]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: unbreak the trace_inner_product() for MatrixEJAs.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35
36 Missing from this list is the algebra of three-by-three octononion
37 Hermitian matrices, as there is (as of yet) no implementation of the
38 octonions in SageMath. In addition to these, we provide two other
39 example constructions,
40
41 * :class:`HadamardEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. And last but not least, the trivial
47 EJA is exactly what you think. Cartesian products of these are also
48 supported using the usual ``cartesian_product()`` function; as a
49 result, we support (up to isomorphism) all Euclidean Jordan algebras
50 that don't involve octonions.
51
52 SETUP::
53
54 sage: from mjo.eja.eja_algebra import random_eja
55
56 EXAMPLES::
57
58 sage: random_eja()
59 Euclidean Jordan algebra of dimension...
60 """
61
62 from itertools import repeat
63
64 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
65 from sage.categories.magmatic_algebras import MagmaticAlgebras
66 from sage.categories.sets_cat import cartesian_product
67 from sage.combinat.free_module import CombinatorialFreeModule
68 from sage.matrix.constructor import matrix
69 from sage.matrix.matrix_space import MatrixSpace
70 from sage.misc.cachefunc import cached_method
71 from sage.misc.table import table
72 from sage.modules.free_module import FreeModule, VectorSpace
73 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
74 PolynomialRing,
75 QuadraticField)
76 from mjo.eja.eja_element import FiniteDimensionalEJAElement
77 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
78 from mjo.eja.eja_utils import _all2list, _mat2vec
79
80 class FiniteDimensionalEJA(CombinatorialFreeModule):
81 r"""
82 A finite-dimensional Euclidean Jordan algebra.
83
84 INPUT:
85
86 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
87 form," which must be the same form as the arguments to
88 ``jordan_product`` and ``inner_product``. In reality, "matrix
89 form" can be either vectors, matrices, or a Cartesian product
90 (ordered tuple) of vectors or matrices. All of these would
91 ideally be vector spaces in sage with no special-casing
92 needed; but in reality we turn vectors into column-matrices
93 and Cartesian products `(a,b)` into column matrices
94 `(a,b)^{T}` after converting `a` and `b` themselves.
95
96 - ``jordan_product`` -- a function; afunction of two ``basis``
97 elements (in matrix form) that returns their jordan product,
98 also in matrix form; this will be applied to ``basis`` to
99 compute a multiplication table for the algebra.
100
101 - ``inner_product`` -- a function; a function of two ``basis``
102 elements (in matrix form) that returns their inner
103 product. This will be applied to ``basis`` to compute an
104 inner-product table (basically a matrix) for this algebra.
105
106 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
107 field for the algebra.
108
109 - ``orthonormalize`` -- boolean (default: ``True``); whether or
110 not to orthonormalize the basis. Doing so is expensive and
111 generally rules out using the rationals as your ``field``, but
112 is required for spectral decompositions.
113
114 SETUP::
115
116 sage: from mjo.eja.eja_algebra import random_eja
117
118 TESTS:
119
120 We should compute that an element subalgebra is associative even
121 if we circumvent the element method::
122
123 sage: set_random_seed()
124 sage: J = random_eja(field=QQ,orthonormalize=False)
125 sage: x = J.random_element()
126 sage: A = x.subalgebra_generated_by(orthonormalize=False)
127 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
128 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
129 True
130
131 """
132 Element = FiniteDimensionalEJAElement
133
134 def __init__(self,
135 basis,
136 jordan_product,
137 inner_product,
138 field=AA,
139 orthonormalize=True,
140 associative=None,
141 cartesian_product=False,
142 check_field=True,
143 check_axioms=True,
144 prefix="b"):
145
146 n = len(basis)
147
148 if check_field:
149 if not field.is_subring(RR):
150 # Note: this does return true for the real algebraic
151 # field, the rationals, and any quadratic field where
152 # we've specified a real embedding.
153 raise ValueError("scalar field is not real")
154
155 if check_axioms:
156 # Check commutativity of the Jordan and inner-products.
157 # This has to be done before we build the multiplication
158 # and inner-product tables/matrices, because we take
159 # advantage of symmetry in the process.
160 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
161 for bi in basis
162 for bj in basis ):
163 raise ValueError("Jordan product is not commutative")
164
165 if not all( inner_product(bi,bj) == inner_product(bj,bi)
166 for bi in basis
167 for bj in basis ):
168 raise ValueError("inner-product is not commutative")
169
170
171 category = MagmaticAlgebras(field).FiniteDimensional()
172 category = category.WithBasis().Unital().Commutative()
173
174 if associative is None:
175 # We should figure it out. As with check_axioms, we have to do
176 # this without the help of the _jordan_product_is_associative()
177 # method because we need to know the category before we
178 # initialize the algebra.
179 associative = all( jordan_product(jordan_product(bi,bj),bk)
180 ==
181 jordan_product(bi,jordan_product(bj,bk))
182 for bi in basis
183 for bj in basis
184 for bk in basis)
185
186 if associative:
187 # Element subalgebras can take advantage of this.
188 category = category.Associative()
189 if cartesian_product:
190 # Use join() here because otherwise we only get the
191 # "Cartesian product of..." and not the things themselves.
192 category = category.join([category,
193 category.CartesianProducts()])
194
195 # Call the superclass constructor so that we can use its from_vector()
196 # method to build our multiplication table.
197 CombinatorialFreeModule.__init__(self,
198 field,
199 range(n),
200 prefix=prefix,
201 category=category,
202 bracket=False)
203
204 # Now comes all of the hard work. We'll be constructing an
205 # ambient vector space V that our (vectorized) basis lives in,
206 # as well as a subspace W of V spanned by those (vectorized)
207 # basis elements. The W-coordinates are the coefficients that
208 # we see in things like x = 1*b1 + 2*b2.
209 vector_basis = basis
210
211 degree = 0
212 if n > 0:
213 degree = len(_all2list(basis[0]))
214
215 # Build an ambient space that fits our matrix basis when
216 # written out as "long vectors."
217 V = VectorSpace(field, degree)
218
219 # The matrix that will hole the orthonormal -> unorthonormal
220 # coordinate transformation.
221 self._deortho_matrix = None
222
223 if orthonormalize:
224 # Save a copy of the un-orthonormalized basis for later.
225 # Convert it to ambient V (vector) coordinates while we're
226 # at it, because we'd have to do it later anyway.
227 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
228
229 from mjo.eja.eja_utils import gram_schmidt
230 basis = tuple(gram_schmidt(basis, inner_product))
231
232 # Save the (possibly orthonormalized) matrix basis for
233 # later...
234 self._matrix_basis = basis
235
236 # Now create the vector space for the algebra, which will have
237 # its own set of non-ambient coordinates (in terms of the
238 # supplied basis).
239 vector_basis = tuple( V(_all2list(b)) for b in basis )
240 W = V.span_of_basis( vector_basis, check=check_axioms)
241
242 if orthonormalize:
243 # Now "W" is the vector space of our algebra coordinates. The
244 # variables "X1", "X2",... refer to the entries of vectors in
245 # W. Thus to convert back and forth between the orthonormal
246 # coordinates and the given ones, we need to stick the original
247 # basis in W.
248 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
249 self._deortho_matrix = matrix( U.coordinate_vector(q)
250 for q in vector_basis )
251
252
253 # Now we actually compute the multiplication and inner-product
254 # tables/matrices using the possibly-orthonormalized basis.
255 self._inner_product_matrix = matrix.identity(field, n)
256 self._multiplication_table = [ [0 for j in range(i+1)]
257 for i in range(n) ]
258
259 # Note: the Jordan and inner-products are defined in terms
260 # of the ambient basis. It's important that their arguments
261 # are in ambient coordinates as well.
262 for i in range(n):
263 for j in range(i+1):
264 # ortho basis w.r.t. ambient coords
265 q_i = basis[i]
266 q_j = basis[j]
267
268 # The jordan product returns a matrixy answer, so we
269 # have to convert it to the algebra coordinates.
270 elt = jordan_product(q_i, q_j)
271 elt = W.coordinate_vector(V(_all2list(elt)))
272 self._multiplication_table[i][j] = self.from_vector(elt)
273
274 if not orthonormalize:
275 # If we're orthonormalizing the basis with respect
276 # to an inner-product, then the inner-product
277 # matrix with respect to the resulting basis is
278 # just going to be the identity.
279 ip = inner_product(q_i, q_j)
280 self._inner_product_matrix[i,j] = ip
281 self._inner_product_matrix[j,i] = ip
282
283 self._inner_product_matrix._cache = {'hermitian': True}
284 self._inner_product_matrix.set_immutable()
285
286 if check_axioms:
287 if not self._is_jordanian():
288 raise ValueError("Jordan identity does not hold")
289 if not self._inner_product_is_associative():
290 raise ValueError("inner product is not associative")
291
292
293 def _coerce_map_from_base_ring(self):
294 """
295 Disable the map from the base ring into the algebra.
296
297 Performing a nonsense conversion like this automatically
298 is counterpedagogical. The fallback is to try the usual
299 element constructor, which should also fail.
300
301 SETUP::
302
303 sage: from mjo.eja.eja_algebra import random_eja
304
305 TESTS::
306
307 sage: set_random_seed()
308 sage: J = random_eja()
309 sage: J(1)
310 Traceback (most recent call last):
311 ...
312 ValueError: not an element of this algebra
313
314 """
315 return None
316
317
318 def product_on_basis(self, i, j):
319 r"""
320 Returns the Jordan product of the `i` and `j`th basis elements.
321
322 This completely defines the Jordan product on the algebra, and
323 is used direclty by our superclass machinery to implement
324 :meth:`product`.
325
326 SETUP::
327
328 sage: from mjo.eja.eja_algebra import random_eja
329
330 TESTS::
331
332 sage: set_random_seed()
333 sage: J = random_eja()
334 sage: n = J.dimension()
335 sage: bi = J.zero()
336 sage: bj = J.zero()
337 sage: bi_bj = J.zero()*J.zero()
338 sage: if n > 0:
339 ....: i = ZZ.random_element(n)
340 ....: j = ZZ.random_element(n)
341 ....: bi = J.monomial(i)
342 ....: bj = J.monomial(j)
343 ....: bi_bj = J.product_on_basis(i,j)
344 sage: bi*bj == bi_bj
345 True
346
347 """
348 # We only stored the lower-triangular portion of the
349 # multiplication table.
350 if j <= i:
351 return self._multiplication_table[i][j]
352 else:
353 return self._multiplication_table[j][i]
354
355 def inner_product(self, x, y):
356 """
357 The inner product associated with this Euclidean Jordan algebra.
358
359 Defaults to the trace inner product, but can be overridden by
360 subclasses if they are sure that the necessary properties are
361 satisfied.
362
363 SETUP::
364
365 sage: from mjo.eja.eja_algebra import (random_eja,
366 ....: HadamardEJA,
367 ....: BilinearFormEJA)
368
369 EXAMPLES:
370
371 Our inner product is "associative," which means the following for
372 a symmetric bilinear form::
373
374 sage: set_random_seed()
375 sage: J = random_eja()
376 sage: x,y,z = J.random_elements(3)
377 sage: (x*y).inner_product(z) == y.inner_product(x*z)
378 True
379
380 TESTS:
381
382 Ensure that this is the usual inner product for the algebras
383 over `R^n`::
384
385 sage: set_random_seed()
386 sage: J = HadamardEJA.random_instance()
387 sage: x,y = J.random_elements(2)
388 sage: actual = x.inner_product(y)
389 sage: expected = x.to_vector().inner_product(y.to_vector())
390 sage: actual == expected
391 True
392
393 Ensure that this is one-half of the trace inner-product in a
394 BilinearFormEJA that isn't just the reals (when ``n`` isn't
395 one). This is in Faraut and Koranyi, and also my "On the
396 symmetry..." paper::
397
398 sage: set_random_seed()
399 sage: J = BilinearFormEJA.random_instance()
400 sage: n = J.dimension()
401 sage: x = J.random_element()
402 sage: y = J.random_element()
403 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
404 True
405
406 """
407 B = self._inner_product_matrix
408 return (B*x.to_vector()).inner_product(y.to_vector())
409
410
411 def is_associative(self):
412 r"""
413 Return whether or not this algebra's Jordan product is associative.
414
415 SETUP::
416
417 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
418
419 EXAMPLES::
420
421 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
422 sage: J.is_associative()
423 False
424 sage: x = sum(J.gens())
425 sage: A = x.subalgebra_generated_by(orthonormalize=False)
426 sage: A.is_associative()
427 True
428
429 """
430 return "Associative" in self.category().axioms()
431
432 def _is_commutative(self):
433 r"""
434 Whether or not this algebra's multiplication table is commutative.
435
436 This method should of course always return ``True``, unless
437 this algebra was constructed with ``check_axioms=False`` and
438 passed an invalid multiplication table.
439 """
440 return all( x*y == y*x for x in self.gens() for y in self.gens() )
441
442 def _is_jordanian(self):
443 r"""
444 Whether or not this algebra's multiplication table respects the
445 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
446
447 We only check one arrangement of `x` and `y`, so for a
448 ``True`` result to be truly true, you should also check
449 :meth:`_is_commutative`. This method should of course always
450 return ``True``, unless this algebra was constructed with
451 ``check_axioms=False`` and passed an invalid multiplication table.
452 """
453 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
454 ==
455 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
456 for i in range(self.dimension())
457 for j in range(self.dimension()) )
458
459 def _jordan_product_is_associative(self):
460 r"""
461 Return whether or not this algebra's Jordan product is
462 associative; that is, whether or not `x*(y*z) = (x*y)*z`
463 for all `x,y,x`.
464
465 This method should agree with :meth:`is_associative` unless
466 you lied about the value of the ``associative`` parameter
467 when you constructed the algebra.
