]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: use orthonormalize=False for all subalgebra_generated_by() tests.
[sage.d.git] / mjo / eja / eja_algebra.py
1 r"""
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide a few other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43 * :class:`ComplexSkewSymmetricEJA`
44
45 The Jordan spin algebra is a bilinear form algebra where the bilinear
46 form is the identity. The Hadamard EJA is simply a Cartesian product
47 of one-dimensional spin algebras. The Albert EJA is simply a special
48 case of the :class:`OctonionHermitianEJA` where the matrices are
49 three-by-three and the resulting space has dimension 27. And
50 last/least, the trivial EJA is exactly what you think it is; it could
51 also be obtained by constructing a dimension-zero instance of any of
52 the other algebras. Cartesian products of these are also supported
53 using the usual ``cartesian_product()`` function; as a result, we
54 support (up to isomorphism) all Euclidean Jordan algebras.
55
56 At a minimum, the following are required to construct a Euclidean
57 Jordan algebra:
58
59 * A basis of matrices, column vectors, or MatrixAlgebra elements
60 * A Jordan product defined on the basis
61 * Its inner product defined on the basis
62
63 The real numbers form a Euclidean Jordan algebra when both the Jordan
64 and inner products are the usual multiplication. We use this as our
65 example, and demonstrate a few ways to construct an EJA.
66
67 First, we can use one-by-one SageMath matrices with algebraic real
68 entries to represent real numbers. We define the Jordan and inner
69 products to be essentially real-number multiplication, with the only
70 difference being that the Jordan product again returns a one-by-one
71 matrix, whereas the inner product must return a scalar. Our basis for
72 the one-by-one matrices is of course the set consisting of a single
73 matrix with its sole entry non-zero::
74
75 sage: from mjo.eja.eja_algebra import FiniteDimensionalEJA
76 sage: jp = lambda X,Y: X*Y
77 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
78 sage: b1 = matrix(AA, [[1]])
79 sage: J1 = FiniteDimensionalEJA((b1,), jp, ip)
80 sage: J1
81 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
82
83 In fact, any positive scalar multiple of that inner-product would work::
84
85 sage: ip2 = lambda X,Y: 16*ip(X,Y)
86 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip2)
87 sage: J2
88 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
89
90 But beware that your basis will be orthonormalized _with respect to the
91 given inner-product_ unless you pass ``orthonormalize=False`` to the
92 constructor. For example::
93
94 sage: J3 = FiniteDimensionalEJA((b1,), jp, ip2, orthonormalize=False)
95 sage: J3
96 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
97
98 To see the difference, you can take the first and only basis element
99 of the resulting algebra, and ask for it to be converted back into
100 matrix form::
101
102 sage: J1.basis()[0].to_matrix()
103 [1]
104 sage: J2.basis()[0].to_matrix()
105 [1/4]
106 sage: J3.basis()[0].to_matrix()
107 [1]
108
109 Since square roots are used in that process, the default scalar field
110 that we use is the field of algebraic real numbers, ``AA``. You can
111 also Use rational numbers, but only if you either pass
112 ``orthonormalize=False`` or know that orthonormalizing your basis
113 won't stray beyond the rational numbers. The example above would
114 have worked only because ``sqrt(16) == 4`` is rational.
115
116 Another option for your basis is to use elemebts of a
117 :class:`MatrixAlgebra`::
118
119 sage: from mjo.matrix_algebra import MatrixAlgebra
120 sage: A = MatrixAlgebra(1,AA,AA)
121 sage: J4 = FiniteDimensionalEJA(A.gens(), jp, ip)
122 sage: J4
123 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
124 sage: J4.basis()[0].to_matrix()
125 +---+
126 | 1 |
127 +---+
128
129 An easier way to view the entire EJA basis in its original (but
130 perhaps orthonormalized) matrix form is to use the ``matrix_basis``
131 method::
132
133 sage: J4.matrix_basis()
134 (+---+
135 | 1 |
136 +---+,)
137
138 In particular, a :class:`MatrixAlgebra` is needed to work around the
139 fact that matrices in SageMath must have entries in the same
140 (commutative and associative) ring as its scalars. There are many
141 Euclidean Jordan algebras whose elements are matrices that violate
142 those assumptions. The complex, quaternion, and octonion Hermitian
143 matrices all have entries in a ring (the complex numbers, quaternions,
144 or octonions...) that differs from the algebra's scalar ring (the real
145 numbers). Quaternions are also non-commutative; the octonions are
146 neither commutative nor associative.
147
148 SETUP::
149
150 sage: from mjo.eja.eja_algebra import random_eja
151
152 EXAMPLES::
153
154 sage: random_eja()
155 Euclidean Jordan algebra of dimension...
156 """
157
158 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
159 from sage.categories.magmatic_algebras import MagmaticAlgebras
160 from sage.categories.sets_cat import cartesian_product
161 from sage.combinat.free_module import CombinatorialFreeModule
162 from sage.matrix.constructor import matrix
163 from sage.matrix.matrix_space import MatrixSpace
164 from sage.misc.cachefunc import cached_method
165 from sage.misc.table import table
166 from sage.modules.free_module import FreeModule, VectorSpace
167 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
168 PolynomialRing,
169 QuadraticField)
170 from mjo.eja.eja_element import (CartesianProductEJAElement,
171 FiniteDimensionalEJAElement)
172 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
173 from mjo.eja.eja_utils import _all2list
174
175 def EuclideanJordanAlgebras(field):
176 r"""
177 The category of Euclidean Jordan algebras over ``field``, which
178 must be a subfield of the real numbers. For now this is just a
179 convenient wrapper around all of the other category axioms that
180 apply to all EJAs.
