # Now if there's an identity element in the algebra, this
784 # should work. We solve on the left to avoid having to
785 # transpose the matrix "A".
786 return self.from_vector(A.solve_left(b))
787
788
789 def peirce_decomposition(self, c):
790 """
791 The Peirce decomposition of this algebra relative to the
792 idempotent ``c``.
793
794 In the future, this can be extended to a complete system of
795 orthogonal idempotents.
796
797 INPUT:
798
799 - ``c`` -- an idempotent of this algebra.
800
801 OUTPUT:
802
803 A triple (J0, J5, J1) containing two subalgebras and one subspace
804 of this algebra,
805
806 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
807 corresponding to the eigenvalue zero.
808
809 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
810 corresponding to the eigenvalue one-half.
811
812 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
813 corresponding to the eigenvalue one.
814
815 These are the only possible eigenspaces for that operator, and this
816 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
817 orthogonal, and are subalgebras of this algebra with the appropriate
818 restrictions.
819
820 SETUP::
821
822 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
823
824 EXAMPLES:
825
826 The canonical example comes from the symmetric matrices, which
827 decompose into diagonal and off-diagonal parts::
828
829 sage: J = RealSymmetricEJA(3)
830 sage: C = matrix(QQ, [ [1,0,0],
831 ....: [0,1,0],
832 ....: [0,0,0] ])
833 sage: c = J(C)
834 sage: J0,J5,J1 = J.peirce_decomposition(c)
835 sage: J0
836 Euclidean Jordan algebra of dimension 1...
837 sage: J5
838 Vector space of degree 6 and dimension 2...
839 sage: J1
840 Euclidean Jordan algebra of dimension 3...
841 sage: J0.one().to_matrix()
842 [0 0 0]
843 [0 0 0]
844 [0 0 1]
845 sage: orig_df = AA.options.display_format
846 sage: AA.options.display_format = 'radical'
847 sage: J.from_vector(J5.basis()[0]).to_matrix()
848 [ 0 0 1/2*sqrt(2)]
849 [ 0 0 0]
850 [1/2*sqrt(2) 0 0]
851 sage: J.from_vector(J5.basis()[1]).to_matrix()
852 [ 0 0 0]
853 [ 0 0 1/2*sqrt(2)]
854 [ 0 1/2*sqrt(2) 0]
855 sage: AA.options.display_format = orig_df
856 sage: J1.one().to_matrix()
857 [1 0 0]
858 [0 1 0]
859 [0 0 0]
860
861 TESTS:
862
863 Every algebra decomposes trivially with respect to its identity
864 element::
865
866 sage: set_random_seed()
867 sage: J = random_eja()
868 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
869 sage: J0.dimension() == 0 and J5.dimension() == 0
870 True
871 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
872 True
873
874 The decomposition is into eigenspaces, and its components are
875 therefore necessarily orthogonal. Moreover, the identity
876 elements in the two subalgebras are the projections onto their
877 respective subspaces of the superalgebra's identity element::
878
879 sage: set_random_seed()
880 sage: J = random_eja()
881 sage: x = J.random_element()
882 sage: if not J.is_trivial():
883 ....: while x.is_nilpotent():
884 ....: x = J.random_element()
885 sage: c = x.subalgebra_idempotent()
886 sage: J0,J5,J1 = J.peirce_decomposition(c)
887 sage: ipsum = 0
888 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
889 ....: w = w.superalgebra_element()
890 ....: y = J.from_vector(y)
891 ....: z = z.superalgebra_element()
892 ....: ipsum += w.inner_product(y).abs()
893 ....: ipsum += w.inner_product(z).abs()
894 ....: ipsum += y.inner_product(z).abs()
895 sage: ipsum
896 0
897 sage: J1(c) == J1.one()
898 True
899 sage: J0(J.one() - c) == J0.one()
900 True
901
902 """
903 if not c.is_idempotent():
904 raise ValueError("element is not idempotent: %s" % c)
905
906 from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
907
908 # Default these to what they should be if they turn out to be
909 # trivial, because eigenspaces_left() won't return eigenvalues
910 # corresponding to trivial spaces (e.g. it returns only the
911 # eigenspace corresponding to lambda=1 if you take the
912 # decomposition relative to the identity element).
913 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
914 J0 = trivial # eigenvalue zero
915 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
916 J1 = trivial # eigenvalue one
917
918 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
919 if eigval == ~(self.base_ring()(2)):
920 J5 = eigspace
921 else:
922 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
923 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
924 gens,
925 check_axioms=False)
926 if eigval == 0:
927 J0 = subalg
928 elif eigval == 1:
929 J1 = subalg
930 else:
931 raise ValueError("unexpected eigenvalue: %s" % eigval)
932
933 return (J0, J5, J1)
934
935
936 def random_element(self, thorough=False):
937 r"""
938 Return a random element of this algebra.
939
940 Our algebra superclass method only returns a linear
941 combination of at most two basis elements. We instead
942 want the vector space "random element" method that
943 returns a more diverse selection.
944
945 INPUT:
946
947 - ``thorough`` -- (boolean; default False) whether or not we
948 should generate irrational coefficients for the random
949 element when our base ring is irrational; this slows the
950 algebra operations to a crawl, but any truly random method
951 should include them
952
953 """
954 # For a general base ring... maybe we can trust this to do the
955 # right thing? Unlikely, but.
956 V = self.vector_space()
957 v = V.random_element()
958
959 if self.base_ring() is AA:
960 # The "random element" method of the algebraic reals is
961 # stupid at the moment, and only returns integers between
962 # -2 and 2, inclusive:
963 #
964 # https://trac.sagemath.org/ticket/30875
965 #
966 # Instead, we implement our own "random vector" method,
967 # and then coerce that into the algebra. We use the vector
968 # space degree here instead of the dimension because a
969 # subalgebra could (for example) be spanned by only two
970 # vectors, each with five coordinates. We need to
971 # generate all five coordinates.
972 if thorough:
973 v *= QQbar.random_element().real()
974 else:
975 v *= QQ.random_element()
976
977 return self.from_vector(V.coordinate_vector(v))
978
979 def random_elements(self, count, thorough=False):
980 """
981 Return ``count`` random elements as a tuple.
982
983 INPUT:
984
985 - ``thorough`` -- (boolean; default False) whether or not we
986 should generate irrational coefficients for the random
987 elements when our base ring is irrational; this slows the
988 algebra operations to a crawl, but any truly random method
989 should include them
990
991 SETUP::
992
993 sage: from mjo.eja.eja_algebra import JordanSpinEJA
994
995 EXAMPLES::
996
997 sage: J = JordanSpinEJA(3)
998 sage: x,y,z = J.random_elements(3)
999 sage: all( [ x in J, y in J, z in J ])
1000 True
1001 sage: len( J.random_elements(10) ) == 10
1002 True
1003
1004 """
1005 return tuple( self.random_element(thorough)
1006 for idx in range(count) )
1007
1008
1009 @cached_method
1010 def _charpoly_coefficients(self):
1011 r"""
1012 The `r` polynomial coefficients of the "characteristic polynomial
1013 of" function.
1014 """
1015 n = self.dimension()
1016 R = self.coordinate_polynomial_ring()
1017 vars = R.gens()
1018 F = R.fraction_field()
1019
1020 def L_x_i_j(i,j):
1021 # From a result in my book, these are the entries of the
1022 # basis representation of L_x.
1023 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1024 for k in range(n) )
1025
1026 L_x = matrix(F, n, n, L_x_i_j)
1027
1028 r = None
1029 if self.rank.is_in_cache():
1030 r = self.rank()
1031 # There's no need to pad the system with redundant
1032 # columns if we *know* they'll be redundant.
1033 n = r
1034
1035 # Compute an extra power in case the rank is equal to
1036 # the dimension (otherwise, we would stop at x^(r-1)).
1037 x_powers = [ (L_x**k)*self.one().to_vector()
1038 for k in range(n+1) ]
1039 A = matrix.column(F, x_powers[:n])
1040 AE = A.extended_echelon_form()
1041 E = AE[:,n:]
1042 A_rref = AE[:,:n]
1043 if r is None:
1044 r = A_rref.rank()
1045 b = x_powers[r]
1046
1047 # The theory says that only the first "r" coefficients are
1048 # nonzero, and they actually live in the original polynomial
1049 # ring and not the fraction field. We negate them because
1050 # in the actual characteristic polynomial, they get moved
1051 # to the other side where x^r lives.