468
469 SETUP::
470
471 sage: from mjo.eja.eja_algebra import (random_eja,
472 ....: RealSymmetricEJA,
473 ....: ComplexHermitianEJA,
474 ....: QuaternionHermitianEJA)
475
476 EXAMPLES::
477
478 sage: J = RealSymmetricEJA(4, orthonormalize=False)
479 sage: J._jordan_product_is_associative()
480 False
481 sage: x = sum(J.gens())
482 sage: A = x.subalgebra_generated_by()
483 sage: A._jordan_product_is_associative()
484 True
485
486 ::
487
488 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
489 sage: J._jordan_product_is_associative()
490 False
491 sage: x = sum(J.gens())
492 sage: A = x.subalgebra_generated_by(orthonormalize=False)
493 sage: A._jordan_product_is_associative()
494 True
495
496 ::
497
498 sage: J = QuaternionHermitianEJA(2)
499 sage: J._jordan_product_is_associative()
500 False
501 sage: x = sum(J.gens())
502 sage: A = x.subalgebra_generated_by()
503 sage: A._jordan_product_is_associative()
504 True
505
506 TESTS:
507
508 The values we've presupplied to the constructors agree with
509 the computation::
510
511 sage: set_random_seed()
512 sage: J = random_eja()
513 sage: J.is_associative() == J._jordan_product_is_associative()
514 True
515
516 """
517 R = self.base_ring()
518
519 # Used to check whether or not something is zero.
520 epsilon = R.zero()
521 if not R.is_exact():
522 # I don't know of any examples that make this magnitude
523 # necessary because I don't know how to make an
524 # associative algebra when the element subalgebra
525 # construction is unreliable (as it is over RDF; we can't
526 # find the degree of an element because we can't compute
527 # the rank of a matrix). But even multiplication of floats
528 # is non-associative, so *some* epsilon is needed... let's
529 # just take the one from _inner_product_is_associative?
530 epsilon = 1e-15
531
532 for i in range(self.dimension()):
533 for j in range(self.dimension()):
534 for k in range(self.dimension()):
535 x = self.monomial(i)
536 y = self.monomial(j)
537 z = self.monomial(k)
538 diff = (x*y)*z - x*(y*z)
539
540 if diff.norm() > epsilon:
541 return False
542
543 return True
544
545 def _inner_product_is_associative(self):
546 r"""
547 Return whether or not this algebra's inner product `B` is
548 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
549
550 This method should of course always return ``True``, unless
551 this algebra was constructed with ``check_axioms=False`` and
552 passed an invalid Jordan or inner-product.
553 """
554 R = self.base_ring()
555
556 # Used to check whether or not something is zero.
557 epsilon = R.zero()
558 if not R.is_exact():
559 # This choice is sufficient to allow the construction of
560 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
561 epsilon = 1e-15
562
563 for i in range(self.dimension()):
564 for j in range(self.dimension()):
565 for k in range(self.dimension()):
566 x = self.monomial(i)
567 y = self.monomial(j)
568 z = self.monomial(k)
569 diff = (x*y).inner_product(z) - x.inner_product(y*z)
570
571 if diff.abs() > epsilon:
572 return False
573
574 return True
575
576 def _element_constructor_(self, elt):
577 """
578 Construct an element of this algebra from its vector or matrix
579 representation.
580
581 This gets called only after the parent element _call_ method
582 fails to find a coercion for the argument.
583
584 SETUP::
585
586 sage: from mjo.eja.eja_algebra import (random_eja,
587 ....: JordanSpinEJA,
588 ....: HadamardEJA,
589 ....: RealSymmetricEJA)
590
591 EXAMPLES:
592
593 The identity in `S^n` is converted to the identity in the EJA::
594
595 sage: J = RealSymmetricEJA(3)
596 sage: I = matrix.identity(QQ,3)
597 sage: J(I) == J.one()
598 True
599
600 This skew-symmetric matrix can't be represented in the EJA::
601
602 sage: J = RealSymmetricEJA(3)
603 sage: A = matrix(QQ,3, lambda i,j: i-j)
604 sage: J(A)
605 Traceback (most recent call last):
606 ...
607 ValueError: not an element of this algebra
608
609 Tuples work as well, provided that the matrix basis for the
610 algebra consists of them::
611
612 sage: J1 = HadamardEJA(3)
613 sage: J2 = RealSymmetricEJA(2)
614 sage: J = cartesian_product([J1,J2])
615 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
616 b1 + b5
617
618 TESTS:
619
620 Ensure that we can convert any element back and forth
621 faithfully between its matrix and algebra representations::
622
623 sage: set_random_seed()
624 sage: J = random_eja()
625 sage: x = J.random_element()
626 sage: J(x.to_matrix()) == x
627 True
628
629 We cannot coerce elements between algebras just because their
630 matrix representations are compatible::
631
632 sage: J1 = HadamardEJA(3)
633 sage: J2 = JordanSpinEJA(3)
634 sage: J2(J1.one())
635 Traceback (most recent call last):
636 ...
637 ValueError: not an element of this algebra
638 sage: J1(J2.zero())
639 Traceback (most recent call last):
640 ...
641 ValueError: not an element of this algebra
642 """
643 msg = "not an element of this algebra"
644 if elt in self.base_ring():
645 # Ensure that no base ring -> algebra coercion is performed
646 # by this method. There's some stupidity in sage that would
647 # otherwise propagate to this method; for example, sage thinks
648 # that the integer 3 belongs to the space of 2-by-2 matrices.
649 raise ValueError(msg)
650
651 try:
652 # Try to convert a vector into a column-matrix...
653 elt = elt.column()
654 except (AttributeError, TypeError):
655 # and ignore failure, because we weren't really expecting
656 # a vector as an argument anyway.
657 pass
658
659 if elt not in self.matrix_space():
660 raise ValueError(msg)
661
662 # Thanks for nothing! Matrix spaces aren't vector spaces in
663 # Sage, so we have to figure out its matrix-basis coordinates
664 # ourselves. We use the basis space's ring instead of the
665 # element's ring because the basis space might be an algebraic
666 # closure whereas the base ring of the 3-by-3 identity matrix
667 # could be QQ instead of QQbar.
668 #
669 # And, we also have to handle Cartesian product bases (when
670 # the matrix basis consists of tuples) here. The "good news"
671 # is that we're already converting everything to long vectors,
672 # and that strategy works for tuples as well.
673 #
674 # We pass check=False because the matrix basis is "guaranteed"
675 # to be linearly independent... right? Ha ha.
676 elt = _all2list(elt)
677 V = VectorSpace(self.base_ring(), len(elt))
678 W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
679 check=False)
680
681 try:
682 coords = W.coordinate_vector(V(elt))
683 except ArithmeticError: # vector is not in free module
684 raise ValueError(msg)
685
686 return self.from_vector(coords)
687
688 def _repr_(self):
689 """
690 Return a string representation of ``self``.
691
692 SETUP::
693
694 sage: from mjo.eja.eja_algebra import JordanSpinEJA
695
696 TESTS:
697
698 Ensure that it says what we think it says::
699
700 sage: JordanSpinEJA(2, field=AA)
701 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
702 sage: JordanSpinEJA(3, field=RDF)
703 Euclidean Jordan algebra of dimension 3 over Real Double Field
704
705 """
706 fmt = "Euclidean Jordan algebra of dimension {} over {}"
707 return fmt.format(self.dimension(), self.base_ring())
708
709
710 @cached_method
711 def characteristic_polynomial_of(self):
712 """
713 Return the algebra's "characteristic polynomial of" function,
714 which is itself a multivariate polynomial that, when evaluated
715 at the coordinates of some algebra element, returns that
716 element's characteristic polynomial.
717
718 The resulting polynomial has `n+1` variables, where `n` is the
719 dimension of this algebra. The first `n` variables correspond to
720 the coordinates of an algebra element: when evaluated at the
721 coordinates of an algebra element with respect to a certain
722 basis, the result is a univariate polynomial (in the one
723 remaining variable ``t``), namely the characteristic polynomial
724 of that element.
725
726 SETUP::
727
728 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
729
730 EXAMPLES:
731
732 The characteristic polynomial in the spin algebra is given in
733 Alizadeh, Example 11.11::
734
735 sage: J = JordanSpinEJA(3)
736 sage: p = J.characteristic_polynomial_of(); p
737 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
738 sage: xvec = J.one().to_vector()
739 sage: p(*xvec)
740 t^2 - 2*t + 1
741
742 By definition, the characteristic polynomial is a monic
743 degree-zero polynomial in a rank-zero algebra. Note that
744 Cayley-Hamilton is indeed satisfied since the polynomial
745 ``1`` evaluates to the identity element of the algebra on
746 any argument::
747
748 sage: J = TrivialEJA()
749 sage: J.characteristic_polynomial_of()
750 1
751
752 """
753 r = self.rank()
754 n = self.dimension()
755
756 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
757 a = self._charpoly_coefficients()
758
759 # We go to a bit of trouble here to reorder the
760 # indeterminates, so that it's easier to evaluate the
761 # characteristic polynomial at x's coordinates and get back
762 # something in terms of t, which is what we want.
763 S = PolynomialRing(self.base_ring(),'t')
764 t = S.gen(0)
765 if r > 0:
766 R = a[0].parent()
767 S = PolynomialRing(S, R.variable_names())
768 t = S(t)
769
770 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
771
772 def coordinate_polynomial_ring(self):
773 r"""
774 The multivariate polynomial ring in which this algebra's
775 :meth:`characteristic_polynomial_of` lives.
776
777 SETUP::
778
779 sage: from mjo.eja.eja_algebra import (HadamardEJA,
780 ....: RealSymmetricEJA)
781
782 EXAMPLES::
783
784 sage: J = HadamardEJA(2)
785 sage: J.coordinate_polynomial_ring()
786 Multivariate Polynomial Ring in X1, X2...
787 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
788 sage: J.coordinate_polynomial_ring()
789 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
790
791 """
792 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
793 return PolynomialRing(self.base_ring(), var_names)
794
795 def inner_product(self, x, y):
796 """
797 The inner product associated with this Euclidean Jordan algebra.
798
799 Defaults to the trace inner product, but can be overridden by
800 subclasses if they are sure that the necessary properties are
801 satisfied.
802
803 SETUP::
804
805 sage: from mjo.eja.eja_algebra import (random_eja,
806 ....: HadamardEJA,
807 ....: BilinearFormEJA)
808
809 EXAMPLES:
810
811 Our inner product is "associative," which means the following for
812 a symmetric bilinear form::
813
814 sage: set_random_seed()
815 sage: J = random_eja()
816 sage: x,y,z = J.random_elements(3)
817 sage: (x*y).inner_product(z) == y.inner_product(x*z)
818 True
819
820 TESTS:
821
822 Ensure that this is the usual inner product for the algebras
823 over `R^n`::
824
825 sage: set_random_seed()
826 sage: J = HadamardEJA.random_instance()
827 sage: x,y = J.random_elements(2)
828 sage: actual = x.inner_product(y)
829 sage: expected = x.to_vector().inner_product(y.to_vector())
830 sage: actual == expected
831 True
832
833 Ensure that this is one-half of the trace inner-product in a
834 BilinearFormEJA that isn't just the reals (when ``n`` isn't
835 one). This is in Faraut and Koranyi, and also my "On the
836 symmetry..." paper::
837
838 sage: set_random_seed()
839 sage: J = BilinearFormEJA.random_instance()
840 sage: n = J.dimension()
841 sage: x = J.random_element()
842 sage: y = J.random_element()
843 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
844 True
845 """
846 B = self._inner_product_matrix
847 return (B*x.to_vector()).inner_product(y.to_vector())
848
849
850 def is_trivial(self):
851 """
852 Return whether or not this algebra is trivial.
853
854 A trivial algebra contains only the zero element.
855
856 SETUP::
857
858 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
859 ....: TrivialEJA)
860
861 EXAMPLES::
862
863 sage: J = ComplexHermitianEJA(3)
864 sage: J.is_trivial()
865 False
866
867 ::
868
869 sage: J = TrivialEJA()
870 sage: J.is_trivial()
871 True
872
873 """
874 return self.dimension() == 0
875
876
877 def multiplication_table(self):
878 """
879 Return a visual representation of this algebra's multiplication
880 table (on basis elements).
881
882 SETUP::
883
884 sage: from mjo.eja.eja_algebra import JordanSpinEJA
885
886 EXAMPLES::
887
888 sage: J = JordanSpinEJA(4)
889 sage: J.multiplication_table()
890 +----++----+----+----+----+
891 | * || b0 | b1 | b2 | b3 |
892 +====++====+====+====+====+
893 | b0 || b0 | b1 | b2 | b3 |
894 +----++----+----+----+----+
895 | b1 || b1 | b0 | 0 | 0 |
896 +----++----+----+----+----+
897 | b2 || b2 | 0 | b0 | 0 |
898 +----++----+----+----+----+
899 | b3 || b3 | 0 | 0 | b0 |
900 +----++----+----+----+----+
901
902 """
903 n = self.dimension()
904 # Prepend the header row.
905 M = [["*"] + list(self.gens())]
906
907 # And to each subsequent row, prepend an entry that belongs to
908 # the left-side "header column."
909 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
910 for j in range(n) ]
911 for i in range(n) ]
912
913 return table(M, header_row=True, header_column=True, frame=True)
914
915
916 def matrix_basis(self):
917 """
918 Return an (often more natural) representation of this algebras
919 basis as an ordered tuple of matrices.
920
921 Every finite-dimensional Euclidean Jordan Algebra is a, up to
922 Jordan isomorphism, a direct sum of five simple
923 algebras---four of which comprise Hermitian matrices. And the
924 last type of algebra can of course be thought of as `n`-by-`1`
925 column matrices (ambiguusly called column vectors) to avoid
926 special cases. As a result, matrices (and column vectors) are
927 a natural representation format for Euclidean Jordan algebra
928 elements.
929
930 But, when we construct an algebra from a basis of matrices,
931 those matrix representations are lost in favor of coordinate
932 vectors *with respect to* that basis. We could eventually
933 convert back if we tried hard enough, but having the original
934 representations handy is valuable enough that we simply store
935 them and return them from this method.
936
937 Why implement this for non-matrix algebras? Avoiding special
938 cases for the :class:`BilinearFormEJA` pays with simplicity in
939 its own right. But mainly, we would like to be able to assume
940 that elements of a :class:`CartesianProductEJA` can be displayed
941 nicely, without having to have special classes for direct sums
942 one of whose components was a matrix algebra.
943
944 SETUP::
945
946 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
947 ....: RealSymmetricEJA)
948
949 EXAMPLES::
950
951 sage: J = RealSymmetricEJA(2)
952 sage: J.basis()
953 Finite family {0: b0, 1: b1, 2: b2}
954 sage: J.matrix_basis()
955 (
956 [1 0] [ 0 0.7071067811865475?] [0 0]
957 [0 0], [0.7071067811865475? 0], [0 1]
958 )
959
960 ::
961
962 sage: J = JordanSpinEJA(2)
963 sage: J.basis()
964 Finite family {0: b0, 1: b1}
965 sage: J.matrix_basis()
966 (
967 [1] [0]
968 [0], [1]
969 )
970 """
971 return self._matrix_basis
972
973
974 def matrix_space(self):
975 """
976 Return the matrix space in which this algebra's elements live, if
977 we think of them as matrices (including column vectors of the
978 appropriate size).
