]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: move the "field" argument to (usually passed through) kwargs.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6
7
8 SETUP::
9
10 sage: from mjo.eja.eja_algebra import random_eja
11
12 EXAMPLES::
13
14 sage: random_eja()
15 Euclidean Jordan algebra of dimension...
16
17 """
18
19 from itertools import repeat
20
21 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
22 from sage.categories.magmatic_algebras import MagmaticAlgebras
23 from sage.combinat.free_module import CombinatorialFreeModule
24 from sage.matrix.constructor import matrix
25 from sage.matrix.matrix_space import MatrixSpace
26 from sage.misc.cachefunc import cached_method
27 from sage.misc.table import table
28 from sage.modules.free_module import FreeModule, VectorSpace
29 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
30 PolynomialRing,
31 QuadraticField)
32 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo.eja.eja_utils import _mat2vec
35
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
37 r"""
38 The lowest-level class for representing a Euclidean Jordan algebra.
39 """
40 def _coerce_map_from_base_ring(self):
41 """
42 Disable the map from the base ring into the algebra.
43
44 Performing a nonsense conversion like this automatically
45 is counterpedagogical. The fallback is to try the usual
46 element constructor, which should also fail.
47
48 SETUP::
49
50 sage: from mjo.eja.eja_algebra import random_eja
51
52 TESTS::
53
54 sage: set_random_seed()
55 sage: J = random_eja()
56 sage: J(1)
57 Traceback (most recent call last):
58 ...
59 ValueError: not an element of this algebra
60
61 """
62 return None
63
64 def __init__(self,
65 field,
66 multiplication_table,
67 inner_product_table,
68 prefix='e',
69 category=None,
70 matrix_basis=None,
71 check_field=True,
72 check_axioms=True):
73 """
74 INPUT:
75
76 * field -- the scalar field for this algebra (must be real)
77
78 * multiplication_table -- the multiplication table for this
79 algebra's implicit basis. Only the lower-triangular portion
80 of the table is used, since the multiplication is assumed
81 to be commutative.
82
83 SETUP::
84
85 sage: from mjo.eja.eja_algebra import (
86 ....: FiniteDimensionalEuclideanJordanAlgebra,
87 ....: JordanSpinEJA,
88 ....: random_eja)
89
90 EXAMPLES:
91
92 By definition, Jordan multiplication commutes::
93
94 sage: set_random_seed()
95 sage: J = random_eja()
96 sage: x,y = J.random_elements(2)
97 sage: x*y == y*x
98 True
99
100 An error is raised if the Jordan product is not commutative::
101
102 sage: JP = ((1,2),(0,0))
103 sage: IP = ((1,0),(0,1))
104 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
105 Traceback (most recent call last):
106 ...
107 ValueError: Jordan product is not commutative
108
109 An error is raised if the inner-product is not commutative::
110
111 sage: JP = ((1,0),(0,1))
112 sage: IP = ((1,2),(0,0))
113 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
114 Traceback (most recent call last):
115 ...
116 ValueError: inner-product is not commutative
117
118 TESTS:
119
120 The ``field`` we're given must be real with ``check_field=True``::
121
122 sage: JordanSpinEJA(2, field=QQbar)
123 Traceback (most recent call last):
124 ...
125 ValueError: scalar field is not real
126 sage: JordanSpinEJA(2, field=QQbar, check_field=False)
127 Euclidean Jordan algebra of dimension 2 over Algebraic Field
128
129 The multiplication table must be square with ``check_axioms=True``::
130
131 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
132 Traceback (most recent call last):
133 ...
134 ValueError: multiplication table is not square
135
136 The multiplication and inner-product tables must be the same
137 size (and in particular, the inner-product table must also be
138 square) with ``check_axioms=True``::
139
140 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
141 Traceback (most recent call last):
142 ...
143 ValueError: multiplication and inner-product tables are
144 different sizes
145 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
146 Traceback (most recent call last):
147 ...
148 ValueError: multiplication and inner-product tables are
149 different sizes
150
151 """
152 if check_field:
153 if not field.is_subring(RR):
154 # Note: this does return true for the real algebraic
155 # field, the rationals, and any quadratic field where
156 # we've specified a real embedding.
157 raise ValueError("scalar field is not real")
158
159
160 # The multiplication and inner-product tables should be square
161 # if the user wants us to verify them. And we verify them as
162 # soon as possible, because we want to exploit their symmetry.
163 n = len(multiplication_table)
164 if check_axioms:
165 if not all( len(l) == n for l in multiplication_table ):
166 raise ValueError("multiplication table is not square")
167
168 # If the multiplication table is square, we can check if
169 # the inner-product table is square by comparing it to the
170 # multiplication table's dimensions.
171 msg = "multiplication and inner-product tables are different sizes"
172 if not len(inner_product_table) == n:
173 raise ValueError(msg)
174
175 if not all( len(l) == n for l in inner_product_table ):
176 raise ValueError(msg)
177
178 # Check commutativity of the Jordan product (symmetry of
179 # the multiplication table) and the commutativity of the
180 # inner-product (symmetry of the inner-product table)
181 # first if we're going to check them at all.. This has to
182 # be done before we define product_on_basis(), because
183 # that method assumes that self._multiplication_table is
184 # symmetric. And it has to be done before we build
185 # self._inner_product_matrix, because the process used to
186 # construct it assumes symmetry as well.
187 if not all( multiplication_table[j][i]
188 == multiplication_table[i][j]
189 for i in range(n)
190 for j in range(i+1) ):
191 raise ValueError("Jordan product is not commutative")
192
193 if not all( inner_product_table[j][i]
194 == inner_product_table[i][j]
195 for i in range(n)
196 for j in range(i+1) ):
197 raise ValueError("inner-product is not commutative")
198
199 self._matrix_basis = matrix_basis
200
201 if category is None:
202 category = MagmaticAlgebras(field).FiniteDimensional()
203 category = category.WithBasis().Unital()
204
205 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
206 fda.__init__(field,
207 range(n),
208 prefix=prefix,
209 category=category)
210 self.print_options(bracket='')
211
212 # The multiplication table we're given is necessarily in terms
213 # of vectors, because we don't have an algebra yet for
214 # anything to be an element of. However, it's faster in the
215 # long run to have the multiplication table be in terms of
216 # algebra elements. We do this after calling the superclass
217 # constructor so that from_vector() knows what to do.
218 #
219 # Note: we take advantage of symmetry here, and only store
220 # the lower-triangular portion of the table.
221 self._multiplication_table = [ [ self.vector_space().zero()
222 for j in range(i+1) ]
223 for i in range(n) ]
224
225 for i in range(n):
226 for j in range(i+1):
227 elt = self.from_vector(multiplication_table[i][j])
228 self._multiplication_table[i][j] = elt
229
230 self._multiplication_table = tuple(map(tuple, self._multiplication_table))
231
232 # Save our inner product as a matrix, since the efficiency of
233 # matrix multiplication will usually outweigh the fact that we
234 # have to store a redundant upper- or lower-triangular part.
235 # Pre-cache the fact that these are Hermitian (real symmetric,
236 # in fact) in case some e.g. matrix multiplication routine can
237 # take advantage of it.
238 ip_matrix_constructor = lambda i,j: inner_product_table[i][j] if j <= i else inner_product_table[j][i]
239 self._inner_product_matrix = matrix(field, n, ip_matrix_constructor)
240 self._inner_product_matrix._cache = {'hermitian': True}
241 self._inner_product_matrix.set_immutable()
242
243 if check_axioms:
244 if not self._is_jordanian():
245 raise ValueError("Jordan identity does not hold")
246 if not self._inner_product_is_associative():
247 raise ValueError("inner product is not associative")
248
249 def _element_constructor_(self, elt):
250 """
251 Construct an element of this algebra from its vector or matrix
252 representation.
253
254 This gets called only after the parent element _call_ method
255 fails to find a coercion for the argument.
256
257 SETUP::
258
259 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
260 ....: HadamardEJA,
261 ....: RealSymmetricEJA)
262
263 EXAMPLES:
264
265 The identity in `S^n` is converted to the identity in the EJA::
266
267 sage: J = RealSymmetricEJA(3)
268 sage: I = matrix.identity(QQ,3)
269 sage: J(I) == J.one()
270 True
271
272 This skew-symmetric matrix can't be represented in the EJA::
273
274 sage: J = RealSymmetricEJA(3)
275 sage: A = matrix(QQ,3, lambda i,j: i-j)
276 sage: J(A)
277 Traceback (most recent call last):
278 ...
279 ValueError: not an element of this algebra
280
281 TESTS:
282
283 Ensure that we can convert any element of the two non-matrix
284 simple algebras (whose matrix representations are columns)
285 back and forth faithfully::
286
287 sage: set_random_seed()
288 sage: J = HadamardEJA.random_instance()
289 sage: x = J.random_element()
290 sage: J(x.to_vector().column()) == x
291 True
292 sage: J = JordanSpinEJA.random_instance()
293 sage: x = J.random_element()
294 sage: J(x.to_vector().column()) == x
295 True
296
297 """
298 msg = "not an element of this algebra"
299 if elt == 0:
300 # The superclass implementation of random_element()
301 # needs to be able to coerce "0" into the algebra.
302 return self.zero()
303 elif elt in self.base_ring():
304 # Ensure that no base ring -> algebra coercion is performed
305 # by this method. There's some stupidity in sage that would
306 # otherwise propagate to this method; for example, sage thinks
307 # that the integer 3 belongs to the space of 2-by-2 matrices.
308 raise ValueError(msg)
309
310 if elt not in self.matrix_space():
311 raise ValueError(msg)
312
313 # Thanks for nothing! Matrix spaces aren't vector spaces in
314 # Sage, so we have to figure out its matrix-basis coordinates
315 # ourselves. We use the basis space's ring instead of the
316 # element's ring because the basis space might be an algebraic
317 # closure whereas the base ring of the 3-by-3 identity matrix
318 # could be QQ instead of QQbar.
319 #
320 # We pass check=False because the matrix basis is "guaranteed"
321 # to be linearly independent... right? Ha ha.
322 V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
323 W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
324 check=False)
325
326 try:
327 coords = W.coordinate_vector(_mat2vec(elt))
328 except ArithmeticError: # vector is not in free module
329 raise ValueError(msg)
330
331 return self.from_vector(coords)
332
333 def _repr_(self):
334 """
335 Return a string representation of ``self``.
336
337 SETUP::
338
339 sage: from mjo.eja.eja_algebra import JordanSpinEJA
340
341 TESTS:
342
343 Ensure that it says what we think it says::
344
345 sage: JordanSpinEJA(2, field=AA)
346 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
347 sage: JordanSpinEJA(3, field=RDF)
348 Euclidean Jordan algebra of dimension 3 over Real Double Field
349
350 """
351 fmt = "Euclidean Jordan algebra of dimension {} over {}"
352 return fmt.format(self.dimension(), self.base_ring())
353
354 def product_on_basis(self, i, j):
355 # We only stored the lower-triangular portion of the
356 # multiplication table.