1052 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1053
1054 @cached_method
1055 def rank(self):
1056 r"""
1057 Return the rank of this EJA.
1058
1059 This is a cached method because we know the rank a priori for
1060 all of the algebras we can construct. Thus we can avoid the
1061 expensive ``_charpoly_coefficients()`` call unless we truly
1062 need to compute the whole characteristic polynomial.
1063
1064 SETUP::
1065
1066 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1067 ....: JordanSpinEJA,
1068 ....: RealSymmetricEJA,
1069 ....: ComplexHermitianEJA,
1070 ....: QuaternionHermitianEJA,
1071 ....: random_eja)
1072
1073 EXAMPLES:
1074
1075 The rank of the Jordan spin algebra is always two::
1076
1077 sage: JordanSpinEJA(2).rank()
1078 2
1079 sage: JordanSpinEJA(3).rank()
1080 2
1081 sage: JordanSpinEJA(4).rank()
1082 2
1083
1084 The rank of the `n`-by-`n` Hermitian real, complex, or
1085 quaternion matrices is `n`::
1086
1087 sage: RealSymmetricEJA(4).rank()
1088 4
1089 sage: ComplexHermitianEJA(3).rank()
1090 3
1091 sage: QuaternionHermitianEJA(2).rank()
1092 2
1093
1094 TESTS:
1095
1096 Ensure that every EJA that we know how to construct has a
1097 positive integer rank, unless the algebra is trivial in
1098 which case its rank will be zero::
1099
1100 sage: set_random_seed()
1101 sage: J = random_eja()
1102 sage: r = J.rank()
1103 sage: r in ZZ
1104 True
1105 sage: r > 0 or (r == 0 and J.is_trivial())
1106 True
1107
1108 Ensure that computing the rank actually works, since the ranks
1109 of all simple algebras are known and will be cached by default::
1110
1111 sage: set_random_seed() # long time
1112 sage: J = random_eja() # long time
1113 sage: caches = J.rank() # long time
1114 sage: J.rank.clear_cache() # long time
1115 sage: J.rank() == cached # long time
1116 True
1117
1118 """
1119 return len(self._charpoly_coefficients())
1120
1121
1122 def vector_space(self):
1123 """
1124 Return the vector space that underlies this algebra.
1125
1126 SETUP::
1127
1128 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1129
1130 EXAMPLES::
1131
1132 sage: J = RealSymmetricEJA(2)
1133 sage: J.vector_space()
1134 Vector space of dimension 3 over...
1135
1136 """
1137 return self.zero().to_vector().parent().ambient_vector_space()
1138
1139
1140 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1141
1142 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1143 r"""
1144 New class for algebras whose supplied basis elements have all rational entries.
1145
1146 SETUP::
1147
1148 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1149
1150 EXAMPLES:
1151
1152 The supplied basis is orthonormalized by default::
1153
1154 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1155 sage: J = BilinearFormEJA(B)
1156 sage: J.matrix_basis()
1157 (
1158 [1] [ 0] [ 0]
1159 [0] [1/5] [32/5]
1160 [0], [ 0], [ 5]
1161 )
1162
1163 """
1164 def __init__(self,
1165 basis,
1166 jordan_product,
1167 inner_product,
1168 field=AA,
1169 orthonormalize=True,
1170 prefix='e',
1171 category=None,
1172 check_field=True,
1173 check_axioms=True):
1174
1175 if check_field:
1176 # Abuse the check_field parameter to check that the entries of
1177 # out basis (in ambient coordinates) are in the field QQ.
1178 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1179 raise TypeError("basis not rational")
1180
1181 # Temporary(?) hack to ensure that the matrix and vector bases
1182 # are over the same ring.
1183 basis = tuple( b.change_ring(field) for b in basis )
1184
1185 n = len(basis)
1186 vector_basis = basis
1187
1188 from sage.structure.element import is_Matrix
1189 basis_is_matrices = False
1190
1191 degree = 0
1192 if n > 0:
1193 if is_Matrix(basis[0]):
1194 basis_is_matrices = True
1195 from mjo.eja.eja_utils import _vec2mat
1196 vector_basis = tuple( map(_mat2vec,basis) )
1197 degree = basis[0].nrows()**2
1198 else:
1199 degree = basis[0].degree()
1200
1201 V = VectorSpace(field, degree)
1202
1203 # If we were asked to orthonormalize, and if the orthonormal
1204 # basis is different from the given one, then we also want to
1205 # compute multiplication and inner-product tables for the
1206 # deorthonormalized basis. These can be used later to
1207 # construct a deorthonormalized copy of this algebra over QQ
1208 # in which several operations are much faster.
1209 self._rational_algebra = None
1210
1211 if orthonormalize:
1212 if self.base_ring() is not QQ:
1213 # There's no point in constructing the extra algebra if this
1214 # one is already rational. If the original basis is rational
1215 # but normalization would make it irrational, then this whole
1216 # constructor will just fail anyway as it tries to stick an
1217 # irrational number into a rational algebra.
1218 #
1219 # Note: the same Jordan and inner-products work here,
1220 # because they are necessarily defined with respect to
1221 # ambient coordinates and not any particular basis.
1222 self._rational_algebra = RationalBasisEuclideanJordanAlgebra(
1223 basis,
1224 jordan_product,
1225 inner_product,
1226 field=QQ,
1227 orthonormalize=False,
1228 prefix=prefix,
1229 category=category,
1230 check_field=False,
1231 check_axioms=False)
1232
1233 # Compute the deorthonormalized tables before we orthonormalize
1234 # the given basis. The "check" parameter here guarantees that
1235 # the basis is linearly-independent.
1236 W = V.span_of_basis( vector_basis, check=check_axioms)
1237
1238 # Note: the Jordan and inner-products are defined in terms
1239 # of the ambient basis. It's important that their arguments
1240 # are in ambient coordinates as well.
1241 for i in range(n):
1242 for j in range(i+1):
1243 # given basis w.r.t. ambient coords
1244 q_i = vector_basis[i]
1245 q_j = vector_basis[j]
1246
1247 if basis_is_matrices:
1248 q_i = _vec2mat(q_i)
1249 q_j = _vec2mat(q_j)
1250
1251 elt = jordan_product(q_i, q_j)
1252 ip = inner_product(q_i, q_j)
1253
1254 if basis_is_matrices:
1255 # do another mat2vec because the multiplication
1256 # table is in terms of vectors
1257 elt = _mat2vec(elt)
1258
1259 # We overwrite the name "vector_basis" in a second, but never modify it
1260 # in place, to this effectively makes a copy of it.
1261 deortho_vector_basis = vector_basis
1262 self._deortho_matrix = None
1263
1264 if orthonormalize:
1265 from mjo.eja.eja_utils import gram_schmidt
1266 if basis_is_matrices:
1267 vector_ip = lambda x,y: inner_product(_vec2mat(x), _vec2mat(y))
1268 vector_basis = gram_schmidt(vector_basis, vector_ip)
1269 else:
1270 vector_basis = gram_schmidt(vector_basis, inner_product)
1271
1272 # Normalize the "matrix" basis, too!
1273 basis = vector_basis
1274
1275 if basis_is_matrices:
1276 basis = tuple( map(_vec2mat,basis) )
1277
1278 W = V.span_of_basis( vector_basis, check=check_axioms)
1279
1280 # Now "W" is the vector space of our algebra coordinates. The
1281 # variables "X1", "X2",... refer to the entries of vectors in
1282 # W. Thus to convert back and forth between the orthonormal
1283 # coordinates and the given ones, we need to stick the original
1284 # basis in W.
1285 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
1286 self._deortho_matrix = matrix( U.coordinate_vector(q)
1287 for q in vector_basis )
1288
1289 # If the superclass constructor is going to verify the
1290 # symmetry of this table, it has better at least be
1291 # square...
1292 if check_axioms:
1293 mult_table = [ [0 for j in range(n)] for i in range(n) ]
1294 ip_table = [ [0 for j in range(n)] for i in range(n) ]
1295 else:
1296 mult_table = [ [0 for j in range(i+1)] for i in range(n) ]
1297 ip_table = [ [0 for j in range(i+1)] for i in range(n) ]
1298
1299 # Note: the Jordan and inner-products are defined in terms
1300 # of the ambient basis. It's important that their arguments
1301 # are in ambient coordinates as well.
