]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: replace rank computation with length of charpoly coefficients.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 def _a_regular_element(self):
239 """
240 Guess a regular element. Needed to compute the basis for our
241 characteristic polynomial coefficients.
242
243 SETUP::
244
245 sage: from mjo.eja.eja_algebra import random_eja
246
247 TESTS:
248
249 Ensure that this hacky method succeeds for every algebra that we
250 know how to construct::
251
252 sage: set_random_seed()
253 sage: J = random_eja()
254 sage: J._a_regular_element().is_regular()
255 True
256
257 """
258 gs = self.gens()
259 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
260 if not z.is_regular():
261 raise ValueError("don't know a regular element")
262 return z
263
264
265 @cached_method
266 def _charpoly_basis_space(self):
267 """
268 Return the vector space spanned by the basis used in our
269 characteristic polynomial coefficients. This is used not only to
270 compute those coefficients, but also any time we need to
271 evaluate the coefficients (like when we compute the trace or
272 determinant).
273 """
274 z = self._a_regular_element()
275 # Don't use the parent vector space directly here in case this
276 # happens to be a subalgebra. In that case, we would be e.g.
277 # two-dimensional but span_of_basis() would expect three
278 # coordinates.
279 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
280 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
281 V1 = V.span_of_basis( basis )
282 b = (V1.basis() + V1.complement().basis())
283 return V.span_of_basis(b)
284
285
286
287 @cached_method
288 def _charpoly_coeff(self, i):
289 """
290 Return the coefficient polynomial "a_{i}" of this algebra's
291 general characteristic polynomial.
292
293 Having this be a separate cached method lets us compute and
294 store the trace/determinant (a_{r-1} and a_{0} respectively)
295 separate from the entire characteristic polynomial.
296 """
297 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
298 R = A_of_x.base_ring()
299
300 if i == self.rank():
301 return R.one()
302 if i > self.rank():
303 # Guaranteed by theory
304 return R.zero()
305
306 # Danger: the in-place modification is done for performance
307 # reasons (reconstructing a matrix with huge polynomial
308 # entries is slow), but I don't know how cached_method works,
309 # so it's highly possible that we're modifying some global
310 # list variable by reference, here. In other words, you
311 # probably shouldn't call this method twice on the same
312 # algebra, at the same time, in two threads
313 Ai_orig = A_of_x.column(i)
314 A_of_x.set_column(i,xr)
315 numerator = A_of_x.det()
316 A_of_x.set_column(i,Ai_orig)
317
318 # We're relying on the theory here to ensure that each a_i is
319 # indeed back in R, and the added negative signs are to make
320 # the whole charpoly expression sum to zero.
321 return R(-numerator/detA)
322
323
324 @cached_method
325 def _charpoly_matrix_system(self):
326 """
327 Compute the matrix whose entries A_ij are polynomials in
328 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
329 corresponding to `x^r` and the determinent of the matrix A =
330 [A_ij]. In other words, all of the fixed (cachable) data needed
331 to compute the coefficients of the characteristic polynomial.
332 """
333 r = self.rank()
334 n = self.dimension()
335
336 # Turn my vector space into a module so that "vectors" can
337 # have multivatiate polynomial entries.
338 names = tuple('X' + str(i) for i in range(1,n+1))
339 R = PolynomialRing(self.base_ring(), names)
340
341 # Using change_ring() on the parent's vector space doesn't work
342 # here because, in a subalgebra, that vector space has a basis
343 # and change_ring() tries to bring the basis along with it. And
344 # that doesn't work unless the new ring is a PID, which it usually
345 # won't be.
346 V = FreeModule(R,n)
347
348 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
349 # indeterminates...
350 x = V(names)
351
352 # And figure out the "left multiplication by x" matrix in
353 # that setting.
354 lmbx_cols = []
355 monomial_matrices = [ self.monomial(i).operator().matrix()
356 for i in range(n) ] # don't recompute these!
357 for k in range(n):
358 ek = self.monomial(k).to_vector()
359 lmbx_cols.append(
360 sum( x[i]*(monomial_matrices[i]*ek)
361 for i in range(n) ) )
362 Lx = matrix.column(R, lmbx_cols)
363
364 # Now we can compute powers of x "symbolically"
365 x_powers = [self.one().to_vector(), x]
366 for d in range(2, r+1):
367 x_powers.append( Lx*(x_powers[-1]) )
368
369 idmat = matrix.identity(R, n)
370
371 W = self._charpoly_basis_space()
372 W = W.change_ring(R.fraction_field())
373
374 # Starting with the standard coordinates x = (X1,X2,...,Xn)
375 # and then converting the entries to W-coordinates allows us
376 # to pass in the standard coordinates to the charpoly and get
377 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
378 # we have
379 #
380 # W.coordinates(x^2) eval'd at (standard z-coords)
381 # =
382 # W-coords of (z^2)
383 # =
384 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
385 #
386 # We want the middle equivalent thing in our matrix, but use
387 # the first equivalent thing instead so that we can pass in
388 # standard coordinates.
389 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
390 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
391 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
392 return (A_of_x, x, x_powers[r], A_of_x.det())
393
394
395 @cached_method
396 def characteristic_polynomial(self):
397 """
398 Return a characteristic polynomial that works for all elements
399 of this algebra.
400
401 The resulting polynomial has `n+1` variables, where `n` is the
402 dimension of this algebra. The first `n` variables correspond to
403 the coordinates of an algebra element: when evaluated at the
404 coordinates of an algebra element with respect to a certain
405 basis, the result is a univariate polynomial (in the one
406 remaining variable ``t``), namely the characteristic polynomial
407 of that element.
408
409 SETUP::
410
411 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
412
413 EXAMPLES:
414
415 The characteristic polynomial in the spin algebra is given in
416 Alizadeh, Example 11.11::
417
418 sage: J = JordanSpinEJA(3)
419 sage: p = J.characteristic_polynomial(); p
420 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
421 sage: xvec = J.one().to_vector()
422 sage: p(*xvec)
423 t^2 - 2*t + 1
424
425 By definition, the characteristic polynomial is a monic
426 degree-zero polynomial in a rank-zero algebra. Note that
427 Cayley-Hamilton is indeed satisfied since the polynomial
428 ``1`` evaluates to the identity element of the algebra on
429 any argument::
430
431 sage: J = TrivialEJA()
432 sage: J.characteristic_polynomial()
433 1
434
435 """
436 r = self.rank()
437 n = self.dimension()
438
439 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_n.
440 a = [ self._charpoly_coeff(i) for i in range(r+1) ]
441
442 # We go to a bit of trouble here to reorder the
443 # indeterminates, so that it's easier to evaluate the
444 # characteristic polynomial at x's coordinates and get back
445 # something in terms of t, which is what we want.
446 R = a[0].parent()
447 S = PolynomialRing(self.base_ring(),'t')
448 t = S.gen(0)
449 S = PolynomialRing(S, R.variable_names())
450 t = S(t)
451
452 return sum( a[k]*(t**k) for k in range(len(a)) )
453
454
455 def inner_product(self, x, y):
456 """
457 The inner product associated with this Euclidean Jordan algebra.
458
459 Defaults to the trace inner product, but can be overridden by
460 subclasses if they are sure that the necessary properties are
461 satisfied.
