]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: don't allow creation of invalid RationalBasisEJAs.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide two other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. The Albert EJA is simply a special
47 case of the :class:`OctonionHermitianEJA` where the matrices are
48 three-by-three and the resulting space has dimension 27. And
49 last/least, the trivial EJA is exactly what you think it is; it could
50 also be obtained by constructing a dimension-zero instance of any of
51 the other algebras. Cartesian products of these are also supported
52 using the usual ``cartesian_product()`` function; as a result, we
53 support (up to isomorphism) all Euclidean Jordan algebras.
54
55 At a minimum, the following are required to construct a Euclidean
56 Jordan algebra:
57
58 * A basis of matrices, column vectors, or MatrixAlgebra elements
59 * A Jordan product defined on the basis
60 * Its inner product defined on the basis
61
62 The real numbers form a Euclidean Jordan algebra when both the Jordan
63 and inner products are the usual multiplication. We use this as our
64 example, and demonstrate a few ways to construct an EJA.
65
66 First, we can use one-by-one SageMath matrices with algebraic real
67 entries to represent real numbers. We define the Jordan and inner
68 products to be essentially real-number multiplication, with the only
69 difference being that the Jordan product again returns a one-by-one
70 matrix, whereas the inner product must return a scalar. Our basis for
71 the one-by-one matrices is of course the set consisting of a single
72 matrix with its sole entry non-zero::
73
74 sage: from mjo.eja.eja_algebra import FiniteDimensionalEJA
75 sage: jp = lambda X,Y: X*Y
76 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
77 sage: b1 = matrix(AA, [[1]])
78 sage: J1 = FiniteDimensionalEJA((b1,), jp, ip)
79 sage: J1
80 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
81
82 In fact, any positive scalar multiple of that inner-product would work::
83
84 sage: ip2 = lambda X,Y: 16*ip(X,Y)
85 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip2)
86 sage: J2
87 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
88
89 But beware that your basis will be orthonormalized _with respect to the
90 given inner-product_ unless you pass ``orthonormalize=False`` to the
91 constructor. For example::
92
93 sage: J3 = FiniteDimensionalEJA((b1,), jp, ip2, orthonormalize=False)
94 sage: J3
95 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
96
97 To see the difference, you can take the first and only basis element
98 of the resulting algebra, and ask for it to be converted back into
99 matrix form::
100
101 sage: J1.basis()[0].to_matrix()
102 [1]
103 sage: J2.basis()[0].to_matrix()
104 [1/4]
105 sage: J3.basis()[0].to_matrix()
106 [1]
107
108 Since square roots are used in that process, the default scalar field
109 that we use is the field of algebraic real numbers, ``AA``. You can
110 also Use rational numbers, but only if you either pass
111 ``orthonormalize=False`` or know that orthonormalizing your basis
112 won't stray beyond the rational numbers. The example above would
113 have worked only because ``sqrt(16) == 4`` is rational.
114
115 Another option for your basis is to use elemebts of a
116 :class:`MatrixAlgebra`::
117
118 sage: from mjo.matrix_algebra import MatrixAlgebra
119 sage: A = MatrixAlgebra(1,AA,AA)
120 sage: J4 = FiniteDimensionalEJA(A.gens(), jp, ip)
121 sage: J4
122 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
123 sage: J4.basis()[0].to_matrix()
124 +---+
125 | 1 |
126 +---+
127
128 An easier way to view the entire EJA basis in its original (but
129 perhaps orthonormalized) matrix form is to use the ``matrix_basis``
130 method::
131
132 sage: J4.matrix_basis()
133 (+---+
134 | 1 |
135 +---+,)
136
137 In particular, a :class:`MatrixAlgebra` is needed to work around the
138 fact that matrices in SageMath must have entries in the same
139 (commutative and associative) ring as its scalars. There are many
140 Euclidean Jordan algebras whose elements are matrices that violate
141 those assumptions. The complex, quaternion, and octonion Hermitian
142 matrices all have entries in a ring (the complex numbers, quaternions,
143 or octonions...) that differs from the algebra's scalar ring (the real
144 numbers). Quaternions are also non-commutative; the octonions are
145 neither commutative nor associative.
146
147 SETUP::
148
149 sage: from mjo.eja.eja_algebra import random_eja
150
151 EXAMPLES::
152
153 sage: random_eja()
154 Euclidean Jordan algebra of dimension...
155 """
156
157 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
158 from sage.categories.magmatic_algebras import MagmaticAlgebras
159 from sage.categories.sets_cat import cartesian_product
160 from sage.combinat.free_module import CombinatorialFreeModule
161 from sage.matrix.constructor import matrix
162 from sage.matrix.matrix_space import MatrixSpace
163 from sage.misc.cachefunc import cached_method
164 from sage.misc.table import table
165 from sage.modules.free_module import FreeModule, VectorSpace
166 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
167 PolynomialRing,
168 QuadraticField)
169 from mjo.eja.eja_element import FiniteDimensionalEJAElement
170 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
171 from mjo.eja.eja_utils import _all2list, _mat2vec
172
173 def EuclideanJordanAlgebras(field):
174 r"""
175 The category of Euclidean Jordan algebras over ``field``, which
176 must be a subfield of the real numbers. For now this is just a
177 convenient wrapper around all of the other category axioms that
178 apply to all EJAs.
179 """
180 category = MagmaticAlgebras(field).FiniteDimensional()
181 category = category.WithBasis().Unital().Commutative()
182 return category
183
184 class FiniteDimensionalEJA(CombinatorialFreeModule):
185 r"""
186 A finite-dimensional Euclidean Jordan algebra.
187
188 INPUT:
189
190 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
191 form," which must be the same form as the arguments to
192 ``jordan_product`` and ``inner_product``. In reality, "matrix
193 form" can be either vectors, matrices, or a Cartesian product
194 (ordered tuple) of vectors or matrices. All of these would
195 ideally be vector spaces in sage with no special-casing
196 needed; but in reality we turn vectors into column-matrices
197 and Cartesian products `(a,b)` into column matrices
198 `(a,b)^{T}` after converting `a` and `b` themselves.
199
200 - ``jordan_product`` -- a function; afunction of two ``basis``
201 elements (in matrix form) that returns their jordan product,
202 also in matrix form; this will be applied to ``basis`` to
203 compute a multiplication table for the algebra.
204
205 - ``inner_product`` -- a function; a function of two ``basis``
206 elements (in matrix form) that returns their inner
207 product. This will be applied to ``basis`` to compute an
208 inner-product table (basically a matrix) for this algebra.
209
210 - ``matrix_space`` -- the space that your matrix basis lives in,
211 or ``None`` (the default). So long as your basis does not have
212 length zero you can omit this. But in trivial algebras, it is
213 required.
214
215 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
216 field for the algebra.
217
218 - ``orthonormalize`` -- boolean (default: ``True``); whether or
219 not to orthonormalize the basis. Doing so is expensive and
220 generally rules out using the rationals as your ``field``, but
221 is required for spectral decompositions.
222
223 SETUP::
224
225 sage: from mjo.eja.eja_algebra import random_eja
226
227 TESTS:
228
229 We should compute that an element subalgebra is associative even
230 if we circumvent the element method::
231
232 sage: set_random_seed()
233 sage: J = random_eja(field=QQ,orthonormalize=False)
234 sage: x = J.random_element()
235 sage: A = x.subalgebra_generated_by(orthonormalize=False)
236 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
237 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
238 True
239 """
240 Element = FiniteDimensionalEJAElement
241
242 @staticmethod
243 def _check_input_field(field):
244 if not field.is_subring(RR):
245 # Note: this does return true for the real algebraic
246 # field, the rationals, and any quadratic field where
247 # we've specified a real embedding.
248 raise ValueError("scalar field is not real")
249
250 @staticmethod
251 def _check_input_axioms(basis, jordan_product, inner_product):
252 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
253 for bi in basis
254 for bj in basis ):
255 raise ValueError("Jordan product is not commutative")
256
257 if not all( inner_product(bi,bj) == inner_product(bj,bi)
258 for bi in basis
259 for bj in basis ):
260 raise ValueError("inner-product is not commutative")
261
262 def __init__(self,
263 basis,
264 jordan_product,
265 inner_product,
266 field=AA,
267 matrix_space=None,
268 orthonormalize=True,
269 associative=None,
270 check_field=True,
271 check_axioms=True,
272 prefix="b"):
273
274 n = len(basis)
275
276 if check_field:
277 self._check_input_field(field)
278
279 if check_axioms:
280 # Check commutativity of the Jordan and inner-products.
281 # This has to be done before we build the multiplication
282 # and inner-product tables/matrices, because we take
283 # advantage of symmetry in the process.
284 self._check_input_axioms(basis, jordan_product, inner_product)
285
286 if n <= 1:
287 # All zero- and one-dimensional algebras are just the real
288 # numbers with (some positive multiples of) the usual
289 # multiplication as its Jordan and inner-product.
290 associative = True
291 if associative is None:
292 # We should figure it out. As with check_axioms, we have to do
293 # this without the help of the _jordan_product_is_associative()
294 # method because we need to know the category before we
295 # initialize the algebra.
296 associative = all( jordan_product(jordan_product(bi,bj),bk)
297 ==
298 jordan_product(bi,jordan_product(bj,bk))
299 for bi in basis
300 for bj in basis
301 for bk in basis)
302
303 category = EuclideanJordanAlgebras(field)
304
305 if associative:
306 # Element subalgebras can take advantage of this.
307 category = category.Associative()
308
309 # Call the superclass constructor so that we can use its from_vector()
310 # method to build our multiplication table.
311 CombinatorialFreeModule.__init__(self,
312 field,
313 range(n),
314 prefix=prefix,
315 category=category,
316 bracket=False)
317
318 # Now comes all of the hard work. We'll be constructing an
319 # ambient vector space V that our (vectorized) basis lives in,
320 # as well as a subspace W of V spanned by those (vectorized)
321 # basis elements. The W-coordinates are the coefficients that
322 # we see in things like x = 1*b1 + 2*b2.
323
324 degree = 0
325 if n > 0:
326 degree = len(_all2list(basis[0]))
327
328 # Build an ambient space that fits our matrix basis when
329 # written out as "long vectors."
330 V = VectorSpace(field, degree)
331
332 # The matrix that will hold the orthonormal -> unorthonormal
333 # coordinate transformation. Default to an identity matrix of
334 # the appropriate size to avoid special cases for None
335 # everywhere.
336 self._deortho_matrix = matrix.identity(field,n)
337
338 if orthonormalize:
339 # Save a copy of the un-orthonormalized basis for later.
340 # Convert it to ambient V (vector) coordinates while we're
341 # at it, because we'd have to do it later anyway.
342 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
343
344 from mjo.eja.eja_utils import gram_schmidt
345 basis = tuple(gram_schmidt(basis, inner_product))
346
347 # Save the (possibly orthonormalized) matrix basis for
348 # later, as well as the space that its elements live in.
349 # In most cases we can deduce the matrix space, but when
350 # n == 0 (that is, there are no basis elements) we cannot.
351 self._matrix_basis = basis
352 if matrix_space is None:
353 self._matrix_space = self._matrix_basis[0].parent()
354 else:
355 self._matrix_space = matrix_space
356
357 # Now create the vector space for the algebra, which will have
358 # its own set of non-ambient coordinates (in terms of the
359 # supplied basis).
360 vector_basis = tuple( V(_all2list(b)) for b in basis )
361
362 # Save the span of our matrix basis (when written out as long
363 # vectors) because otherwise we'll have to reconstruct it
364 # every time we want to coerce a matrix into the algebra.
365 self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms)
366
367 if orthonormalize:
368 # Now "self._matrix_span" is the vector space of our
369 # algebra coordinates. The variables "X1", "X2",... refer
370 # to the entries of vectors in self._matrix_span. Thus to
371 # convert back and forth between the orthonormal
372 # coordinates and the given ones, we need to stick the
373 # original basis in self._matrix_span.
374 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
375 self._deortho_matrix = matrix.column( U.coordinate_vector(q)
376 for q in vector_basis )
377
378
379 # Now we actually compute the multiplication and inner-product
380 # tables/matrices using the possibly-orthonormalized basis.
381 self._inner_product_matrix = matrix.identity(field, n)
382 zed = self.zero()
383 self._multiplication_table = [ [zed for j in range(i+1)]
384 for i in range(n) ]
385
386 # Note: the Jordan and inner-products are defined in terms
387 # of the ambient basis. It's important that their arguments
388 # are in ambient coordinates as well.
389 for i in range(n):
390 for j in range(i+1):
391 # ortho basis w.r.t. ambient coords
392 q_i = basis[i]
393 q_j = basis[j]
394
395 # The jordan product returns a matrixy answer, so we
396 # have to convert it to the algebra coordinates.
397 elt = jordan_product(q_i, q_j)
398 elt = self._matrix_span.coordinate_vector(V(_all2list(elt)))
399 self._multiplication_table[i][j] = self.from_vector(elt)
400
401 if not orthonormalize:
402 # If we're orthonormalizing the basis with respect
403 # to an inner-product, then the inner-product
404 # matrix with respect to the resulting basis is
405 # just going to be the identity.
406 ip = inner_product(q_i, q_j)
407 self._inner_product_matrix[i,j] = ip
408 self._inner_product_matrix[j,i] = ip
409
410 self._inner_product_matrix._cache = {'hermitian': True}
411 self._inner_product_matrix.set_immutable()
412
413 if check_axioms:
414 if not self._is_jordanian():
415 raise ValueError("Jordan identity does not hold")
416 if not self._inner_product_is_associative():
417 raise ValueError("inner product is not associative")
418
419
420 def _coerce_map_from_base_ring(self):
421 """
422 Disable the map from the base ring into the algebra.
423
424 Performing a nonsense conversion like this automatically
425 is counterpedagogical. The fallback is to try the usual
426 element constructor, which should also fail.
427
428 SETUP::
429
430 sage: from mjo.eja.eja_algebra import random_eja
431
432 TESTS::
433
434 sage: set_random_seed()
435 sage: J = random_eja()
436 sage: J(1)
437 Traceback (most recent call last):
438 ...