1302 for i in range(n):
1303 for j in range(i+1):
1304 # ortho basis w.r.t. ambient coords
1305 q_i = vector_basis[i]
1306 q_j = vector_basis[j]
1307
1308 if basis_is_matrices:
1309 q_i = _vec2mat(q_i)
1310 q_j = _vec2mat(q_j)
1311
1312 elt = jordan_product(q_i, q_j)
1313 ip = inner_product(q_i, q_j)
1314
1315 if basis_is_matrices:
1316 # do another mat2vec because the multiplication
1317 # table is in terms of vectors
1318 elt = _mat2vec(elt)
1319
1320 elt = W.coordinate_vector(elt)
1321 mult_table[i][j] = elt
1322 ip_table[i][j] = ip
1323 if check_axioms:
1324 # The tables are square if we're verifying that they
1325 # are commutative.
1326 mult_table[j][i] = elt
1327 ip_table[j][i] = ip
1328
1329 if basis_is_matrices:
1330 for m in basis:
1331 m.set_immutable()
1332 else:
1333 basis = tuple( x.column() for x in basis )
1334
1335 super().__init__(field,
1336 mult_table,
1337 ip_table,
1338 prefix,
1339 category,
1340 basis, # matrix basis
1341 check_field,
1342 check_axioms)
1343
1344 @cached_method
1345 def _charpoly_coefficients(self):
1346 r"""
1347 SETUP::
1348
1349 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1350 ....: JordanSpinEJA)
1351
1352 EXAMPLES:
1353
1354 The base ring of the resulting polynomial coefficients is what
1355 it should be, and not the rationals (unless the algebra was
1356 already over the rationals)::
1357
1358 sage: J = JordanSpinEJA(3)
1359 sage: J._charpoly_coefficients()
1360 (X1^2 - X2^2 - X3^2, -2*X1)
1361 sage: a0 = J._charpoly_coefficients()[0]
1362 sage: J.base_ring()
1363 Algebraic Real Field
1364 sage: a0.base_ring()
1365 Algebraic Real Field
1366
1367 """
1368 if self.base_ring() is QQ or self._rational_algebra is None:
1369 # There's no need to construct *another* algebra over the
1370 # rationals if this one is already over the
1371 # rationals. Likewise, if we never orthonormalized our
1372 # basis, we might as well just use the given one.
1373 superclass = super(RationalBasisEuclideanJordanAlgebra, self)
1374 return superclass._charpoly_coefficients()
1375
1376 # Do the computation over the rationals. The answer will be
1377 # the same, because all we've done is a change of basis.
1378 # Then, change back from QQ to our real base ring
1379 a = ( a_i.change_ring(self.base_ring())
1380 for a_i in self._rational_algebra._charpoly_coefficients() )
1381
1382 # Now convert the coordinate variables back to the
1383 # deorthonormalized ones.
1384 R = self.coordinate_polynomial_ring()
1385 from sage.modules.free_module_element import vector
1386 X = vector(R, R.gens())
1387 BX = self._deortho_matrix*X
1388
1389 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1390 return tuple( a_i.subs(subs_dict) for a_i in a )
1391
1392 class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
1393 r"""
1394 A class for the Euclidean Jordan algebras that we know by name.
1395
1396 These are the Jordan algebras whose basis, multiplication table,
1397 rank, and so on are known a priori. More to the point, they are
1398 the Euclidean Jordan algebras for which we are able to conjure up
1399 a "random instance."
1400
1401 SETUP::
1402
1403 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1404
1405 TESTS:
1406
1407 Our basis is normalized with respect to the algebra's inner
1408 product, unless we specify otherwise::
1409
1410 sage: set_random_seed()
1411 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1412 sage: all( b.norm() == 1 for b in J.gens() )
1413 True
1414
1415 Since our basis is orthonormal with respect to the algebra's inner
1416 product, and since we know that this algebra is an EJA, any
1417 left-multiplication operator's matrix will be symmetric because
1418 natural->EJA basis representation is an isometry and within the
1419 EJA the operator is self-adjoint by the Jordan axiom::
1420
1421 sage: set_random_seed()
1422 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1423 sage: x = J.random_element()
1424 sage: x.operator().is_self_adjoint()
1425 True
1426 """
1427
1428 @staticmethod
1429 def _max_random_instance_size():
1430 """
1431 Return an integer "size" that is an upper bound on the size of
1432 this algebra when it is used in a random test
1433 case. Unfortunately, the term "size" is ambiguous -- when
1434 dealing with `R^n` under either the Hadamard or Jordan spin
1435 product, the "size" refers to the dimension `n`. When dealing
1436 with a matrix algebra (real symmetric or complex/quaternion
1437 Hermitian), it refers to the size of the matrix, which is far
1438 less than the dimension of the underlying vector space.
1439
1440 This method must be implemented in each subclass.
1441 """
1442 raise NotImplementedError
1443
1444 @classmethod
1445 def random_instance(cls, *args, **kwargs):
1446 """
1447 Return a random instance of this type of algebra.
1448
1449 This method should be implemented in each subclass.
1450 """
1451 from sage.misc.prandom import choice
1452 eja_class = choice(cls.__subclasses__())
1453
1454 # These all bubble up to the RationalBasisEuclideanJordanAlgebra
1455 # superclass constructor, so any (kw)args valid there are also
1456 # valid here.
1457 return eja_class.random_instance(*args, **kwargs)
1458
1459
1460 class MatrixEuclideanJordanAlgebra:
1461 @staticmethod
1462 def dimension_over_reals():
1463 r"""
1464 The dimension of this matrix's base ring over the reals.
1465
1466 The reals are dimension one over themselves, obviously; that's
1467 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1468 have dimension two. Finally, the quaternions have dimension
1469 four over the reals.
1470
1471 This is used to determine the size of the matrix returned from
1472 :meth:`real_embed`, among other things.
1473 """
1474 raise NotImplementedError
1475
1476 @classmethod
1477 def real_embed(cls,M):
1478 """
1479 Embed the matrix ``M`` into a space of real matrices.
1480
1481 The matrix ``M`` can have entries in any field at the moment:
1482 the real numbers, complex numbers, or quaternions. And although
1483 they are not a field, we can probably support octonions at some
1484 point, too. This function returns a real matrix that "acts like"
1485 the original with respect to matrix multiplication; i.e.
1486
1487 real_embed(M*N) = real_embed(M)*real_embed(N)
1488
1489 """
1490 if M.ncols() != M.nrows():
1491 raise ValueError("the matrix 'M' must be square")
1492 return M
1493
1494
1495 @classmethod
1496 def real_unembed(cls,M):
1497 """
1498 The inverse of :meth:`real_embed`.
1499 """
1500 if M.ncols() != M.nrows():
1501 raise ValueError("the matrix 'M' must be square")
1502 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1503 raise ValueError("the matrix 'M' must be a real embedding")
1504 return M
1505
1506 @staticmethod
1507 def jordan_product(X,Y):
1508 return (X*Y + Y*X)/2
1509
1510 @classmethod
1511 def trace_inner_product(cls,X,Y):
1512 r"""
1513 Compute the trace inner-product of two real-embeddings.
1514
1515 SETUP::
1516
1517 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1518 ....: ComplexHermitianEJA,
1519 ....: QuaternionHermitianEJA)
1520
1521 EXAMPLES::
1522
1523 This gives the same answer as it would if we computed the trace
1524 from the unembedded (original) matrices::
1525
1526 sage: set_random_seed()
1527 sage: J = RealSymmetricEJA.random_instance()
1528 sage: x,y = J.random_elements(2)
1529 sage: Xe = x.to_matrix()
1530 sage: Ye = y.to_matrix()
1531 sage: X = J.real_unembed(Xe)
1532 sage: Y = J.real_unembed(Ye)
1533 sage: expected = (X*Y).trace()
1534 sage: actual = J.trace_inner_product(Xe,Ye)
1535 sage: actual == expected
1536 True
1537
1538 ::
1539
1540 sage: set_random_seed()
1541 sage: J = ComplexHermitianEJA.random_instance()
1542 sage: x,y = J.random_elements(2)
1543 sage: Xe = x.to_matrix()
1544 sage: Ye = y.to_matrix()
1545 sage: X = J.real_unembed(Xe)
1546 sage: Y = J.real_unembed(Ye)
1547 sage: expected = (X*Y).trace().real()
1548 sage: actual = J.trace_inner_product(Xe,Ye)
1549 sage: actual == expected
1550 True
1551
1552 ::
1553
1554 sage: set_random_seed()
1555 sage: J = QuaternionHermitianEJA.random_instance()
1556 sage: x,y = J.random_elements(2)
1557 sage: Xe = x.to_matrix()
1558 sage: Ye = y.to_matrix()
1559 sage: X = J.real_unembed(Xe)
1560 sage: Y = J.real_unembed(Ye)
1561 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1562 sage: actual = J.trace_inner_product(Xe,Ye)
1563 sage: actual == expected
1564 True
1565
1566 """
1567 Xu = cls.real_unembed(X)
1568 Yu = cls.real_unembed(Y)
1569 tr = (Xu*Yu).trace()
1570
1571 try:
1572 # Works in QQ, AA, RDF, et cetera.
