]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: pass check=False in the fast charpoly_coefficients() method.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (
65 ....: FiniteDimensionalEuclideanJordanAlgebra,
66 ....: JordanSpinEJA,
67 ....: random_eja)
68
69 EXAMPLES:
70
71 By definition, Jordan multiplication commutes::
72
73 sage: set_random_seed()
74 sage: J = random_eja()
75 sage: x,y = J.random_elements(2)
76 sage: x*y == y*x
77 True
78
79 TESTS:
80
81 The ``field`` we're given must be real with ``check=True``::
82
83 sage: JordanSpinEJA(2,QQbar)
84 Traceback (most recent call last):
85 ...
86 ValueError: field is not real
87
88 The multiplication table must be square with ``check=True``::
89
90 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
91 Traceback (most recent call last):
92 ...
93 ValueError: multiplication table is not square
94
95 """
96 if check:
97 if not field.is_subring(RR):
98 # Note: this does return true for the real algebraic
99 # field, and any quadratic field where we've specified
100 # a real embedding.
101 raise ValueError('field is not real')
102
103 self._natural_basis = natural_basis
104
105 if category is None:
106 category = MagmaticAlgebras(field).FiniteDimensional()
107 category = category.WithBasis().Unital()
108
109 # The multiplication table had better be square
110 n = len(mult_table)
111 if check:
112 if not all( len(l) == n for l in mult_table ):
113 raise ValueError("multiplication table is not square")
114
115 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
116 fda.__init__(field,
117 range(n),
118 prefix=prefix,
119 category=category)
120 self.print_options(bracket='')
121
122 # The multiplication table we're given is necessarily in terms
123 # of vectors, because we don't have an algebra yet for
124 # anything to be an element of. However, it's faster in the
125 # long run to have the multiplication table be in terms of
126 # algebra elements. We do this after calling the superclass
127 # constructor so that from_vector() knows what to do.
128 self._multiplication_table = [
129 list(map(lambda x: self.from_vector(x), ls))
130 for ls in mult_table
131 ]
132
133 if check:
134 if not self._is_commutative():
135 raise ValueError("algebra is not commutative")
136 if not self._is_jordanian():
137 raise ValueError("Jordan identity does not hold")
138 if not self._inner_product_is_associative():
139 raise ValueError("inner product is not associative")
140
141 def _element_constructor_(self, elt):
142 """
143 Construct an element of this algebra from its natural
144 representation.
145
146 This gets called only after the parent element _call_ method
147 fails to find a coercion for the argument.
148
149 SETUP::
150
151 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
152 ....: HadamardEJA,
153 ....: RealSymmetricEJA)
154
155 EXAMPLES:
156
157 The identity in `S^n` is converted to the identity in the EJA::
158
159 sage: J = RealSymmetricEJA(3)
160 sage: I = matrix.identity(QQ,3)
161 sage: J(I) == J.one()
162 True
163
164 This skew-symmetric matrix can't be represented in the EJA::
165
166 sage: J = RealSymmetricEJA(3)
167 sage: A = matrix(QQ,3, lambda i,j: i-j)
168 sage: J(A)
169 Traceback (most recent call last):
170 ...
171 ArithmeticError: vector is not in free module
172
173 TESTS:
174
175 Ensure that we can convert any element of the two non-matrix
176 simple algebras (whose natural representations are their usual
177 vector representations) back and forth faithfully::
178
179 sage: set_random_seed()
180 sage: J = HadamardEJA.random_instance()
181 sage: x = J.random_element()
182 sage: J(x.to_vector().column()) == x
183 True
184 sage: J = JordanSpinEJA.random_instance()
185 sage: x = J.random_element()
186 sage: J(x.to_vector().column()) == x
187 True
188
189 """
190 msg = "not a naturally-represented algebra element"
191 if elt == 0:
192 # The superclass implementation of random_element()
193 # needs to be able to coerce "0" into the algebra.
194 return self.zero()
195 elif elt in self.base_ring():
196 # Ensure that no base ring -> algebra coercion is performed
197 # by this method. There's some stupidity in sage that would
198 # otherwise propagate to this method; for example, sage thinks
199 # that the integer 3 belongs to the space of 2-by-2 matrices.
200 raise ValueError(msg)
201
202 natural_basis = self.natural_basis()
203 basis_space = natural_basis[0].matrix_space()
204 if elt not in basis_space:
205 raise ValueError(msg)
206
207 # Thanks for nothing! Matrix spaces aren't vector spaces in
208 # Sage, so we have to figure out its natural-basis coordinates
209 # ourselves. We use the basis space's ring instead of the
210 # element's ring because the basis space might be an algebraic
211 # closure whereas the base ring of the 3-by-3 identity matrix
212 # could be QQ instead of QQbar.
213 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
214 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
215 coords = W.coordinate_vector(_mat2vec(elt))
216 return self.from_vector(coords)
217
218 @staticmethod
219 def _max_test_case_size():
220 """
221 Return an integer "size" that is an upper bound on the size of
222 this algebra when it is used in a random test
223 case. Unfortunately, the term "size" is quite vague -- when
224 dealing with `R^n` under either the Hadamard or Jordan spin
225 product, the "size" refers to the dimension `n`. When dealing
226 with a matrix algebra (real symmetric or complex/quaternion
227 Hermitian), it refers to the size of the matrix, which is
228 far less than the dimension of the underlying vector space.
229
230 We default to five in this class, which is safe in `R^n`. The
231 matrix algebra subclasses (or any class where the "size" is
232 interpreted to be far less than the dimension) should override
233 with a smaller number.
234 """
235 return 5
236
237 def _repr_(self):
238 """
239 Return a string representation of ``self``.
240
241 SETUP::
242
243 sage: from mjo.eja.eja_algebra import JordanSpinEJA
244
245 TESTS:
246
247 Ensure that it says what we think it says::
248
249 sage: JordanSpinEJA(2, field=AA)
250 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
251 sage: JordanSpinEJA(3, field=RDF)
252 Euclidean Jordan algebra of dimension 3 over Real Double Field
253
254 """
255 fmt = "Euclidean Jordan algebra of dimension {} over {}"
256 return fmt.format(self.dimension(), self.base_ring())
257
258 def product_on_basis(self, i, j):
259 return self._multiplication_table[i][j]
260
261 def _is_commutative(self):
262 r"""
263 Whether or not this algebra's multiplication table is commutative.
264
265 This method should of course always return ``True``, unless
266 this algebra was constructed with ``check=False`` and passed
267 an invalid multiplication table.
268 """
269 return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
270 for i in range(self.dimension())
271 for j in range(self.dimension()) )
272
273 def _is_jordanian(self):
274 r"""
275 Whether or not this algebra's multiplication table respects the
276 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
277
278 We only check one arrangement of `x` and `y`, so for a
279 ``True`` result to be truly true, you should also check
280 :meth:`_is_commutative`. This method should of course always
281 return ``True``, unless this algebra was constructed with
282 ``check=False`` and passed an invalid multiplication table.
283 """
284 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
285 ==
286 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
287 for i in range(self.dimension())
288 for j in range(self.dimension()) )
289
290 def _inner_product_is_associative(self):
291 r"""
292 Return whether or not this algebra's inner product `B` is
293 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
294
295 This method should of course always return ``True``, unless
296 this algebra was constructed with ``check=False`` and passed
297 an invalid multiplication table.
298 """
299
300 # Used to check whether or not something is zero in an inexact
301 # ring. This number is sufficient to allow the construction of
302 # QuaternionHermitianEJA(2, RDF) with check=True.
303 epsilon = 1e-16
304
305 for i in range(self.dimension()):
306 for j in range(self.dimension()):
307 for k in range(self.dimension()):
308 x = self.monomial(i)
309 y = self.monomial(j)
310 z = self.monomial(k)
311 diff = (x*y).inner_product(z) - x.inner_product(y*z)
312
313 if self.base_ring().is_exact():
314 if diff != 0:
315 return False
316 else:
317 if diff.abs() > epsilon:
318 return False
319
320 return True
321
322 @cached_method
323 def characteristic_polynomial_of(self):
324 """
325 Return the algebra's "characteristic polynomial of" function,
326 which is itself a multivariate polynomial that, when evaluated
327 at the coordinates of some algebra element, returns that
328 element's characteristic polynomial.