357 if j <= i:
358 return self._multiplication_table[i][j]
359 else:
360 return self._multiplication_table[j][i]
361
362 def _is_commutative(self):
363 r"""
364 Whether or not this algebra's multiplication table is commutative.
365
366 This method should of course always return ``True``, unless
367 this algebra was constructed with ``check_axioms=False`` and
368 passed an invalid multiplication table.
369 """
370 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
371 for i in range(self.dimension())
372 for j in range(self.dimension()) )
373
374 def _is_jordanian(self):
375 r"""
376 Whether or not this algebra's multiplication table respects the
377 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
378
379 We only check one arrangement of `x` and `y`, so for a
380 ``True`` result to be truly true, you should also check
381 :meth:`_is_commutative`. This method should of course always
382 return ``True``, unless this algebra was constructed with
383 ``check_axioms=False`` and passed an invalid multiplication table.
384 """
385 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
386 ==
387 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
388 for i in range(self.dimension())
389 for j in range(self.dimension()) )
390
391 def _inner_product_is_associative(self):
392 r"""
393 Return whether or not this algebra's inner product `B` is
394 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
395
396 This method should of course always return ``True``, unless
397 this algebra was constructed with ``check_axioms=False`` and
398 passed an invalid multiplication table.
399 """
400
401 # Used to check whether or not something is zero in an inexact
402 # ring. This number is sufficient to allow the construction of
403 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
404 epsilon = 1e-16
405
406 for i in range(self.dimension()):
407 for j in range(self.dimension()):
408 for k in range(self.dimension()):
409 x = self.monomial(i)
410 y = self.monomial(j)
411 z = self.monomial(k)
412 diff = (x*y).inner_product(z) - x.inner_product(y*z)
413
414 if self.base_ring().is_exact():
415 if diff != 0:
416 return False
417 else:
418 if diff.abs() > epsilon:
419 return False
420
421 return True
422
423 @cached_method
424 def characteristic_polynomial_of(self):
425 """
426 Return the algebra's "characteristic polynomial of" function,
427 which is itself a multivariate polynomial that, when evaluated
428 at the coordinates of some algebra element, returns that
429 element's characteristic polynomial.
430
431 The resulting polynomial has `n+1` variables, where `n` is the
432 dimension of this algebra. The first `n` variables correspond to
433 the coordinates of an algebra element: when evaluated at the
434 coordinates of an algebra element with respect to a certain
435 basis, the result is a univariate polynomial (in the one
436 remaining variable ``t``), namely the characteristic polynomial
437 of that element.
438
439 SETUP::
440
441 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
442
443 EXAMPLES:
444
445 The characteristic polynomial in the spin algebra is given in
446 Alizadeh, Example 11.11::
447
448 sage: J = JordanSpinEJA(3)
449 sage: p = J.characteristic_polynomial_of(); p
450 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
451 sage: xvec = J.one().to_vector()
452 sage: p(*xvec)
453 t^2 - 2*t + 1
454
455 By definition, the characteristic polynomial is a monic
456 degree-zero polynomial in a rank-zero algebra. Note that
457 Cayley-Hamilton is indeed satisfied since the polynomial
458 ``1`` evaluates to the identity element of the algebra on
459 any argument::
460
461 sage: J = TrivialEJA()
462 sage: J.characteristic_polynomial_of()
463 1
464
465 """
466 r = self.rank()
467 n = self.dimension()
468
469 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
470 a = self._charpoly_coefficients()
471
472 # We go to a bit of trouble here to reorder the
473 # indeterminates, so that it's easier to evaluate the
474 # characteristic polynomial at x's coordinates and get back
475 # something in terms of t, which is what we want.
476 S = PolynomialRing(self.base_ring(),'t')
477 t = S.gen(0)
478 if r > 0:
479 R = a[0].parent()
480 S = PolynomialRing(S, R.variable_names())
481 t = S(t)
482
483 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
484
485 def coordinate_polynomial_ring(self):
486 r"""
487 The multivariate polynomial ring in which this algebra's
488 :meth:`characteristic_polynomial_of` lives.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (HadamardEJA,
493 ....: RealSymmetricEJA)
494
495 EXAMPLES::
496
497 sage: J = HadamardEJA(2)
498 sage: J.coordinate_polynomial_ring()
499 Multivariate Polynomial Ring in X1, X2...
500 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
501 sage: J.coordinate_polynomial_ring()
502 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
503
504 """
505 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
506 return PolynomialRing(self.base_ring(), var_names)
507
508 def inner_product(self, x, y):
509 """
510 The inner product associated with this Euclidean Jordan algebra.
511
512 Defaults to the trace inner product, but can be overridden by
513 subclasses if they are sure that the necessary properties are
514 satisfied.
515
516 SETUP::
517
518 sage: from mjo.eja.eja_algebra import (random_eja,
519 ....: HadamardEJA,
520 ....: BilinearFormEJA)
521
522 EXAMPLES:
523
524 Our inner product is "associative," which means the following for
525 a symmetric bilinear form::
526
527 sage: set_random_seed()
528 sage: J = random_eja()
529 sage: x,y,z = J.random_elements(3)
530 sage: (x*y).inner_product(z) == y.inner_product(x*z)
531 True
532
533 TESTS:
534
535 Ensure that this is the usual inner product for the algebras
536 over `R^n`::
537
538 sage: set_random_seed()
539 sage: J = HadamardEJA.random_instance()
540 sage: x,y = J.random_elements(2)
541 sage: actual = x.inner_product(y)
542 sage: expected = x.to_vector().inner_product(y.to_vector())
543 sage: actual == expected
544 True
545
546 Ensure that this is one-half of the trace inner-product in a
547 BilinearFormEJA that isn't just the reals (when ``n`` isn't
548 one). This is in Faraut and Koranyi, and also my "On the
549 symmetry..." paper::
550
551 sage: set_random_seed()
552 sage: J = BilinearFormEJA.random_instance()
553 sage: n = J.dimension()
554 sage: x = J.random_element()
555 sage: y = J.random_element()
556 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
557 True
558 """
559 B = self._inner_product_matrix
560 return (B*x.to_vector()).inner_product(y.to_vector())
561
562
563 def is_trivial(self):
564 """
565 Return whether or not this algebra is trivial.
566
567 A trivial algebra contains only the zero element.
568
569 SETUP::
570
571 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
572 ....: TrivialEJA)
573
574 EXAMPLES::
575
576 sage: J = ComplexHermitianEJA(3)
577 sage: J.is_trivial()
578 False
579
580 ::
581
582 sage: J = TrivialEJA()
583 sage: J.is_trivial()
584 True
585
586 """
587 return self.dimension() == 0
588
589
590 def multiplication_table(self):
591 """
592 Return a visual representation of this algebra's multiplication
593 table (on basis elements).
594
595 SETUP::
596
597 sage: from mjo.eja.eja_algebra import JordanSpinEJA
598
599 EXAMPLES::
600
601 sage: J = JordanSpinEJA(4)
602 sage: J.multiplication_table()
603 +----++----+----+----+----+
604 | * || e0 | e1 | e2 | e3 |
605 +====++====+====+====+====+
606 | e0 || e0 | e1 | e2 | e3 |
607 +----++----+----+----+----+
608 | e1 || e1 | e0 | 0 | 0 |
609 +----++----+----+----+----+
610 | e2 || e2 | 0 | e0 | 0 |
611 +----++----+----+----+----+
612 | e3 || e3 | 0 | 0 | e0 |
613 +----++----+----+----+----+
614
615 """
616 n = self.dimension()
617 M = [ [ self.zero() for j in range(n) ]
618 for i in range(n) ]
619 for i in range(n):
620 for j in range(i+1):
621 M[i][j] = self._multiplication_table[i][j]
622 M[j][i] = M[i][j]
623
624 for i in range(n):
625 # Prepend the left "header" column entry Can't do this in
626 # the loop because it messes up the symmetry.
627 M[i] = [self.monomial(i)] + M[i]
628
629 # Prepend the header row.
630 M = [["*"] + list(self.gens())] + M
631 return table(M, header_row=True, header_column=True, frame=True)
632
633
634 def matrix_basis(self):
635 """
636 Return an (often more natural) representation of this algebras
637 basis as an ordered tuple of matrices.
638
639 Every finite-dimensional Euclidean Jordan Algebra is a, up to
640 Jordan isomorphism, a direct sum of five simple
641 algebras---four of which comprise Hermitian matrices. And the
642 last type of algebra can of course be thought of as `n`-by-`1`
643 column matrices (ambiguusly called column vectors) to avoid
644 special cases. As a result, matrices (and column vectors) are
645 a natural representation format for Euclidean Jordan algebra
646 elements.
647
648 But, when we construct an algebra from a basis of matrices,
649 those matrix representations are lost in favor of coordinate
650 vectors *with respect to* that basis. We could eventually
651 convert back if we tried hard enough, but having the original
652 representations handy is valuable enough that we simply store
653 them and return them from this method.
654
655 Why implement this for non-matrix algebras? Avoiding special
656 cases for the :class:`BilinearFormEJA` pays with simplicity in
657 its own right. But mainly, we would like to be able to assume
658 that elements of a :class:`DirectSumEJA` can be displayed
659 nicely, without having to have special classes for direct sums
660 one of whose components was a matrix algebra.
661
662 SETUP::
663
664 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
665 ....: RealSymmetricEJA)
666
667 EXAMPLES::
668
669 sage: J = RealSymmetricEJA(2)
670 sage: J.basis()
671 Finite family {0: e0, 1: e1, 2: e2}
672 sage: J.matrix_basis()
673 (
674 [1 0] [ 0 0.7071067811865475?] [0 0]
675 [0 0], [0.7071067811865475? 0], [0 1]
676 )
677
678 ::
679
680 sage: J = JordanSpinEJA(2)
681 sage: J.basis()
682 Finite family {0: e0, 1: e1}
683 sage: J.matrix_basis()
684 (
685 [1] [0]
686 [0], [1]
687 )
688 """
689 if self._matrix_basis is None:
690 M = self.matrix_space()
691 return tuple( M(b.to_vector()) for b in self.basis() )
692 else:
693 return self._matrix_basis
694
695
696 def matrix_space(self):
697 """
698 Return the matrix space in which this algebra's elements live, if
699 we think of them as matrices (including column vectors of the
700 appropriate size).
701
702 Generally this will be an `n`-by-`1` column-vector space,
703 except when the algebra is trivial. There it's `n`-by-`n`
704 (where `n` is zero), to ensure that two elements of the matrix
705 space (empty matrices) can be multiplied.