979
980 "By default" this will be an `n`-by-`1` column-matrix space,
981 except when the algebra is trivial. There it's `n`-by-`n`
982 (where `n` is zero), to ensure that two elements of the matrix
983 space (empty matrices) can be multiplied. For algebras of
984 matrices, this returns the space in which their
985 real embeddings live.
986
987 SETUP::
988
989 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
990 ....: JordanSpinEJA,
991 ....: QuaternionHermitianEJA,
992 ....: TrivialEJA)
993
994 EXAMPLES:
995
996 By default, the matrix representation is just a column-matrix
997 equivalent to the vector representation::
998
999 sage: J = JordanSpinEJA(3)
1000 sage: J.matrix_space()
1001 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1002 Real Field
1003
1004 The matrix representation in the trivial algebra is
1005 zero-by-zero instead of the usual `n`-by-one::
1006
1007 sage: J = TrivialEJA()
1008 sage: J.matrix_space()
1009 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1010 Real Field
1011
1012 The matrix space for complex/quaternion Hermitian matrix EJA
1013 is the space in which their real-embeddings live, not the
1014 original complex/quaternion matrix space::
1015
1016 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1017 sage: J.matrix_space()
1018 Full MatrixSpace of 4 by 4 dense matrices over Rational Field
1019 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1020 sage: J.matrix_space()
1021 Full MatrixSpace of 4 by 4 dense matrices over Rational Field
1022
1023 """
1024 if self.is_trivial():
1025 return MatrixSpace(self.base_ring(), 0)
1026 else:
1027 return self.matrix_basis()[0].parent()
1028
1029
1030 @cached_method
1031 def one(self):
1032 """
1033 Return the unit element of this algebra.
1034
1035 SETUP::
1036
1037 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1038 ....: random_eja)
1039
1040 EXAMPLES:
1041
1042 We can compute unit element in the Hadamard EJA::
1043
1044 sage: J = HadamardEJA(5)
1045 sage: J.one()
1046 b0 + b1 + b2 + b3 + b4
1047
1048 The unit element in the Hadamard EJA is inherited in the
1049 subalgebras generated by its elements::
1050
1051 sage: J = HadamardEJA(5)
1052 sage: J.one()
1053 b0 + b1 + b2 + b3 + b4
1054 sage: x = sum(J.gens())
1055 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1056 sage: A.one()
1057 c0
1058 sage: A.one().superalgebra_element()
1059 b0 + b1 + b2 + b3 + b4
1060
1061 TESTS:
1062
1063 The identity element acts like the identity, regardless of
1064 whether or not we orthonormalize::
1065
1066 sage: set_random_seed()
1067 sage: J = random_eja()
1068 sage: x = J.random_element()
1069 sage: J.one()*x == x and x*J.one() == x
1070 True
1071 sage: A = x.subalgebra_generated_by()
1072 sage: y = A.random_element()
1073 sage: A.one()*y == y and y*A.one() == y
1074 True
1075
1076 ::
1077
1078 sage: set_random_seed()
1079 sage: J = random_eja(field=QQ, orthonormalize=False)
1080 sage: x = J.random_element()
1081 sage: J.one()*x == x and x*J.one() == x
1082 True
1083 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1084 sage: y = A.random_element()
1085 sage: A.one()*y == y and y*A.one() == y
1086 True
1087
1088 The matrix of the unit element's operator is the identity,
1089 regardless of the base field and whether or not we
1090 orthonormalize::
1091
1092 sage: set_random_seed()
1093 sage: J = random_eja()
1094 sage: actual = J.one().operator().matrix()
1095 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1096 sage: actual == expected
1097 True
1098 sage: x = J.random_element()
1099 sage: A = x.subalgebra_generated_by()
1100 sage: actual = A.one().operator().matrix()
1101 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1102 sage: actual == expected
1103 True
1104
1105 ::
1106
1107 sage: set_random_seed()
1108 sage: J = random_eja(field=QQ, orthonormalize=False)
1109 sage: actual = J.one().operator().matrix()
1110 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1111 sage: actual == expected
1112 True
1113 sage: x = J.random_element()
1114 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1115 sage: actual = A.one().operator().matrix()
1116 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1117 sage: actual == expected
1118 True
1119
1120 Ensure that the cached unit element (often precomputed by
1121 hand) agrees with the computed one::
1122
1123 sage: set_random_seed()
1124 sage: J = random_eja()
1125 sage: cached = J.one()
1126 sage: J.one.clear_cache()
1127 sage: J.one() == cached
1128 True
1129
1130 ::
1131
1132 sage: set_random_seed()
1133 sage: J = random_eja(field=QQ, orthonormalize=False)
1134 sage: cached = J.one()
1135 sage: J.one.clear_cache()
1136 sage: J.one() == cached
1137 True
1138
1139 """
1140 # We can brute-force compute the matrices of the operators
1141 # that correspond to the basis elements of this algebra.
1142 # If some linear combination of those basis elements is the
1143 # algebra identity, then the same linear combination of
1144 # their matrices has to be the identity matrix.
1145 #
1146 # Of course, matrices aren't vectors in sage, so we have to
1147 # appeal to the "long vectors" isometry.
1148 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1149
1150 # Now we use basic linear algebra to find the coefficients,
1151 # of the matrices-as-vectors-linear-combination, which should
1152 # work for the original algebra basis too.
1153 A = matrix(self.base_ring(), oper_vecs)
1154
1155 # We used the isometry on the left-hand side already, but we
1156 # still need to do it for the right-hand side. Recall that we
1157 # wanted something that summed to the identity matrix.
1158 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1159
1160 # Now if there's an identity element in the algebra, this
1161 # should work. We solve on the left to avoid having to
1162 # transpose the matrix "A".
1163 return self.from_vector(A.solve_left(b))
1164
1165
1166 def peirce_decomposition(self, c):
1167 """
1168 The Peirce decomposition of this algebra relative to the
1169 idempotent ``c``.
1170
1171 In the future, this can be extended to a complete system of
1172 orthogonal idempotents.
1173
1174 INPUT:
1175
1176 - ``c`` -- an idempotent of this algebra.
1177
1178 OUTPUT:
1179
1180 A triple (J0, J5, J1) containing two subalgebras and one subspace
1181 of this algebra,
1182
1183 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1184 corresponding to the eigenvalue zero.
1185
1186 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1187 corresponding to the eigenvalue one-half.
1188
1189 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1190 corresponding to the eigenvalue one.
1191
1192 These are the only possible eigenspaces for that operator, and this
1193 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1194 orthogonal, and are subalgebras of this algebra with the appropriate
1195 restrictions.
1196
1197 SETUP::
1198
1199 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1200
1201 EXAMPLES:
1202
1203 The canonical example comes from the symmetric matrices, which
1204 decompose into diagonal and off-diagonal parts::
1205
1206 sage: J = RealSymmetricEJA(3)
1207 sage: C = matrix(QQ, [ [1,0,0],
1208 ....: [0,1,0],
1209 ....: [0,0,0] ])
1210 sage: c = J(C)
1211 sage: J0,J5,J1 = J.peirce_decomposition(c)
1212 sage: J0
1213 Euclidean Jordan algebra of dimension 1...
1214 sage: J5
1215 Vector space of degree 6 and dimension 2...
1216 sage: J1
1217 Euclidean Jordan algebra of dimension 3...
1218 sage: J0.one().to_matrix()
1219 [0 0 0]
1220 [0 0 0]
1221 [0 0 1]
1222 sage: orig_df = AA.options.display_format
1223 sage: AA.options.display_format = 'radical'
1224 sage: J.from_vector(J5.basis()[0]).to_matrix()
1225 [ 0 0 1/2*sqrt(2)]
1226 [ 0 0 0]
1227 [1/2*sqrt(2) 0 0]
1228 sage: J.from_vector(J5.basis()[1]).to_matrix()
1229 [ 0 0 0]
1230 [ 0 0 1/2*sqrt(2)]
1231 [ 0 1/2*sqrt(2) 0]
1232 sage: AA.options.display_format = orig_df
1233 sage: J1.one().to_matrix()
1234 [1 0 0]
1235 [0 1 0]
1236 [0 0 0]
1237
1238 TESTS:
1239
1240 Every algebra decomposes trivially with respect to its identity
1241 element::
1242
1243 sage: set_random_seed()
1244 sage: J = random_eja()
1245 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1246 sage: J0.dimension() == 0 and J5.dimension() == 0
1247 True
1248 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1249 True
1250
1251 The decomposition is into eigenspaces, and its components are
1252 therefore necessarily orthogonal. Moreover, the identity
1253 elements in the two subalgebras are the projections onto their
1254 respective subspaces of the superalgebra's identity element::
1255
1256 sage: set_random_seed()
1257 sage: J = random_eja()
1258 sage: x = J.random_element()
1259 sage: if not J.is_trivial():
1260 ....: while x.is_nilpotent():
1261 ....: x = J.random_element()
1262 sage: c = x.subalgebra_idempotent()
1263 sage: J0,J5,J1 = J.peirce_decomposition(c)
1264 sage: ipsum = 0
1265 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1266 ....: w = w.superalgebra_element()
1267 ....: y = J.from_vector(y)
1268 ....: z = z.superalgebra_element()
1269 ....: ipsum += w.inner_product(y).abs()
1270 ....: ipsum += w.inner_product(z).abs()
1271 ....: ipsum += y.inner_product(z).abs()
1272 sage: ipsum
1273 0
1274 sage: J1(c) == J1.one()
1275 True
1276 sage: J0(J.one() - c) == J0.one()
1277 True
1278
1279 """
1280 if not c.is_idempotent():
1281 raise ValueError("element is not idempotent: %s" % c)
1282
1283 # Default these to what they should be if they turn out to be
1284 # trivial, because eigenspaces_left() won't return eigenvalues
1285 # corresponding to trivial spaces (e.g. it returns only the
1286 # eigenspace corresponding to lambda=1 if you take the
1287 # decomposition relative to the identity element).
1288 trivial = self.subalgebra(())
1289 J0 = trivial # eigenvalue zero
1290 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1291 J1 = trivial # eigenvalue one
1292
1293 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1294 if eigval == ~(self.base_ring()(2)):
1295 J5 = eigspace
1296 else:
1297 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1298 subalg = self.subalgebra(gens, check_axioms=False)
1299 if eigval == 0:
1300 J0 = subalg
1301 elif eigval == 1:
1302 J1 = subalg
1303 else:
1304 raise ValueError("unexpected eigenvalue: %s" % eigval)
1305
1306 return (J0, J5, J1)
1307
1308
1309 def random_element(self, thorough=False):
1310 r"""
1311 Return a random element of this algebra.
1312
1313 Our algebra superclass method only returns a linear
1314 combination of at most two basis elements. We instead
1315 want the vector space "random element" method that
1316 returns a more diverse selection.
1317
1318 INPUT:
1319
1320 - ``thorough`` -- (boolean; default False) whether or not we
1321 should generate irrational coefficients for the random
1322 element when our base ring is irrational; this slows the
1323 algebra operations to a crawl, but any truly random method
1324 should include them
1325
1326 """
1327 # For a general base ring... maybe we can trust this to do the
1328 # right thing? Unlikely, but.
1329 V = self.vector_space()
1330 v = V.random_element()
1331
1332 if self.base_ring() is AA:
1333 # The "random element" method of the algebraic reals is
1334 # stupid at the moment, and only returns integers between
1335 # -2 and 2, inclusive:
1336 #
1337 # https://trac.sagemath.org/ticket/30875
1338 #
1339 # Instead, we implement our own "random vector" method,
1340 # and then coerce that into the algebra. We use the vector
1341 # space degree here instead of the dimension because a
1342 # subalgebra could (for example) be spanned by only two
1343 # vectors, each with five coordinates. We need to
1344 # generate all five coordinates.
1345 if thorough:
1346 v *= QQbar.random_element().real()
1347 else:
1348 v *= QQ.random_element()
1349
1350 return self.from_vector(V.coordinate_vector(v))
1351
1352 def random_elements(self, count, thorough=False):
1353 """
1354 Return ``count`` random elements as a tuple.
1355
1356 INPUT:
1357
1358 - ``thorough`` -- (boolean; default False) whether or not we
1359 should generate irrational coefficients for the random
1360 elements when our base ring is irrational; this slows the
1361 algebra operations to a crawl, but any truly random method
1362 should include them
1363
1364 SETUP::
1365
1366 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1367
1368 EXAMPLES::
1369
1370 sage: J = JordanSpinEJA(3)
1371 sage: x,y,z = J.random_elements(3)
1372 sage: all( [ x in J, y in J, z in J ])
1373 True
1374 sage: len( J.random_elements(10) ) == 10
1375 True
1376
1377 """
1378 return tuple( self.random_element(thorough)
1379 for idx in range(count) )
1380
1381
1382 @cached_method
1383 def _charpoly_coefficients(self):
1384 r"""
1385 The `r` polynomial coefficients of the "characteristic polynomial
1386 of" function.
1387
1388 SETUP::
1389
1390 sage: from mjo.eja.eja_algebra import random_eja
1391
1392 TESTS:
1393
1394 The theory shows that these are all homogeneous polynomials of
1395 a known degree::
1396
1397 sage: set_random_seed()
1398 sage: J = random_eja()
1399 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1400 True
1401
1402 """
1403 n = self.dimension()
1404 R = self.coordinate_polynomial_ring()
1405 vars = R.gens()
1406 F = R.fraction_field()
1407
1408 def L_x_i_j(i,j):
1409 # From a result in my book, these are the entries of the
1410 # basis representation of L_x.
1411 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1412 for k in range(n) )
1413
1414 L_x = matrix(F, n, n, L_x_i_j)
1415
1416 r = None
1417 if self.rank.is_in_cache():
1418 r = self.rank()
1419 # There's no need to pad the system with redundant
1420 # columns if we *know* they'll be redundant.
1421 n = r
1422
1423 # Compute an extra power in case the rank is equal to
1424 # the dimension (otherwise, we would stop at x^(r-1)).