329
330 The resulting polynomial has `n+1` variables, where `n` is the
331 dimension of this algebra. The first `n` variables correspond to
332 the coordinates of an algebra element: when evaluated at the
333 coordinates of an algebra element with respect to a certain
334 basis, the result is a univariate polynomial (in the one
335 remaining variable ``t``), namely the characteristic polynomial
336 of that element.
337
338 SETUP::
339
340 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
341
342 EXAMPLES:
343
344 The characteristic polynomial in the spin algebra is given in
345 Alizadeh, Example 11.11::
346
347 sage: J = JordanSpinEJA(3)
348 sage: p = J.characteristic_polynomial_of(); p
349 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
350 sage: xvec = J.one().to_vector()
351 sage: p(*xvec)
352 t^2 - 2*t + 1
353
354 By definition, the characteristic polynomial is a monic
355 degree-zero polynomial in a rank-zero algebra. Note that
356 Cayley-Hamilton is indeed satisfied since the polynomial
357 ``1`` evaluates to the identity element of the algebra on
358 any argument::
359
360 sage: J = TrivialEJA()
361 sage: J.characteristic_polynomial_of()
362 1
363
364 """
365 r = self.rank()
366 n = self.dimension()
367
368 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
369 a = self._charpoly_coefficients()
370
371 # We go to a bit of trouble here to reorder the
372 # indeterminates, so that it's easier to evaluate the
373 # characteristic polynomial at x's coordinates and get back
374 # something in terms of t, which is what we want.
375 S = PolynomialRing(self.base_ring(),'t')
376 t = S.gen(0)
377 if r > 0:
378 R = a[0].parent()
379 S = PolynomialRing(S, R.variable_names())
380 t = S(t)
381
382 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
383
384
385 def inner_product(self, x, y):
386 """
387 The inner product associated with this Euclidean Jordan algebra.
388
389 Defaults to the trace inner product, but can be overridden by
390 subclasses if they are sure that the necessary properties are
391 satisfied.
392
393 SETUP::
394
395 sage: from mjo.eja.eja_algebra import random_eja
396
397 EXAMPLES:
398
399 Our inner product is "associative," which means the following for
400 a symmetric bilinear form::
401
402 sage: set_random_seed()
403 sage: J = random_eja()
404 sage: x,y,z = J.random_elements(3)
405 sage: (x*y).inner_product(z) == y.inner_product(x*z)
406 True
407
408 """
409 X = x.natural_representation()
410 Y = y.natural_representation()
411 return self.natural_inner_product(X,Y)
412
413
414 def is_trivial(self):
415 """
416 Return whether or not this algebra is trivial.
417
418 A trivial algebra contains only the zero element.
419
420 SETUP::
421
422 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
423 ....: TrivialEJA)
424
425 EXAMPLES::
426
427 sage: J = ComplexHermitianEJA(3)
428 sage: J.is_trivial()
429 False
430
431 ::
432
433 sage: J = TrivialEJA()
434 sage: J.is_trivial()
435 True
436
437 """
438 return self.dimension() == 0
439
440
441 def multiplication_table(self):
442 """
443 Return a visual representation of this algebra's multiplication
444 table (on basis elements).
445
446 SETUP::
447
448 sage: from mjo.eja.eja_algebra import JordanSpinEJA
449
450 EXAMPLES::
451
452 sage: J = JordanSpinEJA(4)
453 sage: J.multiplication_table()
454 +----++----+----+----+----+
455 | * || e0 | e1 | e2 | e3 |
456 +====++====+====+====+====+
457 | e0 || e0 | e1 | e2 | e3 |
458 +----++----+----+----+----+
459 | e1 || e1 | e0 | 0 | 0 |
460 +----++----+----+----+----+
461 | e2 || e2 | 0 | e0 | 0 |
462 +----++----+----+----+----+
463 | e3 || e3 | 0 | 0 | e0 |
464 +----++----+----+----+----+
465
466 """
467 M = list(self._multiplication_table) # copy
468 for i in range(len(M)):
469 # M had better be "square"
470 M[i] = [self.monomial(i)] + M[i]
471 M = [["*"] + list(self.gens())] + M
472 return table(M, header_row=True, header_column=True, frame=True)
473
474
475 def natural_basis(self):
476 """
477 Return a more-natural representation of this algebra's basis.
478
479 Every finite-dimensional Euclidean Jordan Algebra is a direct
480 sum of five simple algebras, four of which comprise Hermitian
481 matrices. This method returns the original "natural" basis
482 for our underlying vector space. (Typically, the natural basis
483 is used to construct the multiplication table in the first place.)
484
485 Note that this will always return a matrix. The standard basis
486 in `R^n` will be returned as `n`-by-`1` column matrices.
487
488 SETUP::
489
490 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
491 ....: RealSymmetricEJA)
492
493 EXAMPLES::
494
495 sage: J = RealSymmetricEJA(2)
496 sage: J.basis()
497 Finite family {0: e0, 1: e1, 2: e2}
498 sage: J.natural_basis()
499 (
500 [1 0] [ 0 0.7071067811865475?] [0 0]
501 [0 0], [0.7071067811865475? 0], [0 1]
502 )
503
504 ::
505
506 sage: J = JordanSpinEJA(2)
507 sage: J.basis()
508 Finite family {0: e0, 1: e1}
509 sage: J.natural_basis()
510 (
511 [1] [0]
512 [0], [1]
513 )
514
515 """
516 if self._natural_basis is None:
517 M = self.natural_basis_space()
518 return tuple( M(b.to_vector()) for b in self.basis() )
519 else:
520 return self._natural_basis
521
522
523 def natural_basis_space(self):
524 """
525 Return the matrix space in which this algebra's natural basis
526 elements live.
527
528 Generally this will be an `n`-by-`1` column-vector space,
529 except when the algebra is trivial. There it's `n`-by-`n`
530 (where `n` is zero), to ensure that two elements of the
531 natural basis space (empty matrices) can be multiplied.
532 """
533 if self.is_trivial():
534 return MatrixSpace(self.base_ring(), 0)
535 elif self._natural_basis is None or len(self._natural_basis) == 0:
536 return MatrixSpace(self.base_ring(), self.dimension(), 1)
537 else:
538 return self._natural_basis[0].matrix_space()
539
540
541 @staticmethod
542 def natural_inner_product(X,Y):
543 """
544 Compute the inner product of two naturally-represented elements.
545
546 For example in the real symmetric matrix EJA, this will compute
547 the trace inner-product of two n-by-n symmetric matrices. The
548 default should work for the real cartesian product EJA, the
549 Jordan spin EJA, and the real symmetric matrices. The others
550 will have to be overridden.
551 """
552 return (X.conjugate_transpose()*Y).trace()
553
554
555 @cached_method
556 def one(self):
557 """
558 Return the unit element of this algebra.
559
560 SETUP::
561
562 sage: from mjo.eja.eja_algebra import (HadamardEJA,
563 ....: random_eja)
564
565 EXAMPLES::
566
567 sage: J = HadamardEJA(5)
568 sage: J.one()
569 e0 + e1 + e2 + e3 + e4
570
571 TESTS:
572
573 The identity element acts like the identity::
574
575 sage: set_random_seed()
576 sage: J = random_eja()
577 sage: x = J.random_element()
578 sage: J.one()*x == x and x*J.one() == x
579 True
580
581 The matrix of the unit element's operator is the identity::
582
583 sage: set_random_seed()
584 sage: J = random_eja()
585 sage: actual = J.one().operator().matrix()
586 sage: expected = matrix.identity(J.base_ring(), J.dimension())
587 sage: actual == expected
588 True
589
590 """
591 # We can brute-force compute the matrices of the operators
592 # that correspond to the basis elements of this algebra.
593 # If some linear combination of those basis elements is the
594 # algebra identity, then the same linear combination of
595 # their matrices has to be the identity matrix.
596 #
597 # Of course, matrices aren't vectors in sage, so we have to
598 # appeal to the "long vectors" isometry.
599 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
600
601 # Now we use basis linear algebra to find the coefficients,
602 # of the matrices-as-vectors-linear-combination, which should
603 # work for the original algebra basis too.
604 A = matrix.column(self.base_ring(), oper_vecs)
605
606 # We used the isometry on the left-hand side already, but we
607 # still need to do it for the right-hand side. Recall that we
608 # wanted something that summed to the identity matrix.
609 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
610
611 # Now if there's an identity element in the algebra, this should work.
612 coeffs = A.solve_right(b)
613 return self.linear_combination(zip(self.gens(), coeffs))
614
615
616 def peirce_decomposition(self, c):
617 """
618 The Peirce decomposition of this algebra relative to the
619 idempotent ``c``.