706
707 Matrix algebras override this with something more useful.
708 """
709 if self.is_trivial():
710 return MatrixSpace(self.base_ring(), 0)
711 elif self._matrix_basis is None or len(self._matrix_basis) == 0:
712 return MatrixSpace(self.base_ring(), self.dimension(), 1)
713 else:
714 return self._matrix_basis[0].matrix_space()
715
716
717 @cached_method
718 def one(self):
719 """
720 Return the unit element of this algebra.
721
722 SETUP::
723
724 sage: from mjo.eja.eja_algebra import (HadamardEJA,
725 ....: random_eja)
726
727 EXAMPLES::
728
729 sage: J = HadamardEJA(5)
730 sage: J.one()
731 e0 + e1 + e2 + e3 + e4
732
733 TESTS:
734
735 The identity element acts like the identity::
736
737 sage: set_random_seed()
738 sage: J = random_eja()
739 sage: x = J.random_element()
740 sage: J.one()*x == x and x*J.one() == x
741 True
742
743 The matrix of the unit element's operator is the identity::
744
745 sage: set_random_seed()
746 sage: J = random_eja()
747 sage: actual = J.one().operator().matrix()
748 sage: expected = matrix.identity(J.base_ring(), J.dimension())
749 sage: actual == expected
750 True
751
752 Ensure that the cached unit element (often precomputed by
753 hand) agrees with the computed one::
754
755 sage: set_random_seed()
756 sage: J = random_eja()
757 sage: cached = J.one()
758 sage: J.one.clear_cache()
759 sage: J.one() == cached
760 True
761
762 """
763 # We can brute-force compute the matrices of the operators
764 # that correspond to the basis elements of this algebra.
765 # If some linear combination of those basis elements is the
766 # algebra identity, then the same linear combination of
767 # their matrices has to be the identity matrix.
768 #
769 # Of course, matrices aren't vectors in sage, so we have to
770 # appeal to the "long vectors" isometry.
771 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
772
773 # Now we use basic linear algebra to find the coefficients,
774 # of the matrices-as-vectors-linear-combination, which should
775 # work for the original algebra basis too.
776 A = matrix(self.base_ring(), oper_vecs)
777
778 # We used the isometry on the left-hand side already, but we
779 # still need to do it for the right-hand side. Recall that we
780 # wanted something that summed to the identity matrix.
781 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
782
783 # Now if there's an identity element in the algebra, this
784 # should work. We solve on the left to avoid having to
785 # transpose the matrix "A".
786 return self.from_vector(A.solve_left(b))
787
788
789 def peirce_decomposition(self, c):
790 """
791 The Peirce decomposition of this algebra relative to the
792 idempotent ``c``.
793
794 In the future, this can be extended to a complete system of
795 orthogonal idempotents.
796
797 INPUT:
798
799 - ``c`` -- an idempotent of this algebra.
800
801 OUTPUT:
802
803 A triple (J0, J5, J1) containing two subalgebras and one subspace
804 of this algebra,
805
806 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
807 corresponding to the eigenvalue zero.
808
809 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
810 corresponding to the eigenvalue one-half.
811
812 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
813 corresponding to the eigenvalue one.
814
815 These are the only possible eigenspaces for that operator, and this
816 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
817 orthogonal, and are subalgebras of this algebra with the appropriate
818 restrictions.
819
820 SETUP::
821
822 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
823
824 EXAMPLES:
825
826 The canonical example comes from the symmetric matrices, which
827 decompose into diagonal and off-diagonal parts::
828
829 sage: J = RealSymmetricEJA(3)
830 sage: C = matrix(QQ, [ [1,0,0],
831 ....: [0,1,0],
832 ....: [0,0,0] ])
833 sage: c = J(C)
834 sage: J0,J5,J1 = J.peirce_decomposition(c)
835 sage: J0
836 Euclidean Jordan algebra of dimension 1...
837 sage: J5
838 Vector space of degree 6 and dimension 2...
839 sage: J1
840 Euclidean Jordan algebra of dimension 3...
841 sage: J0.one().to_matrix()
842 [0 0 0]
843 [0 0 0]
844 [0 0 1]
845 sage: orig_df = AA.options.display_format
846 sage: AA.options.display_format = 'radical'
847 sage: J.from_vector(J5.basis()[0]).to_matrix()
848 [ 0 0 1/2*sqrt(2)]
849 [ 0 0 0]
850 [1/2*sqrt(2) 0 0]
851 sage: J.from_vector(J5.basis()[1]).to_matrix()
852 [ 0 0 0]
853 [ 0 0 1/2*sqrt(2)]
854 [ 0 1/2*sqrt(2) 0]
855 sage: AA.options.display_format = orig_df
856 sage: J1.one().to_matrix()
857 [1 0 0]
858 [0 1 0]
859 [0 0 0]
860
861 TESTS:
862
863 Every algebra decomposes trivially with respect to its identity
864 element::
865
866 sage: set_random_seed()
867 sage: J = random_eja()
868 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
869 sage: J0.dimension() == 0 and J5.dimension() == 0
870 True
871 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
872 True
873
874 The decomposition is into eigenspaces, and its components are
875 therefore necessarily orthogonal. Moreover, the identity
876 elements in the two subalgebras are the projections onto their
877 respective subspaces of the superalgebra's identity element::
878
879 sage: set_random_seed()
880 sage: J = random_eja()
881 sage: x = J.random_element()
882 sage: if not J.is_trivial():
883 ....: while x.is_nilpotent():
884 ....: x = J.random_element()
885 sage: c = x.subalgebra_idempotent()
886 sage: J0,J5,J1 = J.peirce_decomposition(c)
887 sage: ipsum = 0
888 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
889 ....: w = w.superalgebra_element()
890 ....: y = J.from_vector(y)
891 ....: z = z.superalgebra_element()
892 ....: ipsum += w.inner_product(y).abs()
893 ....: ipsum += w.inner_product(z).abs()
894 ....: ipsum += y.inner_product(z).abs()
895 sage: ipsum
896 0
897 sage: J1(c) == J1.one()
898 True
899 sage: J0(J.one() - c) == J0.one()
900 True
901
902 """
903 if not c.is_idempotent():
904 raise ValueError("element is not idempotent: %s" % c)
905
906 from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
907
908 # Default these to what they should be if they turn out to be
909 # trivial, because eigenspaces_left() won't return eigenvalues
910 # corresponding to trivial spaces (e.g. it returns only the
911 # eigenspace corresponding to lambda=1 if you take the
912 # decomposition relative to the identity element).
913 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
914 J0 = trivial # eigenvalue zero
915 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
916 J1 = trivial # eigenvalue one
917
918 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
919 if eigval == ~(self.base_ring()(2)):
920 J5 = eigspace
921 else:
922 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
923 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
924 gens,
925 check_axioms=False)
926 if eigval == 0:
927 J0 = subalg
928 elif eigval == 1:
929 J1 = subalg
930 else:
931 raise ValueError("unexpected eigenvalue: %s" % eigval)
932
933 return (J0, J5, J1)
934
935
936 def random_element(self, thorough=False):
937 r"""
938 Return a random element of this algebra.
939
940 Our algebra superclass method only returns a linear
941 combination of at most two basis elements. We instead
942 want the vector space "random element" method that
943 returns a more diverse selection.
944
945 INPUT:
946
947 - ``thorough`` -- (boolean; default False) whether or not we
948 should generate irrational coefficients for the random
949 element when our base ring is irrational; this slows the
950 algebra operations to a crawl, but any truly random method
951 should include them
952
953 """
954 # For a general base ring... maybe we can trust this to do the
955 # right thing? Unlikely, but.
956 V = self.vector_space()
957 v = V.random_element()
958
959 if self.base_ring() is AA:
960 # The "random element" method of the algebraic reals is
961 # stupid at the moment, and only returns integers between
962 # -2 and 2, inclusive:
963 #
964 # https://trac.sagemath.org/ticket/30875
965 #
966 # Instead, we implement our own "random vector" method,
967 # and then coerce that into the algebra. We use the vector
968 # space degree here instead of the dimension because a
969 # subalgebra could (for example) be spanned by only two
970 # vectors, each with five coordinates. We need to
971 # generate all five coordinates.
972 if thorough:
973 v *= QQbar.random_element().real()
974 else:
975 v *= QQ.random_element()
976
977 return self.from_vector(V.coordinate_vector(v))
978
979 def random_elements(self, count, thorough=False):
980 """
981 Return ``count`` random elements as a tuple.
982
983 INPUT:
984
985 - ``thorough`` -- (boolean; default False) whether or not we
986 should generate irrational coefficients for the random
987 elements when our base ring is irrational; this slows the
988 algebra operations to a crawl, but any truly random method
989 should include them
990
991 SETUP::
992
993 sage: from mjo.eja.eja_algebra import JordanSpinEJA
994
995 EXAMPLES::
996
997 sage: J = JordanSpinEJA(3)
998 sage: x,y,z = J.random_elements(3)
999 sage: all( [ x in J, y in J, z in J ])
1000 True
1001 sage: len( J.random_elements(10) ) == 10
1002 True
1003
1004 """
1005 return tuple( self.random_element(thorough)
1006 for idx in range(count) )
1007
1008
1009 @cached_method
1010 def _charpoly_coefficients(self):
1011 r"""
1012 The `r` polynomial coefficients of the "characteristic polynomial
1013 of" function.
1014 """
1015 n = self.dimension()
1016 R = self.coordinate_polynomial_ring()
1017 vars = R.gens()
1018 F = R.fraction_field()
1019
1020 def L_x_i_j(i,j):
1021 # From a result in my book, these are the entries of the
1022 # basis representation of L_x.
1023 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1024 for k in range(n) )
1025
1026 L_x = matrix(F, n, n, L_x_i_j)
1027
1028 r = None
1029 if self.rank.is_in_cache():
1030 r = self.rank()
1031 # There's no need to pad the system with redundant
1032 # columns if we *know* they'll be redundant.
1033 n = r
1034
1035 # Compute an extra power in case the rank is equal to
1036 # the dimension (otherwise, we would stop at x^(r-1)).
1037 x_powers = [ (L_x**k)*self.one().to_vector()
1038 for k in range(n+1) ]
1039 A = matrix.column(F, x_powers[:n])
1040 AE = A.extended_echelon_form()
1041 E = AE[:,n:]
1042 A_rref = AE[:,:n]
1043 if r is None:
1044 r = A_rref.rank()
1045 b = x_powers[r]
1046
1047 # The theory says that only the first "r" coefficients are
1048 # nonzero, and they actually live in the original polynomial
1049 # ring and not the fraction field. We negate them because
1050 # in the actual characteristic polynomial, they get moved
1051 # to the other side where x^r lives.
1052 return -A_rref.solve_right(E*b).change_ring(R)[:r]
1053
1054 @cached_method
1055 def rank(self):
1056 r"""
1057 Return the rank of this EJA.
1058
1059 This is a cached method because we know the rank a priori for
1060 all of the algebras we can construct. Thus we can avoid the
1061 expensive ``_charpoly_coefficients()`` call unless we truly
1062 need to compute the whole characteristic polynomial.