181 """
182 category = MagmaticAlgebras(field).FiniteDimensional()
183 category = category.WithBasis().Unital().Commutative()
184 return category
185
186 class FiniteDimensionalEJA(CombinatorialFreeModule):
187 r"""
188 A finite-dimensional Euclidean Jordan algebra.
189
190 INPUT:
191
192 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
193 form," which must be the same form as the arguments to
194 ``jordan_product`` and ``inner_product``. In reality, "matrix
195 form" can be either vectors, matrices, or a Cartesian product
196 (ordered tuple) of vectors or matrices. All of these would
197 ideally be vector spaces in sage with no special-casing
198 needed; but in reality we turn vectors into column-matrices
199 and Cartesian products `(a,b)` into column matrices
200 `(a,b)^{T}` after converting `a` and `b` themselves.
201
202 - ``jordan_product`` -- a function; afunction of two ``basis``
203 elements (in matrix form) that returns their jordan product,
204 also in matrix form; this will be applied to ``basis`` to
205 compute a multiplication table for the algebra.
206
207 - ``inner_product`` -- a function; a function of two ``basis``
208 elements (in matrix form) that returns their inner
209 product. This will be applied to ``basis`` to compute an
210 inner-product table (basically a matrix) for this algebra.
211
212 - ``matrix_space`` -- the space that your matrix basis lives in,
213 or ``None`` (the default). So long as your basis does not have
214 length zero you can omit this. But in trivial algebras, it is
215 required.
216
217 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
218 field for the algebra.
219
220 - ``orthonormalize`` -- boolean (default: ``True``); whether or
221 not to orthonormalize the basis. Doing so is expensive and
222 generally rules out using the rationals as your ``field``, but
223 is required for spectral decompositions.
224
225 SETUP::
226
227 sage: from mjo.eja.eja_algebra import random_eja
228
229 TESTS:
230
231 We should compute that an element subalgebra is associative even
232 if we circumvent the element method::
233
234 sage: J = random_eja(field=QQ,orthonormalize=False)
235 sage: x = J.random_element()
236 sage: A = x.subalgebra_generated_by(orthonormalize=False)
237 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
238 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
239 True
240 """
241 Element = FiniteDimensionalEJAElement
242
243 @staticmethod
244 def _check_input_field(field):
245 if not field.is_subring(RR):
246 # Note: this does return true for the real algebraic
247 # field, the rationals, and any quadratic field where
248 # we've specified a real embedding.
249 raise ValueError("scalar field is not real")
250
251 @staticmethod
252 def _check_input_axioms(basis, jordan_product, inner_product):
253 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
254 for bi in basis
255 for bj in basis ):
256 raise ValueError("Jordan product is not commutative")
257
258 if not all( inner_product(bi,bj) == inner_product(bj,bi)
259 for bi in basis
260 for bj in basis ):
261 raise ValueError("inner-product is not commutative")
262
263 def __init__(self,
264 basis,
265 jordan_product,
266 inner_product,
267 field=AA,
268 matrix_space=None,
269 orthonormalize=True,
270 associative=None,
271 check_field=True,
272 check_axioms=True,
273 prefix="b"):
274
275 n = len(basis)
276
277 if check_field:
278 self._check_input_field(field)
279
280 if check_axioms:
281 # Check commutativity of the Jordan and inner-products.
282 # This has to be done before we build the multiplication
283 # and inner-product tables/matrices, because we take
284 # advantage of symmetry in the process.
285 self._check_input_axioms(basis, jordan_product, inner_product)
286
287 if n <= 1:
288 # All zero- and one-dimensional algebras are just the real
289 # numbers with (some positive multiples of) the usual
290 # multiplication as its Jordan and inner-product.
291 associative = True
292 if associative is None:
293 # We should figure it out. As with check_axioms, we have to do
294 # this without the help of the _jordan_product_is_associative()
295 # method because we need to know the category before we
296 # initialize the algebra.
297 associative = all( jordan_product(jordan_product(bi,bj),bk)
298 ==
299 jordan_product(bi,jordan_product(bj,bk))
300 for bi in basis
301 for bj in basis
302 for bk in basis)
303
304 category = EuclideanJordanAlgebras(field)
305
306 if associative:
307 # Element subalgebras can take advantage of this.
308 category = category.Associative()
309
310 # Call the superclass constructor so that we can use its from_vector()
311 # method to build our multiplication table.
312 CombinatorialFreeModule.__init__(self,
313 field,
314 range(n),
315 prefix=prefix,
316 category=category,
317 bracket=False)
318
319 # Now comes all of the hard work. We'll be constructing an
320 # ambient vector space V that our (vectorized) basis lives in,
321 # as well as a subspace W of V spanned by those (vectorized)
322 # basis elements. The W-coordinates are the coefficients that
323 # we see in things like x = 1*b1 + 2*b2.
324
325 degree = 0
326 if n > 0:
327 degree = len(_all2list(basis[0]))
328
329 # Build an ambient space that fits our matrix basis when
330 # written out as "long vectors."
331 V = VectorSpace(field, degree)
332
333 # The matrix that will hold the orthonormal -> unorthonormal
334 # coordinate transformation. Default to an identity matrix of
335 # the appropriate size to avoid special cases for None
336 # everywhere.
337 self._deortho_matrix = matrix.identity(field,n)
338
339 if orthonormalize:
340 # Save a copy of the un-orthonormalized basis for later.
341 # Convert it to ambient V (vector) coordinates while we're
342 # at it, because we'd have to do it later anyway.
343 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
344
345 from mjo.eja.eja_utils import gram_schmidt
346 basis = tuple(gram_schmidt(basis, inner_product))
347
348 # Save the (possibly orthonormalized) matrix basis for
349 # later, as well as the space that its elements live in.