620
621 In the future, this can be extended to a complete system of
622 orthogonal idempotents.
623
624 INPUT:
625
626 - ``c`` -- an idempotent of this algebra.
627
628 OUTPUT:
629
630 A triple (J0, J5, J1) containing two subalgebras and one subspace
631 of this algebra,
632
633 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
634 corresponding to the eigenvalue zero.
635
636 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
637 corresponding to the eigenvalue one-half.
638
639 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
640 corresponding to the eigenvalue one.
641
642 These are the only possible eigenspaces for that operator, and this
643 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
644 orthogonal, and are subalgebras of this algebra with the appropriate
645 restrictions.
646
647 SETUP::
648
649 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
650
651 EXAMPLES:
652
653 The canonical example comes from the symmetric matrices, which
654 decompose into diagonal and off-diagonal parts::
655
656 sage: J = RealSymmetricEJA(3)
657 sage: C = matrix(QQ, [ [1,0,0],
658 ....: [0,1,0],
659 ....: [0,0,0] ])
660 sage: c = J(C)
661 sage: J0,J5,J1 = J.peirce_decomposition(c)
662 sage: J0
663 Euclidean Jordan algebra of dimension 1...
664 sage: J5
665 Vector space of degree 6 and dimension 2...
666 sage: J1
667 Euclidean Jordan algebra of dimension 3...
668 sage: J0.one().natural_representation()
669 [0 0 0]
670 [0 0 0]
671 [0 0 1]
672 sage: orig_df = AA.options.display_format
673 sage: AA.options.display_format = 'radical'
674 sage: J.from_vector(J5.basis()[0]).natural_representation()
675 [ 0 0 1/2*sqrt(2)]
676 [ 0 0 0]
677 [1/2*sqrt(2) 0 0]
678 sage: J.from_vector(J5.basis()[1]).natural_representation()
679 [ 0 0 0]
680 [ 0 0 1/2*sqrt(2)]
681 [ 0 1/2*sqrt(2) 0]
682 sage: AA.options.display_format = orig_df
683 sage: J1.one().natural_representation()
684 [1 0 0]
685 [0 1 0]
686 [0 0 0]
687
688 TESTS:
689
690 Every algebra decomposes trivially with respect to its identity
691 element::
692
693 sage: set_random_seed()
694 sage: J = random_eja()
695 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
696 sage: J0.dimension() == 0 and J5.dimension() == 0
697 True
698 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
699 True
700
701 The decomposition is into eigenspaces, and its components are
702 therefore necessarily orthogonal. Moreover, the identity
703 elements in the two subalgebras are the projections onto their
704 respective subspaces of the superalgebra's identity element::
705
706 sage: set_random_seed()
707 sage: J = random_eja()
708 sage: x = J.random_element()
709 sage: if not J.is_trivial():
710 ....: while x.is_nilpotent():
711 ....: x = J.random_element()
712 sage: c = x.subalgebra_idempotent()
713 sage: J0,J5,J1 = J.peirce_decomposition(c)
714 sage: ipsum = 0
715 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
716 ....: w = w.superalgebra_element()
717 ....: y = J.from_vector(y)
718 ....: z = z.superalgebra_element()
719 ....: ipsum += w.inner_product(y).abs()
720 ....: ipsum += w.inner_product(z).abs()
721 ....: ipsum += y.inner_product(z).abs()
722 sage: ipsum
723 0
724 sage: J1(c) == J1.one()
725 True
726 sage: J0(J.one() - c) == J0.one()
727 True
728
729 """
730 if not c.is_idempotent():
731 raise ValueError("element is not idempotent: %s" % c)
732
733 # Default these to what they should be if they turn out to be
734 # trivial, because eigenspaces_left() won't return eigenvalues
735 # corresponding to trivial spaces (e.g. it returns only the
736 # eigenspace corresponding to lambda=1 if you take the
737 # decomposition relative to the identity element).
738 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
739 J0 = trivial # eigenvalue zero
740 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
741 J1 = trivial # eigenvalue one
742
743 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
744 if eigval == ~(self.base_ring()(2)):
745 J5 = eigspace
746 else:
747 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
748 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
749 if eigval == 0:
750 J0 = subalg
751 elif eigval == 1:
752 J1 = subalg
753 else:
754 raise ValueError("unexpected eigenvalue: %s" % eigval)
755
756 return (J0, J5, J1)
757
758
759 def random_element(self, thorough=False):
760 r"""
761 Return a random element of this algebra.
762
763 Our algebra superclass method only returns a linear
764 combination of at most two basis elements. We instead
765 want the vector space "random element" method that
766 returns a more diverse selection.
767
768 INPUT:
769
770 - ``thorough`` -- (boolean; default False) whether or not we
771 should generate irrational coefficients for the random
772 element when our base ring is irrational; this slows the
773 algebra operations to a crawl, but any truly random method
774 should include them
775
776 """
777 # For a general base ring... maybe we can trust this to do the
778 # right thing? Unlikely, but.
779 V = self.vector_space()
780 v = V.random_element()
781
782 if self.base_ring() is AA:
783 # The "random element" method of the algebraic reals is
784 # stupid at the moment, and only returns integers between
785 # -2 and 2, inclusive:
786 #
787 # https://trac.sagemath.org/ticket/30875
788 #
789 # Instead, we implement our own "random vector" method,
790 # and then coerce that into the algebra. We use the vector
791 # space degree here instead of the dimension because a
792 # subalgebra could (for example) be spanned by only two
793 # vectors, each with five coordinates. We need to
794 # generate all five coordinates.
795 if thorough:
796 v *= QQbar.random_element().real()
797 else:
798 v *= QQ.random_element()
799
800 return self.from_vector(V.coordinate_vector(v))
801
802 def random_elements(self, count, thorough=False):
803 """
804 Return ``count`` random elements as a tuple.
805
806 INPUT:
807
808 - ``thorough`` -- (boolean; default False) whether or not we
809 should generate irrational coefficients for the random
810 elements when our base ring is irrational; this slows the
811 algebra operations to a crawl, but any truly random method
812 should include them
813
814 SETUP::
815
816 sage: from mjo.eja.eja_algebra import JordanSpinEJA
817
818 EXAMPLES::
819
820 sage: J = JordanSpinEJA(3)
821 sage: x,y,z = J.random_elements(3)
822 sage: all( [ x in J, y in J, z in J ])
823 True
824 sage: len( J.random_elements(10) ) == 10
825 True
826
827 """
828 return tuple( self.random_element(thorough)
829 for idx in range(count) )
830
831 @classmethod
832 def random_instance(cls, field=AA, **kwargs):
833 """
834 Return a random instance of this type of algebra.
835
836 Beware, this will crash for "most instances" because the
837 constructor below looks wrong.
838 """
839 if cls is TrivialEJA:
840 # The TrivialEJA class doesn't take an "n" argument because
841 # there's only one.
842 return cls(field)
843
844 n = ZZ.random_element(cls._max_test_case_size() + 1)
845 return cls(n, field, **kwargs)
846
847 @cached_method
848 def _charpoly_coefficients(self):
849 r"""
850 The `r` polynomial coefficients of the "characteristic polynomial
851 of" function.
852 """
853 n = self.dimension()
854 var_names = [ "X" + str(z) for z in range(1,n+1) ]
855 R = PolynomialRing(self.base_ring(), var_names)
856 vars = R.gens()
857 F = R.fraction_field()
858
859 def L_x_i_j(i,j):
860 # From a result in my book, these are the entries of the
861 # basis representation of L_x.
862 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
863 for k in range(n) )
864
865 L_x = matrix(F, n, n, L_x_i_j)
866
867 r = None
868 if self.rank.is_in_cache():
869 r = self.rank()
870 # There's no need to pad the system with redundant
871 # columns if we *know* they'll be redundant.
872 n = r
873
874 # Compute an extra power in case the rank is equal to
875 # the dimension (otherwise, we would stop at x^(r-1)).
876 x_powers = [ (L_x**k)*self.one().to_vector()
877 for k in range(n+1) ]
878 A = matrix.column(F, x_powers[:n])
879 AE = A.extended_echelon_form()
880 E = AE[:,n:]
881 A_rref = AE[:,:n]
882 if r is None:
883 r = A_rref.rank()
884 b = x_powers[r]
885
886 # The theory says that only the first "r" coefficients are
887 # nonzero, and they actually live in the original polynomial
888 # ring and not the fraction field. We negate them because
889 # in the actual characteristic polynomial, they get moved
890 # to the other side where x^r lives.