1063
1064 SETUP::
1065
1066 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1067 ....: JordanSpinEJA,
1068 ....: RealSymmetricEJA,
1069 ....: ComplexHermitianEJA,
1070 ....: QuaternionHermitianEJA,
1071 ....: random_eja)
1072
1073 EXAMPLES:
1074
1075 The rank of the Jordan spin algebra is always two::
1076
1077 sage: JordanSpinEJA(2).rank()
1078 2
1079 sage: JordanSpinEJA(3).rank()
1080 2
1081 sage: JordanSpinEJA(4).rank()
1082 2
1083
1084 The rank of the `n`-by-`n` Hermitian real, complex, or
1085 quaternion matrices is `n`::
1086
1087 sage: RealSymmetricEJA(4).rank()
1088 4
1089 sage: ComplexHermitianEJA(3).rank()
1090 3
1091 sage: QuaternionHermitianEJA(2).rank()
1092 2
1093
1094 TESTS:
1095
1096 Ensure that every EJA that we know how to construct has a
1097 positive integer rank, unless the algebra is trivial in
1098 which case its rank will be zero::
1099
1100 sage: set_random_seed()
1101 sage: J = random_eja()
1102 sage: r = J.rank()
1103 sage: r in ZZ
1104 True
1105 sage: r > 0 or (r == 0 and J.is_trivial())
1106 True
1107
1108 Ensure that computing the rank actually works, since the ranks
1109 of all simple algebras are known and will be cached by default::
1110
1111 sage: set_random_seed() # long time
1112 sage: J = random_eja() # long time
1113 sage: caches = J.rank() # long time
1114 sage: J.rank.clear_cache() # long time
1115 sage: J.rank() == cached # long time
1116 True
1117
1118 """
1119 return len(self._charpoly_coefficients())
1120
1121
1122 def vector_space(self):
1123 """
1124 Return the vector space that underlies this algebra.
1125
1126 SETUP::
1127
1128 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1129
1130 EXAMPLES::
1131
1132 sage: J = RealSymmetricEJA(2)
1133 sage: J.vector_space()
1134 Vector space of dimension 3 over...
1135
1136 """
1137 return self.zero().to_vector().parent().ambient_vector_space()
1138
1139
1140 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1141
1142 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1143 r"""
1144 New class for algebras whose supplied basis elements have all rational entries.
1145
1146 SETUP::
1147
1148 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1149
1150 EXAMPLES:
1151
1152 The supplied basis is orthonormalized by default::
1153
1154 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1155 sage: J = BilinearFormEJA(B)
1156 sage: J.matrix_basis()
1157 (
1158 [1] [ 0] [ 0]
1159 [0] [1/5] [32/5]
1160 [0], [ 0], [ 5]
1161 )
1162
1163 """
1164 def __init__(self,
1165 basis,
1166 jordan_product,
1167 inner_product,
1168 field=AA,
1169 orthonormalize=True,
1170 prefix='e',
1171 category=None,
1172 check_field=True,
1173 check_axioms=True):
1174
1175 if check_field:
1176 # Abuse the check_field parameter to check that the entries of
1177 # out basis (in ambient coordinates) are in the field QQ.
1178 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1179 raise TypeError("basis not rational")
1180
1181 # Temporary(?) hack to ensure that the matrix and vector bases
1182 # are over the same ring.
1183 basis = tuple( b.change_ring(field) for b in basis )
1184
1185 n = len(basis)
1186 vector_basis = basis
1187
1188 from sage.structure.element import is_Matrix
1189 basis_is_matrices = False
1190
1191 degree = 0
1192 if n > 0:
1193 if is_Matrix(basis[0]):
1194 basis_is_matrices = True
1195 from mjo.eja.eja_utils import _vec2mat
1196 vector_basis = tuple( map(_mat2vec,basis) )
1197 degree = basis[0].nrows()**2
1198 else:
1199 degree = basis[0].degree()
1200
1201 V = VectorSpace(field, degree)
1202
1203 # If we were asked to orthonormalize, and if the orthonormal
1204 # basis is different from the given one, then we also want to
1205 # compute multiplication and inner-product tables for the
1206 # deorthonormalized basis. These can be used later to
1207 # construct a deorthonormalized copy of this algebra over QQ
1208 # in which several operations are much faster.
1209 self._rational_algebra = None
1210
1211 if orthonormalize:
1212 if self.base_ring() is not QQ:
1213 # There's no point in constructing the extra algebra if this
1214 # one is already rational. If the original basis is rational
1215 # but normalization would make it irrational, then this whole
1216 # constructor will just fail anyway as it tries to stick an
1217 # irrational number into a rational algebra.
1218 #
1219 # Note: the same Jordan and inner-products work here,
1220 # because they are necessarily defined with respect to
1221 # ambient coordinates and not any particular basis.
1222 self._rational_algebra = RationalBasisEuclideanJordanAlgebra(
1223 basis,
1224 jordan_product,
1225 inner_product,
1226 field=QQ,
1227 orthonormalize=False,
1228 prefix=prefix,
1229 category=category,
1230 check_field=False,
1231 check_axioms=False)
1232
1233 # Compute the deorthonormalized tables before we orthonormalize
1234 # the given basis. The "check" parameter here guarantees that
1235 # the basis is linearly-independent.
1236 W = V.span_of_basis( vector_basis, check=check_axioms)
1237
1238 # Note: the Jordan and inner-products are defined in terms
1239 # of the ambient basis. It's important that their arguments
1240 # are in ambient coordinates as well.
1241 for i in range(n):
1242 for j in range(i+1):
1243 # given basis w.r.t. ambient coords
1244 q_i = vector_basis[i]
1245 q_j = vector_basis[j]
1246
1247 if basis_is_matrices:
1248 q_i = _vec2mat(q_i)
1249 q_j = _vec2mat(q_j)
1250
1251 elt = jordan_product(q_i, q_j)
1252 ip = inner_product(q_i, q_j)
1253
1254 if basis_is_matrices:
1255 # do another mat2vec because the multiplication
1256 # table is in terms of vectors
1257 elt = _mat2vec(elt)
1258
1259 # We overwrite the name "vector_basis" in a second, but never modify it
1260 # in place, to this effectively makes a copy of it.
1261 deortho_vector_basis = vector_basis
1262 self._deortho_matrix = None
1263
1264 if orthonormalize:
1265 from mjo.eja.eja_utils import gram_schmidt
1266 if basis_is_matrices:
1267 vector_ip = lambda x,y: inner_product(_vec2mat(x), _vec2mat(y))
1268 vector_basis = gram_schmidt(vector_basis, vector_ip)
1269 else:
1270 vector_basis = gram_schmidt(vector_basis, inner_product)
1271
1272 # Normalize the "matrix" basis, too!
1273 basis = vector_basis
1274
1275 if basis_is_matrices:
1276 basis = tuple( map(_vec2mat,basis) )
1277
1278 W = V.span_of_basis( vector_basis, check=check_axioms)
1279
1280 # Now "W" is the vector space of our algebra coordinates. The
1281 # variables "X1", "X2",... refer to the entries of vectors in
1282 # W. Thus to convert back and forth between the orthonormal
1283 # coordinates and the given ones, we need to stick the original
1284 # basis in W.
1285 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
1286 self._deortho_matrix = matrix( U.coordinate_vector(q)
1287 for q in vector_basis )
1288
1289 # If the superclass constructor is going to verify the
1290 # symmetry of this table, it has better at least be
1291 # square...
1292 if check_axioms:
1293 mult_table = [ [0 for j in range(n)] for i in range(n) ]
1294 ip_table = [ [0 for j in range(n)] for i in range(n) ]
1295 else:
1296 mult_table = [ [0 for j in range(i+1)] for i in range(n) ]
1297 ip_table = [ [0 for j in range(i+1)] for i in range(n) ]
1298
1299 # Note: the Jordan and inner-products are defined in terms
1300 # of the ambient basis. It's important that their arguments
1301 # are in ambient coordinates as well.
1302 for i in range(n):
1303 for j in range(i+1):
1304 # ortho basis w.r.t. ambient coords
1305 q_i = vector_basis[i]
1306 q_j = vector_basis[j]
1307
1308 if basis_is_matrices:
1309 q_i = _vec2mat(q_i)
1310 q_j = _vec2mat(q_j)
1311
1312 elt = jordan_product(q_i, q_j)
1313 ip = inner_product(q_i, q_j)
1314
1315 if basis_is_matrices:
1316 # do another mat2vec because the multiplication
1317 # table is in terms of vectors
1318 elt = _mat2vec(elt)
1319
1320 elt = W.coordinate_vector(elt)
1321 mult_table[i][j] = elt
1322 ip_table[i][j] = ip
1323 if check_axioms:
1324 # The tables are square if we're verifying that they
1325 # are commutative.
1326 mult_table[j][i] = elt
1327 ip_table[j][i] = ip
1328
1329 if basis_is_matrices:
1330 for m in basis:
1331 m.set_immutable()
1332 else:
1333 basis = tuple( x.column() for x in basis )
1334
1335 super().__init__(field,
1336 mult_table,
1337 ip_table,
1338 prefix,
1339 category,
1340 basis, # matrix basis
1341 check_field,
1342 check_axioms)
1343
1344 @cached_method
1345 def _charpoly_coefficients(self):
1346 r"""
1347 SETUP::
1348
1349 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1350 ....: JordanSpinEJA)
1351
1352 EXAMPLES:
1353
1354 The base ring of the resulting polynomial coefficients is what
1355 it should be, and not the rationals (unless the algebra was
1356 already over the rationals)::
1357
1358 sage: J = JordanSpinEJA(3)
1359 sage: J._charpoly_coefficients()
1360 (X1^2 - X2^2 - X3^2, -2*X1)
1361 sage: a0 = J._charpoly_coefficients()[0]
1362 sage: J.base_ring()
1363 Algebraic Real Field
1364 sage: a0.base_ring()
1365 Algebraic Real Field
1366
1367 """
1368 if self.base_ring() is QQ or self._rational_algebra is None:
1369 # There's no need to construct *another* algebra over the
1370 # rationals if this one is already over the
1371 # rationals. Likewise, if we never orthonormalized our
1372 # basis, we might as well just use the given one.
1373 superclass = super(RationalBasisEuclideanJordanAlgebra, self)
1374 return superclass._charpoly_coefficients()
1375
1376 # Do the computation over the rationals. The answer will be
1377 # the same, because all we've done is a change of basis.
1378 # Then, change back from QQ to our real base ring
1379 a = ( a_i.change_ring(self.base_ring())
1380 for a_i in self._rational_algebra._charpoly_coefficients() )
1381
1382 # Now convert the coordinate variables back to the
1383 # deorthonormalized ones.
1384 R = self.coordinate_polynomial_ring()
1385 from sage.modules.free_module_element import vector
1386 X = vector(R, R.gens())
1387 BX = self._deortho_matrix*X
1388
1389 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1390 return tuple( a_i.subs(subs_dict) for a_i in a )
1391
1392 class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra):
1393 r"""
1394 A class for the Euclidean Jordan algebras that we know by name.
1395
1396 These are the Jordan algebras whose basis, multiplication table,
1397 rank, and so on are known a priori. More to the point, they are
1398 the Euclidean Jordan algebras for which we are able to conjure up
1399 a "random instance."
1400
1401 SETUP::
1402
1403 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1404
1405 TESTS:
1406
1407 Our basis is normalized with respect to the algebra's inner
1408 product, unless we specify otherwise::
1409
1410 sage: set_random_seed()
1411 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1412 sage: all( b.norm() == 1 for b in J.gens() )
1413 True
1414
1415 Since our basis is orthonormal with respect to the algebra's inner
1416 product, and since we know that this algebra is an EJA, any
1417 left-multiplication operator's matrix will be symmetric because
1418 natural->EJA basis representation is an isometry and within the
1419 EJA the operator is self-adjoint by the Jordan axiom::
1420
1421 sage: set_random_seed()
1422 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1423 sage: x = J.random_element()
1424 sage: x.operator().is_self_adjoint()
1425 True
1426 """
1427
1428 @staticmethod
1429 def _max_random_instance_size():
1430 """
1431 Return an integer "size" that is an upper bound on the size of
1432 this algebra when it is used in a random test
1433 case. Unfortunately, the term "size" is ambiguous -- when
1434 dealing with `R^n` under either the Hadamard or Jordan spin
1435 product, the "size" refers to the dimension `n`. When dealing
1436 with a matrix algebra (real symmetric or complex/quaternion
1437 Hermitian), it refers to the size of the matrix, which is far
1438 less than the dimension of the underlying vector space.
