]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: don't pass in a full multiplication table unless necessary.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
37 r"""
38 The lowest-level class for representing a Euclidean Jordan algebra.
39 """
40 def _coerce_map_from_base_ring(self):
41 """
42 Disable the map from the base ring into the algebra.
43
44 Performing a nonsense conversion like this automatically
45 is counterpedagogical. The fallback is to try the usual
46 element constructor, which should also fail.
47
48 SETUP::
49
50 sage: from mjo.eja.eja_algebra import random_eja
51
52 TESTS::
53
54 sage: set_random_seed()
55 sage: J = random_eja()
56 sage: J(1)
57 Traceback (most recent call last):
58 ...
59 ValueError: not an element of this algebra
60
61 """
62 return None
63
64 def __init__(self,
65 field,
66 multiplication_table,
67 inner_product_table,
68 prefix='e',
69 category=None,
70 matrix_basis=None,
71 check_field=True,
72 check_axioms=True):
73 """
74 INPUT:
75
76 * field -- the scalar field for this algebra (must be real)
77
78 * multiplication_table -- the multiplication table for this
79 algebra's implicit basis. Only the lower-triangular portion
80 of the table is used, since the multiplication is assumed
81 to be commutative.
82
83 SETUP::
84
85 sage: from mjo.eja.eja_algebra import (
86 ....: FiniteDimensionalEuclideanJordanAlgebra,
87 ....: JordanSpinEJA,
88 ....: random_eja)
89
90 EXAMPLES:
91
92 By definition, Jordan multiplication commutes::
93
94 sage: set_random_seed()
95 sage: J = random_eja()
96 sage: x,y = J.random_elements(2)
97 sage: x*y == y*x
98 True
99
100 An error is raised if the Jordan product is not commutative::
101
102 sage: JP = ((1,2),(0,0))
103 sage: IP = ((1,0),(0,1))
104 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
105 Traceback (most recent call last):
106 ...
107 ValueError: Jordan product is not commutative
108
109 An error is raised if the inner-product is not commutative::
110
111 sage: JP = ((1,0),(0,1))
112 sage: IP = ((1,2),(0,0))
113 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
114 Traceback (most recent call last):
115 ...
116 ValueError: inner-product is not commutative
117
118 TESTS:
119
120 The ``field`` we're given must be real with ``check_field=True``::
121
122 sage: JordanSpinEJA(2,QQbar)
123 Traceback (most recent call last):
124 ...
125 ValueError: scalar field is not real
126
127 The multiplication table must be square with ``check_axioms=True``::
128
129 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
130 Traceback (most recent call last):
131 ...
132 ValueError: multiplication table is not square
133
134 The multiplication and inner-product tables must be the same
135 size (and in particular, the inner-product table must also be
136 square) with ``check_axioms=True``::
137
138 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
139 Traceback (most recent call last):
140 ...
141 ValueError: multiplication and inner-product tables are
142 different sizes
143 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
144 Traceback (most recent call last):
145 ...
146 ValueError: multiplication and inner-product tables are
147 different sizes
148
149 """
150 if check_field:
151 if not field.is_subring(RR):
152 # Note: this does return true for the real algebraic
153 # field, the rationals, and any quadratic field where
154 # we've specified a real embedding.
155 raise ValueError("scalar field is not real")
156
157
158 # The multiplication and inner-product tables should be square
159 # if the user wants us to verify them. And we verify them as
160 # soon as possible, because we want to exploit their symmetry.
161 n = len(multiplication_table)
162 if check_axioms:
163 if not all( len(l) == n for l in multiplication_table ):
164 raise ValueError("multiplication table is not square")
165
166 # If the multiplication table is square, we can check if
167 # the inner-product table is square by comparing it to the
168 # multiplication table's dimensions.
169 msg = "multiplication and inner-product tables are different sizes"
170 if not len(inner_product_table) == n:
171 raise ValueError(msg)
172
173 if not all( len(l) == n for l in inner_product_table ):
174 raise ValueError(msg)
175
176 # Check commutativity of the Jordan product (symmetry of
177 # the multiplication table) and the commutativity of the
178 # inner-product (symmetry of the inner-product table)
179 # first if we're going to check them at all.. This has to
180 # be done before we define product_on_basis(), because
181 # that method assumes that self._multiplication_table is
182 # symmetric. And it has to be done before we build
183 # self._inner_product_matrix, because the process used to
184 # construct it assumes symmetry as well.
185 if not all( multiplication_table[j][i]
186 == multiplication_table[i][j]
187 for i in range(n)
188 for j in range(i+1) ):
189 raise ValueError("Jordan product is not commutative")
190
191 if not all( inner_product_table[j][i]
192 == inner_product_table[i][j]
193 for i in range(n)
194 for j in range(i+1) ):
195 raise ValueError("inner-product is not commutative")
196
197 self._matrix_basis = matrix_basis
198
199 if category is None:
200 category = MagmaticAlgebras(field).FiniteDimensional()
201 category = category.WithBasis().Unital()
202
203 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
204 fda.__init__(field,
205 range(n),
206 prefix=prefix,
207 category=category)
208 self.print_options(bracket='')
209
210 # The multiplication table we're given is necessarily in terms
211 # of vectors, because we don't have an algebra yet for
212 # anything to be an element of. However, it's faster in the
213 # long run to have the multiplication table be in terms of
214 # algebra elements. We do this after calling the superclass
215 # constructor so that from_vector() knows what to do.
216 #
217 # Note: we take advantage of symmetry here, and only store
218 # the lower-triangular portion of the table.
219 self._multiplication_table = [ [ self.vector_space().zero()
220 for j in range(i+1) ]
221 for i in range(n) ]
222
223 for i in range(n):
224 for j in range(i+1):
225 elt = self.from_vector(multiplication_table[i][j])
226 self._multiplication_table[i][j] = elt
227
228 self._multiplication_table = tuple(map(tuple, self._multiplication_table))
229
230 # Save our inner product as a matrix, since the efficiency of
231 # matrix multiplication will usually outweigh the fact that we
232 # have to store a redundant upper- or lower-triangular part.
233 # Pre-cache the fact that these are Hermitian (real symmetric,
234 # in fact) in case some e.g. matrix multiplication routine can
235 # take advantage of it.
236 ip_matrix_constructor = lambda i,j: inner_product_table[i][j] if j <= i else inner_product_table[j][i]
237 self._inner_product_matrix = matrix(field, n, ip_matrix_constructor)
238 self._inner_product_matrix._cache = {'hermitian': True}
239 self._inner_product_matrix.set_immutable()
240
241 if check_axioms:
242 if not self._is_jordanian():
243 raise ValueError("Jordan identity does not hold")
244 if not self._inner_product_is_associative():
245 raise ValueError("inner product is not associative")
246
247 def _element_constructor_(self, elt):
248 """
249 Construct an element of this algebra from its vector or matrix
250 representation.
251
252 This gets called only after the parent element _call_ method
253 fails to find a coercion for the argument.
254
255 SETUP::
256
257 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
258 ....: HadamardEJA,
259 ....: RealSymmetricEJA)
260
261 EXAMPLES:
262
263 The identity in `S^n` is converted to the identity in the EJA::
264
265 sage: J = RealSymmetricEJA(3)
266 sage: I = matrix.identity(QQ,3)
267 sage: J(I) == J.one()
268 True
269
270 This skew-symmetric matrix can't be represented in the EJA::
271
272 sage: J = RealSymmetricEJA(3)
273 sage: A = matrix(QQ,3, lambda i,j: i-j)
274 sage: J(A)
275 Traceback (most recent call last):
276 ...
277 ValueError: not an element of this algebra
278
279 TESTS:
280
281 Ensure that we can convert any element of the two non-matrix
282 simple algebras (whose matrix representations are columns)
283 back and forth faithfully::
284
285 sage: set_random_seed()
286 sage: J = HadamardEJA.random_instance()
287 sage: x = J.random_element()
288 sage: J(x.to_vector().column()) == x
289 True
290 sage: J = JordanSpinEJA.random_instance()
291 sage: x = J.random_element()
292 sage: J(x.to_vector().column()) == x
293 True
294 """
295 msg = "not an element of this algebra"
296 if elt == 0:
297 # The superclass implementation of random_element()
298 # needs to be able to coerce "0" into the algebra.
299 return self.zero()
300 elif elt in self.base_ring():
301 # Ensure that no base ring -> algebra coercion is performed
302 # by this method. There's some stupidity in sage that would
303 # otherwise propagate to this method; for example, sage thinks
304 # that the integer 3 belongs to the space of 2-by-2 matrices.
305 raise ValueError(msg)
306
307 if elt not in self.matrix_space():
308 raise ValueError(msg)
309
310 # Thanks for nothing! Matrix spaces aren't vector spaces in
311 # Sage, so we have to figure out its matrix-basis coordinates
312 # ourselves. We use the basis space's ring instead of the
313 # element's ring because the basis space might be an algebraic
314 # closure whereas the base ring of the 3-by-3 identity matrix
315 # could be QQ instead of QQbar.
316 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
317 W = V.span_of_basis( _mat2vec(s) for s in self.matrix_basis() )
318
319 try:
320 coords = W.coordinate_vector(_mat2vec(elt))
321 except ArithmeticError: # vector is not in free module
322 raise ValueError(msg)
323
324 return self.from_vector(coords)
325
326 def _repr_(self):
327 """
328 Return a string representation of ``self``.
329
330 SETUP::
331
332 sage: from mjo.eja.eja_algebra import JordanSpinEJA
333
334 TESTS:
335
336 Ensure that it says what we think it says::
337
338 sage: JordanSpinEJA(2, field=AA)
339 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
340 sage: JordanSpinEJA(3, field=RDF)
341 Euclidean Jordan algebra of dimension 3 over Real Double Field
342
343 """
344 fmt = "Euclidean Jordan algebra of dimension {} over {}"
345 return fmt.format(self.dimension(), self.base_ring())
346
347 def product_on_basis(self, i, j):
348 # We only stored the lower-triangular portion of the
349 # multiplication table.
350 if j <= i:
351 return self._multiplication_table[i][j]
352 else:
353 return self._multiplication_table[j][i]
354
355 def _is_commutative(self):
356 r"""
357 Whether or not this algebra's multiplication table is commutative.
358
359 This method should of course always return ``True``, unless
360 this algebra was constructed with ``check_axioms=False`` and
361 passed an invalid multiplication table.
362 """
363 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
364 for i in range(self.dimension())
365 for j in range(self.dimension()) )
366
367 def _is_jordanian(self):
368 r"""
369 Whether or not this algebra's multiplication table respects the
370 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
371
372 We only check one arrangement of `x` and `y`, so for a
373 ``True`` result to be truly true, you should also check
374 :meth:`_is_commutative`. This method should of course always
375 return ``True``, unless this algebra was constructed with
376 ``check_axioms=False`` and passed an invalid multiplication table.