439 ValueError: not an element of this algebra
440
441 """
442 return None
443
444
445 def product_on_basis(self, i, j):
446 r"""
447 Returns the Jordan product of the `i` and `j`th basis elements.
448
449 This completely defines the Jordan product on the algebra, and
450 is used direclty by our superclass machinery to implement
451 :meth:`product`.
452
453 SETUP::
454
455 sage: from mjo.eja.eja_algebra import random_eja
456
457 TESTS::
458
459 sage: set_random_seed()
460 sage: J = random_eja()
461 sage: n = J.dimension()
462 sage: bi = J.zero()
463 sage: bj = J.zero()
464 sage: bi_bj = J.zero()*J.zero()
465 sage: if n > 0:
466 ....: i = ZZ.random_element(n)
467 ....: j = ZZ.random_element(n)
468 ....: bi = J.monomial(i)
469 ....: bj = J.monomial(j)
470 ....: bi_bj = J.product_on_basis(i,j)
471 sage: bi*bj == bi_bj
472 True
473
474 """
475 # We only stored the lower-triangular portion of the
476 # multiplication table.
477 if j <= i:
478 return self._multiplication_table[i][j]
479 else:
480 return self._multiplication_table[j][i]
481
482 def inner_product(self, x, y):
483 """
484 The inner product associated with this Euclidean Jordan algebra.
485
486 Defaults to the trace inner product, but can be overridden by
487 subclasses if they are sure that the necessary properties are
488 satisfied.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (random_eja,
493 ....: HadamardEJA,
494 ....: BilinearFormEJA)
495
496 EXAMPLES:
497
498 Our inner product is "associative," which means the following for
499 a symmetric bilinear form::
500
501 sage: set_random_seed()
502 sage: J = random_eja()
503 sage: x,y,z = J.random_elements(3)
504 sage: (x*y).inner_product(z) == y.inner_product(x*z)
505 True
506
507 TESTS:
508
509 Ensure that this is the usual inner product for the algebras
510 over `R^n`::
511
512 sage: set_random_seed()
513 sage: J = HadamardEJA.random_instance()
514 sage: x,y = J.random_elements(2)
515 sage: actual = x.inner_product(y)
516 sage: expected = x.to_vector().inner_product(y.to_vector())
517 sage: actual == expected
518 True
519
520 Ensure that this is one-half of the trace inner-product in a
521 BilinearFormEJA that isn't just the reals (when ``n`` isn't
522 one). This is in Faraut and Koranyi, and also my "On the
523 symmetry..." paper::
524
525 sage: set_random_seed()
526 sage: J = BilinearFormEJA.random_instance()
527 sage: n = J.dimension()
528 sage: x = J.random_element()
529 sage: y = J.random_element()
530 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
531 True
532
533 """
534 B = self._inner_product_matrix
535 return (B*x.to_vector()).inner_product(y.to_vector())
536
537
538 def is_associative(self):
539 r"""
540 Return whether or not this algebra's Jordan product is associative.
541
542 SETUP::
543
544 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
545
546 EXAMPLES::
547
548 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
549 sage: J.is_associative()
550 False
551 sage: x = sum(J.gens())
552 sage: A = x.subalgebra_generated_by(orthonormalize=False)
553 sage: A.is_associative()
554 True
555
556 """
557 return "Associative" in self.category().axioms()
558
559 def _is_commutative(self):
560 r"""
561 Whether or not this algebra's multiplication table is commutative.
562
563 This method should of course always return ``True``, unless
564 this algebra was constructed with ``check_axioms=False`` and
565 passed an invalid multiplication table.
566 """
567 return all( x*y == y*x for x in self.gens() for y in self.gens() )
568
569 def _is_jordanian(self):
570 r"""
571 Whether or not this algebra's multiplication table respects the
572 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
573
574 We only check one arrangement of `x` and `y`, so for a
575 ``True`` result to be truly true, you should also check
576 :meth:`_is_commutative`. This method should of course always
577 return ``True``, unless this algebra was constructed with
578 ``check_axioms=False`` and passed an invalid multiplication table.
579 """
580 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
581 ==
582 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
583 for i in range(self.dimension())
584 for j in range(self.dimension()) )
585
586 def _jordan_product_is_associative(self):
587 r"""
588 Return whether or not this algebra's Jordan product is
589 associative; that is, whether or not `x*(y*z) = (x*y)*z`
590 for all `x,y,x`.
591
592 This method should agree with :meth:`is_associative` unless
593 you lied about the value of the ``associative`` parameter
594 when you constructed the algebra.
595
596 SETUP::
597
598 sage: from mjo.eja.eja_algebra import (random_eja,
599 ....: RealSymmetricEJA,
600 ....: ComplexHermitianEJA,
601 ....: QuaternionHermitianEJA)
602
603 EXAMPLES::
604
605 sage: J = RealSymmetricEJA(4, orthonormalize=False)
606 sage: J._jordan_product_is_associative()
607 False
608 sage: x = sum(J.gens())
609 sage: A = x.subalgebra_generated_by()
610 sage: A._jordan_product_is_associative()
611 True
612
613 ::
614
615 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
616 sage: J._jordan_product_is_associative()
617 False
618 sage: x = sum(J.gens())
619 sage: A = x.subalgebra_generated_by(orthonormalize=False)
620 sage: A._jordan_product_is_associative()
621 True
622
623 ::
624
625 sage: J = QuaternionHermitianEJA(2)
626 sage: J._jordan_product_is_associative()
627 False
628 sage: x = sum(J.gens())
629 sage: A = x.subalgebra_generated_by()
630 sage: A._jordan_product_is_associative()
631 True
632
633 TESTS:
634
635 The values we've presupplied to the constructors agree with
636 the computation::
637
638 sage: set_random_seed()
639 sage: J = random_eja()
640 sage: J.is_associative() == J._jordan_product_is_associative()
641 True
642
643 """
644 R = self.base_ring()
645
646 # Used to check whether or not something is zero.
647 epsilon = R.zero()
648 if not R.is_exact():
649 # I don't know of any examples that make this magnitude
650 # necessary because I don't know how to make an
651 # associative algebra when the element subalgebra
652 # construction is unreliable (as it is over RDF; we can't
653 # find the degree of an element because we can't compute
654 # the rank of a matrix). But even multiplication of floats
655 # is non-associative, so *some* epsilon is needed... let's
656 # just take the one from _inner_product_is_associative?
657 epsilon = 1e-15
658
659 for i in range(self.dimension()):
660 for j in range(self.dimension()):
661 for k in range(self.dimension()):
662 x = self.monomial(i)
663 y = self.monomial(j)
664 z = self.monomial(k)
665 diff = (x*y)*z - x*(y*z)
666
667 if diff.norm() > epsilon:
668 return False
669
670 return True
671
672 def _inner_product_is_associative(self):
673 r"""
674 Return whether or not this algebra's inner product `B` is
675 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
676
677 This method should of course always return ``True``, unless
678 this algebra was constructed with ``check_axioms=False`` and
679 passed an invalid Jordan or inner-product.
680 """
681 R = self.base_ring()
682
683 # Used to check whether or not something is zero.
684 epsilon = R.zero()
685 if not R.is_exact():
686 # This choice is sufficient to allow the construction of
687 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
688 epsilon = 1e-15
689
690 for i in range(self.dimension()):
691 for j in range(self.dimension()):
692 for k in range(self.dimension()):
693 x = self.monomial(i)
694 y = self.monomial(j)
695 z = self.monomial(k)
696 diff = (x*y).inner_product(z) - x.inner_product(y*z)
697
698 if diff.abs() > epsilon:
699 return False
700
701 return True
702
703 def _element_constructor_(self, elt):
704 """
705 Construct an element of this algebra or a subalgebra from its
706 EJA element, vector, or matrix representation.
707
708 This gets called only after the parent element _call_ method
709 fails to find a coercion for the argument.
710
711 SETUP::
712
713 sage: from mjo.eja.eja_algebra import (random_eja,
714 ....: JordanSpinEJA,
715 ....: HadamardEJA,
716 ....: RealSymmetricEJA)
717
718 EXAMPLES:
719
720 The identity in `S^n` is converted to the identity in the EJA::
721
722 sage: J = RealSymmetricEJA(3)
723 sage: I = matrix.identity(QQ,3)
724 sage: J(I) == J.one()
725 True
726
727 This skew-symmetric matrix can't be represented in the EJA::
728
729 sage: J = RealSymmetricEJA(3)
730 sage: A = matrix(QQ,3, lambda i,j: i-j)
731 sage: J(A)
732 Traceback (most recent call last):
733 ...
734 ValueError: not an element of this algebra
735
736 Tuples work as well, provided that the matrix basis for the
737 algebra consists of them::
738
739 sage: J1 = HadamardEJA(3)
740 sage: J2 = RealSymmetricEJA(2)
741 sage: J = cartesian_product([J1,J2])
742 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
743 b1 + b5
744
745 Subalgebra elements are embedded into the superalgebra::
746
747 sage: J = JordanSpinEJA(3)
748 sage: J.one()
749 b0
750 sage: x = sum(J.gens())
751 sage: A = x.subalgebra_generated_by()
752 sage: J(A.one())
753 b0
754
755 TESTS:
756
757 Ensure that we can convert any element back and forth
758 faithfully between its matrix and algebra representations::
759
760 sage: set_random_seed()
761 sage: J = random_eja()
762 sage: x = J.random_element()
763 sage: J(x.to_matrix()) == x
764 True
765
766 We cannot coerce elements between algebras just because their
767 matrix representations are compatible::
768
769 sage: J1 = HadamardEJA(3)
770 sage: J2 = JordanSpinEJA(3)
771 sage: J2(J1.one())
772 Traceback (most recent call last):
773 ...
774 ValueError: not an element of this algebra
775 sage: J1(J2.zero())
776 Traceback (most recent call last):
777 ...
778 ValueError: not an element of this algebra
779
780 """
781 msg = "not an element of this algebra"
782 if elt in self.base_ring():
783 # Ensure that no base ring -> algebra coercion is performed
784 # by this method. There's some stupidity in sage that would
785 # otherwise propagate to this method; for example, sage thinks
786 # that the integer 3 belongs to the space of 2-by-2 matrices.
787 raise ValueError(msg)
788
789 if hasattr(elt, 'superalgebra_element'):
790 # Handle subalgebra elements
791 if elt.parent().superalgebra() == self:
792 return elt.superalgebra_element()
793
794 if hasattr(elt, 'sparse_vector'):
795 # Convert a vector into a column-matrix. We check for
796 # "sparse_vector" and not "column" because matrices also
797 # have a "column" method.
798 elt = elt.column()
799
800 if elt not in self.matrix_space():
801 raise ValueError(msg)
802
803 # Thanks for nothing! Matrix spaces aren't vector spaces in
804 # Sage, so we have to figure out its matrix-basis coordinates
805 # ourselves. We use the basis space's ring instead of the
806 # element's ring because the basis space might be an algebraic
807 # closure whereas the base ring of the 3-by-3 identity matrix
808 # could be QQ instead of QQbar.
809 #
810 # And, we also have to handle Cartesian product bases (when
811 # the matrix basis consists of tuples) here. The "good news"
812 # is that we're already converting everything to long vectors,
813 # and that strategy works for tuples as well.
814 #
815 elt = self._matrix_span.ambient_vector_space()(_all2list(elt))
816
817 try:
818 coords = self._matrix_span.coordinate_vector(elt)
819 except ArithmeticError: # vector is not in free module
820 raise ValueError(msg)
821
822 return self.from_vector(coords)
823
824 def _repr_(self):
825 """
826 Return a string representation of ``self``.
827
828 SETUP::
829
830 sage: from mjo.eja.eja_algebra import JordanSpinEJA
831
832 TESTS:
833
834 Ensure that it says what we think it says::
835
836 sage: JordanSpinEJA(2, field=AA)
837 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
838 sage: JordanSpinEJA(3, field=RDF)
839 Euclidean Jordan algebra of dimension 3 over Real Double Field
840
841 """
842 fmt = "Euclidean Jordan algebra of dimension {} over {}"
843 return fmt.format(self.dimension(), self.base_ring())
844
845
846 @cached_method
847 def characteristic_polynomial_of(self):
848 """
849 Return the algebra's "characteristic polynomial of" function,
850 which is itself a multivariate polynomial that, when evaluated
851 at the coordinates of some algebra element, returns that
852 element's characteristic polynomial.
853
854 The resulting polynomial has `n+1` variables, where `n` is the
855 dimension of this algebra. The first `n` variables correspond to
856 the coordinates of an algebra element: when evaluated at the
857 coordinates of an algebra element with respect to a certain
858 basis, the result is a univariate polynomial (in the one
859 remaining variable ``t``), namely the characteristic polynomial
860 of that element.
861
862 SETUP::
863
864 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
865
866 EXAMPLES:
867
868 The characteristic polynomial in the spin algebra is given in
869 Alizadeh, Example 11.11::
870
871 sage: J = JordanSpinEJA(3)
872 sage: p = J.characteristic_polynomial_of(); p
873 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
874 sage: xvec = J.one().to_vector()
875 sage: p(*xvec)
876 t^2 - 2*t + 1
877
878 By definition, the characteristic polynomial is a monic
879 degree-zero polynomial in a rank-zero algebra. Note that
880 Cayley-Hamilton is indeed satisfied since the polynomial
881 ``1`` evaluates to the identity element of the algebra on
882 any argument::
883
884 sage: J = TrivialEJA()
885 sage: J.characteristic_polynomial_of()
886 1
887
888 """
889 r = self.rank()
890 n = self.dimension()
891
892 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
893 a = self._charpoly_coefficients()
894
895 # We go to a bit of trouble here to reorder the
896 # indeterminates, so that it's easier to evaluate the
897 # characteristic polynomial at x's coordinates and get back
898 # something in terms of t, which is what we want.
899 S = PolynomialRing(self.base_ring(),'t')
900 t = S.gen(0)
901 if r > 0:
902 R = a[0].parent()
903 S = PolynomialRing(S, R.variable_names())
904 t = S(t)
905
906 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
907
908 def coordinate_polynomial_ring(self):
909 r"""
910 The multivariate polynomial ring in which this algebra's
911 :meth:`characteristic_polynomial_of` lives.