1425 x_powers = [ (L_x**k)*self.one().to_vector()
1426 for k in range(n+1) ]
1427 A = matrix.column(F, x_powers[:n])
1428 AE = A.extended_echelon_form()
1429 E = AE[:,n:]
1430 A_rref = AE[:,:n]
1431 if r is None:
1432 r = A_rref.rank()
1433 b = x_powers[r]
1434
1435 # The theory says that only the first "r" coefficients are
1436 # nonzero, and they actually live in the original polynomial
1437 # ring and not the fraction field. We negate them because in
1438 # the actual characteristic polynomial, they get moved to the
1439 # other side where x^r lives. We don't bother to trim A_rref
1440 # down to a square matrix and solve the resulting system,
1441 # because the upper-left r-by-r portion of A_rref is
1442 # guaranteed to be the identity matrix, so e.g.
1443 #
1444 # A_rref.solve_right(Y)
1445 #
1446 # would just be returning Y.
1447 return (-E*b)[:r].change_ring(R)
1448
1449 @cached_method
1450 def rank(self):
1451 r"""
1452 Return the rank of this EJA.
1453
1454 This is a cached method because we know the rank a priori for
1455 all of the algebras we can construct. Thus we can avoid the
1456 expensive ``_charpoly_coefficients()`` call unless we truly
1457 need to compute the whole characteristic polynomial.
1458
1459 SETUP::
1460
1461 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1462 ....: JordanSpinEJA,
1463 ....: RealSymmetricEJA,
1464 ....: ComplexHermitianEJA,
1465 ....: QuaternionHermitianEJA,
1466 ....: random_eja)
1467
1468 EXAMPLES:
1469
1470 The rank of the Jordan spin algebra is always two::
1471
1472 sage: JordanSpinEJA(2).rank()
1473 2
1474 sage: JordanSpinEJA(3).rank()
1475 2
1476 sage: JordanSpinEJA(4).rank()
1477 2
1478
1479 The rank of the `n`-by-`n` Hermitian real, complex, or
1480 quaternion matrices is `n`::
1481
1482 sage: RealSymmetricEJA(4).rank()
1483 4
1484 sage: ComplexHermitianEJA(3).rank()
1485 3
1486 sage: QuaternionHermitianEJA(2).rank()
1487 2
1488
1489 TESTS:
1490
1491 Ensure that every EJA that we know how to construct has a
1492 positive integer rank, unless the algebra is trivial in
1493 which case its rank will be zero::
1494
1495 sage: set_random_seed()
1496 sage: J = random_eja()
1497 sage: r = J.rank()
1498 sage: r in ZZ
1499 True
1500 sage: r > 0 or (r == 0 and J.is_trivial())
1501 True
1502
1503 Ensure that computing the rank actually works, since the ranks
1504 of all simple algebras are known and will be cached by default::
1505
1506 sage: set_random_seed() # long time
1507 sage: J = random_eja() # long time
1508 sage: cached = J.rank() # long time
1509 sage: J.rank.clear_cache() # long time
1510 sage: J.rank() == cached # long time
1511 True
1512
1513 """
1514 return len(self._charpoly_coefficients())
1515
1516
1517 def subalgebra(self, basis, **kwargs):
1518 r"""
1519 Create a subalgebra of this algebra from the given basis.
1520 """
1521 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1522 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1523
1524
1525 def vector_space(self):
1526 """
1527 Return the vector space that underlies this algebra.
1528
1529 SETUP::
1530
1531 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1532
1533 EXAMPLES::
1534
1535 sage: J = RealSymmetricEJA(2)
1536 sage: J.vector_space()
1537 Vector space of dimension 3 over...
1538
1539 """
1540 return self.zero().to_vector().parent().ambient_vector_space()
1541
1542
1543
1544 class RationalBasisEJA(FiniteDimensionalEJA):
1545 r"""
1546 New class for algebras whose supplied basis elements have all rational entries.
1547
1548 SETUP::
1549
1550 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1551
1552 EXAMPLES:
1553
1554 The supplied basis is orthonormalized by default::
1555
1556 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1557 sage: J = BilinearFormEJA(B)
1558 sage: J.matrix_basis()
1559 (
1560 [1] [ 0] [ 0]
1561 [0] [1/5] [32/5]
1562 [0], [ 0], [ 5]
1563 )
1564
1565 """
1566 def __init__(self,
1567 basis,
1568 jordan_product,
1569 inner_product,
1570 field=AA,
1571 check_field=True,
1572 **kwargs):
1573
1574 if check_field:
1575 # Abuse the check_field parameter to check that the entries of
1576 # out basis (in ambient coordinates) are in the field QQ.
1577 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1578 raise TypeError("basis not rational")
1579
1580 super().__init__(basis,
1581 jordan_product,
1582 inner_product,
1583 field=field,
1584 check_field=check_field,
1585 **kwargs)
1586
1587 self._rational_algebra = None
1588 if field is not QQ:
1589 # There's no point in constructing the extra algebra if this
1590 # one is already rational.
1591 #
1592 # Note: the same Jordan and inner-products work here,
1593 # because they are necessarily defined with respect to
1594 # ambient coordinates and not any particular basis.
1595 self._rational_algebra = FiniteDimensionalEJA(
1596 basis,
1597 jordan_product,
1598 inner_product,
1599 field=QQ,
1600 associative=self.is_associative(),
1601 orthonormalize=False,
1602 check_field=False,
1603 check_axioms=False)
1604
1605 @cached_method
1606 def _charpoly_coefficients(self):
1607 r"""
1608 SETUP::
1609
1610 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1611 ....: JordanSpinEJA)
1612
1613 EXAMPLES:
1614
1615 The base ring of the resulting polynomial coefficients is what
1616 it should be, and not the rationals (unless the algebra was
1617 already over the rationals)::
1618
1619 sage: J = JordanSpinEJA(3)
1620 sage: J._charpoly_coefficients()
1621 (X1^2 - X2^2 - X3^2, -2*X1)
1622 sage: a0 = J._charpoly_coefficients()[0]
1623 sage: J.base_ring()
1624 Algebraic Real Field
1625 sage: a0.base_ring()
1626 Algebraic Real Field
1627
1628 """
1629 if self._rational_algebra is None:
1630 # There's no need to construct *another* algebra over the
1631 # rationals if this one is already over the
1632 # rationals. Likewise, if we never orthonormalized our
1633 # basis, we might as well just use the given one.
1634 return super()._charpoly_coefficients()
1635
1636 # Do the computation over the rationals. The answer will be
1637 # the same, because all we've done is a change of basis.
1638 # Then, change back from QQ to our real base ring
1639 a = ( a_i.change_ring(self.base_ring())
1640 for a_i in self._rational_algebra._charpoly_coefficients() )
1641
1642 if self._deortho_matrix is None:
1643 # This can happen if our base ring was, say, AA and we
1644 # chose not to (or didn't need to) orthonormalize. It's
1645 # still faster to do the computations over QQ even if
1646 # the numbers in the boxes stay the same.
1647 return tuple(a)
1648
1649 # Otherwise, convert the coordinate variables back to the
1650 # deorthonormalized ones.
1651 R = self.coordinate_polynomial_ring()
1652 from sage.modules.free_module_element import vector
1653 X = vector(R, R.gens())
1654 BX = self._deortho_matrix*X
1655
1656 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1657 return tuple( a_i.subs(subs_dict) for a_i in a )
1658
1659 class ConcreteEJA(RationalBasisEJA):
1660 r"""
1661 A class for the Euclidean Jordan algebras that we know by name.
1662
1663 These are the Jordan algebras whose basis, multiplication table,
1664 rank, and so on are known a priori. More to the point, they are
1665 the Euclidean Jordan algebras for which we are able to conjure up
1666 a "random instance."
1667
1668 SETUP::
1669
1670 sage: from mjo.eja.eja_algebra import ConcreteEJA
1671
1672 TESTS:
1673
1674 Our basis is normalized with respect to the algebra's inner
1675 product, unless we specify otherwise::
1676
1677 sage: set_random_seed()
1678 sage: J = ConcreteEJA.random_instance()
1679 sage: all( b.norm() == 1 for b in J.gens() )
1680 True
1681
1682 Since our basis is orthonormal with respect to the algebra's inner
1683 product, and since we know that this algebra is an EJA, any
1684 left-multiplication operator's matrix will be symmetric because
1685 natural->EJA basis representation is an isometry and within the
1686 EJA the operator is self-adjoint by the Jordan axiom::
1687
1688 sage: set_random_seed()
1689 sage: J = ConcreteEJA.random_instance()
1690 sage: x = J.random_element()
1691 sage: x.operator().is_self_adjoint()
1692 True
1693 """
1694
1695 @staticmethod
1696 def _max_random_instance_size():
1697 """
1698 Return an integer "size" that is an upper bound on the size of
1699 this algebra when it is used in a random test
1700 case. Unfortunately, the term "size" is ambiguous -- when
1701 dealing with `R^n` under either the Hadamard or Jordan spin
1702 product, the "size" refers to the dimension `n`. When dealing
1703 with a matrix algebra (real symmetric or complex/quaternion
1704 Hermitian), it refers to the size of the matrix, which is far
1705 less than the dimension of the underlying vector space.
1706
1707 This method must be implemented in each subclass.
1708 """
1709 raise NotImplementedError
1710
1711 @classmethod
1712 def random_instance(cls, *args, **kwargs):
1713 """
1714 Return a random instance of this type of algebra.
1715
1716 This method should be implemented in each subclass.
1717 """
1718 from sage.misc.prandom import choice
1719 eja_class = choice(cls.__subclasses__())
1720
1721 # These all bubble up to the RationalBasisEJA superclass
1722 # constructor, so any (kw)args valid there are also valid
1723 # here.
1724 return eja_class.random_instance(*args, **kwargs)
1725
1726
1727 class MatrixEJA:
1728 @staticmethod
1729 def jordan_product(X,Y):
1730 return (X*Y + Y*X)/2
1731
1732 @staticmethod
1733 def trace_inner_product(X,Y):
1734 r"""
1735 A trace inner-product for matrices that aren't embedded in the
1736 reals. It takes MATRICES as arguments, not EJA elements.
1737 """
1738 return (X*Y).trace().real()
1739
1740 class RealEmbeddedMatrixEJA(MatrixEJA):
1741 @staticmethod
1742 def dimension_over_reals():
1743 r"""
1744 The dimension of this matrix's base ring over the reals.
1745
1746 The reals are dimension one over themselves, obviously; that's
1747 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1748 have dimension two. Finally, the quaternions have dimension
1749 four over the reals.
1750
1751 This is used to determine the size of the matrix returned from
1752 :meth:`real_embed`, among other things.
1753 """
1754 raise NotImplementedError
1755
1756 @classmethod
1757 def real_embed(cls,M):
1758 """
1759 Embed the matrix ``M`` into a space of real matrices.
1760
1761 The matrix ``M`` can have entries in any field at the moment:
1762 the real numbers, complex numbers, or quaternions. And although
1763 they are not a field, we can probably support octonions at some
1764 point, too. This function returns a real matrix that "acts like"
1765 the original with respect to matrix multiplication; i.e.
1766
1767 real_embed(M*N) = real_embed(M)*real_embed(N)
1768
1769 """
1770 if M.ncols() != M.nrows():
1771 raise ValueError("the matrix 'M' must be square")
1772 return M
1773
1774
1775 @classmethod
1776 def real_unembed(cls,M):
1777 """
1778 The inverse of :meth:`real_embed`.
1779 """
1780 if M.ncols() != M.nrows():
1781 raise ValueError("the matrix 'M' must be square")
1782 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1783 raise ValueError("the matrix 'M' must be a real embedding")
1784 return M
1785
1786
1787 @classmethod
1788 def trace_inner_product(cls,X,Y):
1789 r"""
1790 Compute the trace inner-product of two real-embeddings.
1791
1792 SETUP::
1793
1794 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1795 ....: QuaternionHermitianEJA)
1796
1797 EXAMPLES::
1798
1799 sage: set_random_seed()
1800 sage: J = ComplexHermitianEJA.random_instance()
1801 sage: x,y = J.random_elements(2)
1802 sage: Xe = x.to_matrix()
1803 sage: Ye = y.to_matrix()
1804 sage: X = J.real_unembed(Xe)
1805 sage: Y = J.real_unembed(Ye)
1806 sage: expected = (X*Y).trace().real()
1807 sage: actual = J.trace_inner_product(Xe,Ye)
1808 sage: actual == expected
1809 True
1810
1811 ::
1812
1813 sage: set_random_seed()
1814 sage: J = QuaternionHermitianEJA.random_instance()
1815 sage: x,y = J.random_elements(2)
1816 sage: Xe = x.to_matrix()
1817 sage: Ye = y.to_matrix()
1818 sage: X = J.real_unembed(Xe)
1819 sage: Y = J.real_unembed(Ye)
1820 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1821 sage: actual = J.trace_inner_product(Xe,Ye)
1822 sage: actual == expected
1823 True
1824
1825 """
1826 # This does in fact compute the real part of the trace.
1827 # If we compute the trace of e.g. a complex matrix M,
1828 # then we do so by adding up its diagonal entries --
1829 # call them z_1 through z_n. The real embedding of z_1
1830 # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
1831 # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
1832 return (X*Y).trace()/cls.dimension_over_reals()
1833
1834 class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
1835 """
1836 The rank-n simple EJA consisting of real symmetric n-by-n
1837 matrices, the usual symmetric Jordan product, and the trace inner
1838 product. It has dimension `(n^2 + n)/2` over the reals.