377 """
378 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
379 ==
380 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
381 for i in range(self.dimension())
382 for j in range(self.dimension()) )
383
384 def _inner_product_is_associative(self):
385 r"""
386 Return whether or not this algebra's inner product `B` is
387 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
388
389 This method should of course always return ``True``, unless
390 this algebra was constructed with ``check_axioms=False`` and
391 passed an invalid multiplication table.
392 """
393
394 # Used to check whether or not something is zero in an inexact
395 # ring. This number is sufficient to allow the construction of
396 # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
397 epsilon = 1e-16
398
399 for i in range(self.dimension()):
400 for j in range(self.dimension()):
401 for k in range(self.dimension()):
402 x = self.monomial(i)
403 y = self.monomial(j)
404 z = self.monomial(k)
405 diff = (x*y).inner_product(z) - x.inner_product(y*z)
406
407 if self.base_ring().is_exact():
408 if diff != 0:
409 return False
410 else:
411 if diff.abs() > epsilon:
412 return False
413
414 return True
415
416 @cached_method
417 def characteristic_polynomial_of(self):
418 """
419 Return the algebra's "characteristic polynomial of" function,
420 which is itself a multivariate polynomial that, when evaluated
421 at the coordinates of some algebra element, returns that
422 element's characteristic polynomial.
423
424 The resulting polynomial has `n+1` variables, where `n` is the
425 dimension of this algebra. The first `n` variables correspond to
426 the coordinates of an algebra element: when evaluated at the
427 coordinates of an algebra element with respect to a certain
428 basis, the result is a univariate polynomial (in the one
429 remaining variable ``t``), namely the characteristic polynomial
430 of that element.
431
432 SETUP::
433
434 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
435
436 EXAMPLES:
437
438 The characteristic polynomial in the spin algebra is given in
439 Alizadeh, Example 11.11::
440
441 sage: J = JordanSpinEJA(3)
442 sage: p = J.characteristic_polynomial_of(); p
443 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
444 sage: xvec = J.one().to_vector()
445 sage: p(*xvec)
446 t^2 - 2*t + 1
447
448 By definition, the characteristic polynomial is a monic
449 degree-zero polynomial in a rank-zero algebra. Note that
450 Cayley-Hamilton is indeed satisfied since the polynomial
451 ``1`` evaluates to the identity element of the algebra on
452 any argument::
453
454 sage: J = TrivialEJA()
455 sage: J.characteristic_polynomial_of()
456 1
457
458 """
459 r = self.rank()
460 n = self.dimension()
461
462 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
463 a = self._charpoly_coefficients()
464
465 # We go to a bit of trouble here to reorder the
466 # indeterminates, so that it's easier to evaluate the
467 # characteristic polynomial at x's coordinates and get back
468 # something in terms of t, which is what we want.
469 S = PolynomialRing(self.base_ring(),'t')
470 t = S.gen(0)
471 if r > 0:
472 R = a[0].parent()
473 S = PolynomialRing(S, R.variable_names())
474 t = S(t)
475
476 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
477
478 def coordinate_polynomial_ring(self):
479 r"""
480 The multivariate polynomial ring in which this algebra's
481 :meth:`characteristic_polynomial_of` lives.
482
483 SETUP::
484
485 sage: from mjo.eja.eja_algebra import (HadamardEJA,
486 ....: RealSymmetricEJA)
487
488 EXAMPLES::
489
490 sage: J = HadamardEJA(2)
491 sage: J.coordinate_polynomial_ring()
492 Multivariate Polynomial Ring in X1, X2...
493 sage: J = RealSymmetricEJA(3,QQ,orthonormalize=False)
494 sage: J.coordinate_polynomial_ring()
495 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
496
497 """
498 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
499 return PolynomialRing(self.base_ring(), var_names)
500
501 def inner_product(self, x, y):
502 """
503 The inner product associated with this Euclidean Jordan algebra.
504
505 Defaults to the trace inner product, but can be overridden by
506 subclasses if they are sure that the necessary properties are
507 satisfied.
508
509 SETUP::
510
511 sage: from mjo.eja.eja_algebra import (random_eja,
512 ....: HadamardEJA,
513 ....: BilinearFormEJA)
514
515 EXAMPLES:
516
517 Our inner product is "associative," which means the following for
518 a symmetric bilinear form::
519
520 sage: set_random_seed()
521 sage: J = random_eja()
522 sage: x,y,z = J.random_elements(3)
523 sage: (x*y).inner_product(z) == y.inner_product(x*z)
524 True
525
526 TESTS:
527
528 Ensure that this is the usual inner product for the algebras
529 over `R^n`::
530
531 sage: set_random_seed()
532 sage: J = HadamardEJA.random_instance()
533 sage: x,y = J.random_elements(2)
534 sage: actual = x.inner_product(y)
535 sage: expected = x.to_vector().inner_product(y.to_vector())
536 sage: actual == expected
537 True
538
539 Ensure that this is one-half of the trace inner-product in a
540 BilinearFormEJA that isn't just the reals (when ``n`` isn't
541 one). This is in Faraut and Koranyi, and also my "On the
542 symmetry..." paper::
543
544 sage: set_random_seed()
545 sage: J = BilinearFormEJA.random_instance()
546 sage: n = J.dimension()
547 sage: x = J.random_element()
548 sage: y = J.random_element()
549 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
550 True
551 """
552 B = self._inner_product_matrix
553 return (B*x.to_vector()).inner_product(y.to_vector())
554
555
556 def is_trivial(self):
557 """
558 Return whether or not this algebra is trivial.
559
560 A trivial algebra contains only the zero element.
561
562 SETUP::
563
564 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
565 ....: TrivialEJA)
566
567 EXAMPLES::
568
569 sage: J = ComplexHermitianEJA(3)
570 sage: J.is_trivial()
571 False
572
573 ::
574
575 sage: J = TrivialEJA()
576 sage: J.is_trivial()
577 True
578
579 """
580 return self.dimension() == 0
581
582
583 def multiplication_table(self):
584 """
585 Return a visual representation of this algebra's multiplication
586 table (on basis elements).
587
588 SETUP::
589
590 sage: from mjo.eja.eja_algebra import JordanSpinEJA
591
592 EXAMPLES::
593
594 sage: J = JordanSpinEJA(4)
595 sage: J.multiplication_table()
596 +----++----+----+----+----+
597 | * || e0 | e1 | e2 | e3 |
598 +====++====+====+====+====+
599 | e0 || e0 | e1 | e2 | e3 |
600 +----++----+----+----+----+
601 | e1 || e1 | e0 | 0 | 0 |
602 +----++----+----+----+----+
603 | e2 || e2 | 0 | e0 | 0 |
604 +----++----+----+----+----+
605 | e3 || e3 | 0 | 0 | e0 |
606 +----++----+----+----+----+
607
608 """
609 n = self.dimension()
610 M = [ [ self.zero() for j in range(n) ]
611 for i in range(n) ]
612 for i in range(n):
613 for j in range(i+1):
614 M[i][j] = self._multiplication_table[i][j]
615 M[j][i] = M[i][j]
616
617 for i in range(n):
618 # Prepend the left "header" column entry Can't do this in
619 # the loop because it messes up the symmetry.
620 M[i] = [self.monomial(i)] + M[i]
621
622 # Prepend the header row.
623 M = [["*"] + list(self.gens())] + M
624 return table(M, header_row=True, header_column=True, frame=True)
625
626
627 def matrix_basis(self):
628 """
629 Return an (often more natural) representation of this algebras
630 basis as an ordered tuple of matrices.
631
632 Every finite-dimensional Euclidean Jordan Algebra is a, up to
633 Jordan isomorphism, a direct sum of five simple
634 algebras---four of which comprise Hermitian matrices. And the
635 last type of algebra can of course be thought of as `n`-by-`1`
636 column matrices (ambiguusly called column vectors) to avoid
637 special cases. As a result, matrices (and column vectors) are
638 a natural representation format for Euclidean Jordan algebra
639 elements.
640
641 But, when we construct an algebra from a basis of matrices,
642 those matrix representations are lost in favor of coordinate
643 vectors *with respect to* that basis. We could eventually
644 convert back if we tried hard enough, but having the original
645 representations handy is valuable enough that we simply store
646 them and return them from this method.
647
648 Why implement this for non-matrix algebras? Avoiding special
649 cases for the :class:`BilinearFormEJA` pays with simplicity in
650 its own right. But mainly, we would like to be able to assume
651 that elements of a :class:`DirectSumEJA` can be displayed
652 nicely, without having to have special classes for direct sums
653 one of whose components was a matrix algebra.
654
655 SETUP::
656
657 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
658 ....: RealSymmetricEJA)
659
660 EXAMPLES::
661
662 sage: J = RealSymmetricEJA(2)
663 sage: J.basis()
664 Finite family {0: e0, 1: e1, 2: e2}
665 sage: J.matrix_basis()
666 (
667 [1 0] [ 0 0.7071067811865475?] [0 0]
668 [0 0], [0.7071067811865475? 0], [0 1]
669 )
670
671 ::
672
673 sage: J = JordanSpinEJA(2)
674 sage: J.basis()
675 Finite family {0: e0, 1: e1}
676 sage: J.matrix_basis()
677 (
678 [1] [0]
679 [0], [1]
680 )
681 """
682 if self._matrix_basis is None:
683 M = self.matrix_space()
684 return tuple( M(b.to_vector()) for b in self.basis() )
685 else:
686 return self._matrix_basis
687
688
689 def matrix_space(self):
690 """
691 Return the matrix space in which this algebra's elements live, if
692 we think of them as matrices (including column vectors of the
693 appropriate size).
694
695 Generally this will be an `n`-by-`1` column-vector space,
696 except when the algebra is trivial. There it's `n`-by-`n`
697 (where `n` is zero), to ensure that two elements of the matrix
698 space (empty matrices) can be multiplied.
699
700 Matrix algebras override this with something more useful.
701 """
702 if self.is_trivial():
703 return MatrixSpace(self.base_ring(), 0)
704 elif self._matrix_basis is None or len(self._matrix_basis) == 0:
705 return MatrixSpace(self.base_ring(), self.dimension(), 1)
706 else:
707 return self._matrix_basis[0].matrix_space()
708
709
710 @cached_method
711 def one(self):
712 """
713 Return the unit element of this algebra.
714
715 SETUP::
716
717 sage: from mjo.eja.eja_algebra import (HadamardEJA,
718 ....: random_eja)
719
720 EXAMPLES::
721
722 sage: J = HadamardEJA(5)
723 sage: J.one()
724 e0 + e1 + e2 + e3 + e4
725
726 TESTS:
727
728 The identity element acts like the identity::
729
730 sage: set_random_seed()
731 sage: J = random_eja()
732 sage: x = J.random_element()
733 sage: J.one()*x == x and x*J.one() == x
734 True
735
736 The matrix of the unit element's operator is the identity::
737
738 sage: set_random_seed()
739 sage: J = random_eja()
740 sage: actual = J.one().operator().matrix()
741 sage: expected = matrix.identity(J.base_ring(), J.dimension())
742 sage: actual == expected
743 True
744
745 Ensure that the cached unit element (often precomputed by
746 hand) agrees with the computed one::
747
748 sage: set_random_seed()
749 sage: J = random_eja()
750 sage: cached = J.one()
751 sage: J.one.clear_cache()
752 sage: J.one() == cached
753 True
754
755 """
756 # We can brute-force compute the matrices of the operators
757 # that correspond to the basis elements of this algebra.