350 # In most cases we can deduce the matrix space, but when
351 # n == 0 (that is, there are no basis elements) we cannot.
352 self._matrix_basis = basis
353 if matrix_space is None:
354 self._matrix_space = self._matrix_basis[0].parent()
355 else:
356 self._matrix_space = matrix_space
357
358 # Now create the vector space for the algebra, which will have
359 # its own set of non-ambient coordinates (in terms of the
360 # supplied basis).
361 vector_basis = tuple( V(_all2list(b)) for b in basis )
362
363 # Save the span of our matrix basis (when written out as long
364 # vectors) because otherwise we'll have to reconstruct it
365 # every time we want to coerce a matrix into the algebra.
366 self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms)
367
368 if orthonormalize:
369 # Now "self._matrix_span" is the vector space of our
370 # algebra coordinates. The variables "X0", "X1",... refer
371 # to the entries of vectors in self._matrix_span. Thus to
372 # convert back and forth between the orthonormal
373 # coordinates and the given ones, we need to stick the
374 # original basis in self._matrix_span.
375 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
376 self._deortho_matrix = matrix.column( U.coordinate_vector(q)
377 for q in vector_basis )
378
379
380 # Now we actually compute the multiplication and inner-product
381 # tables/matrices using the possibly-orthonormalized basis.
382 self._inner_product_matrix = matrix.identity(field, n)
383 zed = self.zero()
384 self._multiplication_table = [ [zed for j in range(i+1)]
385 for i in range(n) ]
386
387 # Note: the Jordan and inner-products are defined in terms
388 # of the ambient basis. It's important that their arguments
389 # are in ambient coordinates as well.
390 for i in range(n):
391 for j in range(i+1):
392 # ortho basis w.r.t. ambient coords
393 q_i = basis[i]
394 q_j = basis[j]
395
396 # The jordan product returns a matrixy answer, so we
397 # have to convert it to the algebra coordinates.
398 elt = jordan_product(q_i, q_j)
399 elt = self._matrix_span.coordinate_vector(V(_all2list(elt)))
400 self._multiplication_table[i][j] = self.from_vector(elt)
401
402 if not orthonormalize:
403 # If we're orthonormalizing the basis with respect
404 # to an inner-product, then the inner-product
405 # matrix with respect to the resulting basis is
406 # just going to be the identity.
407 ip = inner_product(q_i, q_j)
408 self._inner_product_matrix[i,j] = ip
409 self._inner_product_matrix[j,i] = ip
410
411 self._inner_product_matrix._cache = {'hermitian': True}
412 self._inner_product_matrix.set_immutable()
413
414 if check_axioms:
415 if not self._is_jordanian():
416 raise ValueError("Jordan identity does not hold")
417 if not self._inner_product_is_associative():
418 raise ValueError("inner product is not associative")
419
420
421 def _coerce_map_from_base_ring(self):
422 """
423 Disable the map from the base ring into the algebra.
424
425 Performing a nonsense conversion like this automatically
426 is counterpedagogical. The fallback is to try the usual
427 element constructor, which should also fail.
428
429 SETUP::
430
431 sage: from mjo.eja.eja_algebra import random_eja
432
433 TESTS::
434
435 sage: J = random_eja()
436 sage: J(1)
437 Traceback (most recent call last):
438 ...
439 ValueError: not an element of this algebra
440
441 """
442 return None
443
444
445 def product_on_basis(self, i, j):
446 r"""
447 Returns the Jordan product of the `i` and `j`th basis elements.
448
449 This completely defines the Jordan product on the algebra, and
450 is used direclty by our superclass machinery to implement
451 :meth:`product`.
452
453 SETUP::
454
455 sage: from mjo.eja.eja_algebra import random_eja
456
457 TESTS::
458
459 sage: J = random_eja()
460 sage: n = J.dimension()
461 sage: bi = J.zero()
462 sage: bj = J.zero()
463 sage: bi_bj = J.zero()*J.zero()
464 sage: if n > 0:
465 ....: i = ZZ.random_element(n)
466 ....: j = ZZ.random_element(n)
467 ....: bi = J.monomial(i)
468 ....: bj = J.monomial(j)
469 ....: bi_bj = J.product_on_basis(i,j)
470 sage: bi*bj == bi_bj
471 True
472
473 """
474 # We only stored the lower-triangular portion of the
475 # multiplication table.
476 if j <= i:
477 return self._multiplication_table[i][j]
478 else:
479 return self._multiplication_table[j][i]
480
481 def inner_product(self, x, y):
482 """
483 The inner product associated with this Euclidean Jordan algebra.
484
485 Defaults to the trace inner product, but can be overridden by
486 subclasses if they are sure that the necessary properties are
487 satisfied.
488
489 SETUP::
490
491 sage: from mjo.eja.eja_algebra import (random_eja,
492 ....: HadamardEJA,
493 ....: BilinearFormEJA)
494
495 EXAMPLES:
496
497 Our inner product is "associative," which means the following for
498 a symmetric bilinear form::
499
500 sage: J = random_eja()
501 sage: x,y,z = J.random_elements(3)
502 sage: (x*y).inner_product(z) == y.inner_product(x*z)
503 True
504
505 TESTS:
506
507 Ensure that this is the usual inner product for the algebras
508 over `R^n`::
509
510 sage: J = HadamardEJA.random_instance()
511 sage: x,y = J.random_elements(2)
512 sage: actual = x.inner_product(y)
513 sage: expected = x.to_vector().inner_product(y.to_vector())
514 sage: actual == expected
515 True
516
517 Ensure that this is one-half of the trace inner-product in a
518 BilinearFormEJA that isn't just the reals (when ``n`` isn't
519 one). This is in Faraut and Koranyi, and also my "On the
520 symmetry..." paper::
521
522 sage: J = BilinearFormEJA.random_instance()
523 sage: n = J.dimension()
524 sage: x = J.random_element()
525 sage: y = J.random_element()
526 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
527 True
528
529 """
530 B = self._inner_product_matrix
531 return (B*x.to_vector()).inner_product(y.to_vector())
532
533
534 def is_associative(self):
535 r"""