1839
1840 SETUP::
1841
1842 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1843
1844 EXAMPLES::
1845
1846 sage: J = RealSymmetricEJA(2)
1847 sage: b0, b1, b2 = J.gens()
1848 sage: b0*b0
1849 b0
1850 sage: b1*b1
1851 1/2*b0 + 1/2*b2
1852 sage: b2*b2
1853 b2
1854
1855 In theory, our "field" can be any subfield of the reals::
1856
1857 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
1858 Euclidean Jordan algebra of dimension 3 over Real Double Field
1859 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
1860 Euclidean Jordan algebra of dimension 3 over Real Field with
1861 53 bits of precision
1862
1863 TESTS:
1864
1865 The dimension of this algebra is `(n^2 + n) / 2`::
1866
1867 sage: set_random_seed()
1868 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1869 sage: n = ZZ.random_element(1, n_max)
1870 sage: J = RealSymmetricEJA(n)
1871 sage: J.dimension() == (n^2 + n)/2
1872 True
1873
1874 The Jordan multiplication is what we think it is::
1875
1876 sage: set_random_seed()
1877 sage: J = RealSymmetricEJA.random_instance()
1878 sage: x,y = J.random_elements(2)
1879 sage: actual = (x*y).to_matrix()
1880 sage: X = x.to_matrix()
1881 sage: Y = y.to_matrix()
1882 sage: expected = (X*Y + Y*X)/2
1883 sage: actual == expected
1884 True
1885 sage: J(expected) == x*y
1886 True
1887
1888 We can change the generator prefix::
1889
1890 sage: RealSymmetricEJA(3, prefix='q').gens()
1891 (q0, q1, q2, q3, q4, q5)
1892
1893 We can construct the (trivial) algebra of rank zero::
1894
1895 sage: RealSymmetricEJA(0)
1896 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1897
1898 """
1899 @classmethod
1900 def _denormalized_basis(cls, n, field):
1901 """
1902 Return a basis for the space of real symmetric n-by-n matrices.
1903
1904 SETUP::
1905
1906 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1907
1908 TESTS::
1909
1910 sage: set_random_seed()
1911 sage: n = ZZ.random_element(1,5)
1912 sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
1913 sage: all( M.is_symmetric() for M in B)
1914 True
1915
1916 """
1917 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1918 # coordinates.
1919 S = []
1920 for i in range(n):
1921 for j in range(i+1):
1922 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1923 if i == j:
1924 Sij = Eij
1925 else:
1926 Sij = Eij + Eij.transpose()
1927 S.append(Sij)
1928 return tuple(S)
1929
1930
1931 @staticmethod
1932 def _max_random_instance_size():
1933 return 4 # Dimension 10
1934
1935 @classmethod
1936 def random_instance(cls, **kwargs):
1937 """
1938 Return a random instance of this type of algebra.
1939 """
1940 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1941 return cls(n, **kwargs)
1942
1943 def __init__(self, n, field=AA, **kwargs):
1944 # We know this is a valid EJA, but will double-check
1945 # if the user passes check_axioms=True.
1946 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1947
1948 associative = False
1949 if n <= 1:
1950 associative = True
1951
1952 super().__init__(self._denormalized_basis(n,field),
1953 self.jordan_product,
1954 self.trace_inner_product,
1955 field=field,
1956 associative=associative,
1957 **kwargs)
1958
1959 # TODO: this could be factored out somehow, but is left here
1960 # because the MatrixEJA is not presently a subclass of the
1961 # FDEJA class that defines rank() and one().
1962 self.rank.set_cache(n)
1963 idV = self.matrix_space().one()
1964 self.one.set_cache(self(idV))
1965
1966
1967
1968 class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
1969 # A manual dictionary-cache for the complex_extension() method,
1970 # since apparently @classmethods can't also be @cached_methods.
1971 _complex_extension = {}
1972
1973 @classmethod
1974 def complex_extension(cls,field):
1975 r"""
1976 The complex field that we embed/unembed, as an extension
1977 of the given ``field``.
1978 """
1979 if field in cls._complex_extension:
1980 return cls._complex_extension[field]
1981
1982 # Sage doesn't know how to adjoin the complex "i" (the root of
1983 # x^2 + 1) to a field in a general way. Here, we just enumerate
1984 # all of the cases that I have cared to support so far.
1985 if field is AA:
1986 # Sage doesn't know how to embed AA into QQbar, i.e. how
1987 # to adjoin sqrt(-1) to AA.
1988 F = QQbar
1989 elif not field.is_exact():
1990 # RDF or RR
1991 F = field.complex_field()
1992 else:
1993 # Works for QQ and... maybe some other fields.
1994 R = PolynomialRing(field, 'z')
1995 z = R.gen()
1996 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1997
1998 cls._complex_extension[field] = F
1999 return F
2000
2001 @staticmethod
2002 def dimension_over_reals():
2003 return 2
2004
2005 @classmethod
2006 def real_embed(cls,M):
2007 """
2008 Embed the n-by-n complex matrix ``M`` into the space of real
2009 matrices of size 2n-by-2n via the map the sends each entry `z = a +
2010 bi` to the block matrix ``[[a,b],[-b,a]]``.
2011
2012 SETUP::
2013
2014 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
2015
2016 EXAMPLES::
2017
2018 sage: F = QuadraticField(-1, 'I')
2019 sage: x1 = F(4 - 2*i)
2020 sage: x2 = F(1 + 2*i)
2021 sage: x3 = F(-i)
2022 sage: x4 = F(6)
2023 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
2024 sage: ComplexMatrixEJA.real_embed(M)
2025 [ 4 -2| 1 2]
2026 [ 2 4|-2 1]
2027 [-----+-----]
2028 [ 0 -1| 6 0]
2029 [ 1 0| 0 6]
2030
2031 TESTS:
2032
2033 Embedding is a homomorphism (isomorphism, in fact)::
2034
2035 sage: set_random_seed()
2036 sage: n = ZZ.random_element(3)
2037 sage: F = QuadraticField(-1, 'I')
2038 sage: X = random_matrix(F, n)
2039 sage: Y = random_matrix(F, n)
2040 sage: Xe = ComplexMatrixEJA.real_embed(X)
2041 sage: Ye = ComplexMatrixEJA.real_embed(Y)
2042 sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
2043 sage: Xe*Ye == XYe
2044 True
2045
2046 """
2047 super().real_embed(M)
2048 n = M.nrows()
2049
2050 # We don't need any adjoined elements...
2051 field = M.base_ring().base_ring()
2052
2053 blocks = []
2054 for z in M.list():
2055 a = z.real()
2056 b = z.imag()
2057 blocks.append(matrix(field, 2, [ [ a, b],
2058 [-b, a] ]))
2059
2060 return matrix.block(field, n, blocks)
2061
2062
2063 @classmethod
2064 def real_unembed(cls,M):
2065 """
2066 The inverse of _embed_complex_matrix().
2067
2068 SETUP::
2069
2070 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
2071
2072 EXAMPLES::
2073
2074 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
2075 ....: [-2, 1, -4, 3],
2076 ....: [ 9, 10, 11, 12],
2077 ....: [-10, 9, -12, 11] ])
2078 sage: ComplexMatrixEJA.real_unembed(A)
2079 [ 2*I + 1 4*I + 3]
2080 [ 10*I + 9 12*I + 11]
2081
2082 TESTS:
2083
2084 Unembedding is the inverse of embedding::
2085
2086 sage: set_random_seed()
2087 sage: F = QuadraticField(-1, 'I')
2088 sage: M = random_matrix(F, 3)
2089 sage: Me = ComplexMatrixEJA.real_embed(M)
2090 sage: ComplexMatrixEJA.real_unembed(Me) == M
2091 True
2092
2093 """
2094 super().real_unembed(M)
2095 n = ZZ(M.nrows())
2096 d = cls.dimension_over_reals()
2097 F = cls.complex_extension(M.base_ring())
2098 i = F.gen()
2099
2100 # Go top-left to bottom-right (reading order), converting every
2101 # 2-by-2 block we see to a single complex element.
2102 elements = []
2103 for k in range(n/d):
2104 for j in range(n/d):
2105 submat = M[d*k:d*k+d,d*j:d*j+d]
2106 if submat[0,0] != submat[1,1]:
2107 raise ValueError('bad on-diagonal submatrix')
2108 if submat[0,1] != -submat[1,0]:
2109 raise ValueError('bad off-diagonal submatrix')
2110 z = submat[0,0] + submat[0,1]*i
2111 elements.append(z)
2112
2113 return matrix(F, n/d, elements)
2114
2115
2116 class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
2117 """
2118 The rank-n simple EJA consisting of complex Hermitian n-by-n
2119 matrices over the real numbers, the usual symmetric Jordan product,
2120 and the real-part-of-trace inner product. It has dimension `n^2` over
2121 the reals.
2122
2123 SETUP::
2124
2125 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2126
2127 EXAMPLES:
2128
2129 In theory, our "field" can be any subfield of the reals::
2130
2131 sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
2132 Euclidean Jordan algebra of dimension 4 over Real Double Field
2133 sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
2134 Euclidean Jordan algebra of dimension 4 over Real Field with
2135 53 bits of precision
2136
2137 TESTS:
2138
2139 The dimension of this algebra is `n^2`::
2140
2141 sage: set_random_seed()
2142 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
2143 sage: n = ZZ.random_element(1, n_max)
2144 sage: J = ComplexHermitianEJA(n)
2145 sage: J.dimension() == n^2
2146 True
2147
2148 The Jordan multiplication is what we think it is::
2149
2150 sage: set_random_seed()
2151 sage: J = ComplexHermitianEJA.random_instance()
2152 sage: x,y = J.random_elements(2)
2153 sage: actual = (x*y).to_matrix()
2154 sage: X = x.to_matrix()
2155 sage: Y = y.to_matrix()
2156 sage: expected = (X*Y + Y*X)/2
2157 sage: actual == expected
2158 True
2159 sage: J(expected) == x*y
2160 True
2161
2162 We can change the generator prefix::
2163
2164 sage: ComplexHermitianEJA(2, prefix='z').gens()
2165 (z0, z1, z2, z3)
2166
2167 We can construct the (trivial) algebra of rank zero::
2168
2169 sage: ComplexHermitianEJA(0)
2170 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2171
2172 """
2173
2174 @classmethod
2175 def _denormalized_basis(cls, n, field):
2176 """
2177 Returns a basis for the space of complex Hermitian n-by-n matrices.
2178
2179 Why do we embed these? Basically, because all of numerical linear
2180 algebra assumes that you're working with vectors consisting of `n`
2181 entries from a field and scalars from the same field. There's no way
2182 to tell SageMath that (for example) the vectors contain complex
2183 numbers, while the scalar field is real.
2184
2185 SETUP::
2186
2187 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2188
2189 TESTS::
2190
2191 sage: set_random_seed()
2192 sage: n = ZZ.random_element(1,5)
2193 sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
2194 sage: all( M.is_symmetric() for M in B)
2195 True
2196
2197 """
2198 R = PolynomialRing(ZZ, 'z')
2199 z = R.gen()
2200 F = ZZ.extension(z**2 + 1, 'I')
2201 I = F.gen(1)
2202
2203 # This is like the symmetric case, but we need to be careful:
2204 #
2205 # * We want conjugate-symmetry, not just symmetry.
2206 # * The diagonal will (as a result) be real.
2207 #
2208 S = []
2209 Eij = matrix.zero(F,n)
2210 for i in range(n):
2211 for j in range(i+1):
2212 # "build" E_ij
2213 Eij[i,j] = 1
2214 if i == j:
2215 Sij = cls.real_embed(Eij)
2216 S.append(Sij)
2217 else:
2218 # The second one has a minus because it's conjugated.
2219 Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
2220 Sij_real = cls.real_embed(Eij)
2221 S.append(Sij_real)
2222 # Eij = I*Eij - I*Eij.transpose()
2223 Eij[i,j] = I
2224 Eij[j,i] = -I
2225 Sij_imag = cls.real_embed(Eij)
2226 S.append(Sij_imag)
2227 Eij[j,i] = 0
2228 # "erase" E_ij
2229 Eij[i,j] = 0
2230
2231 # Since we embedded the entries, we can drop back to the
2232 # desired real "field" instead of the extension "F".
2233 return tuple( s.change_ring(field) for s in S )
2234
2235
2236 def __init__(self, n, field=AA, **kwargs):
2237 # We know this is a valid EJA, but will double-check
2238 # if the user passes check_axioms=True.
2239 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2240
2241 associative = False
2242 if n <= 1:
2243 associative = True
2244
2245 super().__init__(self._denormalized_basis(n,field),
2246 self.jordan_product,
2247 self.trace_inner_product,
2248 field=field,
2249 associative=associative,
2250 **kwargs)
2251 # TODO: this could be factored out somehow, but is left here
2252 # because the MatrixEJA is not presently a subclass of the
2253 # FDEJA class that defines rank() and one().
2254 self.rank.set_cache(n)
2255 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2256 self.one.set_cache(self(idV))
2257
2258 @staticmethod
2259 def _max_random_instance_size():
2260 return 3 # Dimension 9
2261
2262 @classmethod
2263 def random_instance(cls, **kwargs):
2264 """
2265 Return a random instance of this type of algebra.
2266 """
2267 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2268 return cls(n, **kwargs)
2269
2270 class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
2271
2272 # A manual dictionary-cache for the quaternion_extension() method,
2273 # since apparently @classmethods can't also be @cached_methods.
2274 _quaternion_extension = {}
2275
2276 @classmethod
2277 def quaternion_extension(cls,field):
2278 r"""
2279 The quaternion field that we embed/unembed, as an extension
2280 of the given ``field``.
2281 """
2282 if field in cls._quaternion_extension:
2283 return cls._quaternion_extension[field]
2284
2285 Q = QuaternionAlgebra(field,-1,-1)
2286
2287 cls._quaternion_extension[field] = Q
2288 return Q
2289
2290 @staticmethod
2291 def dimension_over_reals():
2292 return 4
2293
2294 @classmethod
2295 def real_embed(cls,M):
2296 """
2297 Embed the n-by-n quaternion matrix ``M`` into the space of real
2298 matrices of size 4n-by-4n by first sending each quaternion entry `z
2299 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
2300 c+di],[-c + di, a-bi]]`, and then embedding those into a real
2301 matrix.
2302
2303 SETUP::
2304
2305 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2306
2307 EXAMPLES::
2308
2309 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2310 sage: i,j,k = Q.gens()
2311 sage: x = 1 + 2*i + 3*j + 4*k
2312 sage: M = matrix(Q, 1, [[x]])
2313 sage: QuaternionMatrixEJA.real_embed(M)
2314 [ 1 2 3 4]
2315 [-2 1 -4 3]
2316 [-3 4 1 -2]
2317 [-4 -3 2 1]
2318
2319 Embedding is a homomorphism (isomorphism, in fact)::
2320
2321 sage: set_random_seed()
2322 sage: n = ZZ.random_element(2)
2323 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2324 sage: X = random_matrix(Q, n)
2325 sage: Y = random_matrix(Q, n)
2326 sage: Xe = QuaternionMatrixEJA.real_embed(X)
2327 sage: Ye = QuaternionMatrixEJA.real_embed(Y)
2328 sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
2329 sage: Xe*Ye == XYe
2330 True
2331
2332 """
2333 super().real_embed(M)
2334 quaternions = M.base_ring()
2335 n = M.nrows()
2336
2337 F = QuadraticField(-1, 'I')
2338 i = F.gen()
2339
2340 blocks = []
2341 for z in M.list():
2342 t = z.coefficient_tuple()
2343 a = t[0]
2344 b = t[1]
2345 c = t[2]
2346 d = t[3]
2347 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2348 [-c + d*i, a - b*i]])
2349 realM = ComplexMatrixEJA.real_embed(cplxM)
2350 blocks.append(realM)
2351
2352 # We should have real entries by now, so use the realest field
2353 # we've got for the return value.