462
463 SETUP::
464
465 sage: from mjo.eja.eja_algebra import random_eja
466
467 EXAMPLES:
468
469 Our inner product is "associative," which means the following for
470 a symmetric bilinear form::
471
472 sage: set_random_seed()
473 sage: J = random_eja()
474 sage: x,y,z = J.random_elements(3)
475 sage: (x*y).inner_product(z) == y.inner_product(x*z)
476 True
477
478 """
479 X = x.natural_representation()
480 Y = y.natural_representation()
481 return self.natural_inner_product(X,Y)
482
483
484 def is_trivial(self):
485 """
486 Return whether or not this algebra is trivial.
487
488 A trivial algebra contains only the zero element.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
493 ....: TrivialEJA)
494
495 EXAMPLES::
496
497 sage: J = ComplexHermitianEJA(3)
498 sage: J.is_trivial()
499 False
500
501 ::
502
503 sage: J = TrivialEJA()
504 sage: J.is_trivial()
505 True
506
507 """
508 return self.dimension() == 0
509
510
511 def multiplication_table(self):
512 """
513 Return a visual representation of this algebra's multiplication
514 table (on basis elements).
515
516 SETUP::
517
518 sage: from mjo.eja.eja_algebra import JordanSpinEJA
519
520 EXAMPLES::
521
522 sage: J = JordanSpinEJA(4)
523 sage: J.multiplication_table()
524 +----++----+----+----+----+
525 | * || e0 | e1 | e2 | e3 |
526 +====++====+====+====+====+
527 | e0 || e0 | e1 | e2 | e3 |
528 +----++----+----+----+----+
529 | e1 || e1 | e0 | 0 | 0 |
530 +----++----+----+----+----+
531 | e2 || e2 | 0 | e0 | 0 |
532 +----++----+----+----+----+
533 | e3 || e3 | 0 | 0 | e0 |
534 +----++----+----+----+----+
535
536 """
537 M = list(self._multiplication_table) # copy
538 for i in range(len(M)):
539 # M had better be "square"
540 M[i] = [self.monomial(i)] + M[i]
541 M = [["*"] + list(self.gens())] + M
542 return table(M, header_row=True, header_column=True, frame=True)
543
544
545 def natural_basis(self):
546 """
547 Return a more-natural representation of this algebra's basis.
548
549 Every finite-dimensional Euclidean Jordan Algebra is a direct
550 sum of five simple algebras, four of which comprise Hermitian
551 matrices. This method returns the original "natural" basis
552 for our underlying vector space. (Typically, the natural basis
553 is used to construct the multiplication table in the first place.)
554
555 Note that this will always return a matrix. The standard basis
556 in `R^n` will be returned as `n`-by-`1` column matrices.
557
558 SETUP::
559
560 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
561 ....: RealSymmetricEJA)
562
563 EXAMPLES::
564
565 sage: J = RealSymmetricEJA(2)
566 sage: J.basis()
567 Finite family {0: e0, 1: e1, 2: e2}
568 sage: J.natural_basis()
569 (
570 [1 0] [ 0 0.7071067811865475?] [0 0]
571 [0 0], [0.7071067811865475? 0], [0 1]
572 )
573
574 ::
575
576 sage: J = JordanSpinEJA(2)
577 sage: J.basis()
578 Finite family {0: e0, 1: e1}
579 sage: J.natural_basis()
580 (
581 [1] [0]
582 [0], [1]
583 )
584
585 """
586 if self._natural_basis is None:
587 M = self.natural_basis_space()
588 return tuple( M(b.to_vector()) for b in self.basis() )
589 else:
590 return self._natural_basis
591
592
593 def natural_basis_space(self):
594 """
595 Return the matrix space in which this algebra's natural basis
596 elements live.
597 """
598 if self._natural_basis is None or len(self._natural_basis) == 0:
599 return MatrixSpace(self.base_ring(), self.dimension(), 1)
600 else:
601 return self._natural_basis[0].matrix_space()
602
603
604 @staticmethod
605 def natural_inner_product(X,Y):
606 """
607 Compute the inner product of two naturally-represented elements.
608
609 For example in the real symmetric matrix EJA, this will compute
610 the trace inner-product of two n-by-n symmetric matrices. The
611 default should work for the real cartesian product EJA, the
612 Jordan spin EJA, and the real symmetric matrices. The others
613 will have to be overridden.
614 """
615 return (X.conjugate_transpose()*Y).trace()
616
617
618 @cached_method
619 def one(self):
620 """
621 Return the unit element of this algebra.
622
623 SETUP::
624
625 sage: from mjo.eja.eja_algebra import (HadamardEJA,
626 ....: random_eja)
627
628 EXAMPLES::
629
630 sage: J = HadamardEJA(5)
631 sage: J.one()
632 e0 + e1 + e2 + e3 + e4
633
634 TESTS:
635
636 The identity element acts like the identity::
637
638 sage: set_random_seed()
639 sage: J = random_eja()
640 sage: x = J.random_element()
641 sage: J.one()*x == x and x*J.one() == x
642 True
643
644 The matrix of the unit element's operator is the identity::
645
646 sage: set_random_seed()
647 sage: J = random_eja()
648 sage: actual = J.one().operator().matrix()
649 sage: expected = matrix.identity(J.base_ring(), J.dimension())
650 sage: actual == expected
651 True
652
653 """
654 # We can brute-force compute the matrices of the operators
655 # that correspond to the basis elements of this algebra.
656 # If some linear combination of those basis elements is the
657 # algebra identity, then the same linear combination of
658 # their matrices has to be the identity matrix.
659 #
660 # Of course, matrices aren't vectors in sage, so we have to
661 # appeal to the "long vectors" isometry.
662 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
663
664 # Now we use basis linear algebra to find the coefficients,
665 # of the matrices-as-vectors-linear-combination, which should
666 # work for the original algebra basis too.
667 A = matrix.column(self.base_ring(), oper_vecs)
668
669 # We used the isometry on the left-hand side already, but we
670 # still need to do it for the right-hand side. Recall that we
671 # wanted something that summed to the identity matrix.
672 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
673
674 # Now if there's an identity element in the algebra, this should work.
675 coeffs = A.solve_right(b)
676 return self.linear_combination(zip(self.gens(), coeffs))
677
678
679 def peirce_decomposition(self, c):
680 """
681 The Peirce decomposition of this algebra relative to the
682 idempotent ``c``.
683
684 In the future, this can be extended to a complete system of
685 orthogonal idempotents.
686
687 INPUT:
688
689 - ``c`` -- an idempotent of this algebra.
690
691 OUTPUT:
692
693 A triple (J0, J5, J1) containing two subalgebras and one subspace
694 of this algebra,
695
696 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
697 corresponding to the eigenvalue zero.
698
699 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
700 corresponding to the eigenvalue one-half.
701
702 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
703 corresponding to the eigenvalue one.
704
705 These are the only possible eigenspaces for that operator, and this
706 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
707 orthogonal, and are subalgebras of this algebra with the appropriate
708 restrictions.