758 # If some linear combination of those basis elements is the
759 # algebra identity, then the same linear combination of
760 # their matrices has to be the identity matrix.
761 #
762 # Of course, matrices aren't vectors in sage, so we have to
763 # appeal to the "long vectors" isometry.
764 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
765
766 # Now we use basic linear algebra to find the coefficients,
767 # of the matrices-as-vectors-linear-combination, which should
768 # work for the original algebra basis too.
769 A = matrix(self.base_ring(), oper_vecs)
770
771 # We used the isometry on the left-hand side already, but we
772 # still need to do it for the right-hand side. Recall that we
773 # wanted something that summed to the identity matrix.
774 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
775
776 # Now if there's an identity element in the algebra, this
777 # should work. We solve on the left to avoid having to
778 # transpose the matrix "A".
779 return self.from_vector(A.solve_left(b))
780
781
782 def peirce_decomposition(self, c):
783 """
784 The Peirce decomposition of this algebra relative to the
785 idempotent ``c``.
786
787 In the future, this can be extended to a complete system of
788 orthogonal idempotents.
789
790 INPUT:
791
792 - ``c`` -- an idempotent of this algebra.
793
794 OUTPUT:
795
796 A triple (J0, J5, J1) containing two subalgebras and one subspace
797 of this algebra,
798
799 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
800 corresponding to the eigenvalue zero.
801
802 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
803 corresponding to the eigenvalue one-half.
804
805 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
806 corresponding to the eigenvalue one.
807
808 These are the only possible eigenspaces for that operator, and this
809 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
810 orthogonal, and are subalgebras of this algebra with the appropriate
811 restrictions.
812
813 SETUP::
814
815 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
816
817 EXAMPLES:
818
819 The canonical example comes from the symmetric matrices, which
820 decompose into diagonal and off-diagonal parts::
821
822 sage: J = RealSymmetricEJA(3)
823 sage: C = matrix(QQ, [ [1,0,0],
824 ....: [0,1,0],
825 ....: [0,0,0] ])
826 sage: c = J(C)
827 sage: J0,J5,J1 = J.peirce_decomposition(c)
828 sage: J0
829 Euclidean Jordan algebra of dimension 1...
830 sage: J5
831 Vector space of degree 6 and dimension 2...
832 sage: J1
833 Euclidean Jordan algebra of dimension 3...
834 sage: J0.one().to_matrix()
835 [0 0 0]
836 [0 0 0]
837 [0 0 1]
838 sage: orig_df = AA.options.display_format
839 sage: AA.options.display_format = 'radical'
840 sage: J.from_vector(J5.basis()[0]).to_matrix()
841 [ 0 0 1/2*sqrt(2)]
842 [ 0 0 0]
843 [1/2*sqrt(2) 0 0]
844 sage: J.from_vector(J5.basis()[1]).to_matrix()
845 [ 0 0 0]
846 [ 0 0 1/2*sqrt(2)]
847 [ 0 1/2*sqrt(2) 0]
848 sage: AA.options.display_format = orig_df
849 sage: J1.one().to_matrix()
850 [1 0 0]
851 [0 1 0]
852 [0 0 0]
853
854 TESTS:
855
856 Every algebra decomposes trivially with respect to its identity
857 element::
858
859 sage: set_random_seed()
860 sage: J = random_eja()
861 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
862 sage: J0.dimension() == 0 and J5.dimension() == 0
863 True
864 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
865 True
866
867 The decomposition is into eigenspaces, and its components are
868 therefore necessarily orthogonal. Moreover, the identity
869 elements in the two subalgebras are the projections onto their
870 respective subspaces of the superalgebra's identity element::
871
872 sage: set_random_seed()
873 sage: J = random_eja()
874 sage: x = J.random_element()
875 sage: if not J.is_trivial():
876 ....: while x.is_nilpotent():
877 ....: x = J.random_element()
878 sage: c = x.subalgebra_idempotent()
879 sage: J0,J5,J1 = J.peirce_decomposition(c)
880 sage: ipsum = 0
881 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
882 ....: w = w.superalgebra_element()
883 ....: y = J.from_vector(y)
884 ....: z = z.superalgebra_element()
885 ....: ipsum += w.inner_product(y).abs()
886 ....: ipsum += w.inner_product(z).abs()
887 ....: ipsum += y.inner_product(z).abs()
888 sage: ipsum
889 0
890 sage: J1(c) == J1.one()
891 True
892 sage: J0(J.one() - c) == J0.one()
893 True
894
895 """
896 if not c.is_idempotent():
897 raise ValueError("element is not idempotent: %s" % c)
898
899 from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
900
901 # Default these to what they should be if they turn out to be
902 # trivial, because eigenspaces_left() won't return eigenvalues
903 # corresponding to trivial spaces (e.g. it returns only the
904 # eigenspace corresponding to lambda=1 if you take the
905 # decomposition relative to the identity element).
906 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
907 J0 = trivial # eigenvalue zero
908 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
909 J1 = trivial # eigenvalue one
910
911 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
912 if eigval == ~(self.base_ring()(2)):
913 J5 = eigspace
914 else:
915 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
916 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
917 gens,
918 check_axioms=False)
919 if eigval == 0:
920 J0 = subalg
921 elif eigval == 1:
922 J1 = subalg
923 else:
924 raise ValueError("unexpected eigenvalue: %s" % eigval)
925
926 return (J0, J5, J1)
927
928
929 def random_element(self, thorough=False):
930 r"""
931 Return a random element of this algebra.
932
933 Our algebra superclass method only returns a linear
934 combination of at most two basis elements. We instead
935 want the vector space "random element" method that
936 returns a more diverse selection.
937
938 INPUT:
939
940 - ``thorough`` -- (boolean; default False) whether or not we
941 should generate irrational coefficients for the random
942 element when our base ring is irrational; this slows the
943 algebra operations to a crawl, but any truly random method
944 should include them
945
946 """
947 # For a general base ring... maybe we can trust this to do the
948 # right thing? Unlikely, but.
949 V = self.vector_space()
950 v = V.random_element()
951
952 if self.base_ring() is AA:
953 # The "random element" method of the algebraic reals is
954 # stupid at the moment, and only returns integers between
955 # -2 and 2, inclusive:
956 #
957 # https://trac.sagemath.org/ticket/30875
958 #
959 # Instead, we implement our own "random vector" method,
960 # and then coerce that into the algebra. We use the vector
961 # space degree here instead of the dimension because a
962 # subalgebra could (for example) be spanned by only two
963 # vectors, each with five coordinates. We need to
964 # generate all five coordinates.
965 if thorough:
966 v *= QQbar.random_element().real()
967 else:
968 v *= QQ.random_element()
969
970 return self.from_vector(V.coordinate_vector(v))
971
972 def random_elements(self, count, thorough=False):
973 """
974 Return ``count`` random elements as a tuple.
975
976 INPUT:
977
978 - ``thorough`` -- (boolean; default False) whether or not we
979 should generate irrational coefficients for the random
980 elements when our base ring is irrational; this slows the
981 algebra operations to a crawl, but any truly random method
982 should include them
983
984 SETUP::
985
986 sage: from mjo.eja.eja_algebra import JordanSpinEJA
987
988 EXAMPLES::
989
990 sage: J = JordanSpinEJA(3)
991 sage: x,y,z = J.random_elements(3)
992 sage: all( [ x in J, y in J, z in J ])
993 True
994 sage: len( J.random_elements(10) ) == 10
995 True
996
997 """
998 return tuple( self.random_element(thorough)
999 for idx in range(count) )
1000
1001
1002 @cached_method
1003 def _charpoly_coefficients(self):
1004 r"""
1005 The `r` polynomial coefficients of the "characteristic polynomial
1006 of" function.
1007 """
1008 n = self.dimension()
1009 R = self.coordinate_polynomial_ring()
1010 vars = R.gens()
1011 F = R.fraction_field()
1012
1013 def L_x_i_j(i,j):
1014 # From a result in my book, these are the entries of the
1015 # basis representation of L_x.
1016 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1017 for k in range(n) )
1018
1019 L_x = matrix(F, n, n, L_x_i_j)
1020
1021 r = None
1022 if self.rank.is_in_cache():
1023 r = self.rank()
1024 # There's no need to pad the system with redundant
1025 # columns if we *know* they'll be redundant.
1026 n = r
1027
1028 # Compute an extra power in case the rank is equal to
1029 # the dimension (otherwise, we would stop at x^(r-1)).
1030 x_powers = [ (L_x**k)*self.one().to_vector()
1031 for k in range(n+1) ]
1032 A = matrix.column(F, x_powers[:n])
1033 AE = A.extended_echelon_form()
1034 E = AE[:,n:]
1035 A_rref = AE[:,:n]
1036 if r is None:
1037 r = A_rref.rank()
1038 b = x_powers[r]
1039
1040 # The theory says that only the first "r" coefficients are
1041 # nonzero, and they actually live in the original polynomial
1042 # ring and not the fraction field. We negate them because
1043 # in the actual characteristic polynomial, they get moved
1044 # to the other side where x^r lives.
1045 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1046
1047 @cached_method
1048 def rank(self):
1049 r"""
1050 Return the rank of this EJA.
1051
1052 This is a cached method because we know the rank a priori for
1053 all of the algebras we can construct. Thus we can avoid the
1054 expensive ``_charpoly_coefficients()`` call unless we truly
1055 need to compute the whole characteristic polynomial.