1439
1440 This method must be implemented in each subclass.
1441 """
1442 raise NotImplementedError
1443
1444 @classmethod
1445 def random_instance(cls, *args, **kwargs):
1446 """
1447 Return a random instance of this type of algebra.
1448
1449 This method should be implemented in each subclass.
1450 """
1451 from sage.misc.prandom import choice
1452 eja_class = choice(cls.__subclasses__())
1453
1454 # These all bubble up to the RationalBasisEuclideanJordanAlgebra
1455 # superclass constructor, so any (kw)args valid there are also
1456 # valid here.
1457 return eja_class.random_instance(*args, **kwargs)
1458
1459
1460 class MatrixEuclideanJordanAlgebra:
1461 @staticmethod
1462 def real_embed(M):
1463 """
1464 Embed the matrix ``M`` into a space of real matrices.
1465
1466 The matrix ``M`` can have entries in any field at the moment:
1467 the real numbers, complex numbers, or quaternions. And although
1468 they are not a field, we can probably support octonions at some
1469 point, too. This function returns a real matrix that "acts like"
1470 the original with respect to matrix multiplication; i.e.
1471
1472 real_embed(M*N) = real_embed(M)*real_embed(N)
1473
1474 """
1475 raise NotImplementedError
1476
1477
1478 @staticmethod
1479 def real_unembed(M):
1480 """
1481 The inverse of :meth:`real_embed`.
1482 """
1483 raise NotImplementedError
1484
1485 @staticmethod
1486 def jordan_product(X,Y):
1487 return (X*Y + Y*X)/2
1488
1489 @classmethod
1490 def trace_inner_product(cls,X,Y):
1491 Xu = cls.real_unembed(X)
1492 Yu = cls.real_unembed(Y)
1493 tr = (Xu*Yu).trace()
1494
1495 try:
1496 # Works in QQ, AA, RDF, et cetera.
1497 return tr.real()
1498 except AttributeError:
1499 # A quaternion doesn't have a real() method, but does
1500 # have coefficient_tuple() method that returns the
1501 # coefficients of 1, i, j, and k -- in that order.
1502 return tr.coefficient_tuple()[0]
1503
1504
1505 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1506 @staticmethod
1507 def real_embed(M):
1508 """
1509 The identity function, for embedding real matrices into real
1510 matrices.
1511 """
1512 return M
1513
1514 @staticmethod
1515 def real_unembed(M):
1516 """
1517 The identity function, for unembedding real matrices from real
1518 matrices.
1519 """
1520 return M
1521
1522
1523 class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra,
1524 RealMatrixEuclideanJordanAlgebra):
1525 """
1526 The rank-n simple EJA consisting of real symmetric n-by-n
1527 matrices, the usual symmetric Jordan product, and the trace inner
1528 product. It has dimension `(n^2 + n)/2` over the reals.
1529
1530 SETUP::
1531
1532 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1533
1534 EXAMPLES::
1535
1536 sage: J = RealSymmetricEJA(2)
1537 sage: e0, e1, e2 = J.gens()
1538 sage: e0*e0
1539 e0
1540 sage: e1*e1
1541 1/2*e0 + 1/2*e2
1542 sage: e2*e2
1543 e2
1544
1545 In theory, our "field" can be any subfield of the reals::
1546
1547 sage: RealSymmetricEJA(2, field=RDF)
1548 Euclidean Jordan algebra of dimension 3 over Real Double Field
1549 sage: RealSymmetricEJA(2, field=RR)
1550 Euclidean Jordan algebra of dimension 3 over Real Field with
1551 53 bits of precision
1552
1553 TESTS:
1554
1555 The dimension of this algebra is `(n^2 + n) / 2`::
1556
1557 sage: set_random_seed()
1558 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1559 sage: n = ZZ.random_element(1, n_max)
1560 sage: J = RealSymmetricEJA(n)
1561 sage: J.dimension() == (n^2 + n)/2
1562 True
1563
1564 The Jordan multiplication is what we think it is::
1565
1566 sage: set_random_seed()
1567 sage: J = RealSymmetricEJA.random_instance()
1568 sage: x,y = J.random_elements(2)
1569 sage: actual = (x*y).to_matrix()
1570 sage: X = x.to_matrix()
1571 sage: Y = y.to_matrix()
1572 sage: expected = (X*Y + Y*X)/2
1573 sage: actual == expected
1574 True
1575 sage: J(expected) == x*y
1576 True
1577
1578 We can change the generator prefix::
1579
1580 sage: RealSymmetricEJA(3, prefix='q').gens()
1581 (q0, q1, q2, q3, q4, q5)
1582
1583 We can construct the (trivial) algebra of rank zero::
1584
1585 sage: RealSymmetricEJA(0)
1586 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1587
1588 """
1589 @classmethod
1590 def _denormalized_basis(cls, n):
1591 """
1592 Return a basis for the space of real symmetric n-by-n matrices.
1593
1594 SETUP::
1595
1596 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1597
1598 TESTS::
1599
1600 sage: set_random_seed()
1601 sage: n = ZZ.random_element(1,5)
1602 sage: B = RealSymmetricEJA._denormalized_basis(n)
1603 sage: all( M.is_symmetric() for M in B)
1604 True
1605
1606 """
1607 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1608 # coordinates.
1609 S = []
1610 for i in range(n):
1611 for j in range(i+1):
1612 Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
1613 if i == j:
1614 Sij = Eij
1615 else:
1616 Sij = Eij + Eij.transpose()
1617 S.append(Sij)
1618 return tuple(S)
1619
1620
1621 @staticmethod
1622 def _max_random_instance_size():
1623 return 4 # Dimension 10
1624
1625 @classmethod
1626 def random_instance(cls, **kwargs):
1627 """
1628 Return a random instance of this type of algebra.
1629 """
1630 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1631 return cls(n, **kwargs)
1632
1633 def __init__(self, n, **kwargs):
1634 super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
1635 self.jordan_product,
1636 self.trace_inner_product,
1637 **kwargs)
1638 self.rank.set_cache(n)
1639 self.one.set_cache(self(matrix.identity(ZZ,n)))
1640
1641
1642 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1643 @staticmethod
1644 def real_embed(M):
1645 """
1646 Embed the n-by-n complex matrix ``M`` into the space of real
1647 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1648 bi` to the block matrix ``[[a,b],[-b,a]]``.
1649
1650 SETUP::
1651
1652 sage: from mjo.eja.eja_algebra import \
1653 ....: ComplexMatrixEuclideanJordanAlgebra
1654
1655 EXAMPLES::
1656
1657 sage: F = QuadraticField(-1, 'I')
1658 sage: x1 = F(4 - 2*i)
1659 sage: x2 = F(1 + 2*i)
1660 sage: x3 = F(-i)
1661 sage: x4 = F(6)
1662 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1663 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1664 [ 4 -2| 1 2]
1665 [ 2 4|-2 1]
1666 [-----+-----]
1667 [ 0 -1| 6 0]
1668 [ 1 0| 0 6]
1669
1670 TESTS:
1671
1672 Embedding is a homomorphism (isomorphism, in fact)::
1673
1674 sage: set_random_seed()
1675 sage: n = ZZ.random_element(3)
1676 sage: F = QuadraticField(-1, 'I')
1677 sage: X = random_matrix(F, n)
1678 sage: Y = random_matrix(F, n)
1679 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1680 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1681 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1682 sage: Xe*Ye == XYe
1683 True
1684
1685 """
1686 n = M.nrows()
1687 if M.ncols() != n:
1688 raise ValueError("the matrix 'M' must be square")
1689
1690 # We don't need any adjoined elements...
1691 field = M.base_ring().base_ring()
1692
1693 blocks = []
1694 for z in M.list():
1695 a = z.list()[0] # real part, I guess
1696 b = z.list()[1] # imag part, I guess
1697 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1698
1699 return matrix.block(field, n, blocks)
1700
1701
1702 @staticmethod
1703 def real_unembed(M):
1704 """
1705 The inverse of _embed_complex_matrix().
1706
1707 SETUP::
1708
1709 sage: from mjo.eja.eja_algebra import \
1710 ....: ComplexMatrixEuclideanJordanAlgebra
1711
1712 EXAMPLES::
1713
1714 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1715 ....: [-2, 1, -4, 3],
1716 ....: [ 9, 10, 11, 12],
1717 ....: [-10, 9, -12, 11] ])
1718 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1719 [ 2*I + 1 4*I + 3]
1720 [ 10*I + 9 12*I + 11]
1721
1722 TESTS:
1723
1724 Unembedding is the inverse of embedding::
1725
1726 sage: set_random_seed()
1727 sage: F = QuadraticField(-1, 'I')
1728 sage: M = random_matrix(F, 3)
1729 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1730 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1731 True
1732
1733 """
1734 n = ZZ(M.nrows())
1735 if M.ncols() != n:
1736 raise ValueError("the matrix 'M' must be square")
1737 if not n.mod(2).is_zero():
1738 raise ValueError("the matrix 'M' must be a complex embedding")
1739
1740 # If "M" was normalized, its base ring might have roots
1741 # adjoined and they can stick around after unembedding.
1742 field = M.base_ring()
1743 R = PolynomialRing(field, 'z')
1744 z = R.gen()
1745 if field is AA:
1746 # Sage doesn't know how to embed AA into QQbar, i.e. how
1747 # to adjoin sqrt(-1) to AA.
1748 F = QQbar
1749 else:
1750 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1751 i = F.gen()
1752
1753 # Go top-left to bottom-right (reading order), converting every
1754 # 2-by-2 block we see to a single complex element.
1755 elements = []
1756 for k in range(n/2):
1757 for j in range(n/2):
1758 submat = M[2*k:2*k+2,2*j:2*j+2]
1759 if submat[0,0] != submat[1,1]:
1760 raise ValueError('bad on-diagonal submatrix')
1761 if submat[0,1] != -submat[1,0]:
1762 raise ValueError('bad off-diagonal submatrix')
1763 z = submat[0,0] + submat[0,1]*i
1764 elements.append(z)
1765
1766 return matrix(F, n/2, elements)
1767
1768
1769 @classmethod
1770 def trace_inner_product(cls,X,Y):
1771 """
1772 Compute a matrix inner product in this algebra directly from
1773 its real embedding.