536 Return whether or not this algebra's Jordan product is associative.
537
538 SETUP::
539
540 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
541
542 EXAMPLES::
543
544 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
545 sage: J.is_associative()
546 False
547 sage: x = sum(J.gens())
548 sage: A = x.subalgebra_generated_by(orthonormalize=False)
549 sage: A.is_associative()
550 True
551
552 """
553 return "Associative" in self.category().axioms()
554
555 def _is_commutative(self):
556 r"""
557 Whether or not this algebra's multiplication table is commutative.
558
559 This method should of course always return ``True``, unless
560 this algebra was constructed with ``check_axioms=False`` and
561 passed an invalid multiplication table.
562 """
563 return all( x*y == y*x for x in self.gens() for y in self.gens() )
564
565 def _is_jordanian(self):
566 r"""
567 Whether or not this algebra's multiplication table respects the
568 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
569
570 We only check one arrangement of `x` and `y`, so for a
571 ``True`` result to be truly true, you should also check
572 :meth:`_is_commutative`. This method should of course always
573 return ``True``, unless this algebra was constructed with
574 ``check_axioms=False`` and passed an invalid multiplication table.
575 """
576 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
577 ==
578 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
579 for i in range(self.dimension())
580 for j in range(self.dimension()) )
581
582 def _jordan_product_is_associative(self):
583 r"""
584 Return whether or not this algebra's Jordan product is
585 associative; that is, whether or not `x*(y*z) = (x*y)*z`
586 for all `x,y,x`.
587
588 This method should agree with :meth:`is_associative` unless
589 you lied about the value of the ``associative`` parameter
590 when you constructed the algebra.
591
592 SETUP::
593
594 sage: from mjo.eja.eja_algebra import (random_eja,
595 ....: RealSymmetricEJA,
596 ....: ComplexHermitianEJA,
597 ....: QuaternionHermitianEJA)
598
599 EXAMPLES::
600
601 sage: J = RealSymmetricEJA(4, orthonormalize=False)
602 sage: J._jordan_product_is_associative()
603 False
604 sage: x = sum(J.gens())
605 sage: A = x.subalgebra_generated_by()
606 sage: A._jordan_product_is_associative()
607 True
608
609 ::
610
611 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
612 sage: J._jordan_product_is_associative()
613 False
614 sage: x = sum(J.gens())
615 sage: A = x.subalgebra_generated_by(orthonormalize=False)
616 sage: A._jordan_product_is_associative()
617 True
618
619 ::
620
621 sage: J = QuaternionHermitianEJA(2)
622 sage: J._jordan_product_is_associative()
623 False
624 sage: x = sum(J.gens())
625 sage: A = x.subalgebra_generated_by()
626 sage: A._jordan_product_is_associative()
627 True
628
629 TESTS:
630
631 The values we've presupplied to the constructors agree with
632 the computation::
633
634 sage: J = random_eja()
635 sage: J.is_associative() == J._jordan_product_is_associative()
636 True
637
638 """
639 R = self.base_ring()
640
641 # Used to check whether or not something is zero.
642 epsilon = R.zero()
643 if not R.is_exact():
644 # I don't know of any examples that make this magnitude
645 # necessary because I don't know how to make an
646 # associative algebra when the element subalgebra
647 # construction is unreliable (as it is over RDF; we can't
648 # find the degree of an element because we can't compute
649 # the rank of a matrix). But even multiplication of floats
650 # is non-associative, so *some* epsilon is needed... let's
651 # just take the one from _inner_product_is_associative?
652 epsilon = 1e-15
653
654 for i in range(self.dimension()):
655 for j in range(self.dimension()):
656 for k in range(self.dimension()):
657 x = self.monomial(i)
658 y = self.monomial(j)
659 z = self.monomial(k)
660 diff = (x*y)*z - x*(y*z)
661
662 if diff.norm() > epsilon:
663 return False
664
665 return True
666
667 def _inner_product_is_associative(self):
668 r"""
669 Return whether or not this algebra's inner product `B` is
670 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
671
672 This method should of course always return ``True``, unless
673 this algebra was constructed with ``check_axioms=False`` and
674 passed an invalid Jordan or inner-product.
675 """
676 R = self.base_ring()
677
678 # Used to check whether or not something is zero.
679 epsilon = R.zero()
680 if not R.is_exact():
681 # This choice is sufficient to allow the construction of
682 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
683 epsilon = 1e-15
684
685 for i in range(self.dimension()):
686 for j in range(self.dimension()):
687 for k in range(self.dimension()):
688 x = self.monomial(i)
689 y = self.monomial(j)
690 z = self.monomial(k)
691 diff = (x*y).inner_product(z) - x.inner_product(y*z)
692
693 if diff.abs() > epsilon:
694 return False
695
696 return True
697
698 def _element_constructor_(self, elt):
699 """
700 Construct an element of this algebra or a subalgebra from its
701 EJA element, vector, or matrix representation.
702
703 This gets called only after the parent element _call_ method
704 fails to find a coercion for the argument.
705
706 SETUP::
707
708 sage: from mjo.eja.eja_algebra import (random_eja,
709 ....: JordanSpinEJA,
710 ....: HadamardEJA,
711 ....: RealSymmetricEJA)
712
713 EXAMPLES:
714
715 The identity in `S^n` is converted to the identity in the EJA::
716
717 sage: J = RealSymmetricEJA(3)
718 sage: I = matrix.identity(QQ,3)
719 sage: J(I) == J.one()
720 True
721
722 This skew-symmetric matrix can't be represented in the EJA::
723
724 sage: J = RealSymmetricEJA(3)
725 sage: A = matrix(QQ,3, lambda i,j: i-j)
726 sage: J(A)
727 Traceback (most recent call last):
728 ...