1056
1057 SETUP::
1058
1059 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1060 ....: JordanSpinEJA,
1061 ....: RealSymmetricEJA,
1062 ....: ComplexHermitianEJA,
1063 ....: QuaternionHermitianEJA,
1064 ....: random_eja)
1065
1066 EXAMPLES:
1067
1068 The rank of the Jordan spin algebra is always two::
1069
1070 sage: JordanSpinEJA(2).rank()
1071 2
1072 sage: JordanSpinEJA(3).rank()
1073 2
1074 sage: JordanSpinEJA(4).rank()
1075 2
1076
1077 The rank of the `n`-by-`n` Hermitian real, complex, or
1078 quaternion matrices is `n`::
1079
1080 sage: RealSymmetricEJA(4).rank()
1081 4
1082 sage: ComplexHermitianEJA(3).rank()
1083 3
1084 sage: QuaternionHermitianEJA(2).rank()
1085 2
1086
1087 TESTS:
1088
1089 Ensure that every EJA that we know how to construct has a
1090 positive integer rank, unless the algebra is trivial in
1091 which case its rank will be zero::
1092
1093 sage: set_random_seed()
1094 sage: J = random_eja()
1095 sage: r = J.rank()
1096 sage: r in ZZ
1097 True
1098 sage: r > 0 or (r == 0 and J.is_trivial())
1099 True
1100
1101 Ensure that computing the rank actually works, since the ranks
1102 of all simple algebras are known and will be cached by default::
1103
1104 sage: set_random_seed() # long time
1105 sage: J = random_eja() # long time
1106 sage: caches = J.rank() # long time
1107 sage: J.rank.clear_cache() # long time
1108 sage: J.rank() == cached # long time
1109 True
1110
1111 """
1112 return len(self._charpoly_coefficients())
1113
1114
1115 def vector_space(self):
1116 """
1117 Return the vector space that underlies this algebra.
1118
1119 SETUP::
1120
1121 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1122
1123 EXAMPLES::
1124
1125 sage: J = RealSymmetricEJA(2)
1126 sage: J.vector_space()
1127 Vector space of dimension 3 over...
1128
1129 """
1130 return self.zero().to_vector().parent().ambient_vector_space()
1131
1132
1133 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1134
1135 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1136 r"""
1137 New class for algebras whose supplied basis elements have all rational entries.
1138
1139 SETUP::
1140
1141 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1142
1143 EXAMPLES:
1144
1145 The supplied basis is orthonormalized by default::
1146
1147 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1148 sage: J = BilinearFormEJA(B)
1149 sage: J.matrix_basis()
1150 (
1151 [1] [ 0] [ 0]
1152 [0] [1/5] [32/5]
1153 [0], [ 0], [ 5]
1154 )
1155
1156 """
1157 def __init__(self,
1158 field,
1159 basis,
1160 jordan_product,
1161 inner_product,
1162 orthonormalize=True,
1163 prefix='e',
1164 category=None,
1165 check_field=True,
1166 check_axioms=True):
1167
1168 n = len(basis)
1169 vector_basis = basis
1170
1171 from sage.structure.element import is_Matrix
1172 basis_is_matrices = False
1173
1174 degree = 0
1175 if n > 0:
1176 if is_Matrix(basis[0]):
1177 basis_is_matrices = True
1178 from mjo.eja.eja_utils import _vec2mat
1179 vector_basis = tuple( map(_mat2vec,basis) )
1180 degree = basis[0].nrows()**2
1181 else:
1182 degree = basis[0].degree()
1183
1184 V = VectorSpace(field, degree)
1185
1186 # If we were asked to orthonormalize, and if the orthonormal
1187 # basis is different from the given one, then we also want to
1188 # compute multiplication and inner-product tables for the
1189 # deorthonormalized basis. These can be used later to
1190 # construct a deorthonormalized copy of this algebra over QQ
1191 # in which several operations are much faster.
1192 self._deortho_multiplication_table = None
1193 self._deortho_inner_product_table = None
1194
1195 if orthonormalize:
1196 # Compute the deorthonormalized tables before we orthonormalize
1197 # the given basis.
1198 W = V.span_of_basis( vector_basis )
1199
1200 if check_axioms:
1201 # If the superclass constructor is going to verify the
1202 # symmetry of this table, it has better at least be
1203 # square...
1204 self._deortho_multiplication_table = [ [0 for j in range(n)]
1205 for i in range(n) ]
1206 self._deortho_inner_product_table = [ [0 for j in range(n)]
1207 for i in range(n) ]
1208 else:
1209 self._deortho_multiplication_table = [ [0 for j in range(i+1)]
1210 for i in range(n) ]
1211 self._deortho_inner_product_table = [ [0 for j in range(i+1)]
1212 for i in range(n) ]
1213
1214 # Note: the Jordan and inner-products are defined in terms
1215 # of the ambient basis. It's important that their arguments
1216 # are in ambient coordinates as well.
1217 for i in range(n):
1218 for j in range(i+1):
1219 # given basis w.r.t. ambient coords
1220 q_i = vector_basis[i]
1221 q_j = vector_basis[j]
1222
1223 if basis_is_matrices:
1224 q_i = _vec2mat(q_i)
1225 q_j = _vec2mat(q_j)
1226
1227 elt = jordan_product(q_i, q_j)
1228 ip = inner_product(q_i, q_j)
1229
1230 if basis_is_matrices:
1231 # do another mat2vec because the multiplication
1232 # table is in terms of vectors
1233 elt = _mat2vec(elt)
1234
1235 elt = W.coordinate_vector(elt)
1236 self._deortho_multiplication_table[i][j] = elt
1237 self._deortho_inner_product_table[i][j] = ip
1238 if check_axioms:
1239 # The tables are square if we're verifying that they
1240 # are commutative.
1241 self._deortho_multiplication_table[j][i] = elt
1242 self._deortho_inner_product_table[j][i] = ip
1243
1244 if self._deortho_multiplication_table is not None:
1245 self._deortho_multiplication_table = tuple(map(tuple, self._deortho_multiplication_table))
1246 if self._deortho_inner_product_table is not None:
1247 self._deortho_inner_product_table = tuple(map(tuple, self._deortho_inner_product_table))
1248
1249 # We overwrite the name "vector_basis" in a second, but never modify it
1250 # in place, to this effectively makes a copy of it.
1251 deortho_vector_basis = vector_basis
1252 self._deortho_matrix = None
1253
1254 if orthonormalize:
1255 from mjo.eja.eja_utils import gram_schmidt
1256 if basis_is_matrices:
1257 vector_ip = lambda x,y: inner_product(_vec2mat(x), _vec2mat(y))
1258 vector_basis = gram_schmidt(vector_basis, vector_ip)
1259 else:
1260 vector_basis = gram_schmidt(vector_basis, inner_product)
1261
1262 W = V.span_of_basis( vector_basis )
1263
1264 # Normalize the "matrix" basis, too!
1265 basis = vector_basis
1266
1267 if basis_is_matrices:
1268 basis = tuple( map(_vec2mat,basis) )
1269
1270 W = V.span_of_basis( vector_basis )
1271
1272 # Now "W" is the vector space of our algebra coordinates. The
1273 # variables "X1", "X2",... refer to the entries of vectors in
1274 # W. Thus to convert back and forth between the orthonormal
1275 # coordinates and the given ones, we need to stick the original
1276 # basis in W.
1277 U = V.span_of_basis( deortho_vector_basis )
1278 self._deortho_matrix = matrix( U.coordinate_vector(q)
1279 for q in vector_basis )
1280
1281 # If the superclass constructor is going to verify the
1282 # symmetry of this table, it has better at least be
1283 # square...
1284 if check_axioms:
1285 mult_table = [ [0 for j in range(n)] for i in range(n) ]
1286 ip_table = [ [0 for j in range(n)] for i in range(n) ]
1287 else:
1288 mult_table = [ [0 for j in range(i+1)] for i in range(n) ]
1289 ip_table = [ [0 for j in range(i+1)] for i in range(n) ]
1290
1291 # Note: the Jordan and inner-products are defined in terms
1292 # of the ambient basis. It's important that their arguments
1293 # are in ambient coordinates as well.
1294 for i in range(n):
1295 for j in range(i+1):
1296 # ortho basis w.r.t. ambient coords
1297 q_i = vector_basis[i]
1298 q_j = vector_basis[j]
1299
1300 if basis_is_matrices:
1301 q_i = _vec2mat(q_i)
1302 q_j = _vec2mat(q_j)
1303
1304 elt = jordan_product(q_i, q_j)
1305 ip = inner_product(q_i, q_j)
1306
1307 if basis_is_matrices:
1308 # do another mat2vec because the multiplication
1309 # table is in terms of vectors
1310 elt = _mat2vec(elt)
1311
1312 elt = W.coordinate_vector(elt)
1313 mult_table[i][j] = elt
1314 ip_table[i][j] = ip
1315 if check_axioms:
1316 # The tables are square if we're verifying that they
1317 # are commutative.
1318 mult_table[j][i] = elt
1319 ip_table[j][i] = ip
1320
1321 if basis_is_matrices:
1322 for m in basis:
1323 m.set_immutable()
1324 else:
1325 basis = tuple( x.column() for x in basis )
1326
1327 super().__init__(field,
1328 mult_table,
1329 ip_table,
1330 prefix,
1331 category,
1332 basis, # matrix basis
1333 check_field,
1334 check_axioms)
1335
1336 @cached_method
1337 def _charpoly_coefficients(self):
1338 r"""
1339 SETUP::
1340
1341 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1342 ....: JordanSpinEJA)
1343
1344 EXAMPLES:
1345
1346 The base ring of the resulting polynomial coefficients is what
1347 it should be, and not the rationals (unless the algebra was
1348 already over the rationals)::
1349
1350 sage: J = JordanSpinEJA(3)
1351 sage: J._charpoly_coefficients()
1352 (X1^2 - X2^2 - X3^2, -2*X1)
1353 sage: a0 = J._charpoly_coefficients()[0]
1354 sage: J.base_ring()
1355 Algebraic Real Field
1356 sage: a0.base_ring()
1357 Algebraic Real Field
1358
1359 """
1360 if self.base_ring() is QQ:
1361 # There's no need to construct *another* algebra over the
1362 # rationals if this one is already over the rationals.
1363 superclass = super(RationalBasisEuclideanJordanAlgebra, self)
1364 return superclass._charpoly_coefficients()
1365
1366 # Do the computation over the rationals. The answer will be
1367 # the same, because all we've done is a change of basis.
1368 J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
1369 self._deortho_multiplication_table,
1370 self._deortho_inner_product_table)
1371
1372 # Change back from QQ to our real base ring
1373 a = ( a_i.change_ring(self.base_ring())
1374 for a_i in J._charpoly_coefficients() )
1375
1376 # Now convert the coordinate variables back to the
1377 # deorthonormalized ones.
1378 R = self.coordinate_polynomial_ring()
1379 from sage.modules.free_module_element import vector
1380 X = vector(R, R.gens())
1381 BX = self._deortho_matrix*X
1382
1383 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1384 return tuple( a_i.subs(subs_dict) for a_i in a )
1385
1386 class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
1387 r"""
1388 A class for the Euclidean Jordan algebras that we know by name.
1389
1390 These are the Jordan algebras whose basis, multiplication table,
1391 rank, and so on are known a priori. More to the point, they are
1392 the Euclidean Jordan algebras for which we are able to conjure up
1393 a "random instance."
1394
1395 SETUP::
1396
1397 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1398
1399 TESTS:
1400
1401 Our basis is normalized with respect to the algebra's inner
1402 product, unless we specify otherwise::
1403
1404 sage: set_random_seed()
1405 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1406 sage: all( b.norm() == 1 for b in J.gens() )
1407 True
1408
1409 Since our basis is orthonormal with respect to the algebra's inner
1410 product, and since we know that this algebra is an EJA, any
1411 left-multiplication operator's matrix will be symmetric because
1412 natural->EJA basis representation is an isometry and within the
1413 EJA the operator is self-adjoint by the Jordan axiom::
1414
1415 sage: set_random_seed()
1416 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1417 sage: x = J.random_element()
1418 sage: x.operator().is_self_adjoint()
1419 True
1420 """
1421
1422 @staticmethod
1423 def _max_random_instance_size():
1424 """
1425 Return an integer "size" that is an upper bound on the size of
1426 this algebra when it is used in a random test
1427 case. Unfortunately, the term "size" is ambiguous -- when
1428 dealing with `R^n` under either the Hadamard or Jordan spin
1429 product, the "size" refers to the dimension `n`. When dealing
1430 with a matrix algebra (real symmetric or complex/quaternion
1431 Hermitian), it refers to the size of the matrix, which is far
1432 less than the dimension of the underlying vector space.