1774
1775 SETUP::
1776
1777 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1778
1779 TESTS:
1780
1781 This gives the same answer as the slow, default method implemented
1782 in :class:`MatrixEuclideanJordanAlgebra`::
1783
1784 sage: set_random_seed()
1785 sage: J = ComplexHermitianEJA.random_instance()
1786 sage: x,y = J.random_elements(2)
1787 sage: Xe = x.to_matrix()
1788 sage: Ye = y.to_matrix()
1789 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1790 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1791 sage: expected = (X*Y).trace().real()
1792 sage: actual = ComplexHermitianEJA.trace_inner_product(Xe,Ye)
1793 sage: actual == expected
1794 True
1795
1796 """
1797 return RealMatrixEuclideanJordanAlgebra.trace_inner_product(X,Y)/2
1798
1799
1800 class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra,
1801 ComplexMatrixEuclideanJordanAlgebra):
1802 """
1803 The rank-n simple EJA consisting of complex Hermitian n-by-n
1804 matrices over the real numbers, the usual symmetric Jordan product,
1805 and the real-part-of-trace inner product. It has dimension `n^2` over
1806 the reals.
1807
1808 SETUP::
1809
1810 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1811
1812 EXAMPLES:
1813
1814 In theory, our "field" can be any subfield of the reals::
1815
1816 sage: ComplexHermitianEJA(2, field=RDF)
1817 Euclidean Jordan algebra of dimension 4 over Real Double Field
1818 sage: ComplexHermitianEJA(2, field=RR)
1819 Euclidean Jordan algebra of dimension 4 over Real Field with
1820 53 bits of precision
1821
1822 TESTS:
1823
1824 The dimension of this algebra is `n^2`::
1825
1826 sage: set_random_seed()
1827 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1828 sage: n = ZZ.random_element(1, n_max)
1829 sage: J = ComplexHermitianEJA(n)
1830 sage: J.dimension() == n^2
1831 True
1832
1833 The Jordan multiplication is what we think it is::
1834
1835 sage: set_random_seed()
1836 sage: J = ComplexHermitianEJA.random_instance()
1837 sage: x,y = J.random_elements(2)
1838 sage: actual = (x*y).to_matrix()
1839 sage: X = x.to_matrix()
1840 sage: Y = y.to_matrix()
1841 sage: expected = (X*Y + Y*X)/2
1842 sage: actual == expected
1843 True
1844 sage: J(expected) == x*y
1845 True
1846
1847 We can change the generator prefix::
1848
1849 sage: ComplexHermitianEJA(2, prefix='z').gens()
1850 (z0, z1, z2, z3)
1851
1852 We can construct the (trivial) algebra of rank zero::
1853
1854 sage: ComplexHermitianEJA(0)
1855 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1856
1857 """
1858
1859 @classmethod
1860 def _denormalized_basis(cls, n):
1861 """
1862 Returns a basis for the space of complex Hermitian n-by-n matrices.
1863
1864 Why do we embed these? Basically, because all of numerical linear
1865 algebra assumes that you're working with vectors consisting of `n`
1866 entries from a field and scalars from the same field. There's no way
1867 to tell SageMath that (for example) the vectors contain complex
1868 numbers, while the scalar field is real.
1869
1870 SETUP::
1871
1872 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1873
1874 TESTS::
1875
1876 sage: set_random_seed()
1877 sage: n = ZZ.random_element(1,5)
1878 sage: field = QuadraticField(2, 'sqrt2')
1879 sage: B = ComplexHermitianEJA._denormalized_basis(n)
1880 sage: all( M.is_symmetric() for M in B)
1881 True
1882
1883 """
1884 field = ZZ
1885 R = PolynomialRing(field, 'z')
1886 z = R.gen()
1887 F = field.extension(z**2 + 1, 'I')
1888 I = F.gen(1)
1889
1890 # This is like the symmetric case, but we need to be careful:
1891 #
1892 # * We want conjugate-symmetry, not just symmetry.
1893 # * The diagonal will (as a result) be real.
1894 #
1895 S = []
1896 for i in range(n):
1897 for j in range(i+1):
1898 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1899 if i == j:
1900 Sij = cls.real_embed(Eij)
1901 S.append(Sij)
1902 else:
1903 # The second one has a minus because it's conjugated.
1904 Sij_real = cls.real_embed(Eij + Eij.transpose())
1905 S.append(Sij_real)
1906 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1907 S.append(Sij_imag)
1908
1909 # Since we embedded these, we can drop back to the "field" that we
1910 # started with instead of the complex extension "F".
1911 return tuple( s.change_ring(field) for s in S )
1912
1913
1914 def __init__(self, n, **kwargs):
1915 super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
1916 self.jordan_product,
1917 self.trace_inner_product,
1918 **kwargs)
1919 self.rank.set_cache(n)
1920 # TODO: pre-cache the identity!
1921
1922 @staticmethod
1923 def _max_random_instance_size():
1924 return 3 # Dimension 9
1925
1926 @classmethod
1927 def random_instance(cls, **kwargs):
1928 """
1929 Return a random instance of this type of algebra.
1930 """
1931 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1932 return cls(n, **kwargs)
1933
1934 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1935 @staticmethod
1936 def real_embed(M):
1937 """
1938 Embed the n-by-n quaternion matrix ``M`` into the space of real
1939 matrices of size 4n-by-4n by first sending each quaternion entry `z
1940 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1941 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1942 matrix.
1943
1944 SETUP::
1945
1946 sage: from mjo.eja.eja_algebra import \
1947 ....: QuaternionMatrixEuclideanJordanAlgebra
1948
1949 EXAMPLES::
1950
1951 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1952 sage: i,j,k = Q.gens()
1953 sage: x = 1 + 2*i + 3*j + 4*k
1954 sage: M = matrix(Q, 1, [[x]])
1955 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1956 [ 1 2 3 4]
1957 [-2 1 -4 3]
1958 [-3 4 1 -2]
1959 [-4 -3 2 1]
1960
1961 Embedding is a homomorphism (isomorphism, in fact)::
1962
1963 sage: set_random_seed()
1964 sage: n = ZZ.random_element(2)
1965 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1966 sage: X = random_matrix(Q, n)
1967 sage: Y = random_matrix(Q, n)
1968 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1969 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1970 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1971 sage: Xe*Ye == XYe
1972 True
1973
1974 """
1975 quaternions = M.base_ring()
1976 n = M.nrows()
1977 if M.ncols() != n:
1978 raise ValueError("the matrix 'M' must be square")
1979
1980 F = QuadraticField(-1, 'I')
1981 i = F.gen()
1982
1983 blocks = []
1984 for z in M.list():
1985 t = z.coefficient_tuple()
1986 a = t[0]
1987 b = t[1]
1988 c = t[2]
1989 d = t[3]
1990 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1991 [-c + d*i, a - b*i]])
1992 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1993 blocks.append(realM)
1994
1995 # We should have real entries by now, so use the realest field
1996 # we've got for the return value.
1997 return matrix.block(quaternions.base_ring(), n, blocks)
1998
1999
2000
2001 @staticmethod
2002 def real_unembed(M):
2003 """
2004 The inverse of _embed_quaternion_matrix().
2005
2006 SETUP::
2007
2008 sage: from mjo.eja.eja_algebra import \
2009 ....: QuaternionMatrixEuclideanJordanAlgebra
2010
2011 EXAMPLES::
2012
2013 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2014 ....: [-2, 1, -4, 3],
2015 ....: [-3, 4, 1, -2],
2016 ....: [-4, -3, 2, 1]])
2017 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
2018 [1 + 2*i + 3*j + 4*k]
2019
2020 TESTS:
2021
2022 Unembedding is the inverse of embedding::
2023
2024 sage: set_random_seed()
2025 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2026 sage: M = random_matrix(Q, 3)
2027 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2028 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
2029 True
2030
2031 """
2032 n = ZZ(M.nrows())
2033 if M.ncols() != n:
2034 raise ValueError("the matrix 'M' must be square")
2035 if not n.mod(4).is_zero():
2036 raise ValueError("the matrix 'M' must be a quaternion embedding")
2037
2038 # Use the base ring of the matrix to ensure that its entries can be
2039 # multiplied by elements of the quaternion algebra.
2040 field = M.base_ring()
2041 Q = QuaternionAlgebra(field,-1,-1)
2042 i,j,k = Q.gens()
2043
2044 # Go top-left to bottom-right (reading order), converting every
2045 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2046 # quaternion block.
2047 elements = []
2048 for l in range(n/4):
2049 for m in range(n/4):
2050 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
2051 M[4*l:4*l+4,4*m:4*m+4] )
2052 if submat[0,0] != submat[1,1].conjugate():
2053 raise ValueError('bad on-diagonal submatrix')
2054 if submat[0,1] != -submat[1,0].conjugate():
2055 raise ValueError('bad off-diagonal submatrix')
2056 z = submat[0,0].real()
2057 z += submat[0,0].imag()*i
2058 z += submat[0,1].real()*j
2059 z += submat[0,1].imag()*k
2060 elements.append(z)
2061
2062 return matrix(Q, n/4, elements)
2063
2064
2065 @classmethod
2066 def trace_inner_product(cls,X,Y):
2067 """
2068 Compute a matrix inner product in this algebra directly from
2069 its real embedding.
2070
2071 SETUP::
2072
2073 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2074
2075 TESTS:
2076
2077 This gives the same answer as the slow, default method implemented
2078 in :class:`MatrixEuclideanJordanAlgebra`::
2079
2080 sage: set_random_seed()
2081 sage: J = QuaternionHermitianEJA.random_instance()
2082 sage: x,y = J.random_elements(2)
2083 sage: Xe = x.to_matrix()
2084 sage: Ye = y.to_matrix()
2085 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
2086 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
2087 sage: expected = (X*Y).trace().coefficient_tuple()[0]
2088 sage: actual = QuaternionHermitianEJA.trace_inner_product(Xe,Ye)
2089 sage: actual == expected
2090 True
2091
2092 """
2093 return RealMatrixEuclideanJordanAlgebra.trace_inner_product(X,Y)/4
2094
2095
2096 class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra,
2097 QuaternionMatrixEuclideanJordanAlgebra):
2098 r"""
2099 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2100 matrices, the usual symmetric Jordan product, and the
2101 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2102 the reals.
2103
2104 SETUP::
2105
2106 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2107
2108 EXAMPLES:
2109
2110 In theory, our "field" can be any subfield of the reals::
2111
2112 sage: QuaternionHermitianEJA(2, field=RDF)
2113 Euclidean Jordan algebra of dimension 6 over Real Double Field
2114 sage: QuaternionHermitianEJA(2, field=RR)
2115 Euclidean Jordan algebra of dimension 6 over Real Field with
2116 53 bits of precision
2117
2118 TESTS:
2119
2120 The dimension of this algebra is `2*n^2 - n`::
2121
2122 sage: set_random_seed()
2123 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2124 sage: n = ZZ.random_element(1, n_max)
2125 sage: J = QuaternionHermitianEJA(n)
2126 sage: J.dimension() == 2*(n^2) - n
2127 True
2128
2129 The Jordan multiplication is what we think it is::
2130
2131 sage: set_random_seed()
2132 sage: J = QuaternionHermitianEJA.random_instance()
2133 sage: x,y = J.random_elements(2)
2134 sage: actual = (x*y).to_matrix()
2135 sage: X = x.to_matrix()
2136 sage: Y = y.to_matrix()
2137 sage: expected = (X*Y + Y*X)/2
2138 sage: actual == expected
2139 True
2140 sage: J(expected) == x*y
2141 True
2142
2143 We can change the generator prefix::
2144
2145 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2146 (a0, a1, a2, a3, a4, a5)
2147
2148 We can construct the (trivial) algebra of rank zero::
2149
2150 sage: QuaternionHermitianEJA(0)
2151 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2152
2153 """
2154 @classmethod
2155 def _denormalized_basis(cls, n):
2156 """
2157 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2158
2159 Why do we embed these? Basically, because all of numerical
2160 linear algebra assumes that you're working with vectors consisting
2161 of `n` entries from a field and scalars from the same field. There's
2162 no way to tell SageMath that (for example) the vectors contain
2163 complex numbers, while the scalar field is real.