729 ValueError: not an element of this algebra
730
731 Tuples work as well, provided that the matrix basis for the
732 algebra consists of them::
733
734 sage: J1 = HadamardEJA(3)
735 sage: J2 = RealSymmetricEJA(2)
736 sage: J = cartesian_product([J1,J2])
737 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
738 b1 + b5
739
740 Subalgebra elements are embedded into the superalgebra::
741
742 sage: J = JordanSpinEJA(3)
743 sage: J.one()
744 b0
745 sage: x = sum(J.gens())
746 sage: A = x.subalgebra_generated_by()
747 sage: J(A.one())
748 b0
749
750 TESTS:
751
752 Ensure that we can convert any element back and forth
753 faithfully between its matrix and algebra representations::
754
755 sage: J = random_eja()
756 sage: x = J.random_element()
757 sage: J(x.to_matrix()) == x
758 True
759
760 We cannot coerce elements between algebras just because their
761 matrix representations are compatible::
762
763 sage: J1 = HadamardEJA(3)
764 sage: J2 = JordanSpinEJA(3)
765 sage: J2(J1.one())
766 Traceback (most recent call last):
767 ...
768 ValueError: not an element of this algebra
769 sage: J1(J2.zero())
770 Traceback (most recent call last):
771 ...
772 ValueError: not an element of this algebra
773
774 """
775 msg = "not an element of this algebra"
776 if elt in self.base_ring():
777 # Ensure that no base ring -> algebra coercion is performed
778 # by this method. There's some stupidity in sage that would
779 # otherwise propagate to this method; for example, sage thinks
780 # that the integer 3 belongs to the space of 2-by-2 matrices.
781 raise ValueError(msg)
782
783 if hasattr(elt, 'superalgebra_element'):
784 # Handle subalgebra elements
785 if elt.parent().superalgebra() == self:
786 return elt.superalgebra_element()
787
788 if hasattr(elt, 'sparse_vector'):
789 # Convert a vector into a column-matrix. We check for
790 # "sparse_vector" and not "column" because matrices also
791 # have a "column" method.
792 elt = elt.column()
793
794 if elt not in self.matrix_space():
795 raise ValueError(msg)
796
797 # Thanks for nothing! Matrix spaces aren't vector spaces in
798 # Sage, so we have to figure out its matrix-basis coordinates
799 # ourselves. We use the basis space's ring instead of the
800 # element's ring because the basis space might be an algebraic
801 # closure whereas the base ring of the 3-by-3 identity matrix
802 # could be QQ instead of QQbar.
803 #
804 # And, we also have to handle Cartesian product bases (when
805 # the matrix basis consists of tuples) here. The "good news"
806 # is that we're already converting everything to long vectors,
807 # and that strategy works for tuples as well.
808 #
809 elt = self._matrix_span.ambient_vector_space()(_all2list(elt))
810
811 try:
812 coords = self._matrix_span.coordinate_vector(elt)
813 except ArithmeticError: # vector is not in free module
814 raise ValueError(msg)
815
816 return self.from_vector(coords)
817
818 def _repr_(self):
819 """
820 Return a string representation of ``self``.
821
822 SETUP::
823
824 sage: from mjo.eja.eja_algebra import JordanSpinEJA
825
826 TESTS:
827
828 Ensure that it says what we think it says::
829
830 sage: JordanSpinEJA(2, field=AA)
831 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
832 sage: JordanSpinEJA(3, field=RDF)
833 Euclidean Jordan algebra of dimension 3 over Real Double Field
834
835 """
836 fmt = "Euclidean Jordan algebra of dimension {} over {}"
837 return fmt.format(self.dimension(), self.base_ring())
838
839
840 @cached_method
841 def characteristic_polynomial_of(self):
842 """
843 Return the algebra's "characteristic polynomial of" function,
844 which is itself a multivariate polynomial that, when evaluated
845 at the coordinates of some algebra element, returns that
846 element's characteristic polynomial.
847
848 The resulting polynomial has `n+1` variables, where `n` is the
849 dimension of this algebra. The first `n` variables correspond to
850 the coordinates of an algebra element: when evaluated at the
851 coordinates of an algebra element with respect to a certain
852 basis, the result is a univariate polynomial (in the one
853 remaining variable ``t``), namely the characteristic polynomial
854 of that element.
855
856 SETUP::
857
858 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
859
860 EXAMPLES:
861
862 The characteristic polynomial in the spin algebra is given in
863 Alizadeh, Example 11.11::
864
865 sage: J = JordanSpinEJA(3)
866 sage: p = J.characteristic_polynomial_of(); p
867 X0^2 - X1^2 - X2^2 + (-2*t)*X0 + t^2
868 sage: xvec = J.one().to_vector()
869 sage: p(*xvec)
870 t^2 - 2*t + 1
871
872 By definition, the characteristic polynomial is a monic
873 degree-zero polynomial in a rank-zero algebra. Note that
874 Cayley-Hamilton is indeed satisfied since the polynomial
875 ``1`` evaluates to the identity element of the algebra on
876 any argument::
877
878 sage: J = TrivialEJA()
879 sage: J.characteristic_polynomial_of()
880 1
881
882 """
883 r = self.rank()
884 n = self.dimension()
885
886 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
887 a = self._charpoly_coefficients()
888
889 # We go to a bit of trouble here to reorder the
890 # indeterminates, so that it's easier to evaluate the
891 # characteristic polynomial at x's coordinates and get back
892 # something in terms of t, which is what we want.