709
710 SETUP::
711
712 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
713
714 EXAMPLES:
715
716 The canonical example comes from the symmetric matrices, which
717 decompose into diagonal and off-diagonal parts::
718
719 sage: J = RealSymmetricEJA(3)
720 sage: C = matrix(QQ, [ [1,0,0],
721 ....: [0,1,0],
722 ....: [0,0,0] ])
723 sage: c = J(C)
724 sage: J0,J5,J1 = J.peirce_decomposition(c)
725 sage: J0
726 Euclidean Jordan algebra of dimension 1...
727 sage: J5
728 Vector space of degree 6 and dimension 2...
729 sage: J1
730 Euclidean Jordan algebra of dimension 3...
731
732 TESTS:
733
734 Every algebra decomposes trivially with respect to its identity
735 element::
736
737 sage: set_random_seed()
738 sage: J = random_eja()
739 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
740 sage: J0.dimension() == 0 and J5.dimension() == 0
741 True
742 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
743 True
744
745 The identity elements in the two subalgebras are the
746 projections onto their respective subspaces of the
747 superalgebra's identity element::
748
749 sage: set_random_seed()
750 sage: J = random_eja()
751 sage: x = J.random_element()
752 sage: if not J.is_trivial():
753 ....: while x.is_nilpotent():
754 ....: x = J.random_element()
755 sage: c = x.subalgebra_idempotent()
756 sage: J0,J5,J1 = J.peirce_decomposition(c)
757 sage: J1(c) == J1.one()
758 True
759 sage: J0(J.one() - c) == J0.one()
760 True
761
762 """
763 if not c.is_idempotent():
764 raise ValueError("element is not idempotent: %s" % c)
765
766 # Default these to what they should be if they turn out to be
767 # trivial, because eigenspaces_left() won't return eigenvalues
768 # corresponding to trivial spaces (e.g. it returns only the
769 # eigenspace corresponding to lambda=1 if you take the
770 # decomposition relative to the identity element).
771 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
772 J0 = trivial # eigenvalue zero
773 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
774 J1 = trivial # eigenvalue one
775
776 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
777 if eigval == ~(self.base_ring()(2)):
778 J5 = eigspace
779 else:
780 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
781 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
782 if eigval == 0:
783 J0 = subalg
784 elif eigval == 1:
785 J1 = subalg
786 else:
787 raise ValueError("unexpected eigenvalue: %s" % eigval)
788
789 return (J0, J5, J1)
790
791
792 def random_elements(self, count):
793 """
794 Return ``count`` random elements as a tuple.
795
796 SETUP::
797
798 sage: from mjo.eja.eja_algebra import JordanSpinEJA
799
800 EXAMPLES::
801
802 sage: J = JordanSpinEJA(3)
803 sage: x,y,z = J.random_elements(3)
804 sage: all( [ x in J, y in J, z in J ])
805 True
806 sage: len( J.random_elements(10) ) == 10
807 True
808
809 """
810 return tuple( self.random_element() for idx in range(count) )
811
812 @classmethod
813 def random_instance(cls, field=AA, **kwargs):
814 """
815 Return a random instance of this type of algebra.
816
817 Beware, this will crash for "most instances" because the
818 constructor below looks wrong.
819 """
820 if cls is TrivialEJA:
821 # The TrivialEJA class doesn't take an "n" argument because
822 # there's only one.
823 return cls(field)
824
825 n = ZZ.random_element(cls._max_test_case_size()) + 1
826 return cls(n, field, **kwargs)
827
828 @cached_method
829 def _charpoly_coefficients(self):
830 r"""
831 The `r` polynomial coefficients of the "characteristic polynomial
832 of" function.
833 """
834 n = self.dimension()
835 var_names = [ "X" + str(z) for z in range(1,n+1) ]
836 R = PolynomialRing(self.base_ring(), var_names)
837 vars = R.gens()
838 F = R.fraction_field()
839
840 def L_x_i_j(i,j):
841 # From a result in my book, these are the entries of the
842 # basis representation of L_x.
843 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
844 for k in range(n) )
845
846 L_x = matrix(F, n, n, L_x_i_j)
847 # Compute an extra power in case the rank is equal to
848 # the dimension (otherwise, we would stop at x^(r-1)).
849 x_powers = [ (L_x**k)*self.one().to_vector()
850 for k in range(n+1) ]
851 A = matrix.column(F, x_powers[:n])
852 AE = A.extended_echelon_form()
853 E = AE[:,n:]
854 A_rref = AE[:,:n]
855 r = A_rref.rank()
856 b = x_powers[r]
857
858 # The theory says that only the first "r" coefficients are
859 # nonzero, and they actually live in the original polynomial
860 # ring and not the fraction field. We negate them because
861 # in the actual characteristic polynomial, they get moved
862 # to the other side where x^r lives.
863 return -A_rref.solve_right(E*b).change_ring(R)[:r]
864
865 @cached_method
866 def rank(self):
867 r"""
868 Return the rank of this EJA.
869
870 ALGORITHM:
871
872 We first compute the polynomial "column matrices" `p_{k}` that
873 evaluate to `x^k` on the coordinates of `x`. Then, we begin
874 adding them to a matrix one at a time, and trying to solve the
875 system that makes `p_{0}`,`p_{1}`,..., `p_{s-1}` add up to
876 `p_{s}`. This will succeed only when `s` is the rank of the
877 algebra, as proven in a recent draft paper of mine.
878
879 SETUP::
880
881 sage: from mjo.eja.eja_algebra import (HadamardEJA,
882 ....: JordanSpinEJA,
883 ....: RealSymmetricEJA,
884 ....: ComplexHermitianEJA,
885 ....: QuaternionHermitianEJA,
886 ....: random_eja)
887
888 EXAMPLES:
889
890 The rank of the Jordan spin algebra is always two::
891
892 sage: JordanSpinEJA(2).rank()
893 2
894 sage: JordanSpinEJA(3).rank()
895 2
896 sage: JordanSpinEJA(4).rank()
897 2
898
899 The rank of the `n`-by-`n` Hermitian real, complex, or
900 quaternion matrices is `n`::
901
902 sage: RealSymmetricEJA(4).rank()
903 4
904 sage: ComplexHermitianEJA(3).rank()
905 3
906 sage: QuaternionHermitianEJA(2).rank()
907 2
908
909 TESTS:
910
911 Ensure that every EJA that we know how to construct has a
912 positive integer rank, unless the algebra is trivial in
913 which case its rank will be zero::
914
915 sage: set_random_seed()
916 sage: J = random_eja()
917 sage: r = J.rank()
918 sage: r in ZZ
919 True
920 sage: r > 0 or (r == 0 and J.is_trivial())
921 True
922
923 Ensure that computing the rank actually works, since the ranks
924 of all simple algebras are known and will be cached by default::
925
926 sage: J = HadamardEJA(4)
927 sage: J.rank.clear_cache()
928 sage: J.rank()
929 4
930
931 ::
932
933 sage: J = JordanSpinEJA(4)
934 sage: J.rank.clear_cache()
935 sage: J.rank()
936 2
937
938 ::
939
940 sage: J = RealSymmetricEJA(3)
941 sage: J.rank.clear_cache()
942 sage: J.rank()
943 3
944
945 ::
946
947 sage: J = ComplexHermitianEJA(2)
948 sage: J.rank.clear_cache()
949 sage: J.rank()
950 2
951
952 ::
953
954 sage: J = QuaternionHermitianEJA(2)
955 sage: J.rank.clear_cache()
956 sage: J.rank()
957 2
958
959 """
960 return len(self._charpoly_coefficients())
961
962
963 def vector_space(self):
964 """
965 Return the vector space that underlies this algebra.
966
967 SETUP::
968
969 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
970
971 EXAMPLES::
972
973 sage: J = RealSymmetricEJA(2)
974 sage: J.vector_space()
975 Vector space of dimension 3 over...
976
977 """
978 return self.zero().to_vector().parent().ambient_vector_space()
979
980
981 Element = FiniteDimensionalEuclideanJordanAlgebraElement
982
983
984 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
985 """
986 Return the Euclidean Jordan Algebra corresponding to the set
987 `R^n` under the Hadamard product.