891 return -A_rref.solve_right(E*b).change_ring(R)[:r]
892
893 @cached_method
894 def rank(self):
895 r"""
896 Return the rank of this EJA.
897
898 This is a cached method because we know the rank a priori for
899 all of the algebras we can construct. Thus we can avoid the
900 expensive ``_charpoly_coefficients()`` call unless we truly
901 need to compute the whole characteristic polynomial.
902
903 SETUP::
904
905 sage: from mjo.eja.eja_algebra import (HadamardEJA,
906 ....: JordanSpinEJA,
907 ....: RealSymmetricEJA,
908 ....: ComplexHermitianEJA,
909 ....: QuaternionHermitianEJA,
910 ....: random_eja)
911
912 EXAMPLES:
913
914 The rank of the Jordan spin algebra is always two::
915
916 sage: JordanSpinEJA(2).rank()
917 2
918 sage: JordanSpinEJA(3).rank()
919 2
920 sage: JordanSpinEJA(4).rank()
921 2
922
923 The rank of the `n`-by-`n` Hermitian real, complex, or
924 quaternion matrices is `n`::
925
926 sage: RealSymmetricEJA(4).rank()
927 4
928 sage: ComplexHermitianEJA(3).rank()
929 3
930 sage: QuaternionHermitianEJA(2).rank()
931 2
932
933 TESTS:
934
935 Ensure that every EJA that we know how to construct has a
936 positive integer rank, unless the algebra is trivial in
937 which case its rank will be zero::
938
939 sage: set_random_seed()
940 sage: J = random_eja()
941 sage: r = J.rank()
942 sage: r in ZZ
943 True
944 sage: r > 0 or (r == 0 and J.is_trivial())
945 True
946
947 Ensure that computing the rank actually works, since the ranks
948 of all simple algebras are known and will be cached by default::
949
950 sage: J = HadamardEJA(4)
951 sage: J.rank.clear_cache()
952 sage: J.rank()
953 4
954
955 ::
956
957 sage: J = JordanSpinEJA(4)
958 sage: J.rank.clear_cache()
959 sage: J.rank()
960 2
961
962 ::
963
964 sage: J = RealSymmetricEJA(3)
965 sage: J.rank.clear_cache()
966 sage: J.rank()
967 3
968
969 ::
970
971 sage: J = ComplexHermitianEJA(2)
972 sage: J.rank.clear_cache()
973 sage: J.rank()
974 2
975
976 ::
977
978 sage: J = QuaternionHermitianEJA(2)
979 sage: J.rank.clear_cache()
980 sage: J.rank()
981 2
982 """
983 return len(self._charpoly_coefficients())
984
985
986 def vector_space(self):
987 """
988 Return the vector space that underlies this algebra.
989
990 SETUP::
991
992 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
993
994 EXAMPLES::
995
996 sage: J = RealSymmetricEJA(2)
997 sage: J.vector_space()
998 Vector space of dimension 3 over...
999
1000 """
1001 return self.zero().to_vector().parent().ambient_vector_space()
1002
1003
1004 Element = FiniteDimensionalEuclideanJordanAlgebraElement
1005
1006
1007 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
1008 """
1009 Return the Euclidean Jordan Algebra corresponding to the set
1010 `R^n` under the Hadamard product.
1011
1012 Note: this is nothing more than the Cartesian product of ``n``
1013 copies of the spin algebra. Once Cartesian product algebras
1014 are implemented, this can go.
1015
1016 SETUP::
1017
1018 sage: from mjo.eja.eja_algebra import HadamardEJA
1019
1020 EXAMPLES:
1021
1022 This multiplication table can be verified by hand::
1023
1024 sage: J = HadamardEJA(3)
1025 sage: e0,e1,e2 = J.gens()
1026 sage: e0*e0
1027 e0
1028 sage: e0*e1
1029 0
1030 sage: e0*e2
1031 0
1032 sage: e1*e1
1033 e1
1034 sage: e1*e2
1035 0
1036 sage: e2*e2
1037 e2
1038
1039 TESTS:
1040
1041 We can change the generator prefix::
1042
1043 sage: HadamardEJA(3, prefix='r').gens()
1044 (r0, r1, r2)
1045
1046 """
1047 def __init__(self, n, field=AA, **kwargs):
1048 V = VectorSpace(field, n)
1049 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
1050 for i in range(n) ]
1051
1052 fdeja = super(HadamardEJA, self)
1053 fdeja.__init__(field, mult_table, **kwargs)
1054 self.rank.set_cache(n)
1055
1056 def inner_product(self, x, y):
1057 """
1058 Faster to reimplement than to use natural representations.
1059
1060 SETUP::
1061
1062 sage: from mjo.eja.eja_algebra import HadamardEJA
1063
1064 TESTS:
1065
1066 Ensure that this is the usual inner product for the algebras
1067 over `R^n`::
1068
1069 sage: set_random_seed()
1070 sage: J = HadamardEJA.random_instance()
1071 sage: x,y = J.random_elements(2)
1072 sage: X = x.natural_representation()
1073 sage: Y = y.natural_representation()
1074 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1075 True
1076
1077 """
1078 return x.to_vector().inner_product(y.to_vector())
1079
1080
1081 def random_eja(field=AA):
1082 """
1083 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1084
1085 SETUP::
1086
1087 sage: from mjo.eja.eja_algebra import random_eja
1088
1089 TESTS::
1090
1091 sage: random_eja()
1092 Euclidean Jordan algebra of dimension...
1093
1094 """
1095 classname = choice([TrivialEJA,
1096 HadamardEJA,
1097 JordanSpinEJA,
1098 RealSymmetricEJA,
1099 ComplexHermitianEJA,
1100 QuaternionHermitianEJA])
1101 return classname.random_instance(field=field)
1102
1103
1104
1105
1106 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1107 @staticmethod
1108 def _max_test_case_size():
1109 # Play it safe, since this will be squared and the underlying
1110 # field can have dimension 4 (quaternions) too.
1111 return 2
1112
1113 def __init__(self, field, basis, normalize_basis=True, **kwargs):
1114 """
1115 Compared to the superclass constructor, we take a basis instead of
1116 a multiplication table because the latter can be computed in terms
1117 of the former when the product is known (like it is here).
1118 """
1119 # Used in this class's fast _charpoly_coefficients() override.
1120 self._basis_normalizers = None
1121
1122 # We're going to loop through this a few times, so now's a good
1123 # time to ensure that it isn't a generator expression.
1124 basis = tuple(basis)
1125
1126 if len(basis) > 1 and normalize_basis:
1127 # We'll need sqrt(2) to normalize the basis, and this
1128 # winds up in the multiplication table, so the whole
1129 # algebra needs to be over the field extension.
1130 R = PolynomialRing(field, 'z')
1131 z = R.gen()
1132 p = z**2 - 2
1133 if p.is_irreducible():
1134 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1135 basis = tuple( s.change_ring(field) for s in basis )
1136 self._basis_normalizers = tuple(
1137 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1138 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1139
1140 Qs = self.multiplication_table_from_matrix_basis(basis)
1141
1142 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1143 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
1144 return
1145
1146
1147 @cached_method
1148 def _charpoly_coefficients(self):
1149 r"""
1150 Override the parent method with something that tries to compute
1151 over a faster (non-extension) field.
1152 """
1153 if self._basis_normalizers is None:
1154 # We didn't normalize, so assume that the basis we started
1155 # with had entries in a nice field.
1156 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
1157 else:
1158 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1159 self._basis_normalizers) )
1160
1161 # Do this over the rationals and convert back at the end.
1162 # Only works because we know the entries of the basis are
1163 # integers. The argument ``check=False`` is required
1164 # because the trace inner-product method for this
1165 # class is a stub and can't actually be checked.
1166 J = MatrixEuclideanJordanAlgebra(QQ,
1167 basis,
1168 normalize_basis=False,
1169 check=False)
1170 a = J._charpoly_coefficients()
1171
1172 # Unfortunately, changing the basis does change the
1173 # coefficients of the characteristic polynomial, but since
1174 # these are really the coefficients of the "characteristic
1175 # polynomial of" function, everything is still nice and
1176 # unevaluated. It's therefore "obvious" how scaling the
1177 # basis affects the coordinate variables X1, X2, et
1178 # cetera. Scaling the first basis vector up by "n" adds a
1179 # factor of 1/n into every "X1" term, for example. So here
1180 # we simply undo the basis_normalizer scaling that we
1181 # performed earlier.