893 S = PolynomialRing(self.base_ring(),'t')
894 t = S.gen(0)
895 if r > 0:
896 R = a[0].parent()
897 S = PolynomialRing(S, R.variable_names())
898 t = S(t)
899
900 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
901
902 def coordinate_polynomial_ring(self):
903 r"""
904 The multivariate polynomial ring in which this algebra's
905 :meth:`characteristic_polynomial_of` lives.
906
907 SETUP::
908
909 sage: from mjo.eja.eja_algebra import (HadamardEJA,
910 ....: RealSymmetricEJA)
911
912 EXAMPLES::
913
914 sage: J = HadamardEJA(2)
915 sage: J.coordinate_polynomial_ring()
916 Multivariate Polynomial Ring in X0, X1...
917 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
918 sage: J.coordinate_polynomial_ring()
919 Multivariate Polynomial Ring in X0, X1, X2, X3, X4, X5...
920
921 """
922 var_names = tuple( "X%d" % z for z in range(self.dimension()) )
923 return PolynomialRing(self.base_ring(), var_names)
924
925 def inner_product(self, x, y):
926 """
927 The inner product associated with this Euclidean Jordan algebra.
928
929 Defaults to the trace inner product, but can be overridden by
930 subclasses if they are sure that the necessary properties are
931 satisfied.
932
933 SETUP::
934
935 sage: from mjo.eja.eja_algebra import (random_eja,
936 ....: HadamardEJA,
937 ....: BilinearFormEJA)
938
939 EXAMPLES:
940
941 Our inner product is "associative," which means the following for
942 a symmetric bilinear form::
943
944 sage: J = random_eja()
945 sage: x,y,z = J.random_elements(3)
946 sage: (x*y).inner_product(z) == y.inner_product(x*z)
947 True
948
949 TESTS:
950
951 Ensure that this is the usual inner product for the algebras
952 over `R^n`::
953
954 sage: J = HadamardEJA.random_instance()
955 sage: x,y = J.random_elements(2)
956 sage: actual = x.inner_product(y)
957 sage: expected = x.to_vector().inner_product(y.to_vector())
958 sage: actual == expected
959 True
960
961 Ensure that this is one-half of the trace inner-product in a
962 BilinearFormEJA that isn't just the reals (when ``n`` isn't
963 one). This is in Faraut and Koranyi, and also my "On the
964 symmetry..." paper::
965
966 sage: J = BilinearFormEJA.random_instance()
967 sage: n = J.dimension()
968 sage: x = J.random_element()
969 sage: y = J.random_element()
970 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
971 True
972 """
973 B = self._inner_product_matrix
974 return (B*x.to_vector()).inner_product(y.to_vector())
975
976
977 def is_trivial(self):
978 """
979 Return whether or not this algebra is trivial.
980
981 A trivial algebra contains only the zero element.
982
983 SETUP::
984
985 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
986 ....: TrivialEJA)
987
988 EXAMPLES::
989
990 sage: J = ComplexHermitianEJA(3)
991 sage: J.is_trivial()
992 False
993
994 ::
995
996 sage: J = TrivialEJA()
997 sage: J.is_trivial()
998 True
999
1000 """
1001 return self.dimension() == 0
1002
1003
1004 def multiplication_table(self):
1005 """
1006 Return a visual representation of this algebra's multiplication
1007 table (on basis elements).
1008
1009 SETUP::
1010
1011 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1012
1013 EXAMPLES::
1014
1015 sage: J = JordanSpinEJA(4)
1016 sage: J.multiplication_table()
1017 +----++----+----+----+----+
1018 | * || b0 | b1 | b2 | b3 |
1019 +====++====+====+====+====+
1020 | b0 || b0 | b1 | b2 | b3 |
1021 +----++----+----+----+----+
1022 | b1 || b1 | b0 | 0 | 0 |
1023 +----++----+----+----+----+
1024 | b2 || b2 | 0 | b0 | 0 |
1025 +----++----+----+----+----+
1026 | b3 || b3 | 0 | 0 | b0 |
1027 +----++----+----+----+----+
1028
1029 """
1030 n = self.dimension()
1031 # Prepend the header row.
1032 M = [["*"] + list(self.gens())]
1033
1034 # And to each subsequent row, prepend an entry that belongs to
1035 # the left-side "header column."
1036 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
1037 for j in range(n) ]
1038 for i in range(n) ]
1039
1040 return table(M, header_row=True, header_column=True, frame=True)
1041
1042
1043 def matrix_basis(self):
1044 """
1045 Return an (often more natural) representation of this algebras
1046 basis as an ordered tuple of matrices.
1047
1048 Every finite-dimensional Euclidean Jordan Algebra is a, up to
1049 Jordan isomorphism, a direct sum of five simple
1050 algebras---four of which comprise Hermitian matrices. And the
1051 last type of algebra can of course be thought of as `n`-by-`1`
1052 column matrices (ambiguusly called column vectors) to avoid
1053 special cases. As a result, matrices (and column vectors) are
1054 a natural representation format for Euclidean Jordan algebra
1055 elements.
1056
1057 But, when we construct an algebra from a basis of matrices,
1058 those matrix representations are lost in favor of coordinate
1059 vectors *with respect to* that basis. We could eventually
1060 convert back if we tried hard enough, but having the original
1061 representations handy is valuable enough that we simply store
1062 them and return them from this method.
1063
1064 Why implement this for non-matrix algebras? Avoiding special
1065 cases for the :class:`BilinearFormEJA` pays with simplicity in
1066 its own right. But mainly, we would like to be able to assume
1067 that elements of a :class:`CartesianProductEJA` can be displayed
1068 nicely, without having to have special classes for direct sums
1069 one of whose components was a matrix algebra.