988
989 Note: this is nothing more than the Cartesian product of ``n``
990 copies of the spin algebra. Once Cartesian product algebras
991 are implemented, this can go.
992
993 SETUP::
994
995 sage: from mjo.eja.eja_algebra import HadamardEJA
996
997 EXAMPLES:
998
999 This multiplication table can be verified by hand::
1000
1001 sage: J = HadamardEJA(3)
1002 sage: e0,e1,e2 = J.gens()
1003 sage: e0*e0
1004 e0
1005 sage: e0*e1
1006 0
1007 sage: e0*e2
1008 0
1009 sage: e1*e1
1010 e1
1011 sage: e1*e2
1012 0
1013 sage: e2*e2
1014 e2
1015
1016 TESTS:
1017
1018 We can change the generator prefix::
1019
1020 sage: HadamardEJA(3, prefix='r').gens()
1021 (r0, r1, r2)
1022
1023 """
1024 def __init__(self, n, field=AA, **kwargs):
1025 V = VectorSpace(field, n)
1026 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
1027 for i in range(n) ]
1028
1029 fdeja = super(HadamardEJA, self)
1030 fdeja.__init__(field, mult_table, **kwargs)
1031 self.rank.set_cache(n)
1032
1033 def inner_product(self, x, y):
1034 """
1035 Faster to reimplement than to use natural representations.
1036
1037 SETUP::
1038
1039 sage: from mjo.eja.eja_algebra import HadamardEJA
1040
1041 TESTS:
1042
1043 Ensure that this is the usual inner product for the algebras
1044 over `R^n`::
1045
1046 sage: set_random_seed()
1047 sage: J = HadamardEJA.random_instance()
1048 sage: x,y = J.random_elements(2)
1049 sage: X = x.natural_representation()
1050 sage: Y = y.natural_representation()
1051 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1052 True
1053
1054 """
1055 return x.to_vector().inner_product(y.to_vector())
1056
1057
1058 def random_eja(field=AA, nontrivial=False):
1059 """
1060 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1061
1062 SETUP::
1063
1064 sage: from mjo.eja.eja_algebra import random_eja
1065
1066 TESTS::
1067
1068 sage: random_eja()
1069 Euclidean Jordan algebra of dimension...
1070
1071 """
1072 eja_classes = [HadamardEJA,
1073 JordanSpinEJA,
1074 RealSymmetricEJA,
1075 ComplexHermitianEJA,
1076 QuaternionHermitianEJA]
1077 if not nontrivial:
1078 eja_classes.append(TrivialEJA)
1079 classname = choice(eja_classes)
1080 return classname.random_instance(field=field)
1081
1082
1083
1084
1085
1086
1087 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1088 @staticmethod
1089 def _max_test_case_size():
1090 # Play it safe, since this will be squared and the underlying
1091 # field can have dimension 4 (quaternions) too.
1092 return 2
1093
1094 def __init__(self, field, basis, normalize_basis=True, **kwargs):
1095 """
1096 Compared to the superclass constructor, we take a basis instead of
1097 a multiplication table because the latter can be computed in terms
1098 of the former when the product is known (like it is here).
1099 """
1100 # Used in this class's fast _charpoly_coeff() override.
1101 self._basis_normalizers = None
1102
1103 # We're going to loop through this a few times, so now's a good
1104 # time to ensure that it isn't a generator expression.
1105 basis = tuple(basis)
1106
1107 if len(basis) > 1 and normalize_basis:
1108 # We'll need sqrt(2) to normalize the basis, and this
1109 # winds up in the multiplication table, so the whole
1110 # algebra needs to be over the field extension.
1111 R = PolynomialRing(field, 'z')
1112 z = R.gen()
1113 p = z**2 - 2
1114 if p.is_irreducible():
1115 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1116 basis = tuple( s.change_ring(field) for s in basis )
1117 self._basis_normalizers = tuple(
1118 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1119 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1120
1121 Qs = self.multiplication_table_from_matrix_basis(basis)
1122
1123 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1124 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
1125 return
1126
1127
1128 @cached_method
1129 def rank(self):
1130 r"""
1131 Override the parent method with something that tries to compute
1132 over a faster (non-extension) field.
1133 """
1134 if self._basis_normalizers is None:
1135 # We didn't normalize, so assume that the basis we started
1136 # with had entries in a nice field.
1137 return super(MatrixEuclideanJordanAlgebra, self).rank()
1138 else:
1139 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1140 self._basis_normalizers) )
1141
1142 # Do this over the rationals and convert back at the end.
1143 # Only works because we know the entries of the basis are
1144 # integers.
1145 J = MatrixEuclideanJordanAlgebra(QQ,
1146 basis,
1147 normalize_basis=False)
1148 return J.rank()
1149
1150 @cached_method
1151 def _charpoly_coeff(self, i):
1152 """
1153 Override the parent method with something that tries to compute
1154 over a faster (non-extension) field.
1155 """
1156 if self._basis_normalizers is None:
1157 # We didn't normalize, so assume that the basis we started
1158 # with had entries in a nice field.
1159 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coeff(i)
1160 else:
1161 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1162 self._basis_normalizers) )
1163
1164 # Do this over the rationals and convert back at the end.
1165 J = MatrixEuclideanJordanAlgebra(QQ,
1166 basis,
1167 normalize_basis=False)
1168 (_,x,_,_) = J._charpoly_matrix_system()
1169 p = J._charpoly_coeff(i)
1170 # p might be missing some vars, have to substitute "optionally"
1171 pairs = zip(x.base_ring().gens(), self._basis_normalizers)
1172 substitutions = { v: v*c for (v,c) in pairs }
1173 result = p.subs(substitutions)
1174
1175 # The result of "subs" can be either a coefficient-ring
1176 # element or a polynomial. Gotta handle both cases.
1177 if result in QQ:
1178 return self.base_ring()(result)
1179 else:
1180 return result.change_ring(self.base_ring())
1181
1182
1183 @staticmethod
1184 def multiplication_table_from_matrix_basis(basis):
1185 """
1186 At least three of the five simple Euclidean Jordan algebras have the
1187 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1188 multiplication on the right is matrix multiplication. Given a basis
1189 for the underlying matrix space, this function returns a
1190 multiplication table (obtained by looping through the basis
1191 elements) for an algebra of those matrices.
1192 """
1193 # In S^2, for example, we nominally have four coordinates even
1194 # though the space is of dimension three only. The vector space V
1195 # is supposed to hold the entire long vector, and the subspace W
1196 # of V will be spanned by the vectors that arise from symmetric
1197 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1198 field = basis[0].base_ring()
1199 dimension = basis[0].nrows()
1200
1201 V = VectorSpace(field, dimension**2)
1202 W = V.span_of_basis( _mat2vec(s) for s in basis )
1203 n = len(basis)
1204 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1205 for i in range(n):
1206 for j in range(n):
1207 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1208 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1209
1210 return mult_table
1211
1212
1213 @staticmethod
1214 def real_embed(M):
1215 """
1216 Embed the matrix ``M`` into a space of real matrices.
1217
1218 The matrix ``M`` can have entries in any field at the moment:
1219 the real numbers, complex numbers, or quaternions. And although
1220 they are not a field, we can probably support octonions at some
1221 point, too. This function returns a real matrix that "acts like"
1222 the original with respect to matrix multiplication; i.e.