1182 #
1183 # The a[0] access here is safe because trivial algebras
1184 # won't have any basis normalizers and therefore won't
1185 # make it to this "else" branch.
1186 XS = a[0].parent().gens()
1187 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1188 for i in range(len(XS)) }
1189 return tuple( a_i.subs(subs_dict) for a_i in a )
1190
1191
1192 @staticmethod
1193 def multiplication_table_from_matrix_basis(basis):
1194 """
1195 At least three of the five simple Euclidean Jordan algebras have the
1196 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1197 multiplication on the right is matrix multiplication. Given a basis
1198 for the underlying matrix space, this function returns a
1199 multiplication table (obtained by looping through the basis
1200 elements) for an algebra of those matrices.
1201 """
1202 # In S^2, for example, we nominally have four coordinates even
1203 # though the space is of dimension three only. The vector space V
1204 # is supposed to hold the entire long vector, and the subspace W
1205 # of V will be spanned by the vectors that arise from symmetric
1206 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1207 if len(basis) == 0:
1208 return []
1209
1210 field = basis[0].base_ring()
1211 dimension = basis[0].nrows()
1212
1213 V = VectorSpace(field, dimension**2)
1214 W = V.span_of_basis( _mat2vec(s) for s in basis )
1215 n = len(basis)
1216 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1217 for i in range(n):
1218 for j in range(n):
1219 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1220 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1221
1222 return mult_table
1223
1224
1225 @staticmethod
1226 def real_embed(M):
1227 """
1228 Embed the matrix ``M`` into a space of real matrices.
1229
1230 The matrix ``M`` can have entries in any field at the moment:
1231 the real numbers, complex numbers, or quaternions. And although
1232 they are not a field, we can probably support octonions at some
1233 point, too. This function returns a real matrix that "acts like"
1234 the original with respect to matrix multiplication; i.e.
1235
1236 real_embed(M*N) = real_embed(M)*real_embed(N)
1237
1238 """
1239 raise NotImplementedError
1240
1241
1242 @staticmethod
1243 def real_unembed(M):
1244 """
1245 The inverse of :meth:`real_embed`.
1246 """
1247 raise NotImplementedError
1248
1249
1250 @classmethod
1251 def natural_inner_product(cls,X,Y):
1252 Xu = cls.real_unembed(X)
1253 Yu = cls.real_unembed(Y)
1254 tr = (Xu*Yu).trace()
1255
1256 if tr in RLF:
1257 # It's real already.
1258 return tr
1259
1260 # Otherwise, try the thing that works for complex numbers; and
1261 # if that doesn't work, the thing that works for quaternions.
1262 try:
1263 return tr.vector()[0] # real part, imag part is index 1
1264 except AttributeError:
1265 # A quaternions doesn't have a vector() method, but does
1266 # have coefficient_tuple() method that returns the
1267 # coefficients of 1, i, j, and k -- in that order.
1268 return tr.coefficient_tuple()[0]
1269
1270
1271 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1272 @staticmethod
1273 def real_embed(M):
1274 """
1275 The identity function, for embedding real matrices into real
1276 matrices.
1277 """
1278 return M
1279
1280 @staticmethod
1281 def real_unembed(M):
1282 """
1283 The identity function, for unembedding real matrices from real
1284 matrices.
1285 """
1286 return M
1287
1288
1289 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1290 """
1291 The rank-n simple EJA consisting of real symmetric n-by-n
1292 matrices, the usual symmetric Jordan product, and the trace inner
1293 product. It has dimension `(n^2 + n)/2` over the reals.
1294
1295 SETUP::
1296
1297 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1298
1299 EXAMPLES::
1300
1301 sage: J = RealSymmetricEJA(2)
1302 sage: e0, e1, e2 = J.gens()
1303 sage: e0*e0
1304 e0
1305 sage: e1*e1
1306 1/2*e0 + 1/2*e2
1307 sage: e2*e2
1308 e2
1309
1310 In theory, our "field" can be any subfield of the reals::
1311
1312 sage: RealSymmetricEJA(2, RDF)
1313 Euclidean Jordan algebra of dimension 3 over Real Double Field
1314 sage: RealSymmetricEJA(2, RR)
1315 Euclidean Jordan algebra of dimension 3 over Real Field with
1316 53 bits of precision
1317
1318 TESTS:
1319
1320 The dimension of this algebra is `(n^2 + n) / 2`::
1321
1322 sage: set_random_seed()
1323 sage: n_max = RealSymmetricEJA._max_test_case_size()
1324 sage: n = ZZ.random_element(1, n_max)
1325 sage: J = RealSymmetricEJA(n)
1326 sage: J.dimension() == (n^2 + n)/2
1327 True
1328
1329 The Jordan multiplication is what we think it is::
1330
1331 sage: set_random_seed()
1332 sage: J = RealSymmetricEJA.random_instance()
1333 sage: x,y = J.random_elements(2)
1334 sage: actual = (x*y).natural_representation()
1335 sage: X = x.natural_representation()
1336 sage: Y = y.natural_representation()
1337 sage: expected = (X*Y + Y*X)/2
1338 sage: actual == expected
1339 True
1340 sage: J(expected) == x*y
1341 True
1342
1343 We can change the generator prefix::
1344
1345 sage: RealSymmetricEJA(3, prefix='q').gens()
1346 (q0, q1, q2, q3, q4, q5)
1347
1348 Our natural basis is normalized with respect to the natural inner
1349 product unless we specify otherwise::
1350
1351 sage: set_random_seed()
1352 sage: J = RealSymmetricEJA.random_instance()
1353 sage: all( b.norm() == 1 for b in J.gens() )
1354 True
1355
1356 Since our natural basis is normalized with respect to the natural
1357 inner product, and since we know that this algebra is an EJA, any
1358 left-multiplication operator's matrix will be symmetric because
1359 natural->EJA basis representation is an isometry and within the EJA
1360 the operator is self-adjoint by the Jordan axiom::
1361
1362 sage: set_random_seed()
1363 sage: x = RealSymmetricEJA.random_instance().random_element()
1364 sage: x.operator().matrix().is_symmetric()
1365 True
1366
1367 We can construct the (trivial) algebra of rank zero::
1368
1369 sage: RealSymmetricEJA(0)
1370 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1371
1372 """
1373 @classmethod
1374 def _denormalized_basis(cls, n, field):
1375 """
1376 Return a basis for the space of real symmetric n-by-n matrices.
1377
1378 SETUP::
1379
1380 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1381
1382 TESTS::
1383
1384 sage: set_random_seed()
1385 sage: n = ZZ.random_element(1,5)
1386 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1387 sage: all( M.is_symmetric() for M in B)
1388 True
1389
1390 """
1391 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1392 # coordinates.
1393 S = []
1394 for i in range(n):
1395 for j in range(i+1):
1396 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1397 if i == j:
1398 Sij = Eij
1399 else:
1400 Sij = Eij + Eij.transpose()
1401 S.append(Sij)
1402 return S
1403
1404
1405 @staticmethod
1406 def _max_test_case_size():
1407 return 4 # Dimension 10
1408
1409
1410 def __init__(self, n, field=AA, **kwargs):
1411 basis = self._denormalized_basis(n, field)
1412 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1413 self.rank.set_cache(n)
1414
1415
1416 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1417 @staticmethod
1418 def real_embed(M):
1419 """
1420 Embed the n-by-n complex matrix ``M`` into the space of real
1421 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1422 bi` to the block matrix ``[[a,b],[-b,a]]``.
1423
1424 SETUP::
1425
1426 sage: from mjo.eja.eja_algebra import \
1427 ....: ComplexMatrixEuclideanJordanAlgebra
1428
1429 EXAMPLES::
1430
1431 sage: F = QuadraticField(-1, 'I')
1432 sage: x1 = F(4 - 2*i)
1433 sage: x2 = F(1 + 2*i)
1434 sage: x3 = F(-i)
1435 sage: x4 = F(6)
1436 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1437 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1438 [ 4 -2| 1 2]
1439 [ 2 4|-2 1]
1440 [-----+-----]
1441 [ 0 -1| 6 0]
1442 [ 1 0| 0 6]
1443
1444 TESTS:
1445
1446 Embedding is a homomorphism (isomorphism, in fact)::
1447
1448 sage: set_random_seed()
1449 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1450 sage: n = ZZ.random_element(n_max)
1451 sage: F = QuadraticField(-1, 'I')
1452 sage: X = random_matrix(F, n)
1453 sage: Y = random_matrix(F, n)
1454 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1455 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1456 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1457 sage: Xe*Ye == XYe
1458 True
1459
1460 """
1461 n = M.nrows()
1462 if M.ncols() != n:
1463 raise ValueError("the matrix 'M' must be square")
1464
1465 # We don't need any adjoined elements...