1573 return tr.real()
1574 except AttributeError:
1575 # A quaternion doesn't have a real() method, but does
1576 # have coefficient_tuple() method that returns the
1577 # coefficients of 1, i, j, and k -- in that order.
1578 return tr.coefficient_tuple()[0]
1579
1580
1581 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1582 @staticmethod
1583 def dimension_over_reals():
1584 return 1
1585
1586
1587 class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
1588 RealMatrixEuclideanJordanAlgebra):
1589 """
1590 The rank-n simple EJA consisting of real symmetric n-by-n
1591 matrices, the usual symmetric Jordan product, and the trace inner
1592 product. It has dimension `(n^2 + n)/2` over the reals.
1593
1594 SETUP::
1595
1596 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1597
1598 EXAMPLES::
1599
1600 sage: J = RealSymmetricEJA(2)
1601 sage: e0, e1, e2 = J.gens()
1602 sage: e0*e0
1603 e0
1604 sage: e1*e1
1605 1/2*e0 + 1/2*e2
1606 sage: e2*e2
1607 e2
1608
1609 In theory, our "field" can be any subfield of the reals::
1610
1611 sage: RealSymmetricEJA(2, field=RDF)
1612 Euclidean Jordan algebra of dimension 3 over Real Double Field
1613 sage: RealSymmetricEJA(2, field=RR)
1614 Euclidean Jordan algebra of dimension 3 over Real Field with
1615 53 bits of precision
1616
1617 TESTS:
1618
1619 The dimension of this algebra is `(n^2 + n) / 2`::
1620
1621 sage: set_random_seed()
1622 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1623 sage: n = ZZ.random_element(1, n_max)
1624 sage: J = RealSymmetricEJA(n)
1625 sage: J.dimension() == (n^2 + n)/2
1626 True
1627
1628 The Jordan multiplication is what we think it is::
1629
1630 sage: set_random_seed()
1631 sage: J = RealSymmetricEJA.random_instance()
1632 sage: x,y = J.random_elements(2)
1633 sage: actual = (x*y).to_matrix()
1634 sage: X = x.to_matrix()
1635 sage: Y = y.to_matrix()
1636 sage: expected = (X*Y + Y*X)/2
1637 sage: actual == expected
1638 True
1639 sage: J(expected) == x*y
1640 True
1641
1642 We can change the generator prefix::
1643
1644 sage: RealSymmetricEJA(3, prefix='q').gens()
1645 (q0, q1, q2, q3, q4, q5)
1646
1647 We can construct the (trivial) algebra of rank zero::
1648
1649 sage: RealSymmetricEJA(0)
1650 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1651
1652 """
1653 @classmethod
1654 def _denormalized_basis(cls, n):
1655 """
1656 Return a basis for the space of real symmetric n-by-n matrices.
1657
1658 SETUP::
1659
1660 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1661
1662 TESTS::
1663
1664 sage: set_random_seed()
1665 sage: n = ZZ.random_element(1,5)
1666 sage: B = RealSymmetricEJA._denormalized_basis(n)
1667 sage: all( M.is_symmetric() for M in B)
1668 True
1669
1670 """
1671 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1672 # coordinates.
1673 S = []
1674 for i in range(n):
1675 for j in range(i+1):
1676 Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
1677 if i == j:
1678 Sij = Eij
1679 else:
1680 Sij = Eij + Eij.transpose()
1681 S.append(Sij)
1682 return tuple(S)
1683
1684
1685 @staticmethod
1686 def _max_random_instance_size():
1687 return 4 # Dimension 10
1688
1689 @classmethod
1690 def random_instance(cls, **kwargs):
1691 """
1692 Return a random instance of this type of algebra.
1693 """
1694 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1695 return cls(n, **kwargs)
1696
1697 def __init__(self, n, **kwargs):
1698 # We know this is a valid EJA, but will double-check
1699 # if the user passes check_axioms=True.
1700 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1701
1702 super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
1703 self.jordan_product,
1704 self.trace_inner_product,
1705 **kwargs)
1706
1707 # TODO: this could be factored out somehow, but is left here
1708 # because the MatrixEuclideanJordanAlgebra is not presently
1709 # a subclass of the FDEJA class that defines rank() and one().
1710 self.rank.set_cache(n)
1711 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1712 self.one.set_cache(self(idV))
1713
1714
1715
1716 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1717 @staticmethod
1718 def dimension_over_reals():
1719 return 2
1720
1721 @classmethod
1722 def real_embed(cls,M):
1723 """
1724 Embed the n-by-n complex matrix ``M`` into the space of real
1725 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1726 bi` to the block matrix ``[[a,b],[-b,a]]``.
1727
1728 SETUP::
1729
1730 sage: from mjo.eja.eja_algebra import \
1731 ....: ComplexMatrixEuclideanJordanAlgebra
1732
1733 EXAMPLES::
1734
1735 sage: F = QuadraticField(-1, 'I')
1736 sage: x1 = F(4 - 2*i)
1737 sage: x2 = F(1 + 2*i)
1738 sage: x3 = F(-i)
1739 sage: x4 = F(6)
1740 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1741 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1742 [ 4 -2| 1 2]
1743 [ 2 4|-2 1]
1744 [-----+-----]
1745 [ 0 -1| 6 0]
1746 [ 1 0| 0 6]
1747
1748 TESTS:
1749
1750 Embedding is a homomorphism (isomorphism, in fact)::
1751
1752 sage: set_random_seed()
1753 sage: n = ZZ.random_element(3)
1754 sage: F = QuadraticField(-1, 'I')
1755 sage: X = random_matrix(F, n)
1756 sage: Y = random_matrix(F, n)
1757 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1758 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1759 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1760 sage: Xe*Ye == XYe
1761 True
1762
1763 """
1764 super(ComplexMatrixEuclideanJordanAlgebra,cls).real_embed(M)
1765 n = M.nrows()
1766
1767 # We don't need any adjoined elements...
1768 field = M.base_ring().base_ring()
1769
1770 blocks = []
1771 for z in M.list():
1772 a = z.list()[0] # real part, I guess
1773 b = z.list()[1] # imag part, I guess
1774 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1775
1776 return matrix.block(field, n, blocks)
1777
1778
1779 @classmethod
1780 def real_unembed(cls,M):
1781 """
1782 The inverse of _embed_complex_matrix().
1783
1784 SETUP::
1785
1786 sage: from mjo.eja.eja_algebra import \
1787 ....: ComplexMatrixEuclideanJordanAlgebra
1788
1789 EXAMPLES::
1790
1791 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1792 ....: [-2, 1, -4, 3],
1793 ....: [ 9, 10, 11, 12],
1794 ....: [-10, 9, -12, 11] ])
1795 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1796 [ 2*I + 1 4*I + 3]
1797 [ 10*I + 9 12*I + 11]
1798
1799 TESTS:
1800
1801 Unembedding is the inverse of embedding::
1802
1803 sage: set_random_seed()
1804 sage: F = QuadraticField(-1, 'I')
1805 sage: M = random_matrix(F, 3)
1806 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1807 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1808 True
1809
1810 """
1811 super(ComplexMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
1812 n = ZZ(M.nrows())
1813 d = cls.dimension_over_reals()
1814
1815 # If "M" was normalized, its base ring might have roots
1816 # adjoined and they can stick around after unembedding.
1817 field = M.base_ring()
1818 R = PolynomialRing(field, 'z')
1819 z = R.gen()
1820
1821 # Sage doesn't know how to adjoin the complex "i" (the root of
1822 # x^2 + 1) to a field in a general way. Here, we just enumerate
1823 # all of the cases that I have cared to support so far.
1824 if field is AA:
1825 # Sage doesn't know how to embed AA into QQbar, i.e. how
1826 # to adjoin sqrt(-1) to AA.