1223
1224 real_embed(M*N) = real_embed(M)*real_embed(N)
1225
1226 """
1227 raise NotImplementedError
1228
1229
1230 @staticmethod
1231 def real_unembed(M):
1232 """
1233 The inverse of :meth:`real_embed`.
1234 """
1235 raise NotImplementedError
1236
1237
1238 @classmethod
1239 def natural_inner_product(cls,X,Y):
1240 Xu = cls.real_unembed(X)
1241 Yu = cls.real_unembed(Y)
1242 tr = (Xu*Yu).trace()
1243
1244 if tr in RLF:
1245 # It's real already.
1246 return tr
1247
1248 # Otherwise, try the thing that works for complex numbers; and
1249 # if that doesn't work, the thing that works for quaternions.
1250 try:
1251 return tr.vector()[0] # real part, imag part is index 1
1252 except AttributeError:
1253 # A quaternions doesn't have a vector() method, but does
1254 # have coefficient_tuple() method that returns the
1255 # coefficients of 1, i, j, and k -- in that order.
1256 return tr.coefficient_tuple()[0]
1257
1258
1259 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1260 @staticmethod
1261 def real_embed(M):
1262 """
1263 The identity function, for embedding real matrices into real
1264 matrices.
1265 """
1266 return M
1267
1268 @staticmethod
1269 def real_unembed(M):
1270 """
1271 The identity function, for unembedding real matrices from real
1272 matrices.
1273 """
1274 return M
1275
1276
1277 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1278 """
1279 The rank-n simple EJA consisting of real symmetric n-by-n
1280 matrices, the usual symmetric Jordan product, and the trace inner
1281 product. It has dimension `(n^2 + n)/2` over the reals.
1282
1283 SETUP::
1284
1285 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1286
1287 EXAMPLES::
1288
1289 sage: J = RealSymmetricEJA(2)
1290 sage: e0, e1, e2 = J.gens()
1291 sage: e0*e0
1292 e0
1293 sage: e1*e1
1294 1/2*e0 + 1/2*e2
1295 sage: e2*e2
1296 e2
1297
1298 In theory, our "field" can be any subfield of the reals::
1299
1300 sage: RealSymmetricEJA(2, RDF)
1301 Euclidean Jordan algebra of dimension 3 over Real Double Field
1302 sage: RealSymmetricEJA(2, RR)
1303 Euclidean Jordan algebra of dimension 3 over Real Field with
1304 53 bits of precision
1305
1306 TESTS:
1307
1308 The dimension of this algebra is `(n^2 + n) / 2`::
1309
1310 sage: set_random_seed()
1311 sage: n_max = RealSymmetricEJA._max_test_case_size()
1312 sage: n = ZZ.random_element(1, n_max)
1313 sage: J = RealSymmetricEJA(n)
1314 sage: J.dimension() == (n^2 + n)/2
1315 True
1316
1317 The Jordan multiplication is what we think it is::
1318
1319 sage: set_random_seed()
1320 sage: J = RealSymmetricEJA.random_instance()
1321 sage: x,y = J.random_elements(2)
1322 sage: actual = (x*y).natural_representation()
1323 sage: X = x.natural_representation()
1324 sage: Y = y.natural_representation()
1325 sage: expected = (X*Y + Y*X)/2
1326 sage: actual == expected
1327 True
1328 sage: J(expected) == x*y
1329 True
1330
1331 We can change the generator prefix::
1332
1333 sage: RealSymmetricEJA(3, prefix='q').gens()
1334 (q0, q1, q2, q3, q4, q5)
1335
1336 Our natural basis is normalized with respect to the natural inner
1337 product unless we specify otherwise::
1338
1339 sage: set_random_seed()
1340 sage: J = RealSymmetricEJA.random_instance()
1341 sage: all( b.norm() == 1 for b in J.gens() )
1342 True
1343
1344 Since our natural basis is normalized with respect to the natural
1345 inner product, and since we know that this algebra is an EJA, any
1346 left-multiplication operator's matrix will be symmetric because
1347 natural->EJA basis representation is an isometry and within the EJA
1348 the operator is self-adjoint by the Jordan axiom::
1349
1350 sage: set_random_seed()
1351 sage: x = RealSymmetricEJA.random_instance().random_element()
1352 sage: x.operator().matrix().is_symmetric()
1353 True
1354
1355 """
1356 @classmethod
1357 def _denormalized_basis(cls, n, field):
1358 """
1359 Return a basis for the space of real symmetric n-by-n matrices.
1360
1361 SETUP::
1362
1363 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1364
1365 TESTS::
1366
1367 sage: set_random_seed()
1368 sage: n = ZZ.random_element(1,5)
1369 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1370 sage: all( M.is_symmetric() for M in B)
1371 True
1372
1373 """
1374 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1375 # coordinates.
1376 S = []
1377 for i in range(n):
1378 for j in range(i+1):
1379 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1380 if i == j:
1381 Sij = Eij
1382 else:
1383 Sij = Eij + Eij.transpose()
1384 S.append(Sij)
1385 return S
1386
1387
1388 @staticmethod
1389 def _max_test_case_size():
1390 return 4 # Dimension 10
1391
1392
1393 def __init__(self, n, field=AA, **kwargs):
1394 basis = self._denormalized_basis(n, field)
1395 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1396 self.rank.set_cache(n)
1397
1398
1399 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1400 @staticmethod
1401 def real_embed(M):
1402 """
1403 Embed the n-by-n complex matrix ``M`` into the space of real
1404 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1405 bi` to the block matrix ``[[a,b],[-b,a]]``.
1406
1407 SETUP::
1408
1409 sage: from mjo.eja.eja_algebra import \
1410 ....: ComplexMatrixEuclideanJordanAlgebra
1411
1412 EXAMPLES::
1413
1414 sage: F = QuadraticField(-1, 'I')
1415 sage: x1 = F(4 - 2*i)
1416 sage: x2 = F(1 + 2*i)
1417 sage: x3 = F(-i)
1418 sage: x4 = F(6)
1419 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1420 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1421 [ 4 -2| 1 2]
1422 [ 2 4|-2 1]
1423 [-----+-----]
1424 [ 0 -1| 6 0]
1425 [ 1 0| 0 6]
1426
1427 TESTS:
1428
1429 Embedding is a homomorphism (isomorphism, in fact)::
1430
1431 sage: set_random_seed()
1432 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1433 sage: n = ZZ.random_element(n_max)
1434 sage: F = QuadraticField(-1, 'I')
1435 sage: X = random_matrix(F, n)
1436 sage: Y = random_matrix(F, n)
1437 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1438 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1439 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1440 sage: Xe*Ye == XYe
1441 True
1442
1443 """
1444 n = M.nrows()
1445 if M.ncols() != n:
1446 raise ValueError("the matrix 'M' must be square")
1447
1448 # We don't need any adjoined elements...