1433
1434 This method must be implemented in each subclass.
1435 """
1436 raise NotImplementedError
1437
1438 @classmethod
1439 def random_instance(cls, *args, **kwargs):
1440 """
1441 Return a random instance of this type of algebra.
1442
1443 This method should be implemented in each subclass.
1444 """
1445 from sage.misc.prandom import choice
1446 eja_class = choice(cls.__subclasses__())
1447
1448 # These all bubble up to the RationalBasisEuclideanJordanAlgebra
1449 # superclass constructor, so any (kw)args valid there are also
1450 # valid here.
1451 return eja_class.random_instance(*args, **kwargs)
1452
1453
1454 class MatrixEuclideanJordanAlgebra:
1455 @staticmethod
1456 def real_embed(M):
1457 """
1458 Embed the matrix ``M`` into a space of real matrices.
1459
1460 The matrix ``M`` can have entries in any field at the moment:
1461 the real numbers, complex numbers, or quaternions. And although
1462 they are not a field, we can probably support octonions at some
1463 point, too. This function returns a real matrix that "acts like"
1464 the original with respect to matrix multiplication; i.e.
1465
1466 real_embed(M*N) = real_embed(M)*real_embed(N)
1467
1468 """
1469 raise NotImplementedError
1470
1471
1472 @staticmethod
1473 def real_unembed(M):
1474 """
1475 The inverse of :meth:`real_embed`.
1476 """
1477 raise NotImplementedError
1478
1479 @staticmethod
1480 def jordan_product(X,Y):
1481 return (X*Y + Y*X)/2
1482
1483 @classmethod
1484 def trace_inner_product(cls,X,Y):
1485 Xu = cls.real_unembed(X)
1486 Yu = cls.real_unembed(Y)
1487 tr = (Xu*Yu).trace()
1488
1489 try:
1490 # Works in QQ, AA, RDF, et cetera.
1491 return tr.real()
1492 except AttributeError:
1493 # A quaternion doesn't have a real() method, but does
1494 # have coefficient_tuple() method that returns the
1495 # coefficients of 1, i, j, and k -- in that order.
1496 return tr.coefficient_tuple()[0]
1497
1498
1499 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1500 @staticmethod
1501 def real_embed(M):
1502 """
1503 The identity function, for embedding real matrices into real
1504 matrices.
1505 """
1506 return M
1507
1508 @staticmethod
1509 def real_unembed(M):
1510 """
1511 The identity function, for unembedding real matrices from real
1512 matrices.
1513 """
1514 return M
1515
1516
1517 class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
1518 RealMatrixEuclideanJordanAlgebra):
1519 """
1520 The rank-n simple EJA consisting of real symmetric n-by-n
1521 matrices, the usual symmetric Jordan product, and the trace inner
1522 product. It has dimension `(n^2 + n)/2` over the reals.
1523
1524 SETUP::
1525
1526 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1527
1528 EXAMPLES::
1529
1530 sage: J = RealSymmetricEJA(2)
1531 sage: e0, e1, e2 = J.gens()
1532 sage: e0*e0
1533 e0
1534 sage: e1*e1
1535 1/2*e0 + 1/2*e2
1536 sage: e2*e2
1537 e2
1538
1539 In theory, our "field" can be any subfield of the reals::
1540
1541 sage: RealSymmetricEJA(2, RDF)
1542 Euclidean Jordan algebra of dimension 3 over Real Double Field
1543 sage: RealSymmetricEJA(2, RR)
1544 Euclidean Jordan algebra of dimension 3 over Real Field with
1545 53 bits of precision
1546
1547 TESTS:
1548
1549 The dimension of this algebra is `(n^2 + n) / 2`::
1550
1551 sage: set_random_seed()
1552 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1553 sage: n = ZZ.random_element(1, n_max)
1554 sage: J = RealSymmetricEJA(n)
1555 sage: J.dimension() == (n^2 + n)/2
1556 True
1557
1558 The Jordan multiplication is what we think it is::
1559
1560 sage: set_random_seed()
1561 sage: J = RealSymmetricEJA.random_instance()
1562 sage: x,y = J.random_elements(2)
1563 sage: actual = (x*y).to_matrix()
1564 sage: X = x.to_matrix()
1565 sage: Y = y.to_matrix()
1566 sage: expected = (X*Y + Y*X)/2
1567 sage: actual == expected
1568 True
1569 sage: J(expected) == x*y
1570 True
1571
1572 We can change the generator prefix::
1573
1574 sage: RealSymmetricEJA(3, prefix='q').gens()
1575 (q0, q1, q2, q3, q4, q5)
1576
1577 We can construct the (trivial) algebra of rank zero::
1578
1579 sage: RealSymmetricEJA(0)
1580 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1581
1582 """
1583 @classmethod
1584 def _denormalized_basis(cls, n, field):
1585 """
1586 Return a basis for the space of real symmetric n-by-n matrices.
1587
1588 SETUP::
1589
1590 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1591
1592 TESTS::
1593
1594 sage: set_random_seed()
1595 sage: n = ZZ.random_element(1,5)
1596 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1597 sage: all( M.is_symmetric() for M in B)
1598 True
1599
1600 """
1601 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1602 # coordinates.
1603 S = []
1604 for i in range(n):
1605 for j in range(i+1):
1606 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1607 if i == j:
1608 Sij = Eij
1609 else:
1610 Sij = Eij + Eij.transpose()
1611 S.append(Sij)
1612 return S
1613
1614
1615 @staticmethod
1616 def _max_random_instance_size():
1617 return 4 # Dimension 10
1618
1619 @classmethod
1620 def random_instance(cls, field=AA, **kwargs):
1621 """
1622 Return a random instance of this type of algebra.
1623 """
1624 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1625 return cls(n, field, **kwargs)
1626
1627 def __init__(self, n, field=AA, **kwargs):
1628 basis = self._denormalized_basis(n, field)
1629 super(RealSymmetricEJA, self).__init__(field,
1630 basis,
1631 self.jordan_product,
1632 self.trace_inner_product,
1633 **kwargs)
1634 self.rank.set_cache(n)
1635 self.one.set_cache(self(matrix.identity(field,n)))
1636
1637
1638 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1639 @staticmethod
1640 def real_embed(M):
1641 """
1642 Embed the n-by-n complex matrix ``M`` into the space of real
1643 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1644 bi` to the block matrix ``[[a,b],[-b,a]]``.
1645
1646 SETUP::
1647
1648 sage: from mjo.eja.eja_algebra import \
1649 ....: ComplexMatrixEuclideanJordanAlgebra
1650
1651 EXAMPLES::
1652
1653 sage: F = QuadraticField(-1, 'I')
1654 sage: x1 = F(4 - 2*i)
1655 sage: x2 = F(1 + 2*i)
1656 sage: x3 = F(-i)
1657 sage: x4 = F(6)
1658 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1659 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1660 [ 4 -2| 1 2]
1661 [ 2 4|-2 1]
1662 [-----+-----]
1663 [ 0 -1| 6 0]
1664 [ 1 0| 0 6]
1665
1666 TESTS:
1667
1668 Embedding is a homomorphism (isomorphism, in fact)::
1669
1670 sage: set_random_seed()
1671 sage: n = ZZ.random_element(3)
1672 sage: F = QuadraticField(-1, 'I')
1673 sage: X = random_matrix(F, n)
1674 sage: Y = random_matrix(F, n)
1675 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1676 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1677 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1678 sage: Xe*Ye == XYe
1679 True
1680
1681 """
1682 n = M.nrows()
1683 if M.ncols() != n:
1684 raise ValueError("the matrix 'M' must be square")
1685
1686 # We don't need any adjoined elements...
1687 field = M.base_ring().base_ring()
1688
1689 blocks = []
1690 for z in M.list():
1691 a = z.list()[0] # real part, I guess
1692 b = z.list()[1] # imag part, I guess
1693 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1694
1695 return matrix.block(field, n, blocks)
1696
1697
1698 @staticmethod
1699 def real_unembed(M):
1700 """
1701 The inverse of _embed_complex_matrix().
1702
1703 SETUP::
1704
1705 sage: from mjo.eja.eja_algebra import \
1706 ....: ComplexMatrixEuclideanJordanAlgebra
1707
1708 EXAMPLES::
1709
1710 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1711 ....: [-2, 1, -4, 3],
1712 ....: [ 9, 10, 11, 12],
1713 ....: [-10, 9, -12, 11] ])
1714 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1715 [ 2*I + 1 4*I + 3]
1716 [ 10*I + 9 12*I + 11]
1717
1718 TESTS:
1719
1720 Unembedding is the inverse of embedding::
1721
1722 sage: set_random_seed()
1723 sage: F = QuadraticField(-1, 'I')
1724 sage: M = random_matrix(F, 3)
1725 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1726 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1727 True
1728
1729 """
1730 n = ZZ(M.nrows())
1731 if M.ncols() != n:
1732 raise ValueError("the matrix 'M' must be square")
1733 if not n.mod(2).is_zero():
1734 raise ValueError("the matrix 'M' must be a complex embedding")
1735
1736 # If "M" was normalized, its base ring might have roots
1737 # adjoined and they can stick around after unembedding.
1738 field = M.base_ring()
1739 R = PolynomialRing(field, 'z')
1740 z = R.gen()
1741 if field is AA:
1742 # Sage doesn't know how to embed AA into QQbar, i.e. how
1743 # to adjoin sqrt(-1) to AA.
1744 F = QQbar
1745 else:
1746 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1747 i = F.gen()
1748
1749 # Go top-left to bottom-right (reading order), converting every
1750 # 2-by-2 block we see to a single complex element.
1751 elements = []
1752 for k in range(n/2):
1753 for j in range(n/2):
1754 submat = M[2*k:2*k+2,2*j:2*j+2]
1755 if submat[0,0] != submat[1,1]:
1756 raise ValueError('bad on-diagonal submatrix')
1757 if submat[0,1] != -submat[1,0]:
1758 raise ValueError('bad off-diagonal submatrix')
1759 z = submat[0,0] + submat[0,1]*i
1760 elements.append(z)
1761
1762 return matrix(F, n/2, elements)
1763
1764
1765 @classmethod
1766 def trace_inner_product(cls,X,Y):
1767 """
1768 Compute a matrix inner product in this algebra directly from
1769 its real embedding.