1827 F = QQbar
1828 elif not field.is_exact():
1829 # RDF or RR
1830 F = field.complex_field()
1831 else:
1832 # Works for QQ and... maybe some other fields.
1833 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1834 i = F.gen()
1835
1836 # Go top-left to bottom-right (reading order), converting every
1837 # 2-by-2 block we see to a single complex element.
1838 elements = []
1839 for k in range(n/d):
1840 for j in range(n/d):
1841 submat = M[d*k:d*k+d,d*j:d*j+d]
1842 if submat[0,0] != submat[1,1]:
1843 raise ValueError('bad on-diagonal submatrix')
1844 if submat[0,1] != -submat[1,0]:
1845 raise ValueError('bad off-diagonal submatrix')
1846 z = submat[0,0] + submat[0,1]*i
1847 elements.append(z)
1848
1849 return matrix(F, n/d, elements)
1850
1851
1852 class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
1853 ComplexMatrixEuclideanJordanAlgebra):
1854 """
1855 The rank-n simple EJA consisting of complex Hermitian n-by-n
1856 matrices over the real numbers, the usual symmetric Jordan product,
1857 and the real-part-of-trace inner product. It has dimension `n^2` over
1858 the reals.
1859
1860 SETUP::
1861
1862 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1863
1864 EXAMPLES:
1865
1866 In theory, our "field" can be any subfield of the reals::
1867
1868 sage: ComplexHermitianEJA(2, field=RDF)
1869 Euclidean Jordan algebra of dimension 4 over Real Double Field
1870 sage: ComplexHermitianEJA(2, field=RR)
1871 Euclidean Jordan algebra of dimension 4 over Real Field with
1872 53 bits of precision
1873
1874 TESTS:
1875
1876 The dimension of this algebra is `n^2`::
1877
1878 sage: set_random_seed()
1879 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1880 sage: n = ZZ.random_element(1, n_max)
1881 sage: J = ComplexHermitianEJA(n)
1882 sage: J.dimension() == n^2
1883 True
1884
1885 The Jordan multiplication is what we think it is::
1886
1887 sage: set_random_seed()
1888 sage: J = ComplexHermitianEJA.random_instance()
1889 sage: x,y = J.random_elements(2)
1890 sage: actual = (x*y).to_matrix()
1891 sage: X = x.to_matrix()
1892 sage: Y = y.to_matrix()
1893 sage: expected = (X*Y + Y*X)/2
1894 sage: actual == expected
1895 True
1896 sage: J(expected) == x*y
1897 True
1898
1899 We can change the generator prefix::
1900
1901 sage: ComplexHermitianEJA(2, prefix='z').gens()
1902 (z0, z1, z2, z3)
1903
1904 We can construct the (trivial) algebra of rank zero::
1905
1906 sage: ComplexHermitianEJA(0)
1907 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1908
1909 """
1910
1911 @classmethod
1912 def _denormalized_basis(cls, n):
1913 """
1914 Returns a basis for the space of complex Hermitian n-by-n matrices.
1915
1916 Why do we embed these? Basically, because all of numerical linear
1917 algebra assumes that you're working with vectors consisting of `n`
1918 entries from a field and scalars from the same field. There's no way
1919 to tell SageMath that (for example) the vectors contain complex
1920 numbers, while the scalar field is real.
1921
1922 SETUP::
1923
1924 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1925
1926 TESTS::
1927
1928 sage: set_random_seed()
1929 sage: n = ZZ.random_element(1,5)
1930 sage: field = QuadraticField(2, 'sqrt2')
1931 sage: B = ComplexHermitianEJA._denormalized_basis(n)
1932 sage: all( M.is_symmetric() for M in B)
1933 True
1934
1935 """
1936 field = ZZ
1937 R = PolynomialRing(field, 'z')
1938 z = R.gen()
1939 F = field.extension(z**2 + 1, 'I')
1940 I = F.gen(1)
1941
1942 # This is like the symmetric case, but we need to be careful:
1943 #
1944 # * We want conjugate-symmetry, not just symmetry.
1945 # * The diagonal will (as a result) be real.
1946 #
1947 S = []
1948 for i in range(n):
1949 for j in range(i+1):
1950 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1951 if i == j:
1952 Sij = cls.real_embed(Eij)
1953 S.append(Sij)
1954 else:
1955 # The second one has a minus because it's conjugated.
1956 Sij_real = cls.real_embed(Eij + Eij.transpose())
1957 S.append(Sij_real)
1958 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1959 S.append(Sij_imag)
1960
1961 # Since we embedded these, we can drop back to the "field" that we
1962 # started with instead of the complex extension "F".
1963 return tuple( s.change_ring(field) for s in S )
1964
1965
1966 def __init__(self, n, **kwargs):
1967 # We know this is a valid EJA, but will double-check
1968 # if the user passes check_axioms=True.
1969 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1970
1971 super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
1972 self.jordan_product,
1973 self.trace_inner_product,
1974 **kwargs)
1975 # TODO: this could be factored out somehow, but is left here
1976 # because the MatrixEuclideanJordanAlgebra is not presently
1977 # a subclass of the FDEJA class that defines rank() and one().
1978 self.rank.set_cache(n)
1979 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1980 self.one.set_cache(self(idV))
1981
1982 @staticmethod
1983 def _max_random_instance_size():
1984 return 3 # Dimension 9
1985
1986 @classmethod
1987 def random_instance(cls, **kwargs):
1988 """
1989 Return a random instance of this type of algebra.
1990 """
1991 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1992 return cls(n, **kwargs)
1993
1994 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1995 @staticmethod
1996 def dimension_over_reals():
1997 return 4
1998
1999 @classmethod
2000 def real_embed(cls,M):
2001 """
2002 Embed the n-by-n quaternion matrix ``M`` into the space of real
2003 matrices of size 4n-by-4n by first sending each quaternion entry `z
2004 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
2005 c+di],[-c + di, a-bi]]`, and then embedding those into a real
2006 matrix.
2007
2008 SETUP::
2009
2010 sage: from mjo.eja.eja_algebra import \
2011 ....: QuaternionMatrixEuclideanJordanAlgebra
2012
2013 EXAMPLES::
2014
2015 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2016 sage: i,j,k = Q.gens()
2017 sage: x = 1 + 2*i + 3*j + 4*k
2018 sage: M = matrix(Q, 1, [[x]])
2019 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2020 [ 1 2 3 4]
2021 [-2 1 -4 3]
2022 [-3 4 1 -2]
2023 [-4 -3 2 1]
2024
2025 Embedding is a homomorphism (isomorphism, in fact)::
2026
2027 sage: set_random_seed()
2028 sage: n = ZZ.random_element(2)
2029 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2030 sage: X = random_matrix(Q, n)
2031 sage: Y = random_matrix(Q, n)
2032 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
2033 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
2034 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
2035 sage: Xe*Ye == XYe
2036 True
2037
2038 """
2039 super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_embed(M)
2040 quaternions = M.base_ring()
2041 n = M.nrows()
2042
2043 F = QuadraticField(-1, 'I')
2044 i = F.gen()
2045
2046 blocks = []
2047 for z in M.list():
2048 t = z.coefficient_tuple()
2049 a = t[0]
2050 b = t[1]
2051 c = t[2]
2052 d = t[3]
2053 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2054 [-c + d*i, a - b*i]])
2055 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
2056 blocks.append(realM)
2057
2058 # We should have real entries by now, so use the realest field
2059 # we've got for the return value.
2060 return matrix.block(quaternions.base_ring(), n, blocks)
2061
2062
2063
2064 @classmethod
2065 def real_unembed(cls,M):
2066 """
2067 The inverse of _embed_quaternion_matrix().
2068
2069 SETUP::
2070
2071 sage: from mjo.eja.eja_algebra import \
2072 ....: QuaternionMatrixEuclideanJordanAlgebra
2073
2074 EXAMPLES::
2075
2076 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2077 ....: [-2, 1, -4, 3],
2078 ....: [-3, 4, 1, -2],
2079 ....: [-4, -3, 2, 1]])
2080 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
2081 [1 + 2*i + 3*j + 4*k]
2082
2083 TESTS:
2084
2085 Unembedding is the inverse of embedding::
2086
2087 sage: set_random_seed()
2088 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2089 sage: M = random_matrix(Q, 3)
2090 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2091 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
2092 True
2093
2094 """
2095 super(QuaternionMatrixEuclideanJordanAlgebra,cls).real_unembed(M)
2096 n = ZZ(M.nrows())
2097 d = cls.dimension_over_reals()
2098
2099 # Use the base ring of the matrix to ensure that its entries can be
2100 # multiplied by elements of the quaternion algebra.