1449 field = M.base_ring().base_ring()
1450
1451 blocks = []
1452 for z in M.list():
1453 a = z.list()[0] # real part, I guess
1454 b = z.list()[1] # imag part, I guess
1455 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1456
1457 return matrix.block(field, n, blocks)
1458
1459
1460 @staticmethod
1461 def real_unembed(M):
1462 """
1463 The inverse of _embed_complex_matrix().
1464
1465 SETUP::
1466
1467 sage: from mjo.eja.eja_algebra import \
1468 ....: ComplexMatrixEuclideanJordanAlgebra
1469
1470 EXAMPLES::
1471
1472 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1473 ....: [-2, 1, -4, 3],
1474 ....: [ 9, 10, 11, 12],
1475 ....: [-10, 9, -12, 11] ])
1476 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1477 [ 2*I + 1 4*I + 3]
1478 [ 10*I + 9 12*I + 11]
1479
1480 TESTS:
1481
1482 Unembedding is the inverse of embedding::
1483
1484 sage: set_random_seed()
1485 sage: F = QuadraticField(-1, 'I')
1486 sage: M = random_matrix(F, 3)
1487 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1488 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1489 True
1490
1491 """
1492 n = ZZ(M.nrows())
1493 if M.ncols() != n:
1494 raise ValueError("the matrix 'M' must be square")
1495 if not n.mod(2).is_zero():
1496 raise ValueError("the matrix 'M' must be a complex embedding")
1497
1498 # If "M" was normalized, its base ring might have roots
1499 # adjoined and they can stick around after unembedding.
1500 field = M.base_ring()
1501 R = PolynomialRing(field, 'z')
1502 z = R.gen()
1503 if field is AA:
1504 # Sage doesn't know how to embed AA into QQbar, i.e. how
1505 # to adjoin sqrt(-1) to AA.
1506 F = QQbar
1507 else:
1508 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1509 i = F.gen()
1510
1511 # Go top-left to bottom-right (reading order), converting every
1512 # 2-by-2 block we see to a single complex element.
1513 elements = []
1514 for k in range(n/2):
1515 for j in range(n/2):
1516 submat = M[2*k:2*k+2,2*j:2*j+2]
1517 if submat[0,0] != submat[1,1]:
1518 raise ValueError('bad on-diagonal submatrix')
1519 if submat[0,1] != -submat[1,0]:
1520 raise ValueError('bad off-diagonal submatrix')
1521 z = submat[0,0] + submat[0,1]*i
1522 elements.append(z)
1523
1524 return matrix(F, n/2, elements)
1525
1526
1527 @classmethod
1528 def natural_inner_product(cls,X,Y):
1529 """
1530 Compute a natural inner product in this algebra directly from
1531 its real embedding.
1532
1533 SETUP::
1534
1535 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1536
1537 TESTS:
1538
1539 This gives the same answer as the slow, default method implemented
1540 in :class:`MatrixEuclideanJordanAlgebra`::
1541
1542 sage: set_random_seed()
1543 sage: J = ComplexHermitianEJA.random_instance()
1544 sage: x,y = J.random_elements(2)
1545 sage: Xe = x.natural_representation()
1546 sage: Ye = y.natural_representation()
1547 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1548 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1549 sage: expected = (X*Y).trace().real()
1550 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1551 sage: actual == expected
1552 True
1553
1554 """
1555 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1556
1557
1558 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1559 """
1560 The rank-n simple EJA consisting of complex Hermitian n-by-n
1561 matrices over the real numbers, the usual symmetric Jordan product,
1562 and the real-part-of-trace inner product. It has dimension `n^2` over
1563 the reals.
1564
1565 SETUP::
1566
1567 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1568
1569 EXAMPLES:
1570
1571 In theory, our "field" can be any subfield of the reals::
1572
1573 sage: ComplexHermitianEJA(2, RDF)
1574 Euclidean Jordan algebra of dimension 4 over Real Double Field
1575 sage: ComplexHermitianEJA(2, RR)
1576 Euclidean Jordan algebra of dimension 4 over Real Field with
1577 53 bits of precision
1578
1579 TESTS:
1580
1581 The dimension of this algebra is `n^2`::
1582
1583 sage: set_random_seed()
1584 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1585 sage: n = ZZ.random_element(1, n_max)
1586 sage: J = ComplexHermitianEJA(n)
1587 sage: J.dimension() == n^2
1588 True
1589
1590 The Jordan multiplication is what we think it is::
1591
1592 sage: set_random_seed()
1593 sage: J = ComplexHermitianEJA.random_instance()
1594 sage: x,y = J.random_elements(2)
1595 sage: actual = (x*y).natural_representation()
1596 sage: X = x.natural_representation()
1597 sage: Y = y.natural_representation()
1598 sage: expected = (X*Y + Y*X)/2
1599 sage: actual == expected
1600 True
1601 sage: J(expected) == x*y
1602 True
1603
1604 We can change the generator prefix::
1605
1606 sage: ComplexHermitianEJA(2, prefix='z').gens()
1607 (z0, z1, z2, z3)
1608
1609 Our natural basis is normalized with respect to the natural inner
1610 product unless we specify otherwise::
1611
1612 sage: set_random_seed()
1613 sage: J = ComplexHermitianEJA.random_instance()
1614 sage: all( b.norm() == 1 for b in J.gens() )
1615 True
1616
1617 Since our natural basis is normalized with respect to the natural
1618 inner product, and since we know that this algebra is an EJA, any
1619 left-multiplication operator's matrix will be symmetric because
1620 natural->EJA basis representation is an isometry and within the EJA
1621 the operator is self-adjoint by the Jordan axiom::
1622
1623 sage: set_random_seed()
1624 sage: x = ComplexHermitianEJA.random_instance().random_element()
1625 sage: x.operator().matrix().is_symmetric()
1626 True
1627
1628 """
1629
1630 @classmethod
1631 def _denormalized_basis(cls, n, field):
1632 """
1633 Returns a basis for the space of complex Hermitian n-by-n matrices.
1634
1635 Why do we embed these? Basically, because all of numerical linear
1636 algebra assumes that you're working with vectors consisting of `n`
1637 entries from a field and scalars from the same field. There's no way
1638 to tell SageMath that (for example) the vectors contain complex
1639 numbers, while the scalar field is real.
1640
1641 SETUP::
1642
1643 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1644
1645 TESTS::
1646
1647 sage: set_random_seed()
1648 sage: n = ZZ.random_element(1,5)
1649 sage: field = QuadraticField(2, 'sqrt2')
1650 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1651 sage: all( M.is_symmetric() for M in B)
1652 True
1653
1654 """
1655 R = PolynomialRing(field, 'z')
1656 z = R.gen()
1657 F = field.extension(z**2 + 1, 'I')
1658 I = F.gen()
1659
1660 # This is like the symmetric case, but we need to be careful:
1661 #
1662 # * We want conjugate-symmetry, not just symmetry.
1663 # * The diagonal will (as a result) be real.
1664 #
1665 S = []
1666 for i in range(n):
1667 for j in range(i+1):
1668 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1669 if i == j:
1670 Sij = cls.real_embed(Eij)
1671 S.append(Sij)
1672 else:
1673 # The second one has a minus because it's conjugated.
1674 Sij_real = cls.real_embed(Eij + Eij.transpose())
1675 S.append(Sij_real)
1676 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1677 S.append(Sij_imag)
1678
1679 # Since we embedded these, we can drop back to the "field" that we
1680 # started with instead of the complex extension "F".
1681 return ( s.change_ring(field) for s in S )
1682
1683
1684 def __init__(self, n, field=AA, **kwargs):
1685 basis = self._denormalized_basis(n,field)
1686 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1687 self.rank.set_cache(n)
1688
1689
1690 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1691 @staticmethod
1692 def real_embed(M):
1693 """
1694 Embed the n-by-n quaternion matrix ``M`` into the space of real
1695 matrices of size 4n-by-4n by first sending each quaternion entry `z
1696 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1697 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1698 matrix.