1466 field = M.base_ring().base_ring()
1467
1468 blocks = []
1469 for z in M.list():
1470 a = z.list()[0] # real part, I guess
1471 b = z.list()[1] # imag part, I guess
1472 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1473
1474 return matrix.block(field, n, blocks)
1475
1476
1477 @staticmethod
1478 def real_unembed(M):
1479 """
1480 The inverse of _embed_complex_matrix().
1481
1482 SETUP::
1483
1484 sage: from mjo.eja.eja_algebra import \
1485 ....: ComplexMatrixEuclideanJordanAlgebra
1486
1487 EXAMPLES::
1488
1489 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1490 ....: [-2, 1, -4, 3],
1491 ....: [ 9, 10, 11, 12],
1492 ....: [-10, 9, -12, 11] ])
1493 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1494 [ 2*I + 1 4*I + 3]
1495 [ 10*I + 9 12*I + 11]
1496
1497 TESTS:
1498
1499 Unembedding is the inverse of embedding::
1500
1501 sage: set_random_seed()
1502 sage: F = QuadraticField(-1, 'I')
1503 sage: M = random_matrix(F, 3)
1504 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1505 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1506 True
1507
1508 """
1509 n = ZZ(M.nrows())
1510 if M.ncols() != n:
1511 raise ValueError("the matrix 'M' must be square")
1512 if not n.mod(2).is_zero():
1513 raise ValueError("the matrix 'M' must be a complex embedding")
1514
1515 # If "M" was normalized, its base ring might have roots
1516 # adjoined and they can stick around after unembedding.
1517 field = M.base_ring()
1518 R = PolynomialRing(field, 'z')
1519 z = R.gen()
1520 if field is AA:
1521 # Sage doesn't know how to embed AA into QQbar, i.e. how
1522 # to adjoin sqrt(-1) to AA.
1523 F = QQbar
1524 else:
1525 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1526 i = F.gen()
1527
1528 # Go top-left to bottom-right (reading order), converting every
1529 # 2-by-2 block we see to a single complex element.
1530 elements = []
1531 for k in range(n/2):
1532 for j in range(n/2):
1533 submat = M[2*k:2*k+2,2*j:2*j+2]
1534 if submat[0,0] != submat[1,1]:
1535 raise ValueError('bad on-diagonal submatrix')
1536 if submat[0,1] != -submat[1,0]:
1537 raise ValueError('bad off-diagonal submatrix')
1538 z = submat[0,0] + submat[0,1]*i
1539 elements.append(z)
1540
1541 return matrix(F, n/2, elements)
1542
1543
1544 @classmethod
1545 def natural_inner_product(cls,X,Y):
1546 """
1547 Compute a natural inner product in this algebra directly from
1548 its real embedding.
1549
1550 SETUP::
1551
1552 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1553
1554 TESTS:
1555
1556 This gives the same answer as the slow, default method implemented
1557 in :class:`MatrixEuclideanJordanAlgebra`::
1558
1559 sage: set_random_seed()
1560 sage: J = ComplexHermitianEJA.random_instance()
1561 sage: x,y = J.random_elements(2)
1562 sage: Xe = x.natural_representation()
1563 sage: Ye = y.natural_representation()
1564 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1565 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1566 sage: expected = (X*Y).trace().real()
1567 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1568 sage: actual == expected
1569 True
1570
1571 """
1572 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1573
1574
1575 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1576 """
1577 The rank-n simple EJA consisting of complex Hermitian n-by-n
1578 matrices over the real numbers, the usual symmetric Jordan product,
1579 and the real-part-of-trace inner product. It has dimension `n^2` over
1580 the reals.
1581
1582 SETUP::
1583
1584 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1585
1586 EXAMPLES:
1587
1588 In theory, our "field" can be any subfield of the reals::
1589
1590 sage: ComplexHermitianEJA(2, RDF)
1591 Euclidean Jordan algebra of dimension 4 over Real Double Field
1592 sage: ComplexHermitianEJA(2, RR)
1593 Euclidean Jordan algebra of dimension 4 over Real Field with
1594 53 bits of precision
1595
1596 TESTS:
1597
1598 The dimension of this algebra is `n^2`::
1599
1600 sage: set_random_seed()
1601 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1602 sage: n = ZZ.random_element(1, n_max)
1603 sage: J = ComplexHermitianEJA(n)
1604 sage: J.dimension() == n^2
1605 True
1606
1607 The Jordan multiplication is what we think it is::
1608
1609 sage: set_random_seed()
1610 sage: J = ComplexHermitianEJA.random_instance()
1611 sage: x,y = J.random_elements(2)
1612 sage: actual = (x*y).natural_representation()
1613 sage: X = x.natural_representation()
1614 sage: Y = y.natural_representation()
1615 sage: expected = (X*Y + Y*X)/2
1616 sage: actual == expected
1617 True
1618 sage: J(expected) == x*y
1619 True
1620
1621 We can change the generator prefix::
1622
1623 sage: ComplexHermitianEJA(2, prefix='z').gens()
1624 (z0, z1, z2, z3)
1625
1626 Our natural basis is normalized with respect to the natural inner
1627 product unless we specify otherwise::
1628
1629 sage: set_random_seed()
1630 sage: J = ComplexHermitianEJA.random_instance()
1631 sage: all( b.norm() == 1 for b in J.gens() )
1632 True
1633
1634 Since our natural basis is normalized with respect to the natural
1635 inner product, and since we know that this algebra is an EJA, any
1636 left-multiplication operator's matrix will be symmetric because
1637 natural->EJA basis representation is an isometry and within the EJA
1638 the operator is self-adjoint by the Jordan axiom::
1639
1640 sage: set_random_seed()
1641 sage: x = ComplexHermitianEJA.random_instance().random_element()
1642 sage: x.operator().matrix().is_symmetric()
1643 True
1644
1645 We can construct the (trivial) algebra of rank zero::
1646
1647 sage: ComplexHermitianEJA(0)
1648 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1649
1650 """
1651
1652 @classmethod
1653 def _denormalized_basis(cls, n, field):
1654 """
1655 Returns a basis for the space of complex Hermitian n-by-n matrices.
1656
1657 Why do we embed these? Basically, because all of numerical linear
1658 algebra assumes that you're working with vectors consisting of `n`
1659 entries from a field and scalars from the same field. There's no way
1660 to tell SageMath that (for example) the vectors contain complex
1661 numbers, while the scalar field is real.
1662
1663 SETUP::
1664
1665 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1666
1667 TESTS::
1668
1669 sage: set_random_seed()
1670 sage: n = ZZ.random_element(1,5)
1671 sage: field = QuadraticField(2, 'sqrt2')
1672 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1673 sage: all( M.is_symmetric() for M in B)
1674 True
1675
1676 """
1677 R = PolynomialRing(field, 'z')
1678 z = R.gen()
1679 F = field.extension(z**2 + 1, 'I')
1680 I = F.gen()
1681
1682 # This is like the symmetric case, but we need to be careful:
1683 #
1684 # * We want conjugate-symmetry, not just symmetry.
1685 # * The diagonal will (as a result) be real.
1686 #
1687 S = []
1688 for i in range(n):
1689 for j in range(i+1):
1690 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1691 if i == j:
1692 Sij = cls.real_embed(Eij)
1693 S.append(Sij)
1694 else:
1695 # The second one has a minus because it's conjugated.
1696 Sij_real = cls.real_embed(Eij + Eij.transpose())
1697 S.append(Sij_real)
1698 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1699 S.append(Sij_imag)
1700
1701 # Since we embedded these, we can drop back to the "field" that we
1702 # started with instead of the complex extension "F".
1703 return ( s.change_ring(field) for s in S )
1704
1705
1706 def __init__(self, n, field=AA, **kwargs):
1707 basis = self._denormalized_basis(n,field)
1708 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1709 self.rank.set_cache(n)
1710
1711
1712 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1713 @staticmethod
1714 def real_embed(M):
1715 """
1716 Embed the n-by-n quaternion matrix ``M`` into the space of real
1717 matrices of size 4n-by-4n by first sending each quaternion entry `z
1718 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1719 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1720 matrix.