2101 field = M.base_ring()
2102 Q = QuaternionAlgebra(field,-1,-1)
2103 i,j,k = Q.gens()
2104
2105 # Go top-left to bottom-right (reading order), converting every
2106 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2107 # quaternion block.
2108 elements = []
2109 for l in range(n/d):
2110 for m in range(n/d):
2111 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
2112 M[d*l:d*l+d,d*m:d*m+d] )
2113 if submat[0,0] != submat[1,1].conjugate():
2114 raise ValueError('bad on-diagonal submatrix')
2115 if submat[0,1] != -submat[1,0].conjugate():
2116 raise ValueError('bad off-diagonal submatrix')
2117 z = submat[0,0].real()
2118 z += submat[0,0].imag()*i
2119 z += submat[0,1].real()*j
2120 z += submat[0,1].imag()*k
2121 elements.append(z)
2122
2123 return matrix(Q, n/d, elements)
2124
2125
2126 class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
2127 QuaternionMatrixEuclideanJordanAlgebra):
2128 r"""
2129 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2130 matrices, the usual symmetric Jordan product, and the
2131 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2132 the reals.
2133
2134 SETUP::
2135
2136 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2137
2138 EXAMPLES:
2139
2140 In theory, our "field" can be any subfield of the reals::
2141
2142 sage: QuaternionHermitianEJA(2, field=RDF)
2143 Euclidean Jordan algebra of dimension 6 over Real Double Field
2144 sage: QuaternionHermitianEJA(2, field=RR)
2145 Euclidean Jordan algebra of dimension 6 over Real Field with
2146 53 bits of precision
2147
2148 TESTS:
2149
2150 The dimension of this algebra is `2*n^2 - n`::
2151
2152 sage: set_random_seed()
2153 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2154 sage: n = ZZ.random_element(1, n_max)
2155 sage: J = QuaternionHermitianEJA(n)
2156 sage: J.dimension() == 2*(n^2) - n
2157 True
2158
2159 The Jordan multiplication is what we think it is::
2160
2161 sage: set_random_seed()
2162 sage: J = QuaternionHermitianEJA.random_instance()
2163 sage: x,y = J.random_elements(2)
2164 sage: actual = (x*y).to_matrix()
2165 sage: X = x.to_matrix()
2166 sage: Y = y.to_matrix()
2167 sage: expected = (X*Y + Y*X)/2
2168 sage: actual == expected
2169 True
2170 sage: J(expected) == x*y
2171 True
2172
2173 We can change the generator prefix::
2174
2175 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2176 (a0, a1, a2, a3, a4, a5)
2177
2178 We can construct the (trivial) algebra of rank zero::
2179
2180 sage: QuaternionHermitianEJA(0)
2181 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2182
2183 """
2184 @classmethod
2185 def _denormalized_basis(cls, n):
2186 """
2187 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2188
2189 Why do we embed these? Basically, because all of numerical
2190 linear algebra assumes that you're working with vectors consisting
2191 of `n` entries from a field and scalars from the same field. There's
2192 no way to tell SageMath that (for example) the vectors contain
2193 complex numbers, while the scalar field is real.
2194
2195 SETUP::
2196
2197 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2198
2199 TESTS::
2200
2201 sage: set_random_seed()
2202 sage: n = ZZ.random_element(1,5)
2203 sage: B = QuaternionHermitianEJA._denormalized_basis(n)
2204 sage: all( M.is_symmetric() for M in B )
2205 True
2206
2207 """
2208 field = ZZ
2209 Q = QuaternionAlgebra(QQ,-1,-1)
2210 I,J,K = Q.gens()
2211
2212 # This is like the symmetric case, but we need to be careful:
2213 #
2214 # * We want conjugate-symmetry, not just symmetry.
2215 # * The diagonal will (as a result) be real.
2216 #
2217 S = []
2218 for i in range(n):
2219 for j in range(i+1):
2220 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
2221 if i == j:
2222 Sij = cls.real_embed(Eij)
2223 S.append(Sij)
2224 else:
2225 # The second, third, and fourth ones have a minus
2226 # because they're conjugated.
2227 Sij_real = cls.real_embed(Eij + Eij.transpose())
2228 S.append(Sij_real)
2229 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
2230 S.append(Sij_I)
2231 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
2232 S.append(Sij_J)
2233 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2234 S.append(Sij_K)
2235
2236 # Since we embedded these, we can drop back to the "field" that we
2237 # started with instead of the quaternion algebra "Q".
2238 return tuple( s.change_ring(field) for s in S )
2239
2240
2241 def __init__(self, n, **kwargs):
2242 # We know this is a valid EJA, but will double-check
2243 # if the user passes check_axioms=True.
2244 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2245
2246 super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
2247 self.jordan_product,
2248 self.trace_inner_product,
2249 **kwargs)
2250 # TODO: this could be factored out somehow, but is left here
2251 # because the MatrixEuclideanJordanAlgebra is not presently
2252 # a subclass of the FDEJA class that defines rank() and one().
2253 self.rank.set_cache(n)
2254 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2255 self.one.set_cache(self(idV))
2256
2257
2258 @staticmethod
2259 def _max_random_instance_size():
2260 r"""
2261 The maximum rank of a random QuaternionHermitianEJA.
2262 """
2263 return 2 # Dimension 6
2264
2265 @classmethod
2266 def random_instance(cls, **kwargs):
2267 """
2268 Return a random instance of this type of algebra.
2269 """
2270 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2271 return cls(n, **kwargs)
2272
2273
2274 class HadamardEJA(ConcreteEuclideanJordanAlgebra):
2275 """
2276 Return the Euclidean Jordan Algebra corresponding to the set
2277 `R^n` under the Hadamard product.
2278
2279 Note: this is nothing more than the Cartesian product of ``n``
2280 copies of the spin algebra. Once Cartesian product algebras
2281 are implemented, this can go.
2282
2283 SETUP::
2284
2285 sage: from mjo.eja.eja_algebra import HadamardEJA
2286
2287 EXAMPLES:
2288
2289 This multiplication table can be verified by hand::
2290
2291 sage: J = HadamardEJA(3)
2292 sage: e0,e1,e2 = J.gens()
2293 sage: e0*e0
2294 e0
2295 sage: e0*e1
2296 0
2297 sage: e0*e2
2298 0
2299 sage: e1*e1
2300 e1
2301 sage: e1*e2
2302 0
2303 sage: e2*e2
2304 e2
2305
2306 TESTS:
2307
2308 We can change the generator prefix::
2309
2310 sage: HadamardEJA(3, prefix='r').gens()
2311 (r0, r1, r2)
2312
2313 """
2314 def __init__(self, n, **kwargs):
2315 def jordan_product(x,y):
2316 P = x.parent()
2317 return P(tuple( xi*yi for (xi,yi) in zip(x,y) ))
2318 def inner_product(x,y):
2319 return x.inner_product(y)
2320
2321 # New defaults for keyword arguments. Don't orthonormalize
2322 # because our basis is already orthonormal with respect to our
2323 # inner-product. Don't check the axioms, because we know this
2324 # is a valid EJA... but do double-check if the user passes
2325 # check_axioms=True. Note: we DON'T override the "check_field"
2326 # default here, because the user can pass in a field!
2327 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2328 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2329
2330
2331 standard_basis = FreeModule(ZZ, n).basis()
2332 super(HadamardEJA, self).__init__(standard_basis,
2333 jordan_product,
2334 inner_product,
2335 **kwargs)
2336 self.rank.set_cache(n)
2337
2338 if n == 0:
2339 self.one.set_cache( self.zero() )
2340 else:
2341 self.one.set_cache( sum(self.gens()) )
2342
2343 @staticmethod
2344 def _max_random_instance_size():
2345 r"""
2346 The maximum dimension of a random HadamardEJA.
2347 """
2348 return 5
2349
2350 @classmethod
2351 def random_instance(cls, **kwargs):
2352 """
2353 Return a random instance of this type of algebra.
2354 """
2355 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2356 return cls(n, **kwargs)
2357
2358
2359 class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
2360 r"""
2361 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2362 with the half-trace inner product and jordan product ``x*y =
2363 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2364 a symmetric positive-definite "bilinear form" matrix. Its
2365 dimension is the size of `B`, and it has rank two in dimensions
2366 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2367 the identity matrix of order ``n``.