2354 return matrix.block(quaternions.base_ring(), n, blocks)
2355
2356
2357
2358 @classmethod
2359 def real_unembed(cls,M):
2360 """
2361 The inverse of _embed_quaternion_matrix().
2362
2363 SETUP::
2364
2365 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2366
2367 EXAMPLES::
2368
2369 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2370 ....: [-2, 1, -4, 3],
2371 ....: [-3, 4, 1, -2],
2372 ....: [-4, -3, 2, 1]])
2373 sage: QuaternionMatrixEJA.real_unembed(M)
2374 [1 + 2*i + 3*j + 4*k]
2375
2376 TESTS:
2377
2378 Unembedding is the inverse of embedding::
2379
2380 sage: set_random_seed()
2381 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2382 sage: M = random_matrix(Q, 3)
2383 sage: Me = QuaternionMatrixEJA.real_embed(M)
2384 sage: QuaternionMatrixEJA.real_unembed(Me) == M
2385 True
2386
2387 """
2388 super().real_unembed(M)
2389 n = ZZ(M.nrows())
2390 d = cls.dimension_over_reals()
2391
2392 # Use the base ring of the matrix to ensure that its entries can be
2393 # multiplied by elements of the quaternion algebra.
2394 Q = cls.quaternion_extension(M.base_ring())
2395 i,j,k = Q.gens()
2396
2397 # Go top-left to bottom-right (reading order), converting every
2398 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2399 # quaternion block.
2400 elements = []
2401 for l in range(n/d):
2402 for m in range(n/d):
2403 submat = ComplexMatrixEJA.real_unembed(
2404 M[d*l:d*l+d,d*m:d*m+d] )
2405 if submat[0,0] != submat[1,1].conjugate():
2406 raise ValueError('bad on-diagonal submatrix')
2407 if submat[0,1] != -submat[1,0].conjugate():
2408 raise ValueError('bad off-diagonal submatrix')
2409 z = submat[0,0].real()
2410 z += submat[0,0].imag()*i
2411 z += submat[0,1].real()*j
2412 z += submat[0,1].imag()*k
2413 elements.append(z)
2414
2415 return matrix(Q, n/d, elements)
2416
2417
2418 class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
2419 r"""
2420 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2421 matrices, the usual symmetric Jordan product, and the
2422 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2423 the reals.
2424
2425 SETUP::
2426
2427 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2428
2429 EXAMPLES:
2430
2431 In theory, our "field" can be any subfield of the reals::
2432
2433 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2434 Euclidean Jordan algebra of dimension 6 over Real Double Field
2435 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2436 Euclidean Jordan algebra of dimension 6 over Real Field with
2437 53 bits of precision
2438
2439 TESTS:
2440
2441 The dimension of this algebra is `2*n^2 - n`::
2442
2443 sage: set_random_seed()
2444 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2445 sage: n = ZZ.random_element(1, n_max)
2446 sage: J = QuaternionHermitianEJA(n)
2447 sage: J.dimension() == 2*(n^2) - n
2448 True
2449
2450 The Jordan multiplication is what we think it is::
2451
2452 sage: set_random_seed()
2453 sage: J = QuaternionHermitianEJA.random_instance()
2454 sage: x,y = J.random_elements(2)
2455 sage: actual = (x*y).to_matrix()
2456 sage: X = x.to_matrix()
2457 sage: Y = y.to_matrix()
2458 sage: expected = (X*Y + Y*X)/2
2459 sage: actual == expected
2460 True
2461 sage: J(expected) == x*y
2462 True
2463
2464 We can change the generator prefix::
2465
2466 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2467 (a0, a1, a2, a3, a4, a5)
2468
2469 We can construct the (trivial) algebra of rank zero::
2470
2471 sage: QuaternionHermitianEJA(0)
2472 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2473
2474 """
2475 @classmethod
2476 def _denormalized_basis(cls, n, field):
2477 """
2478 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2479
2480 Why do we embed these? Basically, because all of numerical
2481 linear algebra assumes that you're working with vectors consisting
2482 of `n` entries from a field and scalars from the same field. There's
2483 no way to tell SageMath that (for example) the vectors contain
2484 complex numbers, while the scalar field is real.
2485
2486 SETUP::
2487
2488 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2489
2490 TESTS::
2491
2492 sage: set_random_seed()
2493 sage: n = ZZ.random_element(1,5)
2494 sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
2495 sage: all( M.is_symmetric() for M in B )
2496 True
2497
2498 """
2499 Q = QuaternionAlgebra(QQ,-1,-1)
2500 I,J,K = Q.gens()
2501
2502 # This is like the symmetric case, but we need to be careful:
2503 #
2504 # * We want conjugate-symmetry, not just symmetry.
2505 # * The diagonal will (as a result) be real.
2506 #
2507 S = []
2508 Eij = matrix.zero(Q,n)
2509 for i in range(n):
2510 for j in range(i+1):
2511 # "build" E_ij
2512 Eij[i,j] = 1
2513 if i == j:
2514 Sij = cls.real_embed(Eij)
2515 S.append(Sij)
2516 else:
2517 # The second, third, and fourth ones have a minus
2518 # because they're conjugated.
2519 # Eij = Eij + Eij.transpose()
2520 Eij[j,i] = 1
2521 Sij_real = cls.real_embed(Eij)
2522 S.append(Sij_real)
2523 # Eij = I*(Eij - Eij.transpose())
2524 Eij[i,j] = I
2525 Eij[j,i] = -I
2526 Sij_I = cls.real_embed(Eij)
2527 S.append(Sij_I)
2528 # Eij = J*(Eij - Eij.transpose())
2529 Eij[i,j] = J
2530 Eij[j,i] = -J
2531 Sij_J = cls.real_embed(Eij)
2532 S.append(Sij_J)
2533 # Eij = K*(Eij - Eij.transpose())
2534 Eij[i,j] = K
2535 Eij[j,i] = -K
2536 Sij_K = cls.real_embed(Eij)
2537 S.append(Sij_K)
2538 Eij[j,i] = 0
2539 # "erase" E_ij
2540 Eij[i,j] = 0
2541
2542 # Since we embedded the entries, we can drop back to the
2543 # desired real "field" instead of the quaternion algebra "Q".
2544 return tuple( s.change_ring(field) for s in S )
2545
2546
2547 def __init__(self, n, field=AA, **kwargs):
2548 # We know this is a valid EJA, but will double-check
2549 # if the user passes check_axioms=True.
2550 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2551
2552 associative = False
2553 if n <= 1:
2554 associative = True
2555
2556 super().__init__(self._denormalized_basis(n,field),
2557 self.jordan_product,
2558 self.trace_inner_product,
2559 field=field,
2560 associative=associative,
2561 **kwargs)
2562
2563 # TODO: this could be factored out somehow, but is left here
2564 # because the MatrixEJA is not presently a subclass of the
2565 # FDEJA class that defines rank() and one().
2566 self.rank.set_cache(n)
2567 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2568 self.one.set_cache(self(idV))
2569
2570
2571 @staticmethod
2572 def _max_random_instance_size():
2573 r"""
2574 The maximum rank of a random QuaternionHermitianEJA.
2575 """
2576 return 2 # Dimension 6
2577
2578 @classmethod
2579 def random_instance(cls, **kwargs):
2580 """
2581 Return a random instance of this type of algebra.
2582 """
2583 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2584 return cls(n, **kwargs)
2585
2586 class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
2587 r"""
2588 SETUP::
2589
2590 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2591 ....: OctonionHermitianEJA)
2592
2593 EXAMPLES:
2594
2595 The 3-by-3 algebra satisfies the axioms of an EJA::
2596
2597 sage: OctonionHermitianEJA(3, # long time
2598 ....: field=QQ, # long time
2599 ....: orthonormalize=False, # long time
2600 ....: check_axioms=True) # long time
2601 Euclidean Jordan algebra of dimension 27 over Rational Field
2602
2603 After a change-of-basis, the 2-by-2 algebra has the same
2604 multiplication table as the ten-dimensional Jordan spin algebra::
2605
2606 sage: b = OctonionHermitianEJA._denormalized_basis(2,QQ)
2607 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2608 sage: jp = OctonionHermitianEJA.jordan_product
2609 sage: ip = OctonionHermitianEJA.trace_inner_product
2610 sage: J = FiniteDimensionalEJA(basis,
2611 ....: jp,
2612 ....: ip,
2613 ....: field=QQ,
2614 ....: orthonormalize=False)
2615 sage: J.multiplication_table()
2616 +----++----+----+----+----+----+----+----+----+----+----+
2617 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2618 +====++====+====+====+====+====+====+====+====+====+====+
2619 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2620 +----++----+----+----+----+----+----+----+----+----+----+
2621 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2622 +----++----+----+----+----+----+----+----+----+----+----+
2623 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2624 +----++----+----+----+----+----+----+----+----+----+----+
2625 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2626 +----++----+----+----+----+----+----+----+----+----+----+
2627 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2628 +----++----+----+----+----+----+----+----+----+----+----+
2629 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2630 +----++----+----+----+----+----+----+----+----+----+----+
2631 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2632 +----++----+----+----+----+----+----+----+----+----+----+
2633 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2634 +----++----+----+----+----+----+----+----+----+----+----+
2635 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2636 +----++----+----+----+----+----+----+----+----+----+----+
2637 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2638 +----++----+----+----+----+----+----+----+----+----+----+
2639
2640 TESTS:
2641
2642 We can actually construct the 27-dimensional Albert algebra,
2643 and we get the right unit element if we recompute it::
2644
2645 sage: J = OctonionHermitianEJA(3, # long time
2646 ....: field=QQ, # long time
2647 ....: orthonormalize=False) # long time
2648 sage: J.one.clear_cache() # long time
2649 sage: J.one() # long time
2650 b0 + b9 + b26
2651 sage: J.one().to_matrix() # long time
2652 +----+----+----+
2653 | e0 | 0 | 0 |
2654 +----+----+----+
2655 | 0 | e0 | 0 |
2656 +----+----+----+
2657 | 0 | 0 | e0 |
2658 +----+----+----+
2659
2660 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2661 spin algebra, but just to be sure, we recompute its rank::
2662
2663 sage: J = OctonionHermitianEJA(2, # long time
2664 ....: field=QQ, # long time
2665 ....: orthonormalize=False) # long time
2666 sage: J.rank.clear_cache() # long time
2667 sage: J.rank() # long time
2668 2
2669 """
2670 def __init__(self, n, field=AA, **kwargs):
2671 if n > 3:
2672 # Otherwise we don't get an EJA.
2673 raise ValueError("n cannot exceed 3")
2674
2675 # We know this is a valid EJA, but will double-check
2676 # if the user passes check_axioms=True.
2677 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2678
2679 super().__init__(self._denormalized_basis(n,field),
2680 self.jordan_product,
2681 self.trace_inner_product,
2682 field=field,
2683 **kwargs)
2684
2685 # TODO: this could be factored out somehow, but is left here
2686 # because the MatrixEJA is not presently a subclass of the
2687 # FDEJA class that defines rank() and one().
2688 self.rank.set_cache(n)
2689 idV = self.matrix_space().one()
2690 self.one.set_cache(self(idV))
2691
2692
2693 @classmethod
2694 def _denormalized_basis(cls, n, field):
2695 """
2696 Returns a basis for the space of octonion Hermitian n-by-n
2697 matrices.
2698
2699 SETUP::
2700
2701 sage: from mjo.eja.eja_algebra import OctonionHermitianEJA
2702
2703 EXAMPLES::
2704
2705 sage: B = OctonionHermitianEJA._denormalized_basis(3,QQ)
2706 sage: all( M.is_hermitian() for M in B )
2707 True
2708 sage: len(B)
2709 27
2710
2711 """
2712 from mjo.octonions import OctonionMatrixAlgebra
2713 MS = OctonionMatrixAlgebra(n, scalars=field)
2714 es = MS.entry_algebra().gens()
2715
2716 basis = []
2717 for i in range(n):
2718 for j in range(i+1):
2719 if i == j:
2720 E_ii = MS.monomial( (i,j,es[0]) )
2721 basis.append(E_ii)
2722 else:
2723 for e in es:
2724 E_ij = MS.monomial( (i,j,e) )
2725 ec = e.conjugate()
2726 # If the conjugate has a negative sign in front
2727 # of it, (j,i,ec) won't be a monomial!
2728 if (j,i,ec) in MS.indices():
2729 E_ij += MS.monomial( (j,i,ec) )
2730 else:
2731 E_ij -= MS.monomial( (j,i,-ec) )
2732 basis.append(E_ij)
2733
2734 return tuple( basis )
2735
2736 @staticmethod
2737 def trace_inner_product(X,Y):
2738 r"""
2739 The octonions don't know that the reals are embedded in them,
2740 so we have to take the e0 component ourselves.
2741
2742 SETUP::
2743
2744 sage: from mjo.eja.eja_algebra import OctonionHermitianEJA
2745
2746 TESTS::
2747
2748 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
2749 sage: I = J.one().to_matrix()
2750 sage: J.trace_inner_product(I, -I)
2751 -2
2752
2753 """
2754 return (X*Y).trace().real().coefficient(0)
2755
2756 class HadamardEJA(ConcreteEJA):
2757 """
2758 Return the Euclidean Jordan Algebra corresponding to the set
2759 `R^n` under the Hadamard product.
2760
2761 Note: this is nothing more than the Cartesian product of ``n``
2762 copies of the spin algebra. Once Cartesian product algebras
2763 are implemented, this can go.