1721
1722 SETUP::
1723
1724 sage: from mjo.eja.eja_algebra import \
1725 ....: QuaternionMatrixEuclideanJordanAlgebra
1726
1727 EXAMPLES::
1728
1729 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1730 sage: i,j,k = Q.gens()
1731 sage: x = 1 + 2*i + 3*j + 4*k
1732 sage: M = matrix(Q, 1, [[x]])
1733 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1734 [ 1 2 3 4]
1735 [-2 1 -4 3]
1736 [-3 4 1 -2]
1737 [-4 -3 2 1]
1738
1739 Embedding is a homomorphism (isomorphism, in fact)::
1740
1741 sage: set_random_seed()
1742 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1743 sage: n = ZZ.random_element(n_max)
1744 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1745 sage: X = random_matrix(Q, n)
1746 sage: Y = random_matrix(Q, n)
1747 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1748 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1749 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1750 sage: Xe*Ye == XYe
1751 True
1752
1753 """
1754 quaternions = M.base_ring()
1755 n = M.nrows()
1756 if M.ncols() != n:
1757 raise ValueError("the matrix 'M' must be square")
1758
1759 F = QuadraticField(-1, 'I')
1760 i = F.gen()
1761
1762 blocks = []
1763 for z in M.list():
1764 t = z.coefficient_tuple()
1765 a = t[0]
1766 b = t[1]
1767 c = t[2]
1768 d = t[3]
1769 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1770 [-c + d*i, a - b*i]])
1771 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1772 blocks.append(realM)
1773
1774 # We should have real entries by now, so use the realest field
1775 # we've got for the return value.
1776 return matrix.block(quaternions.base_ring(), n, blocks)
1777
1778
1779
1780 @staticmethod
1781 def real_unembed(M):
1782 """
1783 The inverse of _embed_quaternion_matrix().
1784
1785 SETUP::
1786
1787 sage: from mjo.eja.eja_algebra import \
1788 ....: QuaternionMatrixEuclideanJordanAlgebra
1789
1790 EXAMPLES::
1791
1792 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1793 ....: [-2, 1, -4, 3],
1794 ....: [-3, 4, 1, -2],
1795 ....: [-4, -3, 2, 1]])
1796 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1797 [1 + 2*i + 3*j + 4*k]
1798
1799 TESTS:
1800
1801 Unembedding is the inverse of embedding::
1802
1803 sage: set_random_seed()
1804 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1805 sage: M = random_matrix(Q, 3)
1806 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1807 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1808 True
1809
1810 """
1811 n = ZZ(M.nrows())
1812 if M.ncols() != n:
1813 raise ValueError("the matrix 'M' must be square")
1814 if not n.mod(4).is_zero():
1815 raise ValueError("the matrix 'M' must be a quaternion embedding")
1816
1817 # Use the base ring of the matrix to ensure that its entries can be
1818 # multiplied by elements of the quaternion algebra.
1819 field = M.base_ring()
1820 Q = QuaternionAlgebra(field,-1,-1)
1821 i,j,k = Q.gens()
1822
1823 # Go top-left to bottom-right (reading order), converting every
1824 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1825 # quaternion block.
1826 elements = []
1827 for l in range(n/4):
1828 for m in range(n/4):
1829 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1830 M[4*l:4*l+4,4*m:4*m+4] )
1831 if submat[0,0] != submat[1,1].conjugate():
1832 raise ValueError('bad on-diagonal submatrix')
1833 if submat[0,1] != -submat[1,0].conjugate():
1834 raise ValueError('bad off-diagonal submatrix')
1835 z = submat[0,0].real()
1836 z += submat[0,0].imag()*i
1837 z += submat[0,1].real()*j
1838 z += submat[0,1].imag()*k
1839 elements.append(z)
1840
1841 return matrix(Q, n/4, elements)
1842
1843
1844 @classmethod
1845 def natural_inner_product(cls,X,Y):
1846 """
1847 Compute a natural inner product in this algebra directly from
1848 its real embedding.
1849
1850 SETUP::
1851
1852 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1853
1854 TESTS:
1855
1856 This gives the same answer as the slow, default method implemented
1857 in :class:`MatrixEuclideanJordanAlgebra`::
1858
1859 sage: set_random_seed()
1860 sage: J = QuaternionHermitianEJA.random_instance()
1861 sage: x,y = J.random_elements(2)
1862 sage: Xe = x.natural_representation()
1863 sage: Ye = y.natural_representation()
1864 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1865 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1866 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1867 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1868 sage: actual == expected
1869 True
1870
1871 """
1872 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1873
1874
1875 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1876 """
1877 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1878 matrices, the usual symmetric Jordan product, and the
1879 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1880 the reals.
1881
1882 SETUP::
1883
1884 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1885
1886 EXAMPLES:
1887
1888 In theory, our "field" can be any subfield of the reals::
1889
1890 sage: QuaternionHermitianEJA(2, RDF)
1891 Euclidean Jordan algebra of dimension 6 over Real Double Field
1892 sage: QuaternionHermitianEJA(2, RR)
1893 Euclidean Jordan algebra of dimension 6 over Real Field with
1894 53 bits of precision
1895
1896 TESTS:
1897
1898 The dimension of this algebra is `2*n^2 - n`::
1899
1900 sage: set_random_seed()
1901 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1902 sage: n = ZZ.random_element(1, n_max)
1903 sage: J = QuaternionHermitianEJA(n)
1904 sage: J.dimension() == 2*(n^2) - n
1905 True
1906
1907 The Jordan multiplication is what we think it is::
1908
1909 sage: set_random_seed()
1910 sage: J = QuaternionHermitianEJA.random_instance()
1911 sage: x,y = J.random_elements(2)
1912 sage: actual = (x*y).natural_representation()
1913 sage: X = x.natural_representation()
1914 sage: Y = y.natural_representation()
1915 sage: expected = (X*Y + Y*X)/2
1916 sage: actual == expected
1917 True
1918 sage: J(expected) == x*y
1919 True
1920
1921 We can change the generator prefix::
1922
1923 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1924 (a0, a1, a2, a3, a4, a5)
1925
1926 Our natural basis is normalized with respect to the natural inner
1927 product unless we specify otherwise::
1928
1929 sage: set_random_seed()
1930 sage: J = QuaternionHermitianEJA.random_instance()
1931 sage: all( b.norm() == 1 for b in J.gens() )
1932 True
1933
1934 Since our natural basis is normalized with respect to the natural
1935 inner product, and since we know that this algebra is an EJA, any
1936 left-multiplication operator's matrix will be symmetric because
1937 natural->EJA basis representation is an isometry and within the EJA
1938 the operator is self-adjoint by the Jordan axiom::
1939
1940 sage: set_random_seed()
1941 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1942 sage: x.operator().matrix().is_symmetric()
1943 True
1944
1945 We can construct the (trivial) algebra of rank zero::
1946
1947 sage: QuaternionHermitianEJA(0)
1948 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1949
1950 """
1951 @classmethod
1952 def _denormalized_basis(cls, n, field):
1953 """
1954 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1955
1956 Why do we embed these? Basically, because all of numerical
1957 linear algebra assumes that you're working with vectors consisting
1958 of `n` entries from a field and scalars from the same field. There's
1959 no way to tell SageMath that (for example) the vectors contain
1960 complex numbers, while the scalar field is real.
1961
1962 SETUP::
1963
1964 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1965
1966 TESTS::
1967
1968 sage: set_random_seed()
1969 sage: n = ZZ.random_element(1,5)
1970 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1971 sage: all( M.is_symmetric() for M in B )
1972 True
1973
1974 """
1975 Q = QuaternionAlgebra(QQ,-1,-1)
1976 I,J,K = Q.gens()
1977
1978 # This is like the symmetric case, but we need to be careful:
1979 #
1980 # * We want conjugate-symmetry, not just symmetry.
1981 # * The diagonal will (as a result) be real.
1982 #
1983 S = []
1984 for i in range(n):
1985 for j in range(i+1):
1986 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1987 if i == j:
1988 Sij = cls.real_embed(Eij)
1989 S.append(Sij)
1990 else:
1991 # The second, third, and fourth ones have a minus
1992 # because they're conjugated.
1993 Sij_real = cls.real_embed(Eij + Eij.transpose())
1994 S.append(Sij_real)
1995 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1996 S.append(Sij_I)
1997 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1998 S.append(Sij_J)
1999 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
2000 S.append(Sij_K)
2001
2002 # Since we embedded these, we can drop back to the "field" that we
2003 # started with instead of the quaternion algebra "Q".