912
913 SETUP::
914
915 sage: from mjo.eja.eja_algebra import (HadamardEJA,
916 ....: RealSymmetricEJA)
917
918 EXAMPLES::
919
920 sage: J = HadamardEJA(2)
921 sage: J.coordinate_polynomial_ring()
922 Multivariate Polynomial Ring in X1, X2...
923 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
924 sage: J.coordinate_polynomial_ring()
925 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
926
927 """
928 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
929 return PolynomialRing(self.base_ring(), var_names)
930
931 def inner_product(self, x, y):
932 """
933 The inner product associated with this Euclidean Jordan algebra.
934
935 Defaults to the trace inner product, but can be overridden by
936 subclasses if they are sure that the necessary properties are
937 satisfied.
938
939 SETUP::
940
941 sage: from mjo.eja.eja_algebra import (random_eja,
942 ....: HadamardEJA,
943 ....: BilinearFormEJA)
944
945 EXAMPLES:
946
947 Our inner product is "associative," which means the following for
948 a symmetric bilinear form::
949
950 sage: set_random_seed()
951 sage: J = random_eja()
952 sage: x,y,z = J.random_elements(3)
953 sage: (x*y).inner_product(z) == y.inner_product(x*z)
954 True
955
956 TESTS:
957
958 Ensure that this is the usual inner product for the algebras
959 over `R^n`::
960
961 sage: set_random_seed()
962 sage: J = HadamardEJA.random_instance()
963 sage: x,y = J.random_elements(2)
964 sage: actual = x.inner_product(y)
965 sage: expected = x.to_vector().inner_product(y.to_vector())
966 sage: actual == expected
967 True
968
969 Ensure that this is one-half of the trace inner-product in a
970 BilinearFormEJA that isn't just the reals (when ``n`` isn't
971 one). This is in Faraut and Koranyi, and also my "On the
972 symmetry..." paper::
973
974 sage: set_random_seed()
975 sage: J = BilinearFormEJA.random_instance()
976 sage: n = J.dimension()
977 sage: x = J.random_element()
978 sage: y = J.random_element()
979 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
980 True
981 """
982 B = self._inner_product_matrix
983 return (B*x.to_vector()).inner_product(y.to_vector())
984
985
986 def is_trivial(self):
987 """
988 Return whether or not this algebra is trivial.
989
990 A trivial algebra contains only the zero element.
991
992 SETUP::
993
994 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
995 ....: TrivialEJA)
996
997 EXAMPLES::
998
999 sage: J = ComplexHermitianEJA(3)
1000 sage: J.is_trivial()
1001 False
1002
1003 ::
1004
1005 sage: J = TrivialEJA()
1006 sage: J.is_trivial()
1007 True
1008
1009 """
1010 return self.dimension() == 0
1011
1012
1013 def multiplication_table(self):
1014 """
1015 Return a visual representation of this algebra's multiplication
1016 table (on basis elements).
1017
1018 SETUP::
1019
1020 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1021
1022 EXAMPLES::
1023
1024 sage: J = JordanSpinEJA(4)
1025 sage: J.multiplication_table()
1026 +----++----+----+----+----+
1027 | * || b0 | b1 | b2 | b3 |
1028 +====++====+====+====+====+
1029 | b0 || b0 | b1 | b2 | b3 |
1030 +----++----+----+----+----+
1031 | b1 || b1 | b0 | 0 | 0 |
1032 +----++----+----+----+----+
1033 | b2 || b2 | 0 | b0 | 0 |
1034 +----++----+----+----+----+
1035 | b3 || b3 | 0 | 0 | b0 |
1036 +----++----+----+----+----+
1037
1038 """
1039 n = self.dimension()
1040 # Prepend the header row.
1041 M = [["*"] + list(self.gens())]
1042
1043 # And to each subsequent row, prepend an entry that belongs to
1044 # the left-side "header column."
1045 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
1046 for j in range(n) ]
1047 for i in range(n) ]
1048
1049 return table(M, header_row=True, header_column=True, frame=True)
1050
1051
1052 def matrix_basis(self):
1053 """
1054 Return an (often more natural) representation of this algebras
1055 basis as an ordered tuple of matrices.
1056
1057 Every finite-dimensional Euclidean Jordan Algebra is a, up to
1058 Jordan isomorphism, a direct sum of five simple
1059 algebras---four of which comprise Hermitian matrices. And the
1060 last type of algebra can of course be thought of as `n`-by-`1`
1061 column matrices (ambiguusly called column vectors) to avoid
1062 special cases. As a result, matrices (and column vectors) are
1063 a natural representation format for Euclidean Jordan algebra
1064 elements.
1065
1066 But, when we construct an algebra from a basis of matrices,
1067 those matrix representations are lost in favor of coordinate
1068 vectors *with respect to* that basis. We could eventually
1069 convert back if we tried hard enough, but having the original
1070 representations handy is valuable enough that we simply store
1071 them and return them from this method.
1072
1073 Why implement this for non-matrix algebras? Avoiding special
1074 cases for the :class:`BilinearFormEJA` pays with simplicity in
1075 its own right. But mainly, we would like to be able to assume
1076 that elements of a :class:`CartesianProductEJA` can be displayed
1077 nicely, without having to have special classes for direct sums
1078 one of whose components was a matrix algebra.
1079
1080 SETUP::
1081
1082 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1083 ....: RealSymmetricEJA)
1084
1085 EXAMPLES::
1086
1087 sage: J = RealSymmetricEJA(2)
1088 sage: J.basis()
1089 Finite family {0: b0, 1: b1, 2: b2}
1090 sage: J.matrix_basis()
1091 (
1092 [1 0] [ 0 0.7071067811865475?] [0 0]
1093 [0 0], [0.7071067811865475? 0], [0 1]
1094 )
1095
1096 ::
1097
1098 sage: J = JordanSpinEJA(2)
1099 sage: J.basis()
1100 Finite family {0: b0, 1: b1}
1101 sage: J.matrix_basis()
1102 (
1103 [1] [0]
1104 [0], [1]
1105 )
1106 """
1107 return self._matrix_basis
1108
1109
1110 def matrix_space(self):
1111 """
1112 Return the matrix space in which this algebra's elements live, if
1113 we think of them as matrices (including column vectors of the
1114 appropriate size).
1115
1116 "By default" this will be an `n`-by-`1` column-matrix space,
1117 except when the algebra is trivial. There it's `n`-by-`n`
1118 (where `n` is zero), to ensure that two elements of the matrix
1119 space (empty matrices) can be multiplied. For algebras of
1120 matrices, this returns the space in which their
1121 real embeddings live.
1122
1123 SETUP::
1124
1125 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1126 ....: JordanSpinEJA,
1127 ....: QuaternionHermitianEJA,
1128 ....: TrivialEJA)
1129
1130 EXAMPLES:
1131
1132 By default, the matrix representation is just a column-matrix
1133 equivalent to the vector representation::
1134
1135 sage: J = JordanSpinEJA(3)
1136 sage: J.matrix_space()
1137 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1138 Real Field
1139
1140 The matrix representation in the trivial algebra is
1141 zero-by-zero instead of the usual `n`-by-one::
1142
1143 sage: J = TrivialEJA()
1144 sage: J.matrix_space()
1145 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1146 Real Field
1147
1148 The matrix space for complex/quaternion Hermitian matrix EJA
1149 is the space in which their real-embeddings live, not the
1150 original complex/quaternion matrix space::
1151
1152 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1153 sage: J.matrix_space()
1154 Module of 2 by 2 matrices with entries in Algebraic Field over
1155 the scalar ring Rational Field
1156 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1157 sage: J.matrix_space()
1158 Module of 1 by 1 matrices with entries in Quaternion
1159 Algebra (-1, -1) with base ring Rational Field over
1160 the scalar ring Rational Field
1161
1162 """
1163 return self._matrix_space
1164
1165
1166 @cached_method
1167 def one(self):
1168 """
1169 Return the unit element of this algebra.
1170
1171 SETUP::
1172
1173 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1174 ....: random_eja)
1175
1176 EXAMPLES:
1177
1178 We can compute unit element in the Hadamard EJA::
1179
1180 sage: J = HadamardEJA(5)
1181 sage: J.one()
1182 b0 + b1 + b2 + b3 + b4
1183
1184 The unit element in the Hadamard EJA is inherited in the
1185 subalgebras generated by its elements::
1186
1187 sage: J = HadamardEJA(5)
1188 sage: J.one()
1189 b0 + b1 + b2 + b3 + b4
1190 sage: x = sum(J.gens())
1191 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1192 sage: A.one()
1193 c0
1194 sage: A.one().superalgebra_element()
1195 b0 + b1 + b2 + b3 + b4
1196
1197 TESTS:
1198
1199 The identity element acts like the identity, regardless of
1200 whether or not we orthonormalize::
1201
1202 sage: set_random_seed()
1203 sage: J = random_eja()
1204 sage: x = J.random_element()
1205 sage: J.one()*x == x and x*J.one() == x
1206 True
1207 sage: A = x.subalgebra_generated_by()
1208 sage: y = A.random_element()
1209 sage: A.one()*y == y and y*A.one() == y
1210 True
1211
1212 ::
1213
1214 sage: set_random_seed()
1215 sage: J = random_eja(field=QQ, orthonormalize=False)
1216 sage: x = J.random_element()
1217 sage: J.one()*x == x and x*J.one() == x
1218 True
1219 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1220 sage: y = A.random_element()
1221 sage: A.one()*y == y and y*A.one() == y
1222 True
1223
1224 The matrix of the unit element's operator is the identity,
1225 regardless of the base field and whether or not we
1226 orthonormalize::
1227
1228 sage: set_random_seed()
1229 sage: J = random_eja()
1230 sage: actual = J.one().operator().matrix()
1231 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1232 sage: actual == expected
1233 True
1234 sage: x = J.random_element()
1235 sage: A = x.subalgebra_generated_by()
1236 sage: actual = A.one().operator().matrix()
1237 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1238 sage: actual == expected
1239 True
1240
1241 ::
1242
1243 sage: set_random_seed()
1244 sage: J = random_eja(field=QQ, orthonormalize=False)
1245 sage: actual = J.one().operator().matrix()
1246 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1247 sage: actual == expected
1248 True
1249 sage: x = J.random_element()
1250 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1251 sage: actual = A.one().operator().matrix()
1252 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1253 sage: actual == expected
1254 True
1255
1256 Ensure that the cached unit element (often precomputed by
1257 hand) agrees with the computed one::
1258
1259 sage: set_random_seed()
1260 sage: J = random_eja()
1261 sage: cached = J.one()
1262 sage: J.one.clear_cache()
1263 sage: J.one() == cached
1264 True
1265
1266 ::
1267
1268 sage: set_random_seed()
1269 sage: J = random_eja(field=QQ, orthonormalize=False)
1270 sage: cached = J.one()
1271 sage: J.one.clear_cache()
1272 sage: J.one() == cached
1273 True
1274
1275 """
1276 # We can brute-force compute the matrices of the operators
1277 # that correspond to the basis elements of this algebra.
1278 # If some linear combination of those basis elements is the
1279 # algebra identity, then the same linear combination of
1280 # their matrices has to be the identity matrix.
1281 #
1282 # Of course, matrices aren't vectors in sage, so we have to
1283 # appeal to the "long vectors" isometry.
1284 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1285
1286 # Now we use basic linear algebra to find the coefficients,
1287 # of the matrices-as-vectors-linear-combination, which should
1288 # work for the original algebra basis too.
1289 A = matrix(self.base_ring(), oper_vecs)
1290
1291 # We used the isometry on the left-hand side already, but we
1292 # still need to do it for the right-hand side. Recall that we
1293 # wanted something that summed to the identity matrix.
1294 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1295
1296 # Now if there's an identity element in the algebra, this
1297 # should work. We solve on the left to avoid having to
1298 # transpose the matrix "A".
1299 return self.from_vector(A.solve_left(b))
1300
1301
1302 def peirce_decomposition(self, c):
1303 """
1304 The Peirce decomposition of this algebra relative to the
1305 idempotent ``c``.
1306
1307 In the future, this can be extended to a complete system of
1308 orthogonal idempotents.
1309
1310 INPUT:
1311
1312 - ``c`` -- an idempotent of this algebra.
1313
1314 OUTPUT:
1315
1316 A triple (J0, J5, J1) containing two subalgebras and one subspace
1317 of this algebra,
1318
1319 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1320 corresponding to the eigenvalue zero.
1321
1322 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1323 corresponding to the eigenvalue one-half.
1324
1325 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1326 corresponding to the eigenvalue one.
1327
1328 These are the only possible eigenspaces for that operator, and this
1329 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1330 orthogonal, and are subalgebras of this algebra with the appropriate
1331 restrictions.
1332
1333 SETUP::
1334
1335 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1336
1337 EXAMPLES:
1338
1339 The canonical example comes from the symmetric matrices, which
1340 decompose into diagonal and off-diagonal parts::
1341
1342 sage: J = RealSymmetricEJA(3)
1343 sage: C = matrix(QQ, [ [1,0,0],
1344 ....: [0,1,0],
1345 ....: [0,0,0] ])
1346 sage: c = J(C)
1347 sage: J0,J5,J1 = J.peirce_decomposition(c)
1348 sage: J0
1349 Euclidean Jordan algebra of dimension 1...
1350 sage: J5
1351 Vector space of degree 6 and dimension 2...
1352 sage: J1
1353 Euclidean Jordan algebra of dimension 3...
1354 sage: J0.one().to_matrix()
1355 [0 0 0]
1356 [0 0 0]
1357 [0 0 1]
1358 sage: orig_df = AA.options.display_format
1359 sage: AA.options.display_format = 'radical'
1360 sage: J.from_vector(J5.basis()[0]).to_matrix()
1361 [ 0 0 1/2*sqrt(2)]
1362 [ 0 0 0]
1363 [1/2*sqrt(2) 0 0]
1364 sage: J.from_vector(J5.basis()[1]).to_matrix()
1365 [ 0 0 0]
1366 [ 0 0 1/2*sqrt(2)]
1367 [ 0 1/2*sqrt(2) 0]
1368 sage: AA.options.display_format = orig_df
1369 sage: J1.one().to_matrix()
1370 [1 0 0]
1371 [0 1 0]
1372 [0 0 0]
1373
1374 TESTS:
1375
1376 Every algebra decomposes trivially with respect to its identity
1377 element::
1378
1379 sage: set_random_seed()
1380 sage: J = random_eja()
1381 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1382 sage: J0.dimension() == 0 and J5.dimension() == 0
1383 True
1384 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1385 True
1386
1387 The decomposition is into eigenspaces, and its components are
1388 therefore necessarily orthogonal. Moreover, the identity
1389 elements in the two subalgebras are the projections onto their
1390 respective subspaces of the superalgebra's identity element::
1391
1392 sage: set_random_seed()
1393 sage: J = random_eja()
1394 sage: x = J.random_element()
1395 sage: if not J.is_trivial():
1396 ....: while x.is_nilpotent():
1397 ....: x = J.random_element()
1398 sage: c = x.subalgebra_idempotent()
1399 sage: J0,J5,J1 = J.peirce_decomposition(c)
1400 sage: ipsum = 0
1401 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1402 ....: w = w.superalgebra_element()
1403 ....: y = J.from_vector(y)
1404 ....: z = z.superalgebra_element()
1405 ....: ipsum += w.inner_product(y).abs()
1406 ....: ipsum += w.inner_product(z).abs()
1407 ....: ipsum += y.inner_product(z).abs()
1408 sage: ipsum
1409 0
1410 sage: J1(c) == J1.one()
1411 True
1412 sage: J0(J.one() - c) == J0.one()
1413 True
1414
1415 """
1416 if not c.is_idempotent():
1417 raise ValueError("element is not idempotent: %s" % c)
1418
1419 # Default these to what they should be if they turn out to be
1420 # trivial, because eigenspaces_left() won't return eigenvalues
1421 # corresponding to trivial spaces (e.g. it returns only the
1422 # eigenspace corresponding to lambda=1 if you take the
1423 # decomposition relative to the identity element).