2764
2765 SETUP::
2766
2767 sage: from mjo.eja.eja_algebra import HadamardEJA
2768
2769 EXAMPLES:
2770
2771 This multiplication table can be verified by hand::
2772
2773 sage: J = HadamardEJA(3)
2774 sage: b0,b1,b2 = J.gens()
2775 sage: b0*b0
2776 b0
2777 sage: b0*b1
2778 0
2779 sage: b0*b2
2780 0
2781 sage: b1*b1
2782 b1
2783 sage: b1*b2
2784 0
2785 sage: b2*b2
2786 b2
2787
2788 TESTS:
2789
2790 We can change the generator prefix::
2791
2792 sage: HadamardEJA(3, prefix='r').gens()
2793 (r0, r1, r2)
2794
2795 """
2796 def __init__(self, n, field=AA, **kwargs):
2797 if n == 0:
2798 jordan_product = lambda x,y: x
2799 inner_product = lambda x,y: x
2800 else:
2801 def jordan_product(x,y):
2802 P = x.parent()
2803 return P( xi*yi for (xi,yi) in zip(x,y) )
2804
2805 def inner_product(x,y):
2806 return (x.T*y)[0,0]
2807
2808 # New defaults for keyword arguments. Don't orthonormalize
2809 # because our basis is already orthonormal with respect to our
2810 # inner-product. Don't check the axioms, because we know this
2811 # is a valid EJA... but do double-check if the user passes
2812 # check_axioms=True. Note: we DON'T override the "check_field"
2813 # default here, because the user can pass in a field!
2814 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2815 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2816
2817 column_basis = tuple( b.column()
2818 for b in FreeModule(field, n).basis() )
2819 super().__init__(column_basis,
2820 jordan_product,
2821 inner_product,
2822 field=field,
2823 associative=True,
2824 **kwargs)
2825 self.rank.set_cache(n)
2826
2827 if n == 0:
2828 self.one.set_cache( self.zero() )
2829 else:
2830 self.one.set_cache( sum(self.gens()) )
2831
2832 @staticmethod
2833 def _max_random_instance_size():
2834 r"""
2835 The maximum dimension of a random HadamardEJA.
2836 """
2837 return 5
2838
2839 @classmethod
2840 def random_instance(cls, **kwargs):
2841 """
2842 Return a random instance of this type of algebra.
2843 """
2844 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2845 return cls(n, **kwargs)
2846
2847
2848 class BilinearFormEJA(ConcreteEJA):
2849 r"""
2850 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2851 with the half-trace inner product and jordan product ``x*y =
2852 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2853 a symmetric positive-definite "bilinear form" matrix. Its
2854 dimension is the size of `B`, and it has rank two in dimensions
2855 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2856 the identity matrix of order ``n``.
2857
2858 We insist that the one-by-one upper-left identity block of `B` be
2859 passed in as well so that we can be passed a matrix of size zero
2860 to construct a trivial algebra.
2861
2862 SETUP::
2863
2864 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2865 ....: JordanSpinEJA)
2866
2867 EXAMPLES:
2868
2869 When no bilinear form is specified, the identity matrix is used,
2870 and the resulting algebra is the Jordan spin algebra::
2871
2872 sage: B = matrix.identity(AA,3)
2873 sage: J0 = BilinearFormEJA(B)
2874 sage: J1 = JordanSpinEJA(3)
2875 sage: J0.multiplication_table() == J0.multiplication_table()
2876 True
2877
2878 An error is raised if the matrix `B` does not correspond to a
2879 positive-definite bilinear form::
2880
2881 sage: B = matrix.random(QQ,2,3)
2882 sage: J = BilinearFormEJA(B)
2883 Traceback (most recent call last):
2884 ...
2885 ValueError: bilinear form is not positive-definite
2886 sage: B = matrix.zero(QQ,3)
2887 sage: J = BilinearFormEJA(B)
2888 Traceback (most recent call last):
2889 ...
2890 ValueError: bilinear form is not positive-definite
2891
2892 TESTS:
2893
2894 We can create a zero-dimensional algebra::
2895
2896 sage: B = matrix.identity(AA,0)
2897 sage: J = BilinearFormEJA(B)
2898 sage: J.basis()
2899 Finite family {}
2900
2901 We can check the multiplication condition given in the Jordan, von
2902 Neumann, and Wigner paper (and also discussed on my "On the
2903 symmetry..." paper). Note that this relies heavily on the standard
2904 choice of basis, as does anything utilizing the bilinear form
2905 matrix. We opt not to orthonormalize the basis, because if we
2906 did, we would have to normalize the `s_{i}` in a similar manner::
2907
2908 sage: set_random_seed()
2909 sage: n = ZZ.random_element(5)
2910 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2911 sage: B11 = matrix.identity(QQ,1)
2912 sage: B22 = M.transpose()*M
2913 sage: B = block_matrix(2,2,[ [B11,0 ],
2914 ....: [0, B22 ] ])
2915 sage: J = BilinearFormEJA(B, orthonormalize=False)
2916 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2917 sage: V = J.vector_space()
2918 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2919 ....: for ei in eis ]
2920 sage: actual = [ sis[i]*sis[j]
2921 ....: for i in range(n-1)
2922 ....: for j in range(n-1) ]
2923 sage: expected = [ J.one() if i == j else J.zero()
2924 ....: for i in range(n-1)
2925 ....: for j in range(n-1) ]
2926 sage: actual == expected
2927 True
2928
2929 """
2930 def __init__(self, B, field=AA, **kwargs):
2931 # The matrix "B" is supplied by the user in most cases,
2932 # so it makes sense to check whether or not its positive-
2933 # definite unless we are specifically asked not to...
2934 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2935 if not B.is_positive_definite():
2936 raise ValueError("bilinear form is not positive-definite")
2937
2938 # However, all of the other data for this EJA is computed
2939 # by us in manner that guarantees the axioms are
2940 # satisfied. So, again, unless we are specifically asked to
2941 # verify things, we'll skip the rest of the checks.
2942 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2943
2944 def inner_product(x,y):
2945 return (y.T*B*x)[0,0]
2946
2947 def jordan_product(x,y):
2948 P = x.parent()
2949 x0 = x[0,0]
2950 xbar = x[1:,0]
2951 y0 = y[0,0]
2952 ybar = y[1:,0]
2953 z0 = inner_product(y,x)
2954 zbar = y0*xbar + x0*ybar
2955 return P([z0] + zbar.list())
2956
2957 n = B.nrows()
2958 column_basis = tuple( b.column()
2959 for b in FreeModule(field, n).basis() )
2960
2961 # TODO: I haven't actually checked this, but it seems legit.
2962 associative = False
2963 if n <= 2:
2964 associative = True
2965
2966 super().__init__(column_basis,
2967 jordan_product,
2968 inner_product,
2969 field=field,
2970 associative=associative,
2971 **kwargs)
2972
2973 # The rank of this algebra is two, unless we're in a
2974 # one-dimensional ambient space (because the rank is bounded
2975 # by the ambient dimension).
2976 self.rank.set_cache(min(n,2))
2977
2978 if n == 0:
2979 self.one.set_cache( self.zero() )
2980 else:
2981 self.one.set_cache( self.monomial(0) )
2982
2983 @staticmethod
2984 def _max_random_instance_size():
2985 r"""
2986 The maximum dimension of a random BilinearFormEJA.
2987 """
2988 return 5
2989
2990 @classmethod
2991 def random_instance(cls, **kwargs):
2992 """
2993 Return a random instance of this algebra.
2994 """
2995 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2996 if n.is_zero():
2997 B = matrix.identity(ZZ, n)
2998 return cls(B, **kwargs)
2999
3000 B11 = matrix.identity(ZZ, 1)
3001 M = matrix.random(ZZ, n-1)
3002 I = matrix.identity(ZZ, n-1)
3003 alpha = ZZ.zero()
3004 while alpha.is_zero():
3005 alpha = ZZ.random_element().abs()
3006 B22 = M.transpose()*M + alpha*I
3007
3008 from sage.matrix.special import block_matrix
3009 B = block_matrix(2,2, [ [B11, ZZ(0) ],
3010 [ZZ(0), B22 ] ])
3011
3012 return cls(B, **kwargs)
3013
3014
3015 class JordanSpinEJA(BilinearFormEJA):
3016 """
3017 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
3018 with the usual inner product and jordan product ``x*y =
3019 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
3020 the reals.
3021
3022 SETUP::
3023
3024 sage: from mjo.eja.eja_algebra import JordanSpinEJA
3025
3026 EXAMPLES:
3027
3028 This multiplication table can be verified by hand::
3029
3030 sage: J = JordanSpinEJA(4)
3031 sage: b0,b1,b2,b3 = J.gens()
3032 sage: b0*b0
3033 b0
3034 sage: b0*b1
3035 b1
3036 sage: b0*b2
3037 b2
3038 sage: b0*b3
3039 b3
3040 sage: b1*b2
3041 0
3042 sage: b1*b3
3043 0
3044 sage: b2*b3
3045 0
3046
3047 We can change the generator prefix::
3048
3049 sage: JordanSpinEJA(2, prefix='B').gens()
3050 (B0, B1)
3051
3052 TESTS:
3053
3054 Ensure that we have the usual inner product on `R^n`::
3055
3056 sage: set_random_seed()
3057 sage: J = JordanSpinEJA.random_instance()
3058 sage: x,y = J.random_elements(2)
3059 sage: actual = x.inner_product(y)
3060 sage: expected = x.to_vector().inner_product(y.to_vector())
3061 sage: actual == expected
3062 True
3063
3064 """
3065 def __init__(self, n, *args, **kwargs):
3066 # This is a special case of the BilinearFormEJA with the
3067 # identity matrix as its bilinear form.
3068 B = matrix.identity(ZZ, n)
3069
3070 # Don't orthonormalize because our basis is already
3071 # orthonormal with respect to our inner-product.
3072 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
3073
3074 # But also don't pass check_field=False here, because the user
3075 # can pass in a field!
3076 super().__init__(B, *args, **kwargs)
3077
3078 @staticmethod
3079 def _max_random_instance_size():
3080 r"""
3081 The maximum dimension of a random JordanSpinEJA.
3082 """
3083 return 5
3084
3085 @classmethod
3086 def random_instance(cls, **kwargs):
3087 """
3088 Return a random instance of this type of algebra.
3089
3090 Needed here to override the implementation for ``BilinearFormEJA``.
3091 """
3092 n = ZZ.random_element(cls._max_random_instance_size() + 1)
3093 return cls(n, **kwargs)
3094
3095
3096 class TrivialEJA(ConcreteEJA):
3097 """
3098 The trivial Euclidean Jordan algebra consisting of only a zero element.
3099
3100 SETUP::
3101
3102 sage: from mjo.eja.eja_algebra import TrivialEJA
3103
3104 EXAMPLES::
3105
3106 sage: J = TrivialEJA()
3107 sage: J.dimension()
3108 0
3109 sage: J.zero()
3110 0
3111 sage: J.one()
3112 0
3113 sage: 7*J.one()*12*J.one()
3114 0
3115 sage: J.one().inner_product(J.one())
3116 0
3117 sage: J.one().norm()
3118 0
3119 sage: J.one().subalgebra_generated_by()
3120 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
3121 sage: J.rank()
3122 0
3123
3124 """
3125 def __init__(self, **kwargs):
3126 jordan_product = lambda x,y: x
3127 inner_product = lambda x,y: 0
3128 basis = ()
3129
3130 # New defaults for keyword arguments
3131 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
3132 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
3133
3134 super().__init__(basis,
3135 jordan_product,
3136 inner_product,
3137 associative=True,
3138 **kwargs)
3139
3140 # The rank is zero using my definition, namely the dimension of the
3141 # largest subalgebra generated by any element.
3142 self.rank.set_cache(0)
3143 self.one.set_cache( self.zero() )
3144
3145 @classmethod
3146 def random_instance(cls, **kwargs):
3147 # We don't take a "size" argument so the superclass method is
3148 # inappropriate for us.
3149 return cls(**kwargs)
3150
3151
3152 class CartesianProductEJA(FiniteDimensionalEJA):
3153 r"""
3154 The external (orthogonal) direct sum of two or more Euclidean
3155 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
3156 orthogonal direct sum of simple Euclidean Jordan algebras which is
3157 then isometric to a Cartesian product, so no generality is lost by
3158 providing only this construction.