1770
1771 SETUP::
1772
1773 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1774
1775 TESTS:
1776
1777 This gives the same answer as the slow, default method implemented
1778 in :class:`MatrixEuclideanJordanAlgebra`::
1779
1780 sage: set_random_seed()
1781 sage: J = ComplexHermitianEJA.random_instance()
1782 sage: x,y = J.random_elements(2)
1783 sage: Xe = x.to_matrix()
1784 sage: Ye = y.to_matrix()
1785 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1786 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1787 sage: expected = (X*Y).trace().real()
1788 sage: actual = ComplexHermitianEJA.trace_inner_product(Xe,Ye)
1789 sage: actual == expected
1790 True
1791
1792 """
1793 return RealMatrixEuclideanJordanAlgebra.trace_inner_product(X,Y)/2
1794
1795
1796 class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
1797 ComplexMatrixEuclideanJordanAlgebra):
1798 """
1799 The rank-n simple EJA consisting of complex Hermitian n-by-n
1800 matrices over the real numbers, the usual symmetric Jordan product,
1801 and the real-part-of-trace inner product. It has dimension `n^2` over
1802 the reals.
1803
1804 SETUP::
1805
1806 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1807
1808 EXAMPLES:
1809
1810 In theory, our "field" can be any subfield of the reals::
1811
1812 sage: ComplexHermitianEJA(2, RDF)
1813 Euclidean Jordan algebra of dimension 4 over Real Double Field
1814 sage: ComplexHermitianEJA(2, RR)
1815 Euclidean Jordan algebra of dimension 4 over Real Field with
1816 53 bits of precision
1817
1818 TESTS:
1819
1820 The dimension of this algebra is `n^2`::
1821
1822 sage: set_random_seed()
1823 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1824 sage: n = ZZ.random_element(1, n_max)
1825 sage: J = ComplexHermitianEJA(n)
1826 sage: J.dimension() == n^2
1827 True
1828
1829 The Jordan multiplication is what we think it is::
1830
1831 sage: set_random_seed()
1832 sage: J = ComplexHermitianEJA.random_instance()
1833 sage: x,y = J.random_elements(2)
1834 sage: actual = (x*y).to_matrix()
1835 sage: X = x.to_matrix()
1836 sage: Y = y.to_matrix()
1837 sage: expected = (X*Y + Y*X)/2
1838 sage: actual == expected
1839 True
1840 sage: J(expected) == x*y
1841 True
1842
1843 We can change the generator prefix::
1844
1845 sage: ComplexHermitianEJA(2, prefix='z').gens()
1846 (z0, z1, z2, z3)
1847
1848 We can construct the (trivial) algebra of rank zero::
1849
1850 sage: ComplexHermitianEJA(0)
1851 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1852
1853 """
1854
1855 @classmethod
1856 def _denormalized_basis(cls, n, field):
1857 """
1858 Returns a basis for the space of complex Hermitian n-by-n matrices.
1859
1860 Why do we embed these? Basically, because all of numerical linear
1861 algebra assumes that you're working with vectors consisting of `n`
1862 entries from a field and scalars from the same field. There's no way
1863 to tell SageMath that (for example) the vectors contain complex
1864 numbers, while the scalar field is real.
1865
1866 SETUP::
1867
1868 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1869
1870 TESTS::
1871
1872 sage: set_random_seed()
1873 sage: n = ZZ.random_element(1,5)
1874 sage: field = QuadraticField(2, 'sqrt2')
1875 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1876 sage: all( M.is_symmetric() for M in B)
1877 True
1878
1879 """
1880 R = PolynomialRing(field, 'z')
1881 z = R.gen()
1882 F = field.extension(z**2 + 1, 'I')
1883 I = F.gen()
1884
1885 # This is like the symmetric case, but we need to be careful:
1886 #
1887 # * We want conjugate-symmetry, not just symmetry.
1888 # * The diagonal will (as a result) be real.
1889 #
1890 S = []
1891 for i in range(n):
1892 for j in range(i+1):
1893 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1894 if i == j:
1895 Sij = cls.real_embed(Eij)
1896 S.append(Sij)
1897 else:
1898 # The second one has a minus because it's conjugated.
1899 Sij_real = cls.real_embed(Eij + Eij.transpose())
1900 S.append(Sij_real)
1901 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1902 S.append(Sij_imag)
1903
1904 # Since we embedded these, we can drop back to the "field" that we
1905 # started with instead of the complex extension "F".
1906 return tuple( s.change_ring(field) for s in S )
1907
1908
1909 def __init__(self, n, field=AA, **kwargs):
1910 basis = self._denormalized_basis(n,field)
1911 super(ComplexHermitianEJA, self).__init__(field,
1912 basis,
1913 self.jordan_product,
1914 self.trace_inner_product,
1915 **kwargs)
1916 self.rank.set_cache(n)
1917 # TODO: pre-cache the identity!
1918
1919 @staticmethod
1920 def _max_random_instance_size():
1921 return 3 # Dimension 9
1922
1923 @classmethod
1924 def random_instance(cls, field=AA, **kwargs):
1925 """
1926 Return a random instance of this type of algebra.
1927 """
1928 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1929 return cls(n, field, **kwargs)
1930
1931 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1932 @staticmethod
1933 def real_embed(M):
1934 """
1935 Embed the n-by-n quaternion matrix ``M`` into the space of real
1936 matrices of size 4n-by-4n by first sending each quaternion entry `z
1937 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1938 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1939 matrix.
1940
1941 SETUP::
1942
1943 sage: from mjo.eja.eja_algebra import \
1944 ....: QuaternionMatrixEuclideanJordanAlgebra
1945
1946 EXAMPLES::
1947
1948 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1949 sage: i,j,k = Q.gens()
1950 sage: x = 1 + 2*i + 3*j + 4*k
1951 sage: M = matrix(Q, 1, [[x]])
1952 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1953 [ 1 2 3 4]
1954 [-2 1 -4 3]
1955 [-3 4 1 -2]
1956 [-4 -3 2 1]
1957
1958 Embedding is a homomorphism (isomorphism, in fact)::
1959
1960 sage: set_random_seed()
1961 sage: n = ZZ.random_element(2)
1962 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1963 sage: X = random_matrix(Q, n)
1964 sage: Y = random_matrix(Q, n)
1965 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1966 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1967 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1968 sage: Xe*Ye == XYe
1969 True
1970
1971 """
1972 quaternions = M.base_ring()
1973 n = M.nrows()
1974 if M.ncols() != n:
1975 raise ValueError("the matrix 'M' must be square")
1976
1977 F = QuadraticField(-1, 'I')
1978 i = F.gen()
1979
1980 blocks = []
1981 for z in M.list():
1982 t = z.coefficient_tuple()
1983 a = t[0]
1984 b = t[1]
1985 c = t[2]
1986 d = t[3]
1987 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1988 [-c + d*i, a - b*i]])
1989 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1990 blocks.append(realM)
1991
1992 # We should have real entries by now, so use the realest field
1993 # we've got for the return value.
1994 return matrix.block(quaternions.base_ring(), n, blocks)
1995
1996
1997
1998 @staticmethod
1999 def real_unembed(M):
2000 """
2001 The inverse of _embed_quaternion_matrix().
2002
2003 SETUP::
2004
2005 sage: from mjo.eja.eja_algebra import \
2006 ....: QuaternionMatrixEuclideanJordanAlgebra
2007
2008 EXAMPLES::
2009
2010 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2011 ....: [-2, 1, -4, 3],
2012 ....: [-3, 4, 1, -2],
2013 ....: [-4, -3, 2, 1]])
2014 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
2015 [1 + 2*i + 3*j + 4*k]
2016
2017 TESTS:
2018
2019 Unembedding is the inverse of embedding::
2020
2021 sage: set_random_seed()
2022 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2023 sage: M = random_matrix(Q, 3)
2024 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2025 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
2026 True
2027
2028 """
2029 n = ZZ(M.nrows())
2030 if M.ncols() != n:
2031 raise ValueError("the matrix 'M' must be square")
2032 if not n.mod(4).is_zero():
2033 raise ValueError("the matrix 'M' must be a quaternion embedding")
2034
2035 # Use the base ring of the matrix to ensure that its entries can be
2036 # multiplied by elements of the quaternion algebra.
2037 field = M.base_ring()
2038 Q = QuaternionAlgebra(field,-1,-1)
2039 i,j,k = Q.gens()
2040
2041 # Go top-left to bottom-right (reading order), converting every
2042 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2043 # quaternion block.
2044 elements = []
2045 for l in range(n/4):
2046 for m in range(n/4):
2047 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
2048 M[4*l:4*l+4,4*m:4*m+4] )
2049 if submat[0,0] != submat[1,1].conjugate():
2050 raise ValueError('bad on-diagonal submatrix')
2051 if submat[0,1] != -submat[1,0].conjugate():
2052 raise ValueError('bad off-diagonal submatrix')
2053 z = submat[0,0].real()
2054 z += submat[0,0].imag()*i
2055 z += submat[0,1].real()*j
2056 z += submat[0,1].imag()*k
2057 elements.append(z)
2058
2059 return matrix(Q, n/4, elements)
2060
2061
2062 @classmethod
2063 def trace_inner_product(cls,X,Y):
2064 """
2065 Compute a matrix inner product in this algebra directly from
2066 its real embedding.
2067
2068 SETUP::
2069
2070 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2071
2072 TESTS:
2073
2074 This gives the same answer as the slow, default method implemented
2075 in :class:`MatrixEuclideanJordanAlgebra`::
2076
2077 sage: set_random_seed()
2078 sage: J = QuaternionHermitianEJA.random_instance()
2079 sage: x,y = J.random_elements(2)
2080 sage: Xe = x.to_matrix()
2081 sage: Ye = y.to_matrix()
2082 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
2083 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
2084 sage: expected = (X*Y).trace().coefficient_tuple()[0]
2085 sage: actual = QuaternionHermitianEJA.trace_inner_product(Xe,Ye)
2086 sage: actual == expected
2087 True
2088
2089 """
2090 return RealMatrixEuclideanJordanAlgebra.trace_inner_product(X,Y)/4
2091
2092
2093 class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
2094 QuaternionMatrixEuclideanJordanAlgebra):
2095 r"""
2096 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2097 matrices, the usual symmetric Jordan product, and the
2098 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2099 the reals.