1070
1071 SETUP::
1072
1073 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1074 ....: RealSymmetricEJA)
1075
1076 EXAMPLES::
1077
1078 sage: J = RealSymmetricEJA(2)
1079 sage: J.basis()
1080 Finite family {0: b0, 1: b1, 2: b2}
1081 sage: J.matrix_basis()
1082 (
1083 [1 0] [ 0 0.7071067811865475?] [0 0]
1084 [0 0], [0.7071067811865475? 0], [0 1]
1085 )
1086
1087 ::
1088
1089 sage: J = JordanSpinEJA(2)
1090 sage: J.basis()
1091 Finite family {0: b0, 1: b1}
1092 sage: J.matrix_basis()
1093 (
1094 [1] [0]
1095 [0], [1]
1096 )
1097 """
1098 return self._matrix_basis
1099
1100
1101 def matrix_space(self):
1102 """
1103 Return the matrix space in which this algebra's elements live, if
1104 we think of them as matrices (including column vectors of the
1105 appropriate size).
1106
1107 "By default" this will be an `n`-by-`1` column-matrix space,
1108 except when the algebra is trivial. There it's `n`-by-`n`
1109 (where `n` is zero), to ensure that two elements of the matrix
1110 space (empty matrices) can be multiplied. For algebras of
1111 matrices, this returns the space in which their
1112 real embeddings live.
1113
1114 SETUP::
1115
1116 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1117 ....: JordanSpinEJA,
1118 ....: QuaternionHermitianEJA,
1119 ....: TrivialEJA)
1120
1121 EXAMPLES:
1122
1123 By default, the matrix representation is just a column-matrix
1124 equivalent to the vector representation::
1125
1126 sage: J = JordanSpinEJA(3)
1127 sage: J.matrix_space()
1128 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1129 Real Field
1130
1131 The matrix representation in the trivial algebra is
1132 zero-by-zero instead of the usual `n`-by-one::
1133
1134 sage: J = TrivialEJA()
1135 sage: J.matrix_space()
1136 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1137 Real Field
1138
1139 The matrix space for complex/quaternion Hermitian matrix EJA
1140 is the space in which their real-embeddings live, not the
1141 original complex/quaternion matrix space::
1142
1143 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1144 sage: J.matrix_space()
1145 Module of 2 by 2 matrices with entries in Algebraic Field over
1146 the scalar ring Rational Field
1147 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1148 sage: J.matrix_space()
1149 Module of 1 by 1 matrices with entries in Quaternion
1150 Algebra (-1, -1) with base ring Rational Field over
1151 the scalar ring Rational Field
1152
1153 """
1154 return self._matrix_space
1155
1156
1157 @cached_method
1158 def one(self):
1159 """
1160 Return the unit element of this algebra.
1161
1162 SETUP::
1163
1164 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1165 ....: random_eja)
1166
1167 EXAMPLES:
1168
1169 We can compute unit element in the Hadamard EJA::
1170
1171 sage: J = HadamardEJA(5)
1172 sage: J.one()
1173 b0 + b1 + b2 + b3 + b4
1174
1175 The unit element in the Hadamard EJA is inherited in the
1176 subalgebras generated by its elements::
1177
1178 sage: J = HadamardEJA(5)
1179 sage: J.one()
1180 b0 + b1 + b2 + b3 + b4
1181 sage: x = sum(J.gens())
1182 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1183 sage: A.one()
1184 c0
1185 sage: A.one().superalgebra_element()
1186 b0 + b1 + b2 + b3 + b4
1187
1188 TESTS:
1189
1190 The identity element acts like the identity, regardless of
1191 whether or not we orthonormalize::
1192
1193 sage: J = random_eja()
1194 sage: x = J.random_element()
1195 sage: J.one()*x == x and x*J.one() == x
1196 True
1197 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1198 sage: y = A.random_element()
1199 sage: A.one()*y == y and y*A.one() == y
1200 True
1201
1202 ::
1203
1204 sage: J = random_eja(field=QQ, orthonormalize=False)
1205 sage: x = J.random_element()
1206 sage: J.one()*x == x and x*J.one() == x
1207 True
1208 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1209 sage: y = A.random_element()
1210 sage: A.one()*y == y and y*A.one() == y
1211 True
1212
1213 The matrix of the unit element's operator is the identity,
1214 regardless of the base field and whether or not we
1215 orthonormalize::
1216
1217 sage: J = random_eja()
1218 sage: actual = J.one().operator().matrix()
1219 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1220 sage: actual == expected
1221 True
1222 sage: x = J.random_element()
1223 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1224 sage: actual = A.one().operator().matrix()
1225 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1226 sage: actual == expected
1227 True
1228
1229 ::
1230
1231 sage: J = random_eja(field=QQ, orthonormalize=False)
1232 sage: actual = J.one().operator().matrix()
1233 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1234 sage: actual == expected
1235 True
1236 sage: x = J.random_element()
1237 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1238 sage: actual = A.one().operator().matrix()
1239 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1240 sage: actual == expected
1241 True
1242
1243 Ensure that the cached unit element (often precomputed by
1244 hand) agrees with the computed one::
1245
1246 sage: J = random_eja()
1247 sage: cached = J.one()
1248 sage: J.one.clear_cache()
1249 sage: J.one() == cached
1250 True
1251
1252 ::
1253
1254 sage: J = random_eja(field=QQ, orthonormalize=False)
1255 sage: cached = J.one()
1256 sage: J.one.clear_cache()
1257 sage: J.one() == cached
1258 True
1259
1260 """
1261 # We can brute-force compute the matrices of the operators
1262 # that correspond to the basis elements of this algebra.
1263 # If some linear combination of those basis elements is the
1264 # algebra identity, then the same linear combination of
1265 # their matrices has to be the identity matrix.