2368
2369 We insist that the one-by-one upper-left identity block of `B` be
2370 passed in as well so that we can be passed a matrix of size zero
2371 to construct a trivial algebra.
2372
2373 SETUP::
2374
2375 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2376 ....: JordanSpinEJA)
2377
2378 EXAMPLES:
2379
2380 When no bilinear form is specified, the identity matrix is used,
2381 and the resulting algebra is the Jordan spin algebra::
2382
2383 sage: B = matrix.identity(AA,3)
2384 sage: J0 = BilinearFormEJA(B)
2385 sage: J1 = JordanSpinEJA(3)
2386 sage: J0.multiplication_table() == J0.multiplication_table()
2387 True
2388
2389 An error is raised if the matrix `B` does not correspond to a
2390 positive-definite bilinear form::
2391
2392 sage: B = matrix.random(QQ,2,3)
2393 sage: J = BilinearFormEJA(B)
2394 Traceback (most recent call last):
2395 ...
2396 ValueError: bilinear form is not positive-definite
2397 sage: B = matrix.zero(QQ,3)
2398 sage: J = BilinearFormEJA(B)
2399 Traceback (most recent call last):
2400 ...
2401 ValueError: bilinear form is not positive-definite
2402
2403 TESTS:
2404
2405 We can create a zero-dimensional algebra::
2406
2407 sage: B = matrix.identity(AA,0)
2408 sage: J = BilinearFormEJA(B)
2409 sage: J.basis()
2410 Finite family {}
2411
2412 We can check the multiplication condition given in the Jordan, von
2413 Neumann, and Wigner paper (and also discussed on my "On the
2414 symmetry..." paper). Note that this relies heavily on the standard
2415 choice of basis, as does anything utilizing the bilinear form
2416 matrix. We opt not to orthonormalize the basis, because if we
2417 did, we would have to normalize the `s_{i}` in a similar manner::
2418
2419 sage: set_random_seed()
2420 sage: n = ZZ.random_element(5)
2421 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2422 sage: B11 = matrix.identity(QQ,1)
2423 sage: B22 = M.transpose()*M
2424 sage: B = block_matrix(2,2,[ [B11,0 ],
2425 ....: [0, B22 ] ])
2426 sage: J = BilinearFormEJA(B, orthonormalize=False)
2427 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2428 sage: V = J.vector_space()
2429 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2430 ....: for ei in eis ]
2431 sage: actual = [ sis[i]*sis[j]
2432 ....: for i in range(n-1)
2433 ....: for j in range(n-1) ]
2434 sage: expected = [ J.one() if i == j else J.zero()
2435 ....: for i in range(n-1)
2436 ....: for j in range(n-1) ]
2437 sage: actual == expected
2438 True
2439 """
2440 def __init__(self, B, **kwargs):
2441 if not B.is_positive_definite():
2442 raise ValueError("bilinear form is not positive-definite")
2443
2444 def inner_product(x,y):
2445 return (B*x).inner_product(y)
2446
2447 def jordan_product(x,y):
2448 P = x.parent()
2449 x0 = x[0]
2450 xbar = x[1:]
2451 y0 = y[0]
2452 ybar = y[1:]
2453 z0 = inner_product(x,y)
2454 zbar = y0*xbar + x0*ybar
2455 return P((z0,) + tuple(zbar))
2456
2457 # We know this is a valid EJA, but will double-check
2458 # if the user passes check_axioms=True.
2459 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2460
2461 n = B.nrows()
2462 standard_basis = FreeModule(ZZ, n).basis()
2463 super(BilinearFormEJA, self).__init__(standard_basis,
2464 jordan_product,
2465 inner_product,
2466 **kwargs)
2467
2468 # The rank of this algebra is two, unless we're in a
2469 # one-dimensional ambient space (because the rank is bounded
2470 # by the ambient dimension).
2471 self.rank.set_cache(min(n,2))
2472
2473 if n == 0:
2474 self.one.set_cache( self.zero() )
2475 else:
2476 self.one.set_cache( self.monomial(0) )
2477
2478 @staticmethod
2479 def _max_random_instance_size():
2480 r"""
2481 The maximum dimension of a random BilinearFormEJA.
2482 """
2483 return 5
2484
2485 @classmethod
2486 def random_instance(cls, **kwargs):
2487 """
2488 Return a random instance of this algebra.
2489 """
2490 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2491 if n.is_zero():
2492 B = matrix.identity(ZZ, n)
2493 return cls(B, **kwargs)
2494
2495 B11 = matrix.identity(ZZ, 1)
2496 M = matrix.random(ZZ, n-1)
2497 I = matrix.identity(ZZ, n-1)
2498 alpha = ZZ.zero()
2499 while alpha.is_zero():
2500 alpha = ZZ.random_element().abs()
2501 B22 = M.transpose()*M + alpha*I
2502
2503 from sage.matrix.special import block_matrix
2504 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2505 [ZZ(0), B22 ] ])
2506
2507 return cls(B, **kwargs)
2508
2509
2510 class JordanSpinEJA(BilinearFormEJA):
2511 """
2512 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2513 with the usual inner product and jordan product ``x*y =
2514 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2515 the reals.
2516
2517 SETUP::
2518
2519 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2520
2521 EXAMPLES:
2522
2523 This multiplication table can be verified by hand::
2524
2525 sage: J = JordanSpinEJA(4)
2526 sage: e0,e1,e2,e3 = J.gens()
2527 sage: e0*e0
2528 e0
2529 sage: e0*e1
2530 e1
2531 sage: e0*e2
2532 e2
2533 sage: e0*e3
2534 e3
2535 sage: e1*e2
2536 0
2537 sage: e1*e3
2538 0
2539 sage: e2*e3
2540 0
2541
2542 We can change the generator prefix::
2543
2544 sage: JordanSpinEJA(2, prefix='B').gens()
2545 (B0, B1)
2546
2547 TESTS:
2548
2549 Ensure that we have the usual inner product on `R^n`::
2550
2551 sage: set_random_seed()
2552 sage: J = JordanSpinEJA.random_instance()
2553 sage: x,y = J.random_elements(2)
2554 sage: actual = x.inner_product(y)
2555 sage: expected = x.to_vector().inner_product(y.to_vector())
2556 sage: actual == expected
2557 True
2558
2559 """
2560 def __init__(self, n, **kwargs):
2561 # This is a special case of the BilinearFormEJA with the
2562 # identity matrix as its bilinear form.
2563 B = matrix.identity(ZZ, n)
2564
2565 # Don't orthonormalize because our basis is already
2566 # orthonormal with respect to our inner-product.
2567 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2568
2569 # But also don't pass check_field=False here, because the user
2570 # can pass in a field!
2571 super(JordanSpinEJA, self).__init__(B, **kwargs)
2572
2573 @staticmethod
2574 def _max_random_instance_size():
2575 r"""
2576 The maximum dimension of a random JordanSpinEJA.
2577 """
2578 return 5
2579
2580 @classmethod
2581 def random_instance(cls, **kwargs):
2582 """
2583 Return a random instance of this type of algebra.
2584
2585 Needed here to override the implementation for ``BilinearFormEJA``.
2586 """
2587 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2588 return cls(n, **kwargs)
2589
2590
2591 class TrivialEJA(ConcreteEuclideanJordanAlgebra):
2592 """
2593 The trivial Euclidean Jordan algebra consisting of only a zero element.
2594
2595 SETUP::
2596
2597 sage: from mjo.eja.eja_algebra import TrivialEJA
2598
2599 EXAMPLES::
2600
2601 sage: J = TrivialEJA()
2602 sage: J.dimension()
2603 0
2604 sage: J.zero()
2605 0
2606 sage: J.one()
2607 0
2608 sage: 7*J.one()*12*J.one()
2609 0
2610 sage: J.one().inner_product(J.one())
2611 0
2612 sage: J.one().norm()
2613 0
2614 sage: J.one().subalgebra_generated_by()
2615 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2616 sage: J.rank()
2617 0
2618
2619 """
2620 def __init__(self, **kwargs):
2621 jordan_product = lambda x,y: x
2622 inner_product = lambda x,y: 0
2623 basis = ()
2624
2625 # New defaults for keyword arguments
2626 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2627 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2628
2629 super(TrivialEJA, self).__init__(basis,
2630 jordan_product,
2631 inner_product,
2632 **kwargs)
2633 # The rank is zero using my definition, namely the dimension of the
2634 # largest subalgebra generated by any element.