1699
1700 SETUP::
1701
1702 sage: from mjo.eja.eja_algebra import \
1703 ....: QuaternionMatrixEuclideanJordanAlgebra
1704
1705 EXAMPLES::
1706
1707 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1708 sage: i,j,k = Q.gens()
1709 sage: x = 1 + 2*i + 3*j + 4*k
1710 sage: M = matrix(Q, 1, [[x]])
1711 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1712 [ 1 2 3 4]
1713 [-2 1 -4 3]
1714 [-3 4 1 -2]
1715 [-4 -3 2 1]
1716
1717 Embedding is a homomorphism (isomorphism, in fact)::
1718
1719 sage: set_random_seed()
1720 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1721 sage: n = ZZ.random_element(n_max)
1722 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1723 sage: X = random_matrix(Q, n)
1724 sage: Y = random_matrix(Q, n)
1725 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1726 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1727 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1728 sage: Xe*Ye == XYe
1729 True
1730
1731 """
1732 quaternions = M.base_ring()
1733 n = M.nrows()
1734 if M.ncols() != n:
1735 raise ValueError("the matrix 'M' must be square")
1736
1737 F = QuadraticField(-1, 'I')
1738 i = F.gen()
1739
1740 blocks = []
1741 for z in M.list():
1742 t = z.coefficient_tuple()
1743 a = t[0]
1744 b = t[1]
1745 c = t[2]
1746 d = t[3]
1747 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1748 [-c + d*i, a - b*i]])
1749 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1750 blocks.append(realM)
1751
1752 # We should have real entries by now, so use the realest field
1753 # we've got for the return value.
1754 return matrix.block(quaternions.base_ring(), n, blocks)
1755
1756
1757
1758 @staticmethod
1759 def real_unembed(M):
1760 """
1761 The inverse of _embed_quaternion_matrix().
1762
1763 SETUP::
1764
1765 sage: from mjo.eja.eja_algebra import \
1766 ....: QuaternionMatrixEuclideanJordanAlgebra
1767
1768 EXAMPLES::
1769
1770 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1771 ....: [-2, 1, -4, 3],
1772 ....: [-3, 4, 1, -2],
1773 ....: [-4, -3, 2, 1]])
1774 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1775 [1 + 2*i + 3*j + 4*k]
1776
1777 TESTS:
1778
1779 Unembedding is the inverse of embedding::
1780
1781 sage: set_random_seed()
1782 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1783 sage: M = random_matrix(Q, 3)
1784 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1785 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1786 True
1787
1788 """
1789 n = ZZ(M.nrows())
1790 if M.ncols() != n:
1791 raise ValueError("the matrix 'M' must be square")
1792 if not n.mod(4).is_zero():
1793 raise ValueError("the matrix 'M' must be a quaternion embedding")
1794
1795 # Use the base ring of the matrix to ensure that its entries can be
1796 # multiplied by elements of the quaternion algebra.
1797 field = M.base_ring()
1798 Q = QuaternionAlgebra(field,-1,-1)
1799 i,j,k = Q.gens()
1800
1801 # Go top-left to bottom-right (reading order), converting every
1802 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1803 # quaternion block.
1804 elements = []
1805 for l in range(n/4):
1806 for m in range(n/4):
1807 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1808 M[4*l:4*l+4,4*m:4*m+4] )
1809 if submat[0,0] != submat[1,1].conjugate():
1810 raise ValueError('bad on-diagonal submatrix')
1811 if submat[0,1] != -submat[1,0].conjugate():
1812 raise ValueError('bad off-diagonal submatrix')
1813 z = submat[0,0].real()
1814 z += submat[0,0].imag()*i
1815 z += submat[0,1].real()*j
1816 z += submat[0,1].imag()*k
1817 elements.append(z)
1818
1819 return matrix(Q, n/4, elements)
1820
1821
1822 @classmethod
1823 def natural_inner_product(cls,X,Y):
1824 """
1825 Compute a natural inner product in this algebra directly from
1826 its real embedding.
1827
1828 SETUP::
1829
1830 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1831
1832 TESTS:
1833
1834 This gives the same answer as the slow, default method implemented
1835 in :class:`MatrixEuclideanJordanAlgebra`::
1836
1837 sage: set_random_seed()
1838 sage: J = QuaternionHermitianEJA.random_instance()
1839 sage: x,y = J.random_elements(2)
1840 sage: Xe = x.natural_representation()
1841 sage: Ye = y.natural_representation()
1842 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1843 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1844 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1845 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1846 sage: actual == expected
1847 True
1848
1849 """
1850 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1851
1852
1853 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1854 """
1855 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1856 matrices, the usual symmetric Jordan product, and the
1857 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1858 the reals.
1859
1860 SETUP::
1861
1862 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1863
1864 EXAMPLES:
1865
1866 In theory, our "field" can be any subfield of the reals::
1867
1868 sage: QuaternionHermitianEJA(2, RDF)
1869 Euclidean Jordan algebra of dimension 6 over Real Double Field
1870 sage: QuaternionHermitianEJA(2, RR)
1871 Euclidean Jordan algebra of dimension 6 over Real Field with
1872 53 bits of precision
1873
1874 TESTS:
1875
1876 The dimension of this algebra is `2*n^2 - n`::
1877
1878 sage: set_random_seed()
1879 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1880 sage: n = ZZ.random_element(1, n_max)
1881 sage: J = QuaternionHermitianEJA(n)
1882 sage: J.dimension() == 2*(n^2) - n
1883 True
1884
1885 The Jordan multiplication is what we think it is::
1886
1887 sage: set_random_seed()
1888 sage: J = QuaternionHermitianEJA.random_instance()
1889 sage: x,y = J.random_elements(2)
1890 sage: actual = (x*y).natural_representation()
1891 sage: X = x.natural_representation()
1892 sage: Y = y.natural_representation()
1893 sage: expected = (X*Y + Y*X)/2
1894 sage: actual == expected
1895 True
1896 sage: J(expected) == x*y
1897 True
1898
1899 We can change the generator prefix::
1900
1901 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1902 (a0, a1, a2, a3, a4, a5)
1903
1904 Our natural basis is normalized with respect to the natural inner
1905 product unless we specify otherwise::
1906
1907 sage: set_random_seed()
1908 sage: J = QuaternionHermitianEJA.random_instance()
1909 sage: all( b.norm() == 1 for b in J.gens() )
1910 True
1911
1912 Since our natural basis is normalized with respect to the natural
1913 inner product, and since we know that this algebra is an EJA, any
1914 left-multiplication operator's matrix will be symmetric because
1915 natural->EJA basis representation is an isometry and within the EJA
1916 the operator is self-adjoint by the Jordan axiom::
1917
1918 sage: set_random_seed()
1919 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1920 sage: x.operator().matrix().is_symmetric()
1921 True
1922
1923 """
1924 @classmethod
1925 def _denormalized_basis(cls, n, field):
1926 """
1927 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1928
1929 Why do we embed these? Basically, because all of numerical
1930 linear algebra assumes that you're working with vectors consisting
1931 of `n` entries from a field and scalars from the same field. There's
1932 no way to tell SageMath that (for example) the vectors contain
1933 complex numbers, while the scalar field is real.
1934
1935 SETUP::
1936
1937 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1938
1939 TESTS::
1940
1941 sage: set_random_seed()
1942 sage: n = ZZ.random_element(1,5)
1943 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1944 sage: all( M.is_symmetric() for M in B )
1945 True
1946
1947 """
1948 Q = QuaternionAlgebra(QQ,-1,-1)
1949 I,J,K = Q.gens()
1950
1951 # This is like the symmetric case, but we need to be careful:
1952 #
1953 # * We want conjugate-symmetry, not just symmetry.