1424 trivial = self.subalgebra((), check_axioms=False)
1425 J0 = trivial # eigenvalue zero
1426 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1427 J1 = trivial # eigenvalue one
1428
1429 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1430 if eigval == ~(self.base_ring()(2)):
1431 J5 = eigspace
1432 else:
1433 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1434 subalg = self.subalgebra(gens, check_axioms=False)
1435 if eigval == 0:
1436 J0 = subalg
1437 elif eigval == 1:
1438 J1 = subalg
1439 else:
1440 raise ValueError("unexpected eigenvalue: %s" % eigval)
1441
1442 return (J0, J5, J1)
1443
1444
1445 def random_element(self, thorough=False):
1446 r"""
1447 Return a random element of this algebra.
1448
1449 Our algebra superclass method only returns a linear
1450 combination of at most two basis elements. We instead
1451 want the vector space "random element" method that
1452 returns a more diverse selection.
1453
1454 INPUT:
1455
1456 - ``thorough`` -- (boolean; default False) whether or not we
1457 should generate irrational coefficients for the random
1458 element when our base ring is irrational; this slows the
1459 algebra operations to a crawl, but any truly random method
1460 should include them
1461
1462 """
1463 # For a general base ring... maybe we can trust this to do the
1464 # right thing? Unlikely, but.
1465 V = self.vector_space()
1466 v = V.random_element()
1467
1468 if self.base_ring() is AA:
1469 # The "random element" method of the algebraic reals is
1470 # stupid at the moment, and only returns integers between
1471 # -2 and 2, inclusive:
1472 #
1473 # https://trac.sagemath.org/ticket/30875
1474 #
1475 # Instead, we implement our own "random vector" method,
1476 # and then coerce that into the algebra. We use the vector
1477 # space degree here instead of the dimension because a
1478 # subalgebra could (for example) be spanned by only two
1479 # vectors, each with five coordinates. We need to
1480 # generate all five coordinates.
1481 if thorough:
1482 v *= QQbar.random_element().real()
1483 else:
1484 v *= QQ.random_element()
1485
1486 return self.from_vector(V.coordinate_vector(v))
1487
1488 def random_elements(self, count, thorough=False):
1489 """
1490 Return ``count`` random elements as a tuple.
1491
1492 INPUT:
1493
1494 - ``thorough`` -- (boolean; default False) whether or not we
1495 should generate irrational coefficients for the random
1496 elements when our base ring is irrational; this slows the
1497 algebra operations to a crawl, but any truly random method
1498 should include them
1499
1500 SETUP::
1501
1502 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1503
1504 EXAMPLES::
1505
1506 sage: J = JordanSpinEJA(3)
1507 sage: x,y,z = J.random_elements(3)
1508 sage: all( [ x in J, y in J, z in J ])
1509 True
1510 sage: len( J.random_elements(10) ) == 10
1511 True
1512
1513 """
1514 return tuple( self.random_element(thorough)
1515 for idx in range(count) )
1516
1517
1518 @cached_method
1519 def _charpoly_coefficients(self):
1520 r"""
1521 The `r` polynomial coefficients of the "characteristic polynomial
1522 of" function.
1523
1524 SETUP::
1525
1526 sage: from mjo.eja.eja_algebra import random_eja
1527
1528 TESTS:
1529
1530 The theory shows that these are all homogeneous polynomials of
1531 a known degree::
1532
1533 sage: set_random_seed()
1534 sage: J = random_eja()
1535 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1536 True
1537
1538 """
1539 n = self.dimension()
1540 R = self.coordinate_polynomial_ring()
1541 vars = R.gens()
1542 F = R.fraction_field()
1543
1544 def L_x_i_j(i,j):
1545 # From a result in my book, these are the entries of the
1546 # basis representation of L_x.
1547 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1548 for k in range(n) )
1549
1550 L_x = matrix(F, n, n, L_x_i_j)
1551
1552 r = None
1553 if self.rank.is_in_cache():
1554 r = self.rank()
1555 # There's no need to pad the system with redundant
1556 # columns if we *know* they'll be redundant.
1557 n = r
1558
1559 # Compute an extra power in case the rank is equal to
1560 # the dimension (otherwise, we would stop at x^(r-1)).
1561 x_powers = [ (L_x**k)*self.one().to_vector()
1562 for k in range(n+1) ]
1563 A = matrix.column(F, x_powers[:n])
1564 AE = A.extended_echelon_form()
1565 E = AE[:,n:]
1566 A_rref = AE[:,:n]
1567 if r is None:
1568 r = A_rref.rank()
1569 b = x_powers[r]
1570
1571 # The theory says that only the first "r" coefficients are
1572 # nonzero, and they actually live in the original polynomial
1573 # ring and not the fraction field. We negate them because in
1574 # the actual characteristic polynomial, they get moved to the
1575 # other side where x^r lives. We don't bother to trim A_rref
1576 # down to a square matrix and solve the resulting system,
1577 # because the upper-left r-by-r portion of A_rref is
1578 # guaranteed to be the identity matrix, so e.g.
1579 #
1580 # A_rref.solve_right(Y)
1581 #
1582 # would just be returning Y.
1583 return (-E*b)[:r].change_ring(R)
1584
1585 @cached_method
1586 def rank(self):
1587 r"""
1588 Return the rank of this EJA.
1589
1590 This is a cached method because we know the rank a priori for
1591 all of the algebras we can construct. Thus we can avoid the
1592 expensive ``_charpoly_coefficients()`` call unless we truly
1593 need to compute the whole characteristic polynomial.
1594
1595 SETUP::
1596
1597 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1598 ....: JordanSpinEJA,
1599 ....: RealSymmetricEJA,
1600 ....: ComplexHermitianEJA,
1601 ....: QuaternionHermitianEJA,
1602 ....: random_eja)
1603
1604 EXAMPLES:
1605
1606 The rank of the Jordan spin algebra is always two::
1607
1608 sage: JordanSpinEJA(2).rank()
1609 2
1610 sage: JordanSpinEJA(3).rank()
1611 2
1612 sage: JordanSpinEJA(4).rank()
1613 2
1614
1615 The rank of the `n`-by-`n` Hermitian real, complex, or
1616 quaternion matrices is `n`::
1617
1618 sage: RealSymmetricEJA(4).rank()
1619 4
1620 sage: ComplexHermitianEJA(3).rank()
1621 3
1622 sage: QuaternionHermitianEJA(2).rank()
1623 2
1624
1625 TESTS:
1626
1627 Ensure that every EJA that we know how to construct has a
1628 positive integer rank, unless the algebra is trivial in
1629 which case its rank will be zero::
1630
1631 sage: set_random_seed()
1632 sage: J = random_eja()
1633 sage: r = J.rank()
1634 sage: r in ZZ
1635 True
1636 sage: r > 0 or (r == 0 and J.is_trivial())
1637 True
1638
1639 Ensure that computing the rank actually works, since the ranks
1640 of all simple algebras are known and will be cached by default::
1641
1642 sage: set_random_seed() # long time
1643 sage: J = random_eja() # long time
1644 sage: cached = J.rank() # long time
1645 sage: J.rank.clear_cache() # long time
1646 sage: J.rank() == cached # long time
1647 True
1648
1649 """
1650 return len(self._charpoly_coefficients())
1651
1652
1653 def subalgebra(self, basis, **kwargs):
1654 r"""
1655 Create a subalgebra of this algebra from the given basis.
1656 """
1657 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1658 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1659
1660
1661 def vector_space(self):
1662 """
1663 Return the vector space that underlies this algebra.
1664
1665 SETUP::
1666
1667 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1668
1669 EXAMPLES::
1670
1671 sage: J = RealSymmetricEJA(2)
1672 sage: J.vector_space()
1673 Vector space of dimension 3 over...
1674
1675 """
1676 return self.zero().to_vector().parent().ambient_vector_space()
1677
1678
1679
1680 class RationalBasisEJA(FiniteDimensionalEJA):
1681 r"""
1682 Algebras whose supplied basis elements have all rational entries.
1683
1684 SETUP::
1685
1686 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1687
1688 EXAMPLES:
1689
1690 The supplied basis is orthonormalized by default::
1691
1692 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1693 sage: J = BilinearFormEJA(B)
1694 sage: J.matrix_basis()
1695 (
1696 [1] [ 0] [ 0]
1697 [0] [1/5] [32/5]
1698 [0], [ 0], [ 5]
1699 )
1700
1701 """
1702 def __init__(self,
1703 basis,
1704 jordan_product,
1705 inner_product,
1706 field=AA,
1707 check_field=True,
1708 **kwargs):
1709
1710 if check_field:
1711 # Abuse the check_field parameter to check that the entries of
1712 # out basis (in ambient coordinates) are in the field QQ.
1713 # Use _all2list to get the vector coordinates of octonion
1714 # entries and not the octonions themselves (which are not
1715 # rational).
1716 if not all( all(b_i in QQ for b_i in _all2list(b))
1717 for b in basis ):
1718 raise TypeError("basis not rational")
1719
1720 super().__init__(basis,
1721 jordan_product,
1722 inner_product,
1723 field=field,
1724 check_field=check_field,
1725 **kwargs)
1726
1727 self._rational_algebra = None
1728 if field is not QQ:
1729 # There's no point in constructing the extra algebra if this
1730 # one is already rational.
1731 #
1732 # Note: the same Jordan and inner-products work here,
1733 # because they are necessarily defined with respect to
1734 # ambient coordinates and not any particular basis.
1735 self._rational_algebra = FiniteDimensionalEJA(
1736 basis,
1737 jordan_product,
1738 inner_product,
1739 field=QQ,
1740 matrix_space=self.matrix_space(),
1741 associative=self.is_associative(),
1742 orthonormalize=False,
1743 check_field=False,
1744 check_axioms=False)
1745
1746 def rational_algebra(self):
1747 # Using None as a flag here (rather than just assigning "self"
1748 # to self._rational_algebra by default) feels a little bit
1749 # more sane to me in a garbage-collected environment.
1750 if self._rational_algebra is None:
1751 return self
1752 else:
1753 return self._rational_algebra
1754
1755 @cached_method
1756 def _charpoly_coefficients(self):
1757 r"""
1758 SETUP::
1759
1760 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1761 ....: JordanSpinEJA)
1762
1763 EXAMPLES:
1764
1765 The base ring of the resulting polynomial coefficients is what
1766 it should be, and not the rationals (unless the algebra was
1767 already over the rationals)::
1768
1769 sage: J = JordanSpinEJA(3)
1770 sage: J._charpoly_coefficients()
1771 (X1^2 - X2^2 - X3^2, -2*X1)
1772 sage: a0 = J._charpoly_coefficients()[0]
1773 sage: J.base_ring()
1774 Algebraic Real Field
1775 sage: a0.base_ring()
1776 Algebraic Real Field
1777
1778 """
1779 if self.rational_algebra() is self:
1780 # Bypass the hijinks if they won't benefit us.
1781 return super()._charpoly_coefficients()
1782
1783 # Do the computation over the rationals. The answer will be
1784 # the same, because all we've done is a change of basis.
1785 # Then, change back from QQ to our real base ring
1786 a = ( a_i.change_ring(self.base_ring())
1787 for a_i in self.rational_algebra()._charpoly_coefficients() )
1788
1789 # Otherwise, convert the coordinate variables back to the
1790 # deorthonormalized ones.
1791 R = self.coordinate_polynomial_ring()
1792 from sage.modules.free_module_element import vector
1793 X = vector(R, R.gens())
1794 BX = self._deortho_matrix*X
1795
1796 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1797 return tuple( a_i.subs(subs_dict) for a_i in a )
1798
1799 class ConcreteEJA(FiniteDimensionalEJA):
1800 r"""
1801 A class for the Euclidean Jordan algebras that we know by name.
1802
1803 These are the Jordan algebras whose basis, multiplication table,
1804 rank, and so on are known a priori. More to the point, they are
1805 the Euclidean Jordan algebras for which we are able to conjure up
1806 a "random instance."
1807
1808 SETUP::
1809
1810 sage: from mjo.eja.eja_algebra import ConcreteEJA
1811
1812 TESTS:
1813
1814 Our basis is normalized with respect to the algebra's inner
1815 product, unless we specify otherwise::
1816
1817 sage: set_random_seed()
1818 sage: J = ConcreteEJA.random_instance()
1819 sage: all( b.norm() == 1 for b in J.gens() )
1820 True
1821
1822 Since our basis is orthonormal with respect to the algebra's inner
1823 product, and since we know that this algebra is an EJA, any
1824 left-multiplication operator's matrix will be symmetric because
1825 natural->EJA basis representation is an isometry and within the
1826 EJA the operator is self-adjoint by the Jordan axiom::
1827
1828 sage: set_random_seed()
1829 sage: J = ConcreteEJA.random_instance()
1830 sage: x = J.random_element()
1831 sage: x.operator().is_self_adjoint()
1832 True
1833 """
1834
1835 @staticmethod
1836 def _max_random_instance_dimension():
1837 r"""
1838 The maximum dimension of any random instance. Ten dimensions seems
1839 to be about the point where everything takes a turn for the
1840 worse. And dimension ten (but not nine) allows the 4-by-4 real
1841 Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
1842 and the 2-by-2 octonion Hermitian matrices.