2100
2101 SETUP::
2102
2103 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2104
2105 EXAMPLES:
2106
2107 In theory, our "field" can be any subfield of the reals::
2108
2109 sage: QuaternionHermitianEJA(2, RDF)
2110 Euclidean Jordan algebra of dimension 6 over Real Double Field
2111 sage: QuaternionHermitianEJA(2, RR)
2112 Euclidean Jordan algebra of dimension 6 over Real Field with
2113 53 bits of precision
2114
2115 TESTS:
2116
2117 The dimension of this algebra is `2*n^2 - n`::
2118
2119 sage: set_random_seed()
2120 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2121 sage: n = ZZ.random_element(1, n_max)
2122 sage: J = QuaternionHermitianEJA(n)
2123 sage: J.dimension() == 2*(n^2) - n
2124 True
2125
2126 The Jordan multiplication is what we think it is::
2127
2128 sage: set_random_seed()
2129 sage: J = QuaternionHermitianEJA.random_instance()
2130 sage: x,y = J.random_elements(2)
2131 sage: actual = (x*y).to_matrix()
2132 sage: X = x.to_matrix()
2133 sage: Y = y.to_matrix()
2134 sage: expected = (X*Y + Y*X)/2
2135 sage: actual == expected
2136 True
2137 sage: J(expected) == x*y
2138 True
2139
2140 We can change the generator prefix::
2141
2142 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2143 (a0, a1, a2, a3, a4, a5)
2144
2145 We can construct the (trivial) algebra of rank zero::
2146
2147 sage: QuaternionHermitianEJA(0)
2148 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2149
2150 """
2151 @classmethod
2152 def _denormalized_basis(cls, n, field):
2153 """
2154 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2155
2156 Why do we embed these? Basically, because all of numerical
2157 linear algebra assumes that you're working with vectors consisting
2158 of `n` entries from a field and scalars from the same field. There's
2159 no way to tell SageMath that (for example) the vectors contain
2160 complex numbers, while the scalar field is real.
2161
2162 SETUP::
2163
2164 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2165
2166 TESTS::
2167
2168 sage: set_random_seed()
2169 sage: n = ZZ.random_element(1,5)
2170 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
2171 sage: all( M.is_symmetric() for M in B )
2172 True
2173
2174 """
2175 Q = QuaternionAlgebra(QQ,-1,-1)
2176 I,J,K = Q.gens()
2177
2178 # This is like the symmetric case, but we need to be careful:
2179 #
2180 # * We want conjugate-symmetry, not just symmetry.
2181 # * The diagonal will (as a result) be real.
2182 #
2183 S = []
2184 for i in range(n):
2185 for j in range(i+1):
2186 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
2187 if i == j:
2188 Sij = cls.real_embed(Eij)
2189 S.append(Sij)
2190 else:
2191 # The second, third, and fourth ones have a minus
2192 # because they're conjugated.
2193 Sij_real = cls.real_embed(Eij + Eij.transpose())
2194 S.append(Sij_real)
2195 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
2196 S.append(Sij_I)
2197 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
2198 S.append(Sij_J)
2199 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2200 S.append(Sij_K)
2201
2202 # Since we embedded these, we can drop back to the "field" that we
2203 # started with instead of the quaternion algebra "Q".
2204 return tuple( s.change_ring(field) for s in S )
2205
2206
2207 def __init__(self, n, field=AA, **kwargs):
2208 basis = self._denormalized_basis(n,field)
2209 super(QuaternionHermitianEJA, self).__init__(field,
2210 basis,
2211 self.jordan_product,
2212 self.trace_inner_product,
2213 **kwargs)
2214 self.rank.set_cache(n)
2215 # TODO: cache one()!
2216
2217 @staticmethod
2218 def _max_random_instance_size():
2219 r"""
2220 The maximum rank of a random QuaternionHermitianEJA.
2221 """
2222 return 2 # Dimension 6
2223
2224 @classmethod
2225 def random_instance(cls, field=AA, **kwargs):
2226 """
2227 Return a random instance of this type of algebra.
2228 """
2229 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2230 return cls(n, field, **kwargs)
2231
2232
2233 class HadamardEJA(ConcreteEuclideanJordanAlgebra):
2234 """
2235 Return the Euclidean Jordan Algebra corresponding to the set
2236 `R^n` under the Hadamard product.
2237
2238 Note: this is nothing more than the Cartesian product of ``n``
2239 copies of the spin algebra. Once Cartesian product algebras
2240 are implemented, this can go.
2241
2242 SETUP::
2243
2244 sage: from mjo.eja.eja_algebra import HadamardEJA
2245
2246 EXAMPLES:
2247
2248 This multiplication table can be verified by hand::
2249
2250 sage: J = HadamardEJA(3)
2251 sage: e0,e1,e2 = J.gens()
2252 sage: e0*e0
2253 e0
2254 sage: e0*e1
2255 0
2256 sage: e0*e2
2257 0
2258 sage: e1*e1
2259 e1
2260 sage: e1*e2
2261 0
2262 sage: e2*e2
2263 e2
2264
2265 TESTS:
2266
2267 We can change the generator prefix::
2268
2269 sage: HadamardEJA(3, prefix='r').gens()
2270 (r0, r1, r2)
2271
2272 """
2273 def __init__(self, n, field=AA, **kwargs):
2274 V = VectorSpace(field, n)
2275 basis = V.basis()
2276
2277 def jordan_product(x,y):
2278 return V([ xi*yi for (xi,yi) in zip(x,y) ])
2279 def inner_product(x,y):
2280 return x.inner_product(y)
2281
2282 super(HadamardEJA, self).__init__(field,
2283 basis,
2284 jordan_product,
2285 inner_product,
2286 **kwargs)
2287 self.rank.set_cache(n)
2288
2289 if n == 0:
2290 self.one.set_cache( self.zero() )
2291 else:
2292 self.one.set_cache( sum(self.gens()) )
2293
2294 @staticmethod
2295 def _max_random_instance_size():
2296 r"""
2297 The maximum dimension of a random HadamardEJA.
2298 """
2299 return 5
2300
2301 @classmethod
2302 def random_instance(cls, field=AA, **kwargs):
2303 """
2304 Return a random instance of this type of algebra.
2305 """
2306 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2307 return cls(n, field, **kwargs)
2308
2309
2310 class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
2311 r"""
2312 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2313 with the half-trace inner product and jordan product ``x*y =
2314 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2315 a symmetric positive-definite "bilinear form" matrix. Its
2316 dimension is the size of `B`, and it has rank two in dimensions
2317 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2318 the identity matrix of order ``n``.
2319
2320 We insist that the one-by-one upper-left identity block of `B` be
2321 passed in as well so that we can be passed a matrix of size zero
2322 to construct a trivial algebra.
2323
2324 SETUP::
2325
2326 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2327 ....: JordanSpinEJA)
2328
2329 EXAMPLES:
2330
2331 When no bilinear form is specified, the identity matrix is used,
2332 and the resulting algebra is the Jordan spin algebra::
2333
2334 sage: B = matrix.identity(AA,3)
2335 sage: J0 = BilinearFormEJA(B)
2336 sage: J1 = JordanSpinEJA(3)
2337 sage: J0.multiplication_table() == J0.multiplication_table()
2338 True
2339
2340 An error is raised if the matrix `B` does not correspond to a
2341 positive-definite bilinear form::
2342
2343 sage: B = matrix.random(QQ,2,3)
2344 sage: J = BilinearFormEJA(B)
2345 Traceback (most recent call last):
2346 ...
2347 ValueError: bilinear form is not positive-definite
2348 sage: B = matrix.zero(QQ,3)
2349 sage: J = BilinearFormEJA(B)
2350 Traceback (most recent call last):
2351 ...
2352 ValueError: bilinear form is not positive-definite
2353
2354 TESTS:
2355
2356 We can create a zero-dimensional algebra::
2357
2358 sage: B = matrix.identity(AA,0)
2359 sage: J = BilinearFormEJA(B)
2360 sage: J.basis()
2361 Finite family {}
2362
2363 We can check the multiplication condition given in the Jordan, von
2364 Neumann, and Wigner paper (and also discussed on my "On the
2365 symmetry..." paper). Note that this relies heavily on the standard
2366 choice of basis, as does anything utilizing the bilinear form
2367 matrix. We opt not to orthonormalize the basis, because if we
2368 did, we would have to normalize the `s_{i}` in a similar manner::
2369
2370 sage: set_random_seed()
2371 sage: n = ZZ.random_element(5)
2372 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2373 sage: B11 = matrix.identity(QQ,1)
2374 sage: B22 = M.transpose()*M
2375 sage: B = block_matrix(2,2,[ [B11,0 ],
2376 ....: [0, B22 ] ])
2377 sage: J = BilinearFormEJA(B, orthonormalize=False)
2378 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2379 sage: V = J.vector_space()
2380 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2381 ....: for ei in eis ]
2382 sage: actual = [ sis[i]*sis[j]
2383 ....: for i in range(n-1)
2384 ....: for j in range(n-1) ]
2385 sage: expected = [ J.one() if i == j else J.zero()
2386 ....: for i in range(n-1)
2387 ....: for j in range(n-1) ]
2388 sage: actual == expected
2389 True
2390 """
2391 def __init__(self, B, field=AA, **kwargs):
2392 if not B.is_positive_definite():
2393 raise ValueError("bilinear form is not positive-definite")
2394
2395 n = B.nrows()
2396 V = VectorSpace(field, n)
2397
2398 def inner_product(x,y):
2399 return (B*x).inner_product(y)
2400
2401 def jordan_product(x,y):
2402 x0 = x[0]
2403 xbar = x[1:]
2404 y0 = y[0]
2405 ybar = y[1:]
2406 z0 = inner_product(x,y)
2407 zbar = y0*xbar + x0*ybar
2408 return V([z0] + zbar.list())
2409
2410 super(BilinearFormEJA, self).__init__(field,
2411 V.basis(),
2412 jordan_product,
2413 inner_product,
2414 **kwargs)
2415
2416 # The rank of this algebra is two, unless we're in a
2417 # one-dimensional ambient space (because the rank is bounded
2418 # by the ambient dimension).
2419 self.rank.set_cache(min(n,2))
2420
2421 if n == 0:
2422 self.one.set_cache( self.zero() )
2423 else:
2424 self.one.set_cache( self.monomial(0) )
2425
2426 @staticmethod
2427 def _max_random_instance_size():
2428 r"""
2429 The maximum dimension of a random BilinearFormEJA.
2430 """
2431 return 5
2432
2433 @classmethod
2434 def random_instance(cls, field=AA, **kwargs):
2435 """
2436 Return a random instance of this algebra.
2437 """
2438 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2439 if n.is_zero():
2440 B = matrix.identity(field, n)
2441 return cls(B, field, **kwargs)
2442
2443 B11 = matrix.identity(field,1)
2444 M = matrix.random(field, n-1)
2445 I = matrix.identity(field, n-1)
2446 alpha = field.zero()
2447 while alpha.is_zero():
2448 alpha = field.random_element().abs()
2449 B22 = M.transpose()*M + alpha*I
2450
2451 from sage.matrix.special import block_matrix
2452 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2453 [ZZ(0), B22 ] ])
2454
2455 return cls(B, field, **kwargs)
2456
2457
2458 class JordanSpinEJA(BilinearFormEJA):
2459 """
2460 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2461 with the usual inner product and jordan product ``x*y =
2462 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2463 the reals.