2164
2165 SETUP::
2166
2167 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2168
2169 TESTS::
2170
2171 sage: set_random_seed()
2172 sage: n = ZZ.random_element(1,5)
2173 sage: B = QuaternionHermitianEJA._denormalized_basis(n)
2174 sage: all( M.is_symmetric() for M in B )
2175 True
2176
2177 """
2178 field = ZZ
2179 Q = QuaternionAlgebra(QQ,-1,-1)
2180 I,J,K = Q.gens()
2181
2182 # This is like the symmetric case, but we need to be careful:
2183 #
2184 # * We want conjugate-symmetry, not just symmetry.
2185 # * The diagonal will (as a result) be real.
2186 #
2187 S = []
2188 for i in range(n):
2189 for j in range(i+1):
2190 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
2191 if i == j:
2192 Sij = cls.real_embed(Eij)
2193 S.append(Sij)
2194 else:
2195 # The second, third, and fourth ones have a minus
2196 # because they're conjugated.
2197 Sij_real = cls.real_embed(Eij + Eij.transpose())
2198 S.append(Sij_real)
2199 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
2200 S.append(Sij_I)
2201 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
2202 S.append(Sij_J)
2203 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2204 S.append(Sij_K)
2205
2206 # Since we embedded these, we can drop back to the "field" that we
2207 # started with instead of the quaternion algebra "Q".
2208 return tuple( s.change_ring(field) for s in S )
2209
2210
2211 def __init__(self, n, **kwargs):
2212 super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
2213 self.jordan_product,
2214 self.trace_inner_product,
2215 **kwargs)
2216 self.rank.set_cache(n)
2217 # TODO: cache one()!
2218
2219 @staticmethod
2220 def _max_random_instance_size():
2221 r"""
2222 The maximum rank of a random QuaternionHermitianEJA.
2223 """
2224 return 2 # Dimension 6
2225
2226 @classmethod
2227 def random_instance(cls, **kwargs):
2228 """
2229 Return a random instance of this type of algebra.
2230 """
2231 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2232 return cls(n, **kwargs)
2233
2234
2235 class HadamardEJA(ConcreteEuclideanJordanAlgebra):
2236 """
2237 Return the Euclidean Jordan Algebra corresponding to the set
2238 `R^n` under the Hadamard product.
2239
2240 Note: this is nothing more than the Cartesian product of ``n``
2241 copies of the spin algebra. Once Cartesian product algebras
2242 are implemented, this can go.
2243
2244 SETUP::
2245
2246 sage: from mjo.eja.eja_algebra import HadamardEJA
2247
2248 EXAMPLES:
2249
2250 This multiplication table can be verified by hand::
2251
2252 sage: J = HadamardEJA(3)
2253 sage: e0,e1,e2 = J.gens()
2254 sage: e0*e0
2255 e0
2256 sage: e0*e1
2257 0
2258 sage: e0*e2
2259 0
2260 sage: e1*e1
2261 e1
2262 sage: e1*e2
2263 0
2264 sage: e2*e2
2265 e2
2266
2267 TESTS:
2268
2269 We can change the generator prefix::
2270
2271 sage: HadamardEJA(3, prefix='r').gens()
2272 (r0, r1, r2)
2273
2274 """
2275 def __init__(self, n, **kwargs):
2276 def jordan_product(x,y):
2277 P = x.parent()
2278 return P(tuple( xi*yi for (xi,yi) in zip(x,y) ))
2279 def inner_product(x,y):
2280 return x.inner_product(y)
2281
2282 # Don't orthonormalize because our basis is already
2283 # orthonormal with respect to our inner-product.
2284 if not 'orthonormalize' in kwargs:
2285 kwargs['orthonormalize'] = False
2286
2287 # But also don't pass check_field=False here, because the user
2288 # can pass in a field!
2289 standard_basis = FreeModule(ZZ, n).basis()
2290 super(HadamardEJA, self).__init__(standard_basis,
2291 jordan_product,
2292 inner_product,
2293 check_axioms=False,
2294 **kwargs)
2295 self.rank.set_cache(n)
2296
2297 if n == 0:
2298 self.one.set_cache( self.zero() )
2299 else:
2300 self.one.set_cache( sum(self.gens()) )
2301
2302 @staticmethod
2303 def _max_random_instance_size():
2304 r"""
2305 The maximum dimension of a random HadamardEJA.
2306 """
2307 return 5
2308
2309 @classmethod
2310 def random_instance(cls, **kwargs):
2311 """
2312 Return a random instance of this type of algebra.
2313 """
2314 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2315 return cls(n, **kwargs)
2316
2317
2318 class BilinearFormEJA(ConcreteEuclideanJordanAlgebra):
2319 r"""
2320 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2321 with the half-trace inner product and jordan product ``x*y =
2322 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2323 a symmetric positive-definite "bilinear form" matrix. Its
2324 dimension is the size of `B`, and it has rank two in dimensions
2325 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2326 the identity matrix of order ``n``.
2327
2328 We insist that the one-by-one upper-left identity block of `B` be
2329 passed in as well so that we can be passed a matrix of size zero
2330 to construct a trivial algebra.
2331
2332 SETUP::
2333
2334 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2335 ....: JordanSpinEJA)
2336
2337 EXAMPLES:
2338
2339 When no bilinear form is specified, the identity matrix is used,
2340 and the resulting algebra is the Jordan spin algebra::
2341
2342 sage: B = matrix.identity(AA,3)
2343 sage: J0 = BilinearFormEJA(B)
2344 sage: J1 = JordanSpinEJA(3)
2345 sage: J0.multiplication_table() == J0.multiplication_table()
2346 True
2347
2348 An error is raised if the matrix `B` does not correspond to a
2349 positive-definite bilinear form::
2350
2351 sage: B = matrix.random(QQ,2,3)
2352 sage: J = BilinearFormEJA(B)
2353 Traceback (most recent call last):
2354 ...
2355 ValueError: bilinear form is not positive-definite
2356 sage: B = matrix.zero(QQ,3)
2357 sage: J = BilinearFormEJA(B)
2358 Traceback (most recent call last):
2359 ...
2360 ValueError: bilinear form is not positive-definite
2361
2362 TESTS:
2363
2364 We can create a zero-dimensional algebra::
2365
2366 sage: B = matrix.identity(AA,0)
2367 sage: J = BilinearFormEJA(B)
2368 sage: J.basis()
2369 Finite family {}
2370
2371 We can check the multiplication condition given in the Jordan, von
2372 Neumann, and Wigner paper (and also discussed on my "On the
2373 symmetry..." paper). Note that this relies heavily on the standard
2374 choice of basis, as does anything utilizing the bilinear form
2375 matrix. We opt not to orthonormalize the basis, because if we
2376 did, we would have to normalize the `s_{i}` in a similar manner::
2377
2378 sage: set_random_seed()
2379 sage: n = ZZ.random_element(5)
2380 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2381 sage: B11 = matrix.identity(QQ,1)
2382 sage: B22 = M.transpose()*M
2383 sage: B = block_matrix(2,2,[ [B11,0 ],
2384 ....: [0, B22 ] ])
2385 sage: J = BilinearFormEJA(B, orthonormalize=False)
2386 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2387 sage: V = J.vector_space()
2388 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2389 ....: for ei in eis ]
2390 sage: actual = [ sis[i]*sis[j]
2391 ....: for i in range(n-1)
2392 ....: for j in range(n-1) ]
2393 sage: expected = [ J.one() if i == j else J.zero()
2394 ....: for i in range(n-1)
2395 ....: for j in range(n-1) ]
2396 sage: actual == expected
2397 True
2398 """
2399 def __init__(self, B, **kwargs):
2400 if not B.is_positive_definite():
2401 raise ValueError("bilinear form is not positive-definite")
2402
2403 def inner_product(x,y):
2404 return (B*x).inner_product(y)
2405
2406 def jordan_product(x,y):
2407 P = x.parent()
2408 x0 = x[0]
2409 xbar = x[1:]
2410 y0 = y[0]
2411 ybar = y[1:]
2412 z0 = inner_product(x,y)
2413 zbar = y0*xbar + x0*ybar
2414 return P((z0,) + tuple(zbar))
2415
2416 n = B.nrows()
2417 standard_basis = FreeModule(ZZ, n).basis()
2418 super(BilinearFormEJA, self).__init__(standard_basis,
2419 jordan_product,
2420 inner_product,
2421 **kwargs)
2422
2423 # The rank of this algebra is two, unless we're in a
2424 # one-dimensional ambient space (because the rank is bounded
2425 # by the ambient dimension).
2426 self.rank.set_cache(min(n,2))
2427
2428 if n == 0:
2429 self.one.set_cache( self.zero() )
2430 else:
2431 self.one.set_cache( self.monomial(0) )
2432
2433 @staticmethod
2434 def _max_random_instance_size():
2435 r"""
2436 The maximum dimension of a random BilinearFormEJA.
2437 """
2438 return 5
2439
2440 @classmethod
2441 def random_instance(cls, **kwargs):
2442 """
2443 Return a random instance of this algebra.
2444 """
2445 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2446 if n.is_zero():
2447 B = matrix.identity(ZZ, n)
2448 return cls(B, **kwargs)
2449
2450 B11 = matrix.identity(ZZ, 1)
2451 M = matrix.random(ZZ, n-1)
2452 I = matrix.identity(ZZ, n-1)
2453 alpha = ZZ.zero()
2454 while alpha.is_zero():
2455 alpha = ZZ.random_element().abs()
2456 B22 = M.transpose()*M + alpha*I
2457
2458 from sage.matrix.special import block_matrix
2459 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2460 [ZZ(0), B22 ] ])
2461
2462 return cls(B, **kwargs)
2463
2464
2465 class JordanSpinEJA(BilinearFormEJA):
2466 """
2467 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2468 with the usual inner product and jordan product ``x*y =
2469 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2470 the reals.