1843 """
1844 return 10
1845
1846 @staticmethod
1847 def _max_random_instance_size(max_dimension):
1848 """
1849 Return an integer "size" that is an upper bound on the size of
1850 this algebra when it is used in a random test case. This size
1851 (which can be passed to the algebra's constructor) is itself
1852 based on the ``max_dimension`` parameter.
1853
1854 This method must be implemented in each subclass.
1855 """
1856 raise NotImplementedError
1857
1858 @classmethod
1859 def random_instance(cls, max_dimension=None, *args, **kwargs):
1860 """
1861 Return a random instance of this type of algebra whose dimension
1862 is less than or equal to the lesser of ``max_dimension`` and
1863 the value returned by ``_max_random_instance_dimension()``. If
1864 the dimension bound is omitted, then only the
1865 ``_max_random_instance_dimension()`` is used as a bound.
1866
1867 This method should be implemented in each subclass.
1868
1869 SETUP::
1870
1871 sage: from mjo.eja.eja_algebra import ConcreteEJA
1872
1873 TESTS:
1874
1875 Both the class bound and the ``max_dimension`` argument are upper
1876 bounds on the dimension of the algebra returned::
1877
1878 sage: from sage.misc.prandom import choice
1879 sage: eja_class = choice(ConcreteEJA.__subclasses__())
1880 sage: class_max_d = eja_class._max_random_instance_dimension()
1881 sage: J = eja_class.random_instance(max_dimension=20,
1882 ....: field=QQ,
1883 ....: orthonormalize=False)
1884 sage: J.dimension() <= class_max_d
1885 True
1886 sage: J = eja_class.random_instance(max_dimension=2,
1887 ....: field=QQ,
1888 ....: orthonormalize=False)
1889 sage: J.dimension() <= 2
1890 True
1891
1892 """
1893 from sage.misc.prandom import choice
1894 eja_class = choice(cls.__subclasses__())
1895
1896 # These all bubble up to the RationalBasisEJA superclass
1897 # constructor, so any (kw)args valid there are also valid
1898 # here.
1899 return eja_class.random_instance(max_dimension, *args, **kwargs)
1900
1901
1902 class MatrixEJA(FiniteDimensionalEJA):
1903 @staticmethod
1904 def _denormalized_basis(A):
1905 """
1906 Returns a basis for the space of complex Hermitian n-by-n matrices.
1907
1908 Why do we embed these? Basically, because all of numerical linear
1909 algebra assumes that you're working with vectors consisting of `n`
1910 entries from a field and scalars from the same field. There's no way
1911 to tell SageMath that (for example) the vectors contain complex
1912 numbers, while the scalar field is real.
1913
1914 SETUP::
1915
1916 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1917 ....: QuaternionMatrixAlgebra,
1918 ....: OctonionMatrixAlgebra)
1919 sage: from mjo.eja.eja_algebra import MatrixEJA
1920
1921 TESTS::
1922
1923 sage: set_random_seed()
1924 sage: n = ZZ.random_element(1,5)
1925 sage: A = MatrixSpace(QQ, n)
1926 sage: B = MatrixEJA._denormalized_basis(A)
1927 sage: all( M.is_hermitian() for M in B)
1928 True
1929
1930 ::
1931
1932 sage: set_random_seed()
1933 sage: n = ZZ.random_element(1,5)
1934 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1935 sage: B = MatrixEJA._denormalized_basis(A)
1936 sage: all( M.is_hermitian() for M in B)
1937 True
1938
1939 ::
1940
1941 sage: set_random_seed()
1942 sage: n = ZZ.random_element(1,5)
1943 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1944 sage: B = MatrixEJA._denormalized_basis(A)
1945 sage: all( M.is_hermitian() for M in B )
1946 True
1947
1948 ::
1949
1950 sage: set_random_seed()
1951 sage: n = ZZ.random_element(1,5)
1952 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1953 sage: B = MatrixEJA._denormalized_basis(A)
1954 sage: all( M.is_hermitian() for M in B )
1955 True
1956
1957 """
1958 # These work for real MatrixSpace, whose monomials only have
1959 # two coordinates (because the last one would always be "1").
1960 es = A.base_ring().gens()
1961 gen = lambda A,m: A.monomial(m[:2])
1962
1963 if hasattr(A, 'entry_algebra_gens'):
1964 # We've got a MatrixAlgebra, and its monomials will have
1965 # three coordinates.
1966 es = A.entry_algebra_gens()
1967 gen = lambda A,m: A.monomial(m)
1968
1969 basis = []
1970 for i in range(A.nrows()):
1971 for j in range(i+1):
1972 if i == j:
1973 E_ii = gen(A, (i,j,es[0]))
1974 basis.append(E_ii)
1975 else:
1976 for e in es:
1977 E_ij = gen(A, (i,j,e))
1978 E_ij += E_ij.conjugate_transpose()
1979 basis.append(E_ij)
1980
1981 return tuple( basis )
1982
1983 @staticmethod
1984 def jordan_product(X,Y):
1985 return (X*Y + Y*X)/2
1986
1987 @staticmethod
1988 def trace_inner_product(X,Y):
1989 r"""
1990 A trace inner-product for matrices that aren't embedded in the
1991 reals. It takes MATRICES as arguments, not EJA elements.
1992
1993 SETUP::
1994
1995 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1996 ....: ComplexHermitianEJA,
1997 ....: QuaternionHermitianEJA,
1998 ....: OctonionHermitianEJA)
1999
2000 EXAMPLES::
2001
2002 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
2003 sage: I = J.one().to_matrix()
2004 sage: J.trace_inner_product(I, -I)
2005 -2
2006
2007 ::
2008
2009 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
2010 sage: I = J.one().to_matrix()
2011 sage: J.trace_inner_product(I, -I)
2012 -2
2013
2014 ::
2015
2016 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2017 sage: I = J.one().to_matrix()
2018 sage: J.trace_inner_product(I, -I)
2019 -2
2020
2021 ::
2022
2023 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
2024 sage: I = J.one().to_matrix()
2025 sage: J.trace_inner_product(I, -I)
2026 -2
2027
2028 """
2029 tr = (X*Y).trace()
2030 if hasattr(tr, 'coefficient'):
2031 # Works for octonions, and has to come first because they
2032 # also have a "real()" method that doesn't return an
2033 # element of the scalar ring.
2034 return tr.coefficient(0)
2035 elif hasattr(tr, 'coefficient_tuple'):
2036 # Works for quaternions.
2037 return tr.coefficient_tuple()[0]
2038
2039 # Works for real and complex numbers.
2040 return tr.real()
2041
2042
2043 def __init__(self, matrix_space, **kwargs):
2044 # We know this is a valid EJA, but will double-check
2045 # if the user passes check_axioms=True.
2046 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2047
2048
2049 super().__init__(self._denormalized_basis(matrix_space),
2050 self.jordan_product,
2051 self.trace_inner_product,
2052 field=matrix_space.base_ring(),
2053 matrix_space=matrix_space,
2054 **kwargs)
2055
2056 self.rank.set_cache(matrix_space.nrows())
2057 self.one.set_cache( self(matrix_space.one()) )
2058
2059 class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2060 """
2061 The rank-n simple EJA consisting of real symmetric n-by-n
2062 matrices, the usual symmetric Jordan product, and the trace inner
2063 product. It has dimension `(n^2 + n)/2` over the reals.
2064
2065 SETUP::
2066
2067 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
2068
2069 EXAMPLES::
2070
2071 sage: J = RealSymmetricEJA(2)
2072 sage: b0, b1, b2 = J.gens()
2073 sage: b0*b0
2074 b0
2075 sage: b1*b1
2076 1/2*b0 + 1/2*b2
2077 sage: b2*b2
2078 b2
2079
2080 In theory, our "field" can be any subfield of the reals::
2081
2082 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
2083 Euclidean Jordan algebra of dimension 3 over Real Double Field
2084 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
2085 Euclidean Jordan algebra of dimension 3 over Real Field with
2086 53 bits of precision
2087
2088 TESTS:
2089
2090 The dimension of this algebra is `(n^2 + n) / 2`::
2091
2092 sage: set_random_seed()
2093 sage: d = RealSymmetricEJA._max_random_instance_dimension()
2094 sage: n = RealSymmetricEJA._max_random_instance_size(d)
2095 sage: J = RealSymmetricEJA(n)
2096 sage: J.dimension() == (n^2 + n)/2
2097 True
2098
2099 The Jordan multiplication is what we think it is::
2100
2101 sage: set_random_seed()
2102 sage: J = RealSymmetricEJA.random_instance()
2103 sage: x,y = J.random_elements(2)
2104 sage: actual = (x*y).to_matrix()
2105 sage: X = x.to_matrix()
2106 sage: Y = y.to_matrix()
2107 sage: expected = (X*Y + Y*X)/2
2108 sage: actual == expected
2109 True
2110 sage: J(expected) == x*y
2111 True
2112
2113 We can change the generator prefix::
2114
2115 sage: RealSymmetricEJA(3, prefix='q').gens()
2116 (q0, q1, q2, q3, q4, q5)
2117
2118 We can construct the (trivial) algebra of rank zero::
2119
2120 sage: RealSymmetricEJA(0)
2121 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2122
2123 """
2124 @staticmethod
2125 def _max_random_instance_size(max_dimension):
2126 # Obtained by solving d = (n^2 + n)/2.
2127 # The ZZ-int-ZZ thing is just "floor."
2128 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
2129
2130 @classmethod
2131 def random_instance(cls, max_dimension=None, *args, **kwargs):
2132 """
2133 Return a random instance of this type of algebra.
2134 """
2135 class_max_d = cls._max_random_instance_dimension()
2136 if (max_dimension is None or max_dimension > class_max_d):
2137 max_dimension = class_max_d
2138 max_size = cls._max_random_instance_size(max_dimension)
2139 n = ZZ.random_element(max_size + 1)
2140 return cls(n, **kwargs)
2141
2142 def __init__(self, n, field=AA, **kwargs):
2143 # We know this is a valid EJA, but will double-check
2144 # if the user passes check_axioms=True.
2145 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2146
2147 A = MatrixSpace(field, n)
2148 super().__init__(A, **kwargs)
2149
2150 from mjo.eja.eja_cache import real_symmetric_eja_coeffs
2151 a = real_symmetric_eja_coeffs(self)
2152 if a is not None:
2153 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2154
2155
2156
2157 class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2158 """
2159 The rank-n simple EJA consisting of complex Hermitian n-by-n
2160 matrices over the real numbers, the usual symmetric Jordan product,
2161 and the real-part-of-trace inner product. It has dimension `n^2` over
2162 the reals.
2163
2164 SETUP::
2165
2166 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2167
2168 EXAMPLES:
2169
2170 In theory, our "field" can be any subfield of the reals, but we
2171 can't use inexact real fields at the moment because SageMath
2172 doesn't know how to convert their elements into complex numbers,
2173 or even into algebraic reals::
2174
2175 sage: QQbar(RDF(1))
2176 Traceback (most recent call last):
2177 ...
2178 TypeError: Illegal initializer for algebraic number
2179 sage: AA(RR(1))
2180 Traceback (most recent call last):
2181 ...
2182 TypeError: Illegal initializer for algebraic number
2183
2184 This causes the following error when we try to scale a matrix of
2185 complex numbers by an inexact real number::
2186
2187 sage: ComplexHermitianEJA(2,field=RR)
2188 Traceback (most recent call last):
2189 ...
2190 TypeError: Unable to coerce entries (=(1.00000000000000,
2191 -0.000000000000000)) to coefficients in Algebraic Real Field
2192
2193 TESTS:
2194
2195 The dimension of this algebra is `n^2`::
2196
2197 sage: set_random_seed()
2198 sage: d = ComplexHermitianEJA._max_random_instance_dimension()
2199 sage: n = ComplexHermitianEJA._max_random_instance_size(d)
2200 sage: J = ComplexHermitianEJA(n)
2201 sage: J.dimension() == n^2
2202 True
2203
2204 The Jordan multiplication is what we think it is::
2205
2206 sage: set_random_seed()
2207 sage: J = ComplexHermitianEJA.random_instance()
2208 sage: x,y = J.random_elements(2)
2209 sage: actual = (x*y).to_matrix()
2210 sage: X = x.to_matrix()
2211 sage: Y = y.to_matrix()
2212 sage: expected = (X*Y + Y*X)/2
2213 sage: actual == expected
2214 True
2215 sage: J(expected) == x*y
2216 True
2217
2218 We can change the generator prefix::
2219
2220 sage: ComplexHermitianEJA(2, prefix='z').gens()
2221 (z0, z1, z2, z3)
2222
2223 We can construct the (trivial) algebra of rank zero::
2224
2225 sage: ComplexHermitianEJA(0)
2226 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2227
2228 """
2229 def __init__(self, n, field=AA, **kwargs):
2230 # We know this is a valid EJA, but will double-check
2231 # if the user passes check_axioms=True.
2232 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2233
2234 from mjo.hurwitz import ComplexMatrixAlgebra
2235 A = ComplexMatrixAlgebra(n, scalars=field)
2236 super().__init__(A, **kwargs)
2237
2238 from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
2239 a = complex_hermitian_eja_coeffs(self)
2240 if a is not None:
2241 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2242
2243 @staticmethod
2244 def _max_random_instance_size(max_dimension):
2245 # Obtained by solving d = n^2.
2246 # The ZZ-int-ZZ thing is just "floor."