2464
2465 SETUP::
2466
2467 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2468
2469 EXAMPLES:
2470
2471 This multiplication table can be verified by hand::
2472
2473 sage: J = JordanSpinEJA(4)
2474 sage: e0,e1,e2,e3 = J.gens()
2475 sage: e0*e0
2476 e0
2477 sage: e0*e1
2478 e1
2479 sage: e0*e2
2480 e2
2481 sage: e0*e3
2482 e3
2483 sage: e1*e2
2484 0
2485 sage: e1*e3
2486 0
2487 sage: e2*e3
2488 0
2489
2490 We can change the generator prefix::
2491
2492 sage: JordanSpinEJA(2, prefix='B').gens()
2493 (B0, B1)
2494
2495 TESTS:
2496
2497 Ensure that we have the usual inner product on `R^n`::
2498
2499 sage: set_random_seed()
2500 sage: J = JordanSpinEJA.random_instance()
2501 sage: x,y = J.random_elements(2)
2502 sage: actual = x.inner_product(y)
2503 sage: expected = x.to_vector().inner_product(y.to_vector())
2504 sage: actual == expected
2505 True
2506
2507 """
2508 def __init__(self, n, field=AA, **kwargs):
2509 # This is a special case of the BilinearFormEJA with the identity
2510 # matrix as its bilinear form.
2511 B = matrix.identity(field, n)
2512 super(JordanSpinEJA, self).__init__(B, field, **kwargs)
2513
2514 @staticmethod
2515 def _max_random_instance_size():
2516 r"""
2517 The maximum dimension of a random JordanSpinEJA.
2518 """
2519 return 5
2520
2521 @classmethod
2522 def random_instance(cls, field=AA, **kwargs):
2523 """
2524 Return a random instance of this type of algebra.
2525
2526 Needed here to override the implementation for ``BilinearFormEJA``.
2527 """
2528 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2529 return cls(n, field, **kwargs)
2530
2531
2532 class TrivialEJA(ConcreteEuclideanJordanAlgebra):
2533 """
2534 The trivial Euclidean Jordan algebra consisting of only a zero element.
2535
2536 SETUP::
2537
2538 sage: from mjo.eja.eja_algebra import TrivialEJA
2539
2540 EXAMPLES::
2541
2542 sage: J = TrivialEJA()
2543 sage: J.dimension()
2544 0
2545 sage: J.zero()
2546 0
2547 sage: J.one()
2548 0
2549 sage: 7*J.one()*12*J.one()
2550 0
2551 sage: J.one().inner_product(J.one())
2552 0
2553 sage: J.one().norm()
2554 0
2555 sage: J.one().subalgebra_generated_by()
2556 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2557 sage: J.rank()
2558 0
2559
2560 """
2561 def __init__(self, field=AA, **kwargs):
2562 jordan_product = lambda x,y: x
2563 inner_product = lambda x,y: field(0)
2564 basis = ()
2565 super(TrivialEJA, self).__init__(field,
2566 basis,
2567 jordan_product,
2568 inner_product,
2569 **kwargs)
2570 # The rank is zero using my definition, namely the dimension of the
2571 # largest subalgebra generated by any element.
2572 self.rank.set_cache(0)
2573 self.one.set_cache( self.zero() )
2574
2575 @classmethod
2576 def random_instance(cls, field=AA, **kwargs):
2577 # We don't take a "size" argument so the superclass method is
2578 # inappropriate for us.
2579 return cls(field, **kwargs)
2580
2581 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2582 r"""
2583 The external (orthogonal) direct sum of two other Euclidean Jordan
2584 algebras. Essentially the Cartesian product of its two factors.
2585 Every Euclidean Jordan algebra decomposes into an orthogonal
2586 direct sum of simple Euclidean Jordan algebras, so no generality
2587 is lost by providing only this construction.
2588
2589 SETUP::
2590
2591 sage: from mjo.eja.eja_algebra import (random_eja,
2592 ....: HadamardEJA,
2593 ....: RealSymmetricEJA,
2594 ....: DirectSumEJA)
2595
2596 EXAMPLES::
2597
2598 sage: J1 = HadamardEJA(2)
2599 sage: J2 = RealSymmetricEJA(3)
2600 sage: J = DirectSumEJA(J1,J2)
2601 sage: J.dimension()
2602 8
2603 sage: J.rank()
2604 5
2605
2606 TESTS:
2607
2608 The external direct sum construction is only valid when the two factors
2609 have the same base ring; an error is raised otherwise::
2610
2611 sage: set_random_seed()
2612 sage: J1 = random_eja(AA)
2613 sage: J2 = random_eja(QQ,orthonormalize=False)
2614 sage: J = DirectSumEJA(J1,J2)
2615 Traceback (most recent call last):
2616 ...
2617 ValueError: algebras must share the same base field
2618
2619 """
2620 def __init__(self, J1, J2, **kwargs):
2621 if J1.base_ring() != J2.base_ring():
2622 raise ValueError("algebras must share the same base field")
2623 field = J1.base_ring()
2624
2625 self._factors = (J1, J2)
2626 n1 = J1.dimension()
2627 n2 = J2.dimension()
2628 n = n1+n2
2629 V = VectorSpace(field, n)
2630 mult_table = [ [ V.zero() for j in range(i+1) ]
2631 for i in range(n) ]
2632 for i in range(n1):
2633 for j in range(i+1):
2634 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2635 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2636
2637 for i in range(n2):
2638 for j in range(i+1):
2639 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2640 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2641
2642 # TODO: build the IP table here from the two constituent IP
2643 # matrices (it'll be block diagonal, I think).
2644 ip_table = [ [ field.zero() for j in range(i+1) ]
2645 for i in range(n) ]
2646 super(DirectSumEJA, self).__init__(field,
2647 mult_table,
2648 ip_table,
2649 check_axioms=False,
2650 **kwargs)
2651 self.rank.set_cache(J1.rank() + J2.rank())
2652
2653
2654 def factors(self):
2655 r"""
2656 Return the pair of this algebra's factors.
2657
2658 SETUP::
2659
2660 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2661 ....: JordanSpinEJA,
2662 ....: DirectSumEJA)
2663
2664 EXAMPLES::
2665
2666 sage: J1 = HadamardEJA(2,QQ)
2667 sage: J2 = JordanSpinEJA(3,QQ)
2668 sage: J = DirectSumEJA(J1,J2)
2669 sage: J.factors()
2670 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2671 Euclidean Jordan algebra of dimension 3 over Rational Field)
2672
2673 """
2674 return self._factors
2675
2676 def projections(self):
2677 r"""
2678 Return a pair of projections onto this algebra's factors.
2679
2680 SETUP::
2681
2682 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2683 ....: ComplexHermitianEJA,
2684 ....: DirectSumEJA)
2685
2686 EXAMPLES::
2687
2688 sage: J1 = JordanSpinEJA(2)
2689 sage: J2 = ComplexHermitianEJA(2)
2690 sage: J = DirectSumEJA(J1,J2)
2691 sage: (pi_left, pi_right) = J.projections()
2692 sage: J.one().to_vector()
2693 (1, 0, 1, 0, 0, 1)
2694 sage: pi_left(J.one()).to_vector()
2695 (1, 0)
2696 sage: pi_right(J.one()).to_vector()
2697 (1, 0, 0, 1)
2698
2699 """
2700 (J1,J2) = self.factors()
2701 m = J1.dimension()
2702 n = J2.dimension()
2703 V_basis = self.vector_space().basis()
2704 # Need to specify the dimensions explicitly so that we don't
2705 # wind up with a zero-by-zero matrix when we want e.g. a
2706 # zero-by-two matrix (important for composing things).
2707 P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2708 P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2709 pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
2710 pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
2711 return (pi_left, pi_right)
2712
2713 def inclusions(self):
2714 r"""
2715 Return the pair of inclusion maps from our factors into us.
2716
2717 SETUP::
2718
2719 sage: from mjo.eja.eja_algebra import (random_eja,
2720 ....: JordanSpinEJA,
2721 ....: RealSymmetricEJA,
2722 ....: DirectSumEJA)
2723
2724 EXAMPLES::
2725
2726 sage: J1 = JordanSpinEJA(3)
2727 sage: J2 = RealSymmetricEJA(2)
2728 sage: J = DirectSumEJA(J1,J2)
2729 sage: (iota_left, iota_right) = J.inclusions()
2730 sage: iota_left(J1.zero()) == J.zero()
2731 True
2732 sage: iota_right(J2.zero()) == J.zero()
2733 True
2734 sage: J1.one().to_vector()
2735 (1, 0, 0)
2736 sage: iota_left(J1.one()).to_vector()
2737 (1, 0, 0, 0, 0, 0)
2738 sage: J2.one().to_vector()
2739 (1, 0, 1)
2740 sage: iota_right(J2.one()).to_vector()
2741 (0, 0, 0, 1, 0, 1)
2742 sage: J.one().to_vector()
2743 (1, 0, 0, 1, 0, 1)
2744
2745 TESTS:
2746
2747 Composing a projection with the corresponding inclusion should
2748 produce the identity map, and mismatching them should produce
2749 the zero map::
2750
2751 sage: set_random_seed()
2752 sage: J1 = random_eja()
2753 sage: J2 = random_eja()
2754 sage: J = DirectSumEJA(J1,J2)
2755 sage: (iota_left, iota_right) = J.inclusions()
2756 sage: (pi_left, pi_right) = J.projections()
2757 sage: pi_left*iota_left == J1.one().operator()
2758 True
2759 sage: pi_right*iota_right == J2.one().operator()
2760 True
2761 sage: (pi_left*iota_right).is_zero()
2762 True
2763 sage: (pi_right*iota_left).is_zero()
2764 True
2765
2766 """
2767 (J1,J2) = self.factors()
2768 m = J1.dimension()
2769 n = J2.dimension()
2770 V_basis = self.vector_space().basis()
2771 # Need to specify the dimensions explicitly so that we don't
2772 # wind up with a zero-by-zero matrix when we want e.g. a
2773 # two-by-zero matrix (important for composing things).
2774 I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2775 I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2776 iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
2777 iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
2778 return (iota_left, iota_right)
2779
2780 def inner_product(self, x, y):
2781 r"""
2782 The standard Cartesian inner-product.
2783
2784 We project ``x`` and ``y`` onto our factors, and add up the
2785 inner-products from the subalgebras.
2786
2787 SETUP::
2788
2789
2790 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2791 ....: QuaternionHermitianEJA,
2792 ....: DirectSumEJA)
2793
2794 EXAMPLE::
2795
2796 sage: J1 = HadamardEJA(3,QQ)
2797 sage: J2 = QuaternionHermitianEJA(2,QQ,orthonormalize=False)
2798 sage: J = DirectSumEJA(J1,J2)
2799 sage: x1 = J1.one()
2800 sage: x2 = x1
2801 sage: y1 = J2.one()
2802 sage: y2 = y1
2803 sage: x1.inner_product(x2)
2804 3
2805 sage: y1.inner_product(y2)
2806 2
2807 sage: J.one().inner_product(J.one())
2808 5
2809
2810 """
2811 (pi_left, pi_right) = self.projections()
2812 x1 = pi_left(x)
2813 x2 = pi_right(x)
2814 y1 = pi_left(y)
2815 y2 = pi_right(y)
2816
2817 return (x1.inner_product(y1) + x2.inner_product(y2))
2818
2819
2820
2821 random_eja = ConcreteEuclideanJordanAlgebra.random_instance