2471
2472 SETUP::
2473
2474 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2475
2476 EXAMPLES:
2477
2478 This multiplication table can be verified by hand::
2479
2480 sage: J = JordanSpinEJA(4)
2481 sage: e0,e1,e2,e3 = J.gens()
2482 sage: e0*e0
2483 e0
2484 sage: e0*e1
2485 e1
2486 sage: e0*e2
2487 e2
2488 sage: e0*e3
2489 e3
2490 sage: e1*e2
2491 0
2492 sage: e1*e3
2493 0
2494 sage: e2*e3
2495 0
2496
2497 We can change the generator prefix::
2498
2499 sage: JordanSpinEJA(2, prefix='B').gens()
2500 (B0, B1)
2501
2502 TESTS:
2503
2504 Ensure that we have the usual inner product on `R^n`::
2505
2506 sage: set_random_seed()
2507 sage: J = JordanSpinEJA.random_instance()
2508 sage: x,y = J.random_elements(2)
2509 sage: actual = x.inner_product(y)
2510 sage: expected = x.to_vector().inner_product(y.to_vector())
2511 sage: actual == expected
2512 True
2513
2514 """
2515 def __init__(self, n, **kwargs):
2516 # This is a special case of the BilinearFormEJA with the
2517 # identity matrix as its bilinear form.
2518 B = matrix.identity(ZZ, n)
2519
2520 # Don't orthonormalize because our basis is already
2521 # orthonormal with respect to our inner-product.
2522 if not 'orthonormalize' in kwargs:
2523 kwargs['orthonormalize'] = False
2524
2525 # But also don't pass check_field=False here, because the user
2526 # can pass in a field!
2527 super(JordanSpinEJA, self).__init__(B,
2528 check_axioms=False,
2529 **kwargs)
2530
2531 @staticmethod
2532 def _max_random_instance_size():
2533 r"""
2534 The maximum dimension of a random JordanSpinEJA.
2535 """
2536 return 5
2537
2538 @classmethod
2539 def random_instance(cls, **kwargs):
2540 """
2541 Return a random instance of this type of algebra.
2542
2543 Needed here to override the implementation for ``BilinearFormEJA``.
2544 """
2545 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2546 return cls(n, **kwargs)
2547
2548
2549 class TrivialEJA(ConcreteEuclideanJordanAlgebra):
2550 """
2551 The trivial Euclidean Jordan algebra consisting of only a zero element.
2552
2553 SETUP::
2554
2555 sage: from mjo.eja.eja_algebra import TrivialEJA
2556
2557 EXAMPLES::
2558
2559 sage: J = TrivialEJA()
2560 sage: J.dimension()
2561 0
2562 sage: J.zero()
2563 0
2564 sage: J.one()
2565 0
2566 sage: 7*J.one()*12*J.one()
2567 0
2568 sage: J.one().inner_product(J.one())
2569 0
2570 sage: J.one().norm()
2571 0
2572 sage: J.one().subalgebra_generated_by()
2573 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2574 sage: J.rank()
2575 0
2576
2577 """
2578 def __init__(self, **kwargs):
2579 jordan_product = lambda x,y: x
2580 inner_product = lambda x,y: 0
2581 basis = ()
2582 super(TrivialEJA, self).__init__(basis,
2583 jordan_product,
2584 inner_product,
2585 **kwargs)
2586 # The rank is zero using my definition, namely the dimension of the
2587 # largest subalgebra generated by any element.
2588 self.rank.set_cache(0)
2589 self.one.set_cache( self.zero() )
2590
2591 @classmethod
2592 def random_instance(cls, **kwargs):
2593 # We don't take a "size" argument so the superclass method is
2594 # inappropriate for us.
2595 return cls(**kwargs)
2596
2597 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2598 r"""
2599 The external (orthogonal) direct sum of two other Euclidean Jordan
2600 algebras. Essentially the Cartesian product of its two factors.
2601 Every Euclidean Jordan algebra decomposes into an orthogonal
2602 direct sum of simple Euclidean Jordan algebras, so no generality
2603 is lost by providing only this construction.
2604
2605 SETUP::
2606
2607 sage: from mjo.eja.eja_algebra import (random_eja,
2608 ....: HadamardEJA,
2609 ....: RealSymmetricEJA,
2610 ....: DirectSumEJA)
2611
2612 EXAMPLES::
2613
2614 sage: J1 = HadamardEJA(2)
2615 sage: J2 = RealSymmetricEJA(3)
2616 sage: J = DirectSumEJA(J1,J2)
2617 sage: J.dimension()
2618 8
2619 sage: J.rank()
2620 5
2621
2622 TESTS:
2623
2624 The external direct sum construction is only valid when the two factors
2625 have the same base ring; an error is raised otherwise::
2626
2627 sage: set_random_seed()
2628 sage: J1 = random_eja(field=AA)
2629 sage: J2 = random_eja(field=QQ,orthonormalize=False)
2630 sage: J = DirectSumEJA(J1,J2)
2631 Traceback (most recent call last):
2632 ...
2633 ValueError: algebras must share the same base field
2634
2635 """
2636 def __init__(self, J1, J2, **kwargs):
2637 if J1.base_ring() != J2.base_ring():
2638 raise ValueError("algebras must share the same base field")
2639 field = J1.base_ring()
2640
2641 self._factors = (J1, J2)
2642 n1 = J1.dimension()
2643 n2 = J2.dimension()
2644 n = n1+n2
2645 V = VectorSpace(field, n)
2646 mult_table = [ [ V.zero() for j in range(i+1) ]
2647 for i in range(n) ]
2648 for i in range(n1):
2649 for j in range(i+1):
2650 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2651 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2652
2653 for i in range(n2):
2654 for j in range(i+1):
2655 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2656 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2657
2658 # TODO: build the IP table here from the two constituent IP
2659 # matrices (it'll be block diagonal, I think).
2660 ip_table = [ [ field.zero() for j in range(i+1) ]
2661 for i in range(n) ]
2662 super(DirectSumEJA, self).__init__(field,
2663 mult_table,
2664 ip_table,
2665 check_axioms=False,
2666 **kwargs)
2667 self.rank.set_cache(J1.rank() + J2.rank())
2668
2669
2670 def factors(self):
2671 r"""
2672 Return the pair of this algebra's factors.
2673
2674 SETUP::
2675
2676 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2677 ....: JordanSpinEJA,
2678 ....: DirectSumEJA)
2679
2680 EXAMPLES::
2681
2682 sage: J1 = HadamardEJA(2, field=QQ)
2683 sage: J2 = JordanSpinEJA(3, field=QQ)
2684 sage: J = DirectSumEJA(J1,J2)
2685 sage: J.factors()
2686 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2687 Euclidean Jordan algebra of dimension 3 over Rational Field)
2688
2689 """
2690 return self._factors
2691
2692 def projections(self):
2693 r"""
2694 Return a pair of projections onto this algebra's factors.
2695
2696 SETUP::
2697
2698 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2699 ....: ComplexHermitianEJA,
2700 ....: DirectSumEJA)
2701
2702 EXAMPLES::
2703
2704 sage: J1 = JordanSpinEJA(2)
2705 sage: J2 = ComplexHermitianEJA(2)
2706 sage: J = DirectSumEJA(J1,J2)
2707 sage: (pi_left, pi_right) = J.projections()
2708 sage: J.one().to_vector()
2709 (1, 0, 1, 0, 0, 1)
2710 sage: pi_left(J.one()).to_vector()
2711 (1, 0)
2712 sage: pi_right(J.one()).to_vector()
2713 (1, 0, 0, 1)
2714
2715 """
2716 (J1,J2) = self.factors()
2717 m = J1.dimension()
2718 n = J2.dimension()
2719 V_basis = self.vector_space().basis()
2720 # Need to specify the dimensions explicitly so that we don't
2721 # wind up with a zero-by-zero matrix when we want e.g. a
2722 # zero-by-two matrix (important for composing things).
2723 P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
2724 P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
2725 pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
2726 pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
2727 return (pi_left, pi_right)
2728
2729 def inclusions(self):
2730 r"""
2731 Return the pair of inclusion maps from our factors into us.
2732
2733 SETUP::
2734
2735 sage: from mjo.eja.eja_algebra import (random_eja,
2736 ....: JordanSpinEJA,
2737 ....: RealSymmetricEJA,
2738 ....: DirectSumEJA)
2739
2740 EXAMPLES::
2741
2742 sage: J1 = JordanSpinEJA(3)
2743 sage: J2 = RealSymmetricEJA(2)
2744 sage: J = DirectSumEJA(J1,J2)
2745 sage: (iota_left, iota_right) = J.inclusions()
2746 sage: iota_left(J1.zero()) == J.zero()
2747 True
2748 sage: iota_right(J2.zero()) == J.zero()
2749 True
2750 sage: J1.one().to_vector()
2751 (1, 0, 0)
2752 sage: iota_left(J1.one()).to_vector()
2753 (1, 0, 0, 0, 0, 0)
2754 sage: J2.one().to_vector()
2755 (1, 0, 1)
2756 sage: iota_right(J2.one()).to_vector()
2757 (0, 0, 0, 1, 0, 1)
2758 sage: J.one().to_vector()
2759 (1, 0, 0, 1, 0, 1)
2760
2761 TESTS:
2762
2763 Composing a projection with the corresponding inclusion should
2764 produce the identity map, and mismatching them should produce
2765 the zero map::
2766
2767 sage: set_random_seed()
2768 sage: J1 = random_eja()
2769 sage: J2 = random_eja()
2770 sage: J = DirectSumEJA(J1,J2)
2771 sage: (iota_left, iota_right) = J.inclusions()
2772 sage: (pi_left, pi_right) = J.projections()
2773 sage: pi_left*iota_left == J1.one().operator()
2774 True
2775 sage: pi_right*iota_right == J2.one().operator()
2776 True
2777 sage: (pi_left*iota_right).is_zero()
2778 True
2779 sage: (pi_right*iota_left).is_zero()
2780 True
2781
2782 """
2783 (J1,J2) = self.factors()
2784 m = J1.dimension()
2785 n = J2.dimension()
2786 V_basis = self.vector_space().basis()
2787 # Need to specify the dimensions explicitly so that we don't
2788 # wind up with a zero-by-zero matrix when we want e.g. a
2789 # two-by-zero matrix (important for composing things).
2790 I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
2791 I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
2792 iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
2793 iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
2794 return (iota_left, iota_right)
2795
2796 def inner_product(self, x, y):
2797 r"""
2798 The standard Cartesian inner-product.
2799
2800 We project ``x`` and ``y`` onto our factors, and add up the
2801 inner-products from the subalgebras.
2802
2803 SETUP::
2804
2805
2806 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2807 ....: QuaternionHermitianEJA,
2808 ....: DirectSumEJA)
2809
2810 EXAMPLE::
2811
2812 sage: J1 = HadamardEJA(3,field=QQ)
2813 sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2814 sage: J = DirectSumEJA(J1,J2)
2815 sage: x1 = J1.one()
2816 sage: x2 = x1
2817 sage: y1 = J2.one()
2818 sage: y2 = y1
2819 sage: x1.inner_product(x2)
2820 3
2821 sage: y1.inner_product(y2)
2822 2
2823 sage: J.one().inner_product(J.one())
2824 5
2825
2826 """
2827 (pi_left, pi_right) = self.projections()
2828 x1 = pi_left(x)
2829 x2 = pi_right(x)
2830 y1 = pi_left(y)
2831 y2 = pi_right(y)
2832
2833 return (x1.inner_product(y1) + x2.inner_product(y2))
2834
2835
2836
2837 random_eja = ConcreteEuclideanJordanAlgebra.random_instance