2247 return ZZ(int(ZZ(max_dimension).sqrt()))
2248
2249 @classmethod
2250 def random_instance(cls, max_dimension=None, *args, **kwargs):
2251 """
2252 Return a random instance of this type of algebra.
2253 """
2254 class_max_d = cls._max_random_instance_dimension()
2255 if (max_dimension is None or max_dimension > class_max_d):
2256 max_dimension = class_max_d
2257 max_size = cls._max_random_instance_size(max_dimension)
2258 n = ZZ.random_element(max_size + 1)
2259 return cls(n, **kwargs)
2260
2261
2262 class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2263 r"""
2264 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2265 matrices, the usual symmetric Jordan product, and the
2266 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2267 the reals.
2268
2269 SETUP::
2270
2271 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2272
2273 EXAMPLES:
2274
2275 In theory, our "field" can be any subfield of the reals::
2276
2277 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2278 Euclidean Jordan algebra of dimension 6 over Real Double Field
2279 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2280 Euclidean Jordan algebra of dimension 6 over Real Field with
2281 53 bits of precision
2282
2283 TESTS:
2284
2285 The dimension of this algebra is `2*n^2 - n`::
2286
2287 sage: set_random_seed()
2288 sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
2289 sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
2290 sage: J = QuaternionHermitianEJA(n)
2291 sage: J.dimension() == 2*(n^2) - n
2292 True
2293
2294 The Jordan multiplication is what we think it is::
2295
2296 sage: set_random_seed()
2297 sage: J = QuaternionHermitianEJA.random_instance()
2298 sage: x,y = J.random_elements(2)
2299 sage: actual = (x*y).to_matrix()
2300 sage: X = x.to_matrix()
2301 sage: Y = y.to_matrix()
2302 sage: expected = (X*Y + Y*X)/2
2303 sage: actual == expected
2304 True
2305 sage: J(expected) == x*y
2306 True
2307
2308 We can change the generator prefix::
2309
2310 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2311 (a0, a1, a2, a3, a4, a5)
2312
2313 We can construct the (trivial) algebra of rank zero::
2314
2315 sage: QuaternionHermitianEJA(0)
2316 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2317
2318 """
2319 def __init__(self, n, field=AA, **kwargs):
2320 # We know this is a valid EJA, but will double-check
2321 # if the user passes check_axioms=True.
2322 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2323
2324 from mjo.hurwitz import QuaternionMatrixAlgebra
2325 A = QuaternionMatrixAlgebra(n, scalars=field)
2326 super().__init__(A, **kwargs)
2327
2328 from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
2329 a = quaternion_hermitian_eja_coeffs(self)
2330 if a is not None:
2331 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2332
2333
2334
2335 @staticmethod
2336 def _max_random_instance_size(max_dimension):
2337 r"""
2338 The maximum rank of a random QuaternionHermitianEJA.
2339 """
2340 # Obtained by solving d = 2n^2 - n.
2341 # The ZZ-int-ZZ thing is just "floor."
2342 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
2343
2344 @classmethod
2345 def random_instance(cls, max_dimension=None, *args, **kwargs):
2346 """
2347 Return a random instance of this type of algebra.
2348 """
2349 class_max_d = cls._max_random_instance_dimension()
2350 if (max_dimension is None or max_dimension > class_max_d):
2351 max_dimension = class_max_d
2352 max_size = cls._max_random_instance_size(max_dimension)
2353 n = ZZ.random_element(max_size + 1)
2354 return cls(n, **kwargs)
2355
2356 class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2357 r"""
2358 SETUP::
2359
2360 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2361 ....: OctonionHermitianEJA)
2362 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2363
2364 EXAMPLES:
2365
2366 The 3-by-3 algebra satisfies the axioms of an EJA::
2367
2368 sage: OctonionHermitianEJA(3, # long time
2369 ....: field=QQ, # long time
2370 ....: orthonormalize=False, # long time
2371 ....: check_axioms=True) # long time
2372 Euclidean Jordan algebra of dimension 27 over Rational Field
2373
2374 After a change-of-basis, the 2-by-2 algebra has the same
2375 multiplication table as the ten-dimensional Jordan spin algebra::
2376
2377 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2378 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2379 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2380 sage: jp = OctonionHermitianEJA.jordan_product
2381 sage: ip = OctonionHermitianEJA.trace_inner_product
2382 sage: J = FiniteDimensionalEJA(basis,
2383 ....: jp,
2384 ....: ip,
2385 ....: field=QQ,
2386 ....: orthonormalize=False)
2387 sage: J.multiplication_table()
2388 +----++----+----+----+----+----+----+----+----+----+----+
2389 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2390 +====++====+====+====+====+====+====+====+====+====+====+
2391 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2392 +----++----+----+----+----+----+----+----+----+----+----+
2393 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2394 +----++----+----+----+----+----+----+----+----+----+----+
2395 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2396 +----++----+----+----+----+----+----+----+----+----+----+
2397 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2398 +----++----+----+----+----+----+----+----+----+----+----+
2399 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2400 +----++----+----+----+----+----+----+----+----+----+----+
2401 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2402 +----++----+----+----+----+----+----+----+----+----+----+
2403 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2404 +----++----+----+----+----+----+----+----+----+----+----+
2405 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2406 +----++----+----+----+----+----+----+----+----+----+----+
2407 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2408 +----++----+----+----+----+----+----+----+----+----+----+
2409 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2410 +----++----+----+----+----+----+----+----+----+----+----+
2411
2412 TESTS:
2413
2414 We can actually construct the 27-dimensional Albert algebra,
2415 and we get the right unit element if we recompute it::
2416
2417 sage: J = OctonionHermitianEJA(3, # long time
2418 ....: field=QQ, # long time
2419 ....: orthonormalize=False) # long time
2420 sage: J.one.clear_cache() # long time
2421 sage: J.one() # long time
2422 b0 + b9 + b26
2423 sage: J.one().to_matrix() # long time
2424 +----+----+----+
2425 | e0 | 0 | 0 |
2426 +----+----+----+
2427 | 0 | e0 | 0 |
2428 +----+----+----+
2429 | 0 | 0 | e0 |
2430 +----+----+----+
2431
2432 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2433 spin algebra, but just to be sure, we recompute its rank::
2434
2435 sage: J = OctonionHermitianEJA(2, # long time
2436 ....: field=QQ, # long time
2437 ....: orthonormalize=False) # long time
2438 sage: J.rank.clear_cache() # long time
2439 sage: J.rank() # long time
2440 2
2441
2442 """
2443 @staticmethod
2444 def _max_random_instance_size(max_dimension):
2445 r"""
2446 The maximum rank of a random QuaternionHermitianEJA.
2447 """
2448 # There's certainly a formula for this, but with only four
2449 # cases to worry about, I'm not that motivated to derive it.
2450 if max_dimension >= 27:
2451 return 3
2452 elif max_dimension >= 10:
2453 return 2
2454 elif max_dimension >= 1:
2455 return 1
2456 else:
2457 return 0
2458
2459 @classmethod
2460 def random_instance(cls, max_dimension=None, *args, **kwargs):
2461 """
2462 Return a random instance of this type of algebra.
2463 """
2464 class_max_d = cls._max_random_instance_dimension()
2465 if (max_dimension is None or max_dimension > class_max_d):
2466 max_dimension = class_max_d
2467 max_size = cls._max_random_instance_size(max_dimension)
2468 n = ZZ.random_element(max_size + 1)
2469 return cls(n, **kwargs)
2470
2471 def __init__(self, n, field=AA, **kwargs):
2472 if n > 3:
2473 # Otherwise we don't get an EJA.
2474 raise ValueError("n cannot exceed 3")
2475
2476 # We know this is a valid EJA, but will double-check
2477 # if the user passes check_axioms=True.
2478 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2479
2480 from mjo.hurwitz import OctonionMatrixAlgebra
2481 A = OctonionMatrixAlgebra(n, scalars=field)
2482 super().__init__(A, **kwargs)
2483
2484 from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
2485 a = octonion_hermitian_eja_coeffs(self)
2486 if a is not None:
2487 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2488
2489
2490 class AlbertEJA(OctonionHermitianEJA):
2491 r"""
2492 The Albert algebra is the algebra of three-by-three Hermitian
2493 matrices whose entries are octonions.
2494
2495 SETUP::
2496
2497 sage: from mjo.eja.eja_algebra import AlbertEJA
2498
2499 EXAMPLES::
2500
2501 sage: AlbertEJA(field=QQ, orthonormalize=False)
2502 Euclidean Jordan algebra of dimension 27 over Rational Field
2503 sage: AlbertEJA() # long time
2504 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2505
2506 """
2507 def __init__(self, *args, **kwargs):
2508 super().__init__(3, *args, **kwargs)
2509
2510
2511 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2512 """
2513 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2514 (pointwise real-number multiplication) Jordan product and the
2515 usual inner-product.
2516
2517 This is nothing more than the Cartesian product of ``n`` copies of
2518 the one-dimensional Jordan spin algebra, and is the most common
2519 example of a non-simple Euclidean Jordan algebra.
2520
2521 SETUP::
2522
2523 sage: from mjo.eja.eja_algebra import HadamardEJA
2524
2525 EXAMPLES:
2526
2527 This multiplication table can be verified by hand::
2528
2529 sage: J = HadamardEJA(3)
2530 sage: b0,b1,b2 = J.gens()
2531 sage: b0*b0
2532 b0
2533 sage: b0*b1
2534 0
2535 sage: b0*b2
2536 0
2537 sage: b1*b1
2538 b1
2539 sage: b1*b2
2540 0
2541 sage: b2*b2
2542 b2
2543
2544 TESTS:
2545
2546 We can change the generator prefix::
2547
2548 sage: HadamardEJA(3, prefix='r').gens()
2549 (r0, r1, r2)
2550 """
2551 def __init__(self, n, field=AA, **kwargs):
2552 MS = MatrixSpace(field, n, 1)
2553
2554 if n == 0:
2555 jordan_product = lambda x,y: x
2556 inner_product = lambda x,y: x
2557 else:
2558 def jordan_product(x,y):
2559 return MS( xi*yi for (xi,yi) in zip(x,y) )
2560
2561 def inner_product(x,y):
2562 return (x.T*y)[0,0]
2563
2564 # New defaults for keyword arguments. Don't orthonormalize
2565 # because our basis is already orthonormal with respect to our
2566 # inner-product. Don't check the axioms, because we know this
2567 # is a valid EJA... but do double-check if the user passes
2568 # check_axioms=True. Note: we DON'T override the "check_field"
2569 # default here, because the user can pass in a field!
2570 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2571 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2572
2573 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2574 super().__init__(column_basis,
2575 jordan_product,
2576 inner_product,
2577 field=field,
2578 matrix_space=MS,
2579 associative=True,
2580 **kwargs)
2581 self.rank.set_cache(n)
2582
2583 self.one.set_cache( self.sum(self.gens()) )
2584
2585 @staticmethod
2586 def _max_random_instance_dimension():
2587 r"""
2588 There's no reason to go higher than five here. That's
2589 enough to get the point across.
2590 """
2591 return 5
2592
2593 @staticmethod
2594 def _max_random_instance_size(max_dimension):
2595 r"""
2596 The maximum size (=dimension) of a random HadamardEJA.
2597 """
2598 return max_dimension
2599
2600 @classmethod
2601 def random_instance(cls, max_dimension=None, *args, **kwargs):
2602 """
2603 Return a random instance of this type of algebra.
2604 """
2605 class_max_d = cls._max_random_instance_dimension()
2606 if (max_dimension is None or max_dimension > class_max_d):
2607 max_dimension = class_max_d
2608 max_size = cls._max_random_instance_size(max_dimension)
2609 n = ZZ.random_element(max_size + 1)
2610 return cls(n, **kwargs)
2611
2612
2613 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2614 r"""
2615 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2616 with the half-trace inner product and jordan product ``x*y =
2617 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2618 a symmetric positive-definite "bilinear form" matrix. Its
2619 dimension is the size of `B`, and it has rank two in dimensions
2620 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2621 the identity matrix of order ``n``.
2622
2623 We insist that the one-by-one upper-left identity block of `B` be
2624 passed in as well so that we can be passed a matrix of size zero
2625 to construct a trivial algebra.
2626
2627 SETUP::
2628
2629 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2630 ....: JordanSpinEJA)
2631
2632 EXAMPLES:
2633
2634 When no bilinear form is specified, the identity matrix is used,
2635 and the resulting algebra is the Jordan spin algebra::
2636
2637 sage: B = matrix.identity(AA,3)
2638 sage: J0 = BilinearFormEJA(B)
2639 sage: J1 = JordanSpinEJA(3)
2640 sage: J0.multiplication_table() == J0.multiplication_table()
2641 True
2642
2643 An error is raised if the matrix `B` does not correspond to a
2644 positive-definite bilinear form::
2645
2646 sage: B = matrix.random(QQ,2,3)
2647 sage: J = BilinearFormEJA(B)
2648 Traceback (most recent call last):
2649 ...
2650 ValueError: bilinear form is not positive-definite
2651 sage: B = matrix.zero(QQ,3)
2652 sage: J = BilinearFormEJA(B)
2653 Traceback (most recent call last):
2654 ...
2655 ValueError: bilinear form is not positive-definite
2656
2657 TESTS:
2658
2659 We can create a zero-dimensional algebra::
2660
2661 sage: B = matrix.identity(AA,0)
2662 sage: J = BilinearFormEJA(B)
2663 sage: J.basis()
2664 Finite family {}
2665
2666 We can check the multiplication condition given in the Jordan, von
2667 Neumann, and Wigner paper (and also discussed on my "On the
2668 symmetry..." paper). Note that this relies heavily on the standard
2669 choice of basis, as does anything utilizing the bilinear form
2670 matrix. We opt not to orthonormalize the basis, because if we
2671 did, we would have to normalize the `s_{i}` in a similar manner::
2672
2673 sage: set_random_seed()
2674 sage: n = ZZ.random_element(5)
2675 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2676 sage: B11 = matrix.identity(QQ,1)
2677 sage: B22 = M.transpose()*M
2678 sage: B = block_matrix(2,2,[ [B11,0 ],
2679 ....: [0, B22 ] ])
2680 sage: J = BilinearFormEJA(B, orthonormalize=False)
2681 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2682 sage: V = J.vector_space()
2683 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2684 ....: for ei in eis ]
2685 sage: actual = [ sis[i]*sis[j]
2686 ....: for i in range(n-1)
2687 ....: for j in range(n-1) ]
2688 sage: expected = [ J.one() if i == j else J.zero()
2689 ....: for i in range(n-1)
2690 ....: for j in range(n-1) ]
2691 sage: actual == expected
2692 True
2693
2694 """
2695 def __init__(self, B, field=AA, **kwargs):
2696 # The matrix "B" is supplied by the user in most cases,
2697 # so it makes sense to check whether or not its positive-
2698 # definite unless we are specifically asked not to...