3159
3160 SETUP::
3161
3162 sage: from mjo.eja.eja_algebra import (random_eja,
3163 ....: CartesianProductEJA,
3164 ....: HadamardEJA,
3165 ....: JordanSpinEJA,
3166 ....: RealSymmetricEJA)
3167
3168 EXAMPLES:
3169
3170 The Jordan product is inherited from our factors and implemented by
3171 our CombinatorialFreeModule Cartesian product superclass::
3172
3173 sage: set_random_seed()
3174 sage: J1 = HadamardEJA(2)
3175 sage: J2 = RealSymmetricEJA(2)
3176 sage: J = cartesian_product([J1,J2])
3177 sage: x,y = J.random_elements(2)
3178 sage: x*y in J
3179 True
3180
3181 The ability to retrieve the original factors is implemented by our
3182 CombinatorialFreeModule Cartesian product superclass::
3183
3184 sage: J1 = HadamardEJA(2, field=QQ)
3185 sage: J2 = JordanSpinEJA(3, field=QQ)
3186 sage: J = cartesian_product([J1,J2])
3187 sage: J.cartesian_factors()
3188 (Euclidean Jordan algebra of dimension 2 over Rational Field,
3189 Euclidean Jordan algebra of dimension 3 over Rational Field)
3190
3191 You can provide more than two factors::
3192
3193 sage: J1 = HadamardEJA(2)
3194 sage: J2 = JordanSpinEJA(3)
3195 sage: J3 = RealSymmetricEJA(3)
3196 sage: cartesian_product([J1,J2,J3])
3197 Euclidean Jordan algebra of dimension 2 over Algebraic Real
3198 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
3199 Real Field (+) Euclidean Jordan algebra of dimension 6 over
3200 Algebraic Real Field
3201
3202 Rank is additive on a Cartesian product::
3203
3204 sage: J1 = HadamardEJA(1)
3205 sage: J2 = RealSymmetricEJA(2)
3206 sage: J = cartesian_product([J1,J2])
3207 sage: J1.rank.clear_cache()
3208 sage: J2.rank.clear_cache()
3209 sage: J.rank.clear_cache()
3210 sage: J.rank()
3211 3
3212 sage: J.rank() == J1.rank() + J2.rank()
3213 True
3214
3215 The same rank computation works over the rationals, with whatever
3216 basis you like::
3217
3218 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
3219 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
3220 sage: J = cartesian_product([J1,J2])
3221 sage: J1.rank.clear_cache()
3222 sage: J2.rank.clear_cache()
3223 sage: J.rank.clear_cache()
3224 sage: J.rank()
3225 3
3226 sage: J.rank() == J1.rank() + J2.rank()
3227 True
3228
3229 The product algebra will be associative if and only if all of its
3230 components are associative::
3231
3232 sage: J1 = HadamardEJA(2)
3233 sage: J1.is_associative()
3234 True
3235 sage: J2 = HadamardEJA(3)
3236 sage: J2.is_associative()
3237 True
3238 sage: J3 = RealSymmetricEJA(3)
3239 sage: J3.is_associative()
3240 False
3241 sage: CP1 = cartesian_product([J1,J2])
3242 sage: CP1.is_associative()
3243 True
3244 sage: CP2 = cartesian_product([J1,J3])
3245 sage: CP2.is_associative()
3246 False
3247
3248 Cartesian products of Cartesian products work::
3249
3250 sage: J1 = JordanSpinEJA(1)
3251 sage: J2 = JordanSpinEJA(1)
3252 sage: J3 = JordanSpinEJA(1)
3253 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3254 sage: J.multiplication_table()
3255 +----++----+----+----+
3256 | * || b0 | b1 | b2 |
3257 +====++====+====+====+
3258 | b0 || b0 | 0 | 0 |
3259 +----++----+----+----+
3260 | b1 || 0 | b1 | 0 |
3261 +----++----+----+----+
3262 | b2 || 0 | 0 | b2 |
3263 +----++----+----+----+
3264 sage: HadamardEJA(3).multiplication_table()
3265 +----++----+----+----+
3266 | * || b0 | b1 | b2 |
3267 +====++====+====+====+
3268 | b0 || b0 | 0 | 0 |
3269 +----++----+----+----+
3270 | b1 || 0 | b1 | 0 |
3271 +----++----+----+----+
3272 | b2 || 0 | 0 | b2 |
3273 +----++----+----+----+
3274
3275 TESTS:
3276
3277 All factors must share the same base field::
3278
3279 sage: J1 = HadamardEJA(2, field=QQ)
3280 sage: J2 = RealSymmetricEJA(2)
3281 sage: CartesianProductEJA((J1,J2))
3282 Traceback (most recent call last):
3283 ...
3284 ValueError: all factors must share the same base field
3285
3286 The cached unit element is the same one that would be computed::
3287
3288 sage: set_random_seed() # long time
3289 sage: J1 = random_eja() # long time
3290 sage: J2 = random_eja() # long time
3291 sage: J = cartesian_product([J1,J2]) # long time
3292 sage: actual = J.one() # long time
3293 sage: J.one.clear_cache() # long time
3294 sage: expected = J.one() # long time
3295 sage: actual == expected # long time
3296 True
3297
3298 """
3299 Element = FiniteDimensionalEJAElement
3300
3301
3302 def __init__(self, factors, **kwargs):
3303 m = len(factors)
3304 if m == 0:
3305 return TrivialEJA()
3306
3307 self._sets = factors
3308
3309 field = factors[0].base_ring()
3310 if not all( J.base_ring() == field for J in factors ):
3311 raise ValueError("all factors must share the same base field")
3312
3313 associative = all( f.is_associative() for f in factors )
3314
3315 MS = self.matrix_space()
3316 basis = []
3317 zero = MS.zero()
3318 for i in range(m):
3319 for b in factors[i].matrix_basis():
3320 z = list(zero)
3321 z[i] = b
3322 basis.append(z)
3323
3324 basis = tuple( MS(b) for b in basis )
3325
3326 # Define jordan/inner products that operate on that matrix_basis.
3327 def jordan_product(x,y):
3328 return MS(tuple(
3329 (factors[i](x[i])*factors[i](y[i])).to_matrix()
3330 for i in range(m)
3331 ))
3332
3333 def inner_product(x, y):
3334 return sum(
3335 factors[i](x[i]).inner_product(factors[i](y[i]))
3336 for i in range(m)
3337 )
3338
3339 # There's no need to check the field since it already came
3340 # from an EJA. Likewise the axioms are guaranteed to be
3341 # satisfied, unless the guy writing this class sucks.
3342 #
3343 # If you want the basis to be orthonormalized, orthonormalize
3344 # the factors.
3345 FiniteDimensionalEJA.__init__(self,
3346 basis,
3347 jordan_product,
3348 inner_product,
3349 field=field,
3350 orthonormalize=False,
3351 associative=associative,
3352 cartesian_product=True,
3353 check_field=False,
3354 check_axioms=False)
3355
3356 ones = tuple(J.one().to_matrix() for J in factors)
3357 self.one.set_cache(self(ones))
3358 self.rank.set_cache(sum(J.rank() for J in factors))
3359
3360 def cartesian_factors(self):
3361 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3362 return self._sets
3363
3364 def cartesian_factor(self, i):
3365 r"""
3366 Return the ``i``th factor of this algebra.
3367 """
3368 return self._sets[i]
3369
3370 def _repr_(self):
3371 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3372 from sage.categories.cartesian_product import cartesian_product
3373 return cartesian_product.symbol.join("%s" % factor
3374 for factor in self._sets)
3375
3376 def matrix_space(self):
3377 r"""
3378 Return the space that our matrix basis lives in as a Cartesian
3379 product.
3380
3381 SETUP::
3382
3383 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3384 ....: RealSymmetricEJA)
3385
3386 EXAMPLES::
3387
3388 sage: J1 = HadamardEJA(1)
3389 sage: J2 = RealSymmetricEJA(2)
3390 sage: J = cartesian_product([J1,J2])
3391 sage: J.matrix_space()
3392 The Cartesian product of (Full MatrixSpace of 1 by 1 dense
3393 matrices over Algebraic Real Field, Full MatrixSpace of 2
3394 by 2 dense matrices over Algebraic Real Field)
3395
3396 """
3397 from sage.categories.cartesian_product import cartesian_product
3398 return cartesian_product( [J.matrix_space()
3399 for J in self.cartesian_factors()] )
3400
3401 @cached_method
3402 def cartesian_projection(self, i):
3403 r"""
3404 SETUP::
3405
3406 sage: from mjo.eja.eja_algebra import (random_eja,
3407 ....: JordanSpinEJA,
3408 ....: HadamardEJA,
3409 ....: RealSymmetricEJA,
3410 ....: ComplexHermitianEJA)
3411
3412 EXAMPLES:
3413
3414 The projection morphisms are Euclidean Jordan algebra
3415 operators::
3416
3417 sage: J1 = HadamardEJA(2)
3418 sage: J2 = RealSymmetricEJA(2)
3419 sage: J = cartesian_product([J1,J2])
3420 sage: J.cartesian_projection(0)
3421 Linear operator between finite-dimensional Euclidean Jordan
3422 algebras represented by the matrix:
3423 [1 0 0 0 0]
3424 [0 1 0 0 0]
3425 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3426 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3427 Algebraic Real Field
3428 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3429 Real Field
3430 sage: J.cartesian_projection(1)
3431 Linear operator between finite-dimensional Euclidean Jordan
3432 algebras represented by the matrix:
3433 [0 0 1 0 0]
3434 [0 0 0 1 0]
3435 [0 0 0 0 1]
3436 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3437 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3438 Algebraic Real Field
3439 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3440 Real Field
3441
3442 The projections work the way you'd expect on the vector
3443 representation of an element::
3444
3445 sage: J1 = JordanSpinEJA(2)
3446 sage: J2 = ComplexHermitianEJA(2)
3447 sage: J = cartesian_product([J1,J2])
3448 sage: pi_left = J.cartesian_projection(0)
3449 sage: pi_right = J.cartesian_projection(1)
3450 sage: pi_left(J.one()).to_vector()
3451 (1, 0)
3452 sage: pi_right(J.one()).to_vector()
3453 (1, 0, 0, 1)
3454 sage: J.one().to_vector()
3455 (1, 0, 1, 0, 0, 1)
3456
3457 TESTS:
3458
3459 The answer never changes::
3460
3461 sage: set_random_seed()
3462 sage: J1 = random_eja()
3463 sage: J2 = random_eja()
3464 sage: J = cartesian_product([J1,J2])
3465 sage: P0 = J.cartesian_projection(0)
3466 sage: P1 = J.cartesian_projection(0)
3467 sage: P0 == P1
3468 True
3469
3470 """
3471 offset = sum( self.cartesian_factor(k).dimension()
3472 for k in range(i) )
3473 Ji = self.cartesian_factor(i)
3474 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3475 codomain=Ji)
3476
3477 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3478
3479 @cached_method
3480 def cartesian_embedding(self, i):
3481 r"""
3482 SETUP::
3483
3484 sage: from mjo.eja.eja_algebra import (random_eja,
3485 ....: JordanSpinEJA,
3486 ....: HadamardEJA,
3487 ....: RealSymmetricEJA)
3488
3489 EXAMPLES:
3490
3491 The embedding morphisms are Euclidean Jordan algebra
3492 operators::
3493
3494 sage: J1 = HadamardEJA(2)
3495 sage: J2 = RealSymmetricEJA(2)
3496 sage: J = cartesian_product([J1,J2])
3497 sage: J.cartesian_embedding(0)
3498 Linear operator between finite-dimensional Euclidean Jordan
3499 algebras represented by the matrix:
3500 [1 0]
3501 [0 1]
3502 [0 0]
3503 [0 0]
3504 [0 0]
3505 Domain: Euclidean Jordan algebra of dimension 2 over
3506 Algebraic Real Field
3507 Codomain: Euclidean Jordan algebra of dimension 2 over
3508 Algebraic Real Field (+) Euclidean Jordan algebra of
3509 dimension 3 over Algebraic Real Field
3510 sage: J.cartesian_embedding(1)
3511 Linear operator between finite-dimensional Euclidean Jordan
3512 algebras represented by the matrix:
3513 [0 0 0]
3514 [0 0 0]
3515 [1 0 0]
3516 [0 1 0]
3517 [0 0 1]
3518 Domain: Euclidean Jordan algebra of dimension 3 over
3519 Algebraic Real Field
3520 Codomain: Euclidean Jordan algebra of dimension 2 over
3521 Algebraic Real Field (+) Euclidean Jordan algebra of
3522 dimension 3 over Algebraic Real Field
3523
3524 The embeddings work the way you'd expect on the vector
3525 representation of an element::
3526
3527 sage: J1 = JordanSpinEJA(3)
3528 sage: J2 = RealSymmetricEJA(2)
3529 sage: J = cartesian_product([J1,J2])
3530 sage: iota_left = J.cartesian_embedding(0)
3531 sage: iota_right = J.cartesian_embedding(1)
3532 sage: iota_left(J1.zero()) == J.zero()
3533 True
3534 sage: iota_right(J2.zero()) == J.zero()
3535 True
3536 sage: J1.one().to_vector()
3537 (1, 0, 0)
3538 sage: iota_left(J1.one()).to_vector()
3539 (1, 0, 0, 0, 0, 0)
3540 sage: J2.one().to_vector()
3541 (1, 0, 1)
3542 sage: iota_right(J2.one()).to_vector()
3543 (0, 0, 0, 1, 0, 1)
3544 sage: J.one().to_vector()
3545 (1, 0, 0, 1, 0, 1)
3546
3547 TESTS:
3548
3549 The answer never changes::
3550
3551 sage: set_random_seed()
3552 sage: J1 = random_eja()
3553 sage: J2 = random_eja()
3554 sage: J = cartesian_product([J1,J2])
3555 sage: E0 = J.cartesian_embedding(0)
3556 sage: E1 = J.cartesian_embedding(0)
3557 sage: E0 == E1
3558 True
3559
3560 Composing a projection with the corresponding inclusion should
3561 produce the identity map, and mismatching them should produce
3562 the zero map::
3563
3564 sage: set_random_seed()
3565 sage: J1 = random_eja()
3566 sage: J2 = random_eja()
3567 sage: J = cartesian_product([J1,J2])
3568 sage: iota_left = J.cartesian_embedding(0)
3569 sage: iota_right = J.cartesian_embedding(1)
3570 sage: pi_left = J.cartesian_projection(0)
3571 sage: pi_right = J.cartesian_projection(1)
3572 sage: pi_left*iota_left == J1.one().operator()
3573 True
3574 sage: pi_right*iota_right == J2.one().operator()
3575 True
3576 sage: (pi_left*iota_right).is_zero()
3577 True
3578 sage: (pi_right*iota_left).is_zero()
3579 True
3580
3581 """
3582 offset = sum( self.cartesian_factor(k).dimension()
3583 for k in range(i) )
3584 Ji = self.cartesian_factor(i)
3585 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3586 codomain=self)
3587 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3588
3589
3590
3591 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3592
3593 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3594 RationalBasisEJA):
3595 r"""
3596 A separate class for products of algebras for which we know a
3597 rational basis.
3598
3599 SETUP::
3600
3601 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
3602 ....: RealSymmetricEJA)
3603
3604 EXAMPLES:
3605
3606 This gives us fast characteristic polynomial computations in
3607 product algebras, too::
3608
3609
3610 sage: J1 = JordanSpinEJA(2)
3611 sage: J2 = RealSymmetricEJA(3)
3612 sage: J = cartesian_product([J1,J2])
3613 sage: J.characteristic_polynomial_of().degree()
3614 5
3615 sage: J.rank()
3616 5
3617
3618 """
3619 def __init__(self, algebras, **kwargs):
3620 CartesianProductEJA.__init__(self, algebras, **kwargs)
3621
3622 self._rational_algebra = None
3623 if self.vector_space().base_field() is not QQ:
3624 self._rational_algebra = cartesian_product([
3625 r._rational_algebra for r in algebras
3626 ])
3627
3628
3629 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3630
3631 def random_eja(*args, **kwargs):
3632 J1 = ConcreteEJA.random_instance(*args, **kwargs)
3633
3634 # This might make Cartesian products appear roughly as often as
3635 # any other ConcreteEJA.
3636 if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
3637 # Use random_eja() again so we can get more than two factors.
3638 J2 = random_eja(*args, **kwargs)
3639 J = cartesian_product([J1,J2])
3640 return J
3641 else:
3642 return J1