2004 return ( s.change_ring(field) for s in S )
2005
2006
2007 def __init__(self, n, field=AA, **kwargs):
2008 basis = self._denormalized_basis(n,field)
2009 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
2010 self.rank.set_cache(n)
2011
2012
2013 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
2014 r"""
2015 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2016 with the half-trace inner product and jordan product ``x*y =
2017 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
2018 symmetric positive-definite "bilinear form" matrix. It has
2019 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
2020 when ``B`` is the identity matrix of order ``n-1``.
2021
2022 SETUP::
2023
2024 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2025 ....: JordanSpinEJA)
2026
2027 EXAMPLES:
2028
2029 When no bilinear form is specified, the identity matrix is used,
2030 and the resulting algebra is the Jordan spin algebra::
2031
2032 sage: J0 = BilinearFormEJA(3)
2033 sage: J1 = JordanSpinEJA(3)
2034 sage: J0.multiplication_table() == J0.multiplication_table()
2035 True
2036
2037 TESTS:
2038
2039 We can create a zero-dimensional algebra::
2040
2041 sage: J = BilinearFormEJA(0)
2042 sage: J.basis()
2043 Finite family {}
2044
2045 We can check the multiplication condition given in the Jordan, von
2046 Neumann, and Wigner paper (and also discussed on my "On the
2047 symmetry..." paper). Note that this relies heavily on the standard
2048 choice of basis, as does anything utilizing the bilinear form matrix::
2049
2050 sage: set_random_seed()
2051 sage: n = ZZ.random_element(5)
2052 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2053 sage: B = M.transpose()*M
2054 sage: J = BilinearFormEJA(n, B=B)
2055 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2056 sage: V = J.vector_space()
2057 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2058 ....: for ei in eis ]
2059 sage: actual = [ sis[i]*sis[j]
2060 ....: for i in range(n-1)
2061 ....: for j in range(n-1) ]
2062 sage: expected = [ J.one() if i == j else J.zero()
2063 ....: for i in range(n-1)
2064 ....: for j in range(n-1) ]
2065 sage: actual == expected
2066 True
2067 """
2068 def __init__(self, n, field=AA, B=None, **kwargs):
2069 if B is None:
2070 self._B = matrix.identity(field, max(0,n-1))
2071 else:
2072 self._B = B
2073
2074 V = VectorSpace(field, n)
2075 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
2076 for i in range(n):
2077 for j in range(n):
2078 x = V.gen(i)
2079 y = V.gen(j)
2080 x0 = x[0]
2081 xbar = x[1:]
2082 y0 = y[0]
2083 ybar = y[1:]
2084 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
2085 zbar = y0*xbar + x0*ybar
2086 z = V([z0] + zbar.list())
2087 mult_table[i][j] = z
2088
2089 # The rank of this algebra is two, unless we're in a
2090 # one-dimensional ambient space (because the rank is bounded
2091 # by the ambient dimension).
2092 fdeja = super(BilinearFormEJA, self)
2093 fdeja.__init__(field, mult_table, **kwargs)
2094 self.rank.set_cache(min(n,2))
2095
2096 def inner_product(self, x, y):
2097 r"""
2098 Half of the trace inner product.
2099
2100 This is defined so that the special case of the Jordan spin
2101 algebra gets the usual inner product.
2102
2103 SETUP::
2104
2105 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2106
2107 TESTS:
2108
2109 Ensure that this is one-half of the trace inner-product when
2110 the algebra isn't just the reals (when ``n`` isn't one). This
2111 is in Faraut and Koranyi, and also my "On the symmetry..."
2112 paper::
2113
2114 sage: set_random_seed()
2115 sage: n = ZZ.random_element(2,5)
2116 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2117 sage: B = M.transpose()*M
2118 sage: J = BilinearFormEJA(n, B=B)
2119 sage: x = J.random_element()
2120 sage: y = J.random_element()
2121 sage: x.inner_product(y) == (x*y).trace()/2
2122 True
2123
2124 """
2125 xvec = x.to_vector()
2126 xbar = xvec[1:]
2127 yvec = y.to_vector()
2128 ybar = yvec[1:]
2129 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2130
2131
2132 class JordanSpinEJA(BilinearFormEJA):
2133 """
2134 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2135 with the usual inner product and jordan product ``x*y =
2136 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2137 the reals.
2138
2139 SETUP::
2140
2141 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2142
2143 EXAMPLES:
2144
2145 This multiplication table can be verified by hand::
2146
2147 sage: J = JordanSpinEJA(4)
2148 sage: e0,e1,e2,e3 = J.gens()
2149 sage: e0*e0
2150 e0
2151 sage: e0*e1
2152 e1
2153 sage: e0*e2
2154 e2
2155 sage: e0*e3
2156 e3
2157 sage: e1*e2
2158 0
2159 sage: e1*e3
2160 0
2161 sage: e2*e3
2162 0
2163
2164 We can change the generator prefix::
2165
2166 sage: JordanSpinEJA(2, prefix='B').gens()
2167 (B0, B1)
2168
2169 TESTS:
2170
2171 Ensure that we have the usual inner product on `R^n`::
2172
2173 sage: set_random_seed()
2174 sage: J = JordanSpinEJA.random_instance()
2175 sage: x,y = J.random_elements(2)
2176 sage: X = x.natural_representation()
2177 sage: Y = y.natural_representation()
2178 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2179 True
2180
2181 """
2182 def __init__(self, n, field=AA, **kwargs):
2183 # This is a special case of the BilinearFormEJA with the identity
2184 # matrix as its bilinear form.
2185 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2186
2187
2188 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2189 """
2190 The trivial Euclidean Jordan algebra consisting of only a zero element.
2191
2192 SETUP::
2193
2194 sage: from mjo.eja.eja_algebra import TrivialEJA
2195
2196 EXAMPLES::
2197
2198 sage: J = TrivialEJA()
2199 sage: J.dimension()
2200 0
2201 sage: J.zero()
2202 0
2203 sage: J.one()
2204 0
2205 sage: 7*J.one()*12*J.one()
2206 0
2207 sage: J.one().inner_product(J.one())
2208 0
2209 sage: J.one().norm()
2210 0
2211 sage: J.one().subalgebra_generated_by()
2212 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2213 sage: J.rank()
2214 0
2215
2216 """
2217 def __init__(self, field=AA, **kwargs):
2218 mult_table = []
2219 fdeja = super(TrivialEJA, self)
2220 # The rank is zero using my definition, namely the dimension of the
2221 # largest subalgebra generated by any element.
2222 fdeja.__init__(field, mult_table, **kwargs)
2223 self.rank.set_cache(0)
2224
2225
2226 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
2227 r"""
2228 The external (orthogonal) direct sum of two other Euclidean Jordan
2229 algebras. Essentially the Cartesian product of its two factors.
2230 Every Euclidean Jordan algebra decomposes into an orthogonal
2231 direct sum of simple Euclidean Jordan algebras, so no generality
2232 is lost by providing only this construction.
2233
2234 SETUP::
2235
2236 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2237 ....: RealSymmetricEJA,
2238 ....: DirectSumEJA)
2239
2240 EXAMPLES::
2241
2242 sage: J1 = HadamardEJA(2)
2243 sage: J2 = RealSymmetricEJA(3)
2244 sage: J = DirectSumEJA(J1,J2)
2245 sage: J.dimension()
2246 8
2247 sage: J.rank()
2248 5
2249
2250 """
2251 def __init__(self, J1, J2, field=AA, **kwargs):
2252 n1 = J1.dimension()
2253 n2 = J2.dimension()
2254 n = n1+n2
2255 V = VectorSpace(field, n)
2256 mult_table = [ [ V.zero() for j in range(n) ]
2257 for i in range(n) ]
2258 for i in range(n1):
2259 for j in range(n1):
2260 p = (J1.monomial(i)*J1.monomial(j)).to_vector()
2261 mult_table[i][j] = V(p.list() + [field.zero()]*n2)
2262
2263 for i in range(n2):
2264 for j in range(n2):
2265 p = (J2.monomial(i)*J2.monomial(j)).to_vector()
2266 mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
2267
2268 fdeja = super(DirectSumEJA, self)
2269 fdeja.__init__(field, mult_table, **kwargs)
2270 self.rank.set_cache(J1.rank() + J2.rank())