1954 # * The diagonal will (as a result) be real.
1955 #
1956 S = []
1957 for i in range(n):
1958 for j in range(i+1):
1959 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1960 if i == j:
1961 Sij = cls.real_embed(Eij)
1962 S.append(Sij)
1963 else:
1964 # The second, third, and fourth ones have a minus
1965 # because they're conjugated.
1966 Sij_real = cls.real_embed(Eij + Eij.transpose())
1967 S.append(Sij_real)
1968 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1969 S.append(Sij_I)
1970 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1971 S.append(Sij_J)
1972 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1973 S.append(Sij_K)
1974
1975 # Since we embedded these, we can drop back to the "field" that we
1976 # started with instead of the quaternion algebra "Q".
1977 return ( s.change_ring(field) for s in S )
1978
1979
1980 def __init__(self, n, field=AA, **kwargs):
1981 basis = self._denormalized_basis(n,field)
1982 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1983 self.rank.set_cache(n)
1984
1985
1986 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1987 r"""
1988 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1989 with the half-trace inner product and jordan product ``x*y =
1990 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1991 symmetric positive-definite "bilinear form" matrix. It has
1992 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1993 when ``B`` is the identity matrix of order ``n-1``.
1994
1995 SETUP::
1996
1997 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1998 ....: JordanSpinEJA)
1999
2000 EXAMPLES:
2001
2002 When no bilinear form is specified, the identity matrix is used,
2003 and the resulting algebra is the Jordan spin algebra::
2004
2005 sage: J0 = BilinearFormEJA(3)
2006 sage: J1 = JordanSpinEJA(3)
2007 sage: J0.multiplication_table() == J0.multiplication_table()
2008 True
2009
2010 TESTS:
2011
2012 We can create a zero-dimensional algebra::
2013
2014 sage: J = BilinearFormEJA(0)
2015 sage: J.basis()
2016 Finite family {}
2017
2018 We can check the multiplication condition given in the Jordan, von
2019 Neumann, and Wigner paper (and also discussed on my "On the
2020 symmetry..." paper). Note that this relies heavily on the standard
2021 choice of basis, as does anything utilizing the bilinear form matrix::
2022
2023 sage: set_random_seed()
2024 sage: n = ZZ.random_element(5)
2025 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2026 sage: B = M.transpose()*M
2027 sage: J = BilinearFormEJA(n, B=B)
2028 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2029 sage: V = J.vector_space()
2030 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2031 ....: for ei in eis ]
2032 sage: actual = [ sis[i]*sis[j]
2033 ....: for i in range(n-1)
2034 ....: for j in range(n-1) ]
2035 sage: expected = [ J.one() if i == j else J.zero()
2036 ....: for i in range(n-1)
2037 ....: for j in range(n-1) ]
2038 sage: actual == expected
2039 True
2040 """
2041 def __init__(self, n, field=AA, B=None, **kwargs):
2042 if B is None:
2043 self._B = matrix.identity(field, max(0,n-1))
2044 else:
2045 self._B = B
2046
2047 V = VectorSpace(field, n)
2048 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
2049 for i in range(n):
2050 for j in range(n):
2051 x = V.gen(i)
2052 y = V.gen(j)
2053 x0 = x[0]
2054 xbar = x[1:]
2055 y0 = y[0]
2056 ybar = y[1:]
2057 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
2058 zbar = y0*xbar + x0*ybar
2059 z = V([z0] + zbar.list())
2060 mult_table[i][j] = z
2061
2062 # The rank of this algebra is two, unless we're in a
2063 # one-dimensional ambient space (because the rank is bounded
2064 # by the ambient dimension).
2065 fdeja = super(BilinearFormEJA, self)
2066 fdeja.__init__(field, mult_table, **kwargs)
2067 self.rank.set_cache(min(n,2))
2068
2069 def inner_product(self, x, y):
2070 r"""
2071 Half of the trace inner product.
2072
2073 This is defined so that the special case of the Jordan spin
2074 algebra gets the usual inner product.
2075
2076 SETUP::
2077
2078 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2079
2080 TESTS:
2081
2082 Ensure that this is one-half of the trace inner-product when
2083 the algebra isn't just the reals (when ``n`` isn't one). This
2084 is in Faraut and Koranyi, and also my "On the symmetry..."
2085 paper::
2086
2087 sage: set_random_seed()
2088 sage: n = ZZ.random_element(2,5)
2089 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2090 sage: B = M.transpose()*M
2091 sage: J = BilinearFormEJA(n, B=B)
2092 sage: x = J.random_element()
2093 sage: y = J.random_element()
2094 sage: x.inner_product(y) == (x*y).trace()/2
2095 True
2096
2097 """
2098 xvec = x.to_vector()
2099 xbar = xvec[1:]
2100 yvec = y.to_vector()
2101 ybar = yvec[1:]
2102 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2103
2104
2105 class JordanSpinEJA(BilinearFormEJA):
2106 """
2107 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2108 with the usual inner product and jordan product ``x*y =
2109 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2110 the reals.
2111
2112 SETUP::
2113
2114 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2115
2116 EXAMPLES:
2117
2118 This multiplication table can be verified by hand::
2119
2120 sage: J = JordanSpinEJA(4)
2121 sage: e0,e1,e2,e3 = J.gens()
2122 sage: e0*e0
2123 e0
2124 sage: e0*e1
2125 e1
2126 sage: e0*e2
2127 e2
2128 sage: e0*e3
2129 e3
2130 sage: e1*e2
2131 0
2132 sage: e1*e3
2133 0
2134 sage: e2*e3
2135 0
2136
2137 We can change the generator prefix::
2138
2139 sage: JordanSpinEJA(2, prefix='B').gens()
2140 (B0, B1)
2141
2142 TESTS:
2143
2144 Ensure that we have the usual inner product on `R^n`::
2145
2146 sage: set_random_seed()
2147 sage: J = JordanSpinEJA.random_instance()
2148 sage: x,y = J.random_elements(2)
2149 sage: X = x.natural_representation()
2150 sage: Y = y.natural_representation()
2151 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2152 True
2153
2154 """
2155 def __init__(self, n, field=AA, **kwargs):
2156 # This is a special case of the BilinearFormEJA with the identity
2157 # matrix as its bilinear form.
2158 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2159
2160
2161 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2162 """
2163 The trivial Euclidean Jordan algebra consisting of only a zero element.
2164
2165 SETUP::
2166
2167 sage: from mjo.eja.eja_algebra import TrivialEJA
2168
2169 EXAMPLES::
2170
2171 sage: J = TrivialEJA()
2172 sage: J.dimension()
2173 0
2174 sage: J.zero()
2175 0
2176 sage: J.one()
2177 0
2178 sage: 7*J.one()*12*J.one()
2179 0
2180 sage: J.one().inner_product(J.one())
2181 0
2182 sage: J.one().norm()
2183 0
2184 sage: J.one().subalgebra_generated_by()
2185 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2186 sage: J.rank()
2187 0
2188
2189 """
2190 def __init__(self, field=AA, **kwargs):
2191 mult_table = []
2192 fdeja = super(TrivialEJA, self)
2193 # The rank is zero using my definition, namely the dimension of the
2194 # largest subalgebra generated by any element.
2195 fdeja.__init__(field, mult_table, **kwargs)
2196 self.rank.set_cache(0)