2699 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2700 if not B.is_positive_definite():
2701 raise ValueError("bilinear form is not positive-definite")
2702
2703 # However, all of the other data for this EJA is computed
2704 # by us in manner that guarantees the axioms are
2705 # satisfied. So, again, unless we are specifically asked to
2706 # verify things, we'll skip the rest of the checks.
2707 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2708
2709 n = B.nrows()
2710 MS = MatrixSpace(field, n, 1)
2711
2712 def inner_product(x,y):
2713 return (y.T*B*x)[0,0]
2714
2715 def jordan_product(x,y):
2716 x0 = x[0,0]
2717 xbar = x[1:,0]
2718 y0 = y[0,0]
2719 ybar = y[1:,0]
2720 z0 = inner_product(y,x)
2721 zbar = y0*xbar + x0*ybar
2722 return MS([z0] + zbar.list())
2723
2724 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2725
2726 # TODO: I haven't actually checked this, but it seems legit.
2727 associative = False
2728 if n <= 2:
2729 associative = True
2730
2731 super().__init__(column_basis,
2732 jordan_product,
2733 inner_product,
2734 field=field,
2735 matrix_space=MS,
2736 associative=associative,
2737 **kwargs)
2738
2739 # The rank of this algebra is two, unless we're in a
2740 # one-dimensional ambient space (because the rank is bounded
2741 # by the ambient dimension).
2742 self.rank.set_cache(min(n,2))
2743 if n == 0:
2744 self.one.set_cache( self.zero() )
2745 else:
2746 self.one.set_cache( self.monomial(0) )
2747
2748 @staticmethod
2749 def _max_random_instance_dimension():
2750 r"""
2751 There's no reason to go higher than five here. That's
2752 enough to get the point across.
2753 """
2754 return 5
2755
2756 @staticmethod
2757 def _max_random_instance_size(max_dimension):
2758 r"""
2759 The maximum size (=dimension) of a random BilinearFormEJA.
2760 """
2761 return max_dimension
2762
2763 @classmethod
2764 def random_instance(cls, max_dimension=None, *args, **kwargs):
2765 """
2766 Return a random instance of this algebra.
2767 """
2768 class_max_d = cls._max_random_instance_dimension()
2769 if (max_dimension is None or max_dimension > class_max_d):
2770 max_dimension = class_max_d
2771 max_size = cls._max_random_instance_size(max_dimension)
2772 n = ZZ.random_element(max_size + 1)
2773
2774 if n.is_zero():
2775 B = matrix.identity(ZZ, n)
2776 return cls(B, **kwargs)
2777
2778 B11 = matrix.identity(ZZ, 1)
2779 M = matrix.random(ZZ, n-1)
2780 I = matrix.identity(ZZ, n-1)
2781 alpha = ZZ.zero()
2782 while alpha.is_zero():
2783 alpha = ZZ.random_element().abs()
2784
2785 B22 = M.transpose()*M + alpha*I
2786
2787 from sage.matrix.special import block_matrix
2788 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2789 [ZZ(0), B22 ] ])
2790
2791 return cls(B, **kwargs)
2792
2793
2794 class JordanSpinEJA(BilinearFormEJA):
2795 """
2796 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2797 with the usual inner product and jordan product ``x*y =
2798 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2799 the reals.
2800
2801 SETUP::
2802
2803 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2804
2805 EXAMPLES:
2806
2807 This multiplication table can be verified by hand::
2808
2809 sage: J = JordanSpinEJA(4)
2810 sage: b0,b1,b2,b3 = J.gens()
2811 sage: b0*b0
2812 b0
2813 sage: b0*b1
2814 b1
2815 sage: b0*b2
2816 b2
2817 sage: b0*b3
2818 b3
2819 sage: b1*b2
2820 0
2821 sage: b1*b3
2822 0
2823 sage: b2*b3
2824 0
2825
2826 We can change the generator prefix::
2827
2828 sage: JordanSpinEJA(2, prefix='B').gens()
2829 (B0, B1)
2830
2831 TESTS:
2832
2833 Ensure that we have the usual inner product on `R^n`::
2834
2835 sage: set_random_seed()
2836 sage: J = JordanSpinEJA.random_instance()
2837 sage: x,y = J.random_elements(2)
2838 sage: actual = x.inner_product(y)
2839 sage: expected = x.to_vector().inner_product(y.to_vector())
2840 sage: actual == expected
2841 True
2842
2843 """
2844 def __init__(self, n, *args, **kwargs):
2845 # This is a special case of the BilinearFormEJA with the
2846 # identity matrix as its bilinear form.
2847 B = matrix.identity(ZZ, n)
2848
2849 # Don't orthonormalize because our basis is already
2850 # orthonormal with respect to our inner-product.
2851 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2852
2853 # But also don't pass check_field=False here, because the user
2854 # can pass in a field!
2855 super().__init__(B, *args, **kwargs)
2856
2857 @classmethod
2858 def random_instance(cls, max_dimension=None, *args, **kwargs):
2859 """
2860 Return a random instance of this type of algebra.
2861
2862 Needed here to override the implementation for ``BilinearFormEJA``.
2863 """
2864 class_max_d = cls._max_random_instance_dimension()
2865 if (max_dimension is None or max_dimension > class_max_d):
2866 max_dimension = class_max_d
2867 max_size = cls._max_random_instance_size(max_dimension)
2868 n = ZZ.random_element(max_size + 1)
2869 return cls(n, **kwargs)
2870
2871
2872 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2873 """
2874 The trivial Euclidean Jordan algebra consisting of only a zero element.
2875
2876 SETUP::
2877
2878 sage: from mjo.eja.eja_algebra import TrivialEJA
2879
2880 EXAMPLES::
2881
2882 sage: J = TrivialEJA()
2883 sage: J.dimension()
2884 0
2885 sage: J.zero()
2886 0
2887 sage: J.one()
2888 0
2889 sage: 7*J.one()*12*J.one()
2890 0
2891 sage: J.one().inner_product(J.one())
2892 0
2893 sage: J.one().norm()
2894 0
2895 sage: J.one().subalgebra_generated_by()
2896 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2897 sage: J.rank()
2898 0
2899
2900 """
2901 def __init__(self, field=AA, **kwargs):
2902 jordan_product = lambda x,y: x
2903 inner_product = lambda x,y: field.zero()
2904 basis = ()
2905 MS = MatrixSpace(field,0)
2906
2907 # New defaults for keyword arguments
2908 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2909 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2910
2911 super().__init__(basis,
2912 jordan_product,
2913 inner_product,
2914 associative=True,
2915 field=field,
2916 matrix_space=MS,
2917 **kwargs)
2918
2919 # The rank is zero using my definition, namely the dimension of the
2920 # largest subalgebra generated by any element.
2921 self.rank.set_cache(0)
2922 self.one.set_cache( self.zero() )
2923
2924 @classmethod
2925 def random_instance(cls, max_dimension=None, *args, **kwargs):
2926 # We don't take a "size" argument so the superclass method is
2927 # inappropriate for us. The ``max_dimension`` argument is
2928 # included so that if this method is called generically with a
2929 # ``max_dimension=<whatever>`` argument, we don't try to pass
2930 # it on to the algebra constructor.
2931 return cls(**kwargs)
2932
2933
2934 class CartesianProductEJA(FiniteDimensionalEJA):
2935 r"""
2936 The external (orthogonal) direct sum of two or more Euclidean
2937 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2938 orthogonal direct sum of simple Euclidean Jordan algebras which is
2939 then isometric to a Cartesian product, so no generality is lost by
2940 providing only this construction.
2941
2942 SETUP::
2943
2944 sage: from mjo.eja.eja_algebra import (random_eja,
2945 ....: CartesianProductEJA,
2946 ....: ComplexHermitianEJA,
2947 ....: HadamardEJA,
2948 ....: JordanSpinEJA,
2949 ....: RealSymmetricEJA)
2950
2951 EXAMPLES:
2952
2953 The Jordan product is inherited from our factors and implemented by
2954 our CombinatorialFreeModule Cartesian product superclass::
2955
2956 sage: set_random_seed()
2957 sage: J1 = HadamardEJA(2)
2958 sage: J2 = RealSymmetricEJA(2)
2959 sage: J = cartesian_product([J1,J2])
2960 sage: x,y = J.random_elements(2)
2961 sage: x*y in J
2962 True
2963
2964 The ability to retrieve the original factors is implemented by our
2965 CombinatorialFreeModule Cartesian product superclass::
2966
2967 sage: J1 = HadamardEJA(2, field=QQ)
2968 sage: J2 = JordanSpinEJA(3, field=QQ)
2969 sage: J = cartesian_product([J1,J2])
2970 sage: J.cartesian_factors()
2971 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2972 Euclidean Jordan algebra of dimension 3 over Rational Field)
2973
2974 You can provide more than two factors::
2975
2976 sage: J1 = HadamardEJA(2)
2977 sage: J2 = JordanSpinEJA(3)
2978 sage: J3 = RealSymmetricEJA(3)
2979 sage: cartesian_product([J1,J2,J3])
2980 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2981 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2982 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2983 Algebraic Real Field
2984
2985 Rank is additive on a Cartesian product::
2986
2987 sage: J1 = HadamardEJA(1)
2988 sage: J2 = RealSymmetricEJA(2)
2989 sage: J = cartesian_product([J1,J2])
2990 sage: J1.rank.clear_cache()
2991 sage: J2.rank.clear_cache()
2992 sage: J.rank.clear_cache()
2993 sage: J.rank()
2994 3
2995 sage: J.rank() == J1.rank() + J2.rank()
2996 True
2997
2998 The same rank computation works over the rationals, with whatever
2999 basis you like::
3000
3001 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
3002 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
3003 sage: J = cartesian_product([J1,J2])
3004 sage: J1.rank.clear_cache()
3005 sage: J2.rank.clear_cache()
3006 sage: J.rank.clear_cache()
3007 sage: J.rank()
3008 3
3009 sage: J.rank() == J1.rank() + J2.rank()
3010 True
3011
3012 The product algebra will be associative if and only if all of its
3013 components are associative::
3014
3015 sage: J1 = HadamardEJA(2)
3016 sage: J1.is_associative()
3017 True
3018 sage: J2 = HadamardEJA(3)
3019 sage: J2.is_associative()
3020 True
3021 sage: J3 = RealSymmetricEJA(3)
3022 sage: J3.is_associative()
3023 False
3024 sage: CP1 = cartesian_product([J1,J2])
3025 sage: CP1.is_associative()
3026 True
3027 sage: CP2 = cartesian_product([J1,J3])
3028 sage: CP2.is_associative()
3029 False
3030
3031 Cartesian products of Cartesian products work::
3032
3033 sage: J1 = JordanSpinEJA(1)
3034 sage: J2 = JordanSpinEJA(1)
3035 sage: J3 = JordanSpinEJA(1)
3036 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3037 sage: J.multiplication_table()
3038 +----++----+----+----+
3039 | * || b0 | b1 | b2 |
3040 +====++====+====+====+
3041 | b0 || b0 | 0 | 0 |
3042 +----++----+----+----+
3043 | b1 || 0 | b1 | 0 |
3044 +----++----+----+----+
3045 | b2 || 0 | 0 | b2 |
3046 +----++----+----+----+
3047 sage: HadamardEJA(3).multiplication_table()
3048 +----++----+----+----+
3049 | * || b0 | b1 | b2 |
3050 +====++====+====+====+
3051 | b0 || b0 | 0 | 0 |
3052 +----++----+----+----+
3053 | b1 || 0 | b1 | 0 |
3054 +----++----+----+----+
3055 | b2 || 0 | 0 | b2 |
3056 +----++----+----+----+
3057
3058 The "matrix space" of a Cartesian product always consists of
3059 ordered pairs (or triples, or...) whose components are the
3060 matrix spaces of its factors::
3061
3062 sage: J1 = HadamardEJA(2)
3063 sage: J2 = ComplexHermitianEJA(2)
3064 sage: J = cartesian_product([J1,J2])
3065 sage: J.matrix_space()
3066 The Cartesian product of (Full MatrixSpace of 2 by 1 dense
3067 matrices over Algebraic Real Field, Module of 2 by 2 matrices
3068 with entries in Algebraic Field over the scalar ring Algebraic
3069 Real Field)
3070 sage: J.one().to_matrix()[0]
3071 [1]
3072 [1]
3073 sage: J.one().to_matrix()[1]
3074 +---+---+
3075 | 1 | 0 |
3076 +---+---+
3077 | 0 | 1 |
3078 +---+---+
3079
3080 TESTS:
3081
3082 All factors must share the same base field::
3083
3084 sage: J1 = HadamardEJA(2, field=QQ)
3085 sage: J2 = RealSymmetricEJA(2)
3086 sage: CartesianProductEJA((J1,J2))
3087 Traceback (most recent call last):
3088 ...
3089 ValueError: all factors must share the same base field
3090
3091 The cached unit element is the same one that would be computed::
3092
3093 sage: set_random_seed() # long time
3094 sage: J1 = random_eja() # long time
3095 sage: J2 = random_eja() # long time
3096 sage: J = cartesian_product([J1,J2]) # long time
3097 sage: actual = J.one() # long time
3098 sage: J.one.clear_cache() # long time
3099 sage: expected = J.one() # long time
3100 sage: actual == expected # long time
3101 True
3102 """
3103 def __init__(self, factors, **kwargs):
3104 m = len(factors)
3105 if m == 0:
3106 return TrivialEJA()
3107
3108 self._sets = factors
3109
3110 field = factors[0].base_ring()
3111 if not all( J.base_ring() == field for J in factors ):
3112 raise ValueError("all factors must share the same base field")
3113
3114 # Figure out the category to use.