2635 self.rank.set_cache(0)
2636 self.one.set_cache( self.zero() )
2637
2638 @classmethod
2639 def random_instance(cls, **kwargs):
2640 # We don't take a "size" argument so the superclass method is
2641 # inappropriate for us.
2642 return cls(**kwargs)
2643
2644 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2645 r"""
2646 The external (orthogonal) direct sum of two other Euclidean Jordan
2647 algebras. Essentially the Cartesian product of its two factors.
2648 Every Euclidean Jordan algebra decomposes into an orthogonal
2649 direct sum of simple Euclidean Jordan algebras, so no generality
2650 is lost by providing only this construction.
2651
2652 SETUP::
2653
2654 sage: from mjo.eja.eja_algebra import (random_eja,
2655 ....: HadamardEJA,
2656 ....: RealSymmetricEJA,
2657 ....: DirectSumEJA)
2658
2659 EXAMPLES::
2660
2661 sage: J1 = HadamardEJA(2)
2662 sage: J2 = RealSymmetricEJA(3)
2663 sage: J = DirectSumEJA(J1,J2)
2664 sage: J.dimension()
2665 8
2666 sage: J.rank()
2667 5
2668
2669 TESTS:
2670
2671 The external direct sum construction is only valid when the two factors
2672 have the same base ring; an error is raised otherwise::
2673
2674 sage: set_random_seed()
2675 sage: J1 = random_eja(field=AA)
2676 sage: J2 = random_eja(field=QQ,orthonormalize=False)
2677 sage: J = DirectSumEJA(J1,J2)
2678 Traceback (most recent call last):
2679 ...
2680 ValueError: algebras must share the same base field
2681
2682 """
2683 def __init__(self, J1, J2, **kwargs):
2684 if J1.base_ring() != J2.base_ring():
2685 raise ValueError("algebras must share the same base field")
2686 field = J1.base_ring()
2687
2688 self._factors = (J1, J2)
2689 n1 = J1.dimension()
2690 n2 = J2.dimension()
2691 n = n1+n2
2692 V = VectorSpace(field, n)
2693 mult_table = [ [ V.zero() for j in range(i+1) ]
2694 for i in range(n) ]
2695 for i in range(n1):
2696 for j in range(i+1):
2697 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2698 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2699
2700 for i in range(n2):
2701 for j in range(i+1):
2702 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2703 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2704
2705 # TODO: build the IP table here from the two constituent IP
2706 # matrices (it'll be block diagonal, I think).
2707 ip_table = [ [ field.zero() for j in range(i+1) ]
2708 for i in range(n) ]
2709 super(DirectSumEJA, self).__init__(field,
2710 mult_table,
2711 ip_table,
2712 check_axioms=False,
2713 **kwargs)
2714 self.rank.set_cache(J1.rank() + J2.rank())
2715
2716
2717 def factors(self):
2718 r"""
2719 Return the pair of this algebra's factors.
2720
2721 SETUP::
2722
2723 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2724 ....: JordanSpinEJA,
2725 ....: DirectSumEJA)
2726
2727 EXAMPLES::
2728
2729 sage: J1 = HadamardEJA(2, field=QQ)
2730 sage: J2 = JordanSpinEJA(3, field=QQ)
2731 sage: J = DirectSumEJA(J1,J2)
2732 sage: J.factors()
2733 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2734 Euclidean Jordan algebra of dimension 3 over Rational Field)
2735
2736 """
2737 return self._factors
2738
2739 def projections(self):
2740 r"""
2741 Return a pair of projections onto this algebra's factors.
2742
2743 SETUP::
2744
2745 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2746 ....: ComplexHermitianEJA,
2747 ....: DirectSumEJA)
2748
2749 EXAMPLES::
2750
2751 sage: J1 = JordanSpinEJA(2)
2752 sage: J2 = ComplexHermitianEJA(2)
2753 sage: J = DirectSumEJA(J1,J2)
2754 sage: (pi_left, pi_right) = J.projections()
2755 sage: J.one().to_vector()
2756 (1, 0, 1, 0, 0, 1)
2757 sage: pi_left(J.one()).to_vector()
2758 (1, 0)
2759 sage: pi_right(J.one()).to_vector()
2760 (1, 0, 0, 1)
2761
2762 """
2763 (J1,J2) = self.factors()
2764 m = J1.dimension()
2765 n = J2.dimension()
2766 V_basis = self.vector_space().basis()
2767 # Need to specify the dimensions explicitly so that we don't
2768 # wind up with a zero-by-zero matrix when we want e.g. a
2769 # zero-by-two matrix (important for composing things).
2770 P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2771 P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2772 pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
2773 pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
2774 return (pi_left, pi_right)
2775
2776 def inclusions(self):
2777 r"""
2778 Return the pair of inclusion maps from our factors into us.
2779
2780 SETUP::
2781
2782 sage: from mjo.eja.eja_algebra import (random_eja,
2783 ....: JordanSpinEJA,
2784 ....: RealSymmetricEJA,
2785 ....: DirectSumEJA)
2786
2787 EXAMPLES::
2788
2789 sage: J1 = JordanSpinEJA(3)
2790 sage: J2 = RealSymmetricEJA(2)
2791 sage: J = DirectSumEJA(J1,J2)
2792 sage: (iota_left, iota_right) = J.inclusions()
2793 sage: iota_left(J1.zero()) == J.zero()
2794 True
2795 sage: iota_right(J2.zero()) == J.zero()
2796 True
2797 sage: J1.one().to_vector()
2798 (1, 0, 0)
2799 sage: iota_left(J1.one()).to_vector()
2800 (1, 0, 0, 0, 0, 0)
2801 sage: J2.one().to_vector()
2802 (1, 0, 1)
2803 sage: iota_right(J2.one()).to_vector()
2804 (0, 0, 0, 1, 0, 1)
2805 sage: J.one().to_vector()
2806 (1, 0, 0, 1, 0, 1)
2807
2808 TESTS:
2809
2810 Composing a projection with the corresponding inclusion should
2811 produce the identity map, and mismatching them should produce
2812 the zero map::
2813
2814 sage: set_random_seed()
2815 sage: J1 = random_eja()
2816 sage: J2 = random_eja()
2817 sage: J = DirectSumEJA(J1,J2)
2818 sage: (iota_left, iota_right) = J.inclusions()
2819 sage: (pi_left, pi_right) = J.projections()
2820 sage: pi_left*iota_left == J1.one().operator()
2821 True
2822 sage: pi_right*iota_right == J2.one().operator()
2823 True
2824 sage: (pi_left*iota_right).is_zero()
2825 True
2826 sage: (pi_right*iota_left).is_zero()
2827 True
2828
2829 """
2830 (J1,J2) = self.factors()
2831 m = J1.dimension()
2832 n = J2.dimension()
2833 V_basis = self.vector_space().basis()
2834 # Need to specify the dimensions explicitly so that we don't
2835 # wind up with a zero-by-zero matrix when we want e.g. a
2836 # two-by-zero matrix (important for composing things).
2837 I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2838 I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2839 iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
2840 iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
2841 return (iota_left, iota_right)
2842
2843 def inner_product(self, x, y):
2844 r"""
2845 The standard Cartesian inner-product.
2846
2847 We project ``x`` and ``y`` onto our factors, and add up the
2848 inner-products from the subalgebras.
2849
2850 SETUP::
2851
2852
2853 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2854 ....: QuaternionHermitianEJA,
2855 ....: DirectSumEJA)
2856
2857 EXAMPLE::
2858
2859 sage: J1 = HadamardEJA(3,field=QQ)
2860 sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2861 sage: J = DirectSumEJA(J1,J2)
2862 sage: x1 = J1.one()
2863 sage: x2 = x1
2864 sage: y1 = J2.one()
2865 sage: y2 = y1
2866 sage: x1.inner_product(x2)
2867 3
2868 sage: y1.inner_product(y2)
2869 2
2870 sage: J.one().inner_product(J.one())
2871 5
2872
2873 """
2874 (pi_left, pi_right) = self.projections()
2875 x1 = pi_left(x)
2876 x2 = pi_right(x)
2877 y1 = pi_left(y)
2878 y2 = pi_right(y)
2879
2880 return (x1.inner_product(y1) + x2.inner_product(y2))
2881
2882
2883
2884 random_eja = ConcreteEuclideanJordanAlgebra.random_instance