3115 associative = all( f.is_associative() for f in factors )
3116 category = EuclideanJordanAlgebras(field)
3117 if associative: category = category.Associative()
3118 category = category.join([category, category.CartesianProducts()])
3119
3120 # Compute my matrix space. We don't simply use the
3121 # ``cartesian_product()`` functor here because it acts
3122 # differently on SageMath MatrixSpaces and our custom
3123 # MatrixAlgebras, which are CombinatorialFreeModules. We
3124 # always want the result to be represented (and indexed) as an
3125 # ordered tuple. This category isn't perfect, but is good
3126 # enough for what we need to do.
3127 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
3128 MS_cat = MS_cat.Unital().CartesianProducts()
3129 MS_factors = tuple( J.matrix_space() for J in factors )
3130 from sage.sets.cartesian_product import CartesianProduct
3131 self._matrix_space = CartesianProduct(MS_factors, MS_cat)
3132
3133 self._matrix_basis = []
3134 zero = self._matrix_space.zero()
3135 for i in range(m):
3136 for b in factors[i].matrix_basis():
3137 z = list(zero)
3138 z[i] = b
3139 self._matrix_basis.append(z)
3140
3141 self._matrix_basis = tuple( self._matrix_space(b)
3142 for b in self._matrix_basis )
3143 n = len(self._matrix_basis)
3144
3145 # We already have what we need for the super-superclass constructor.
3146 CombinatorialFreeModule.__init__(self,
3147 field,
3148 range(n),
3149 prefix="b",
3150 category=category,
3151 bracket=False)
3152
3153 # Now create the vector space for the algebra, which will have
3154 # its own set of non-ambient coordinates (in terms of the
3155 # supplied basis).
3156 degree = sum( f._matrix_span.ambient_vector_space().degree()
3157 for f in factors )
3158 V = VectorSpace(field, degree)
3159 vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis )
3160
3161 # Save the span of our matrix basis (when written out as long
3162 # vectors) because otherwise we'll have to reconstruct it
3163 # every time we want to coerce a matrix into the algebra.
3164 self._matrix_span = V.span_of_basis( vector_basis, check=False)
3165
3166 # Since we don't (re)orthonormalize the basis, the FDEJA
3167 # constructor is going to set self._deortho_matrix to the
3168 # identity matrix. Here we set it to the correct value using
3169 # the deortho matrices from our factors.
3170 self._deortho_matrix = matrix.block_diagonal(
3171 [J._deortho_matrix for J in factors]
3172 )
3173
3174 self._inner_product_matrix = matrix.block_diagonal(
3175 [J._inner_product_matrix for J in factors]
3176 )
3177 self._inner_product_matrix._cache = {'hermitian': True}
3178 self._inner_product_matrix.set_immutable()
3179
3180 # Building the multiplication table is a bit more tricky
3181 # because we have to embed the entries of the factors'
3182 # multiplication tables into the product EJA.
3183 zed = self.zero()
3184 self._multiplication_table = [ [zed for j in range(i+1)]
3185 for i in range(n) ]
3186
3187 # Keep track of an offset that tallies the dimensions of all
3188 # previous factors. If the second factor is dim=2 and if the
3189 # first one is dim=3, then we want to skip the first 3x3 block
3190 # when copying the multiplication table for the second factor.
3191 offset = 0
3192 for f in range(m):
3193 phi_f = self.cartesian_embedding(f)
3194 factor_dim = factors[f].dimension()
3195 for i in range(factor_dim):
3196 for j in range(i+1):
3197 f_ij = factors[f]._multiplication_table[i][j]
3198 e = phi_f(f_ij)
3199 self._multiplication_table[offset+i][offset+j] = e
3200 offset += factor_dim
3201
3202 self.rank.set_cache(sum(J.rank() for J in factors))
3203 ones = tuple(J.one().to_matrix() for J in factors)
3204 self.one.set_cache(self(ones))
3205
3206 def cartesian_factors(self):
3207 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3208 return self._sets
3209
3210 def cartesian_factor(self, i):
3211 r"""
3212 Return the ``i``th factor of this algebra.
3213 """
3214 return self._sets[i]
3215
3216 def _repr_(self):
3217 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3218 from sage.categories.cartesian_product import cartesian_product
3219 return cartesian_product.symbol.join("%s" % factor
3220 for factor in self._sets)
3221
3222
3223 @cached_method
3224 def cartesian_projection(self, i):
3225 r"""
3226 SETUP::
3227
3228 sage: from mjo.eja.eja_algebra import (random_eja,
3229 ....: JordanSpinEJA,
3230 ....: HadamardEJA,
3231 ....: RealSymmetricEJA,
3232 ....: ComplexHermitianEJA)
3233
3234 EXAMPLES:
3235
3236 The projection morphisms are Euclidean Jordan algebra
3237 operators::
3238
3239 sage: J1 = HadamardEJA(2)
3240 sage: J2 = RealSymmetricEJA(2)
3241 sage: J = cartesian_product([J1,J2])
3242 sage: J.cartesian_projection(0)
3243 Linear operator between finite-dimensional Euclidean Jordan
3244 algebras represented by the matrix:
3245 [1 0 0 0 0]
3246 [0 1 0 0 0]
3247 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3248 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3249 Algebraic Real Field
3250 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3251 Real Field
3252 sage: J.cartesian_projection(1)
3253 Linear operator between finite-dimensional Euclidean Jordan
3254 algebras represented by the matrix:
3255 [0 0 1 0 0]
3256 [0 0 0 1 0]
3257 [0 0 0 0 1]
3258 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3259 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3260 Algebraic Real Field
3261 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3262 Real Field
3263
3264 The projections work the way you'd expect on the vector
3265 representation of an element::
3266
3267 sage: J1 = JordanSpinEJA(2)
3268 sage: J2 = ComplexHermitianEJA(2)
3269 sage: J = cartesian_product([J1,J2])
3270 sage: pi_left = J.cartesian_projection(0)
3271 sage: pi_right = J.cartesian_projection(1)
3272 sage: pi_left(J.one()).to_vector()
3273 (1, 0)
3274 sage: pi_right(J.one()).to_vector()
3275 (1, 0, 0, 1)
3276 sage: J.one().to_vector()
3277 (1, 0, 1, 0, 0, 1)
3278
3279 TESTS:
3280
3281 The answer never changes::
3282
3283 sage: set_random_seed()
3284 sage: J1 = random_eja()
3285 sage: J2 = random_eja()
3286 sage: J = cartesian_product([J1,J2])
3287 sage: P0 = J.cartesian_projection(0)
3288 sage: P1 = J.cartesian_projection(0)
3289 sage: P0 == P1
3290 True
3291
3292 """
3293 offset = sum( self.cartesian_factor(k).dimension()
3294 for k in range(i) )
3295 Ji = self.cartesian_factor(i)
3296 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3297 codomain=Ji)
3298
3299 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3300
3301 @cached_method
3302 def cartesian_embedding(self, i):
3303 r"""
3304 SETUP::
3305
3306 sage: from mjo.eja.eja_algebra import (random_eja,
3307 ....: JordanSpinEJA,
3308 ....: HadamardEJA,
3309 ....: RealSymmetricEJA)
3310
3311 EXAMPLES:
3312
3313 The embedding morphisms are Euclidean Jordan algebra
3314 operators::
3315
3316 sage: J1 = HadamardEJA(2)
3317 sage: J2 = RealSymmetricEJA(2)
3318 sage: J = cartesian_product([J1,J2])
3319 sage: J.cartesian_embedding(0)
3320 Linear operator between finite-dimensional Euclidean Jordan
3321 algebras represented by the matrix:
3322 [1 0]
3323 [0 1]
3324 [0 0]
3325 [0 0]
3326 [0 0]
3327 Domain: Euclidean Jordan algebra of dimension 2 over
3328 Algebraic Real Field
3329 Codomain: Euclidean Jordan algebra of dimension 2 over
3330 Algebraic Real Field (+) Euclidean Jordan algebra of
3331 dimension 3 over Algebraic Real Field
3332 sage: J.cartesian_embedding(1)
3333 Linear operator between finite-dimensional Euclidean Jordan
3334 algebras represented by the matrix:
3335 [0 0 0]
3336 [0 0 0]
3337 [1 0 0]
3338 [0 1 0]
3339 [0 0 1]
3340 Domain: Euclidean Jordan algebra of dimension 3 over
3341 Algebraic Real Field
3342 Codomain: Euclidean Jordan algebra of dimension 2 over
3343 Algebraic Real Field (+) Euclidean Jordan algebra of
3344 dimension 3 over Algebraic Real Field
3345
3346 The embeddings work the way you'd expect on the vector
3347 representation of an element::
3348
3349 sage: J1 = JordanSpinEJA(3)
3350 sage: J2 = RealSymmetricEJA(2)
3351 sage: J = cartesian_product([J1,J2])
3352 sage: iota_left = J.cartesian_embedding(0)
3353 sage: iota_right = J.cartesian_embedding(1)
3354 sage: iota_left(J1.zero()) == J.zero()
3355 True
3356 sage: iota_right(J2.zero()) == J.zero()
3357 True
3358 sage: J1.one().to_vector()
3359 (1, 0, 0)
3360 sage: iota_left(J1.one()).to_vector()
3361 (1, 0, 0, 0, 0, 0)
3362 sage: J2.one().to_vector()
3363 (1, 0, 1)
3364 sage: iota_right(J2.one()).to_vector()
3365 (0, 0, 0, 1, 0, 1)
3366 sage: J.one().to_vector()
3367 (1, 0, 0, 1, 0, 1)
3368
3369 TESTS:
3370
3371 The answer never changes::
3372
3373 sage: set_random_seed()
3374 sage: J1 = random_eja()
3375 sage: J2 = random_eja()
3376 sage: J = cartesian_product([J1,J2])
3377 sage: E0 = J.cartesian_embedding(0)
3378 sage: E1 = J.cartesian_embedding(0)
3379 sage: E0 == E1
3380 True
3381
3382 Composing a projection with the corresponding inclusion should
3383 produce the identity map, and mismatching them should produce
3384 the zero map::
3385
3386 sage: set_random_seed()
3387 sage: J1 = random_eja()
3388 sage: J2 = random_eja()
3389 sage: J = cartesian_product([J1,J2])
3390 sage: iota_left = J.cartesian_embedding(0)
3391 sage: iota_right = J.cartesian_embedding(1)
3392 sage: pi_left = J.cartesian_projection(0)
3393 sage: pi_right = J.cartesian_projection(1)
3394 sage: pi_left*iota_left == J1.one().operator()
3395 True
3396 sage: pi_right*iota_right == J2.one().operator()
3397 True
3398 sage: (pi_left*iota_right).is_zero()
3399 True
3400 sage: (pi_right*iota_left).is_zero()
3401 True
3402
3403 """
3404 offset = sum( self.cartesian_factor(k).dimension()
3405 for k in range(i) )
3406 Ji = self.cartesian_factor(i)
3407 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3408 codomain=self)
3409 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3410
3411
3412
3413 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3414
3415 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3416 RationalBasisEJA):
3417 r"""
3418 A separate class for products of algebras for which we know a
3419 rational basis.
3420
3421 SETUP::
3422
3423 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
3424 ....: HadamardEJA,
3425 ....: JordanSpinEJA,
3426 ....: RealSymmetricEJA)
3427
3428 EXAMPLES:
3429
3430 This gives us fast characteristic polynomial computations in
3431 product algebras, too::
3432
3433
3434 sage: J1 = JordanSpinEJA(2)
3435 sage: J2 = RealSymmetricEJA(3)
3436 sage: J = cartesian_product([J1,J2])
3437 sage: J.characteristic_polynomial_of().degree()
3438 5
3439 sage: J.rank()
3440 5
3441
3442 TESTS:
3443
3444 The ``cartesian_product()`` function only uses the first factor to
3445 decide where the result will live; thus we have to be careful to
3446 check that all factors do indeed have a ``rational_algebra()`` method
3447 before we construct an algebra that claims to have a rational basis::
3448
3449 sage: J1 = HadamardEJA(2)
3450 sage: jp = lambda X,Y: X*Y
3451 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
3452 sage: b1 = matrix(QQ, [[1]])
3453 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip)
3454 sage: cartesian_product([J2,J1]) # factor one not RationalBasisEJA
3455 Euclidean Jordan algebra of dimension 1 over Algebraic Real
3456 Field (+) Euclidean Jordan algebra of dimension 2 over Algebraic
3457 Real Field
3458 sage: cartesian_product([J1,J2]) # factor one is RationalBasisEJA
3459 Traceback (most recent call last):
3460 ...
3461 ValueError: factor not a RationalBasisEJA
3462
3463 """
3464 def __init__(self, algebras, **kwargs):
3465 if not all( hasattr(r, "rational_algebra") for r in algebras ):
3466 raise ValueError("factor not a RationalBasisEJA")
3467
3468 CartesianProductEJA.__init__(self, algebras, **kwargs)
3469
3470 @cached_method
3471 def rational_algebra(self):
3472 if self.base_ring() is QQ:
3473 return self
3474
3475 return cartesian_product([
3476 r.rational_algebra() for r in self.cartesian_factors()
3477 ])
3478
3479
3480 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3481
3482 def random_eja(max_dimension=None, *args, **kwargs):
3483 r"""
3484
3485 SETUP::
3486
3487 sage: from mjo.eja.eja_algebra import random_eja
3488
3489 TESTS::
3490
3491 sage: set_random_seed()
3492 sage: n = ZZ.random_element(1,5)
3493 sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False)
3494 sage: J.dimension() <= n
3495 True
3496
3497 """
3498 # Use the ConcreteEJA default as the total upper bound (regardless
3499 # of any whether or not any individual factors set a lower limit).
3500 if max_dimension is None:
3501 max_dimension = ConcreteEJA._max_random_instance_dimension()
3502 J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
3503
3504
3505 # Roll the dice to see if we attempt a Cartesian product.
3506 dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
3507 new_max_dimension = max_dimension - J1.dimension()
3508 if new_max_dimension == 0 or dice_roll != 0:
3509 # If it's already as big as we're willing to tolerate, just
3510 # return it and don't worry about Cartesian products.
3511 return J1
3512 else:
3513 # Use random_eja() again so we can get more than two factors
3514 # if the sub-call also Decides on a cartesian product.
3515 J2 = random_eja(new_max_dimension, *args, **kwargs)
3516 return cartesian_product([J1,J2])