1266 #
1267 # Of course, matrices aren't vectors in sage, so we have to
1268 # appeal to the "long vectors" isometry.
1269
1270 V = VectorSpace(self.base_ring(), self.dimension()**2)
1271 oper_vecs = [ V(g.operator().matrix().list()) for g in self.gens() ]
1272
1273 # Now we use basic linear algebra to find the coefficients,
1274 # of the matrices-as-vectors-linear-combination, which should
1275 # work for the original algebra basis too.
1276 A = matrix(self.base_ring(), oper_vecs)
1277
1278 # We used the isometry on the left-hand side already, but we
1279 # still need to do it for the right-hand side. Recall that we
1280 # wanted something that summed to the identity matrix.
1281 b = V( matrix.identity(self.base_ring(), self.dimension()).list() )
1282
1283 # Now if there's an identity element in the algebra, this
1284 # should work. We solve on the left to avoid having to
1285 # transpose the matrix "A".
1286 return self.from_vector(A.solve_left(b))
1287
1288
1289 def peirce_decomposition(self, c):
1290 """
1291 The Peirce decomposition of this algebra relative to the
1292 idempotent ``c``.
1293
1294 In the future, this can be extended to a complete system of
1295 orthogonal idempotents.
1296
1297 INPUT:
1298
1299 - ``c`` -- an idempotent of this algebra.
1300
1301 OUTPUT:
1302
1303 A triple (J0, J5, J1) containing two subalgebras and one subspace
1304 of this algebra,
1305
1306 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1307 corresponding to the eigenvalue zero.
1308
1309 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1310 corresponding to the eigenvalue one-half.
1311
1312 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1313 corresponding to the eigenvalue one.
1314
1315 These are the only possible eigenspaces for that operator, and this
1316 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1317 orthogonal, and are subalgebras of this algebra with the appropriate
1318 restrictions.
1319
1320 SETUP::
1321
1322 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1323
1324 EXAMPLES:
1325
1326 The canonical example comes from the symmetric matrices, which
1327 decompose into diagonal and off-diagonal parts::
1328
1329 sage: J = RealSymmetricEJA(3)
1330 sage: C = matrix(QQ, [ [1,0,0],
1331 ....: [0,1,0],
1332 ....: [0,0,0] ])
1333 sage: c = J(C)
1334 sage: J0,J5,J1 = J.peirce_decomposition(c)
1335 sage: J0
1336 Euclidean Jordan algebra of dimension 1...
1337 sage: J5
1338 Vector space of degree 6 and dimension 2...
1339 sage: J1
1340 Euclidean Jordan algebra of dimension 3...
1341 sage: J0.one().to_matrix()
1342 [0 0 0]
1343 [0 0 0]
1344 [0 0 1]
1345 sage: orig_df = AA.options.display_format
1346 sage: AA.options.display_format = 'radical'
1347 sage: J.from_vector(J5.basis()[0]).to_matrix()
1348 [ 0 0 1/2*sqrt(2)]
1349 [ 0 0 0]
1350 [1/2*sqrt(2) 0 0]
1351 sage: J.from_vector(J5.basis()[1]).to_matrix()
1352 [ 0 0 0]
1353 [ 0 0 1/2*sqrt(2)]
1354 [ 0 1/2*sqrt(2) 0]
1355 sage: AA.options.display_format = orig_df
1356 sage: J1.one().to_matrix()
1357 [1 0 0]
1358 [0 1 0]
1359 [0 0 0]
1360
1361 TESTS:
1362
1363 Every algebra decomposes trivially with respect to its identity
1364 element::
1365
1366 sage: J = random_eja()
1367 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1368 sage: J0.dimension() == 0 and J5.dimension() == 0
1369 True
1370 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1371 True
1372
1373 The decomposition is into eigenspaces, and its components are
1374 therefore necessarily orthogonal. Moreover, the identity
1375 elements in the two subalgebras are the projections onto their
1376 respective subspaces of the superalgebra's identity element::
1377
1378 sage: J = random_eja()
1379 sage: x = J.random_element()
1380 sage: if not J.is_trivial():
1381 ....: while x.is_nilpotent():
1382 ....: x = J.random_element()
1383 sage: c = x.subalgebra_idempotent()
1384 sage: J0,J5,J1 = J.peirce_decomposition(c)
1385 sage: ipsum = 0
1386 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1387 ....: w = w.superalgebra_element()
1388 ....: y = J.from_vector(y)
1389 ....: z = z.superalgebra_element()
1390 ....: ipsum += w.inner_product(y).abs()
1391 ....: ipsum += w.inner_product(z).abs()
1392 ....: ipsum += y.inner_product(z).abs()
1393 sage: ipsum
1394 0
1395 sage: J1(c) == J1.one()
1396 True
1397 sage: J0(J.one() - c) == J0.one()
1398 True
1399
1400 """
1401 if not c.is_idempotent():
1402 raise ValueError("element is not idempotent: %s" % c)
1403
1404 # Default these to what they should be if they turn out to be
1405 # trivial, because eigenspaces_left() won't return eigenvalues
1406 # corresponding to trivial spaces (e.g. it returns only the
1407 # eigenspace corresponding to lambda=1 if you take the
1408 # decomposition relative to the identity element).
1409 trivial = self.subalgebra((), check_axioms=False)
1410 J0 = trivial # eigenvalue zero
1411 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1412 J1 = trivial # eigenvalue one
1413
1414 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1415 if eigval == ~(self.base_ring()(2)):
1416 J5 = eigspace
1417 else:
1418 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1419 subalg = self.subalgebra(gens, check_axioms=False)
1420 if eigval == 0:
1421 J0 = subalg
1422 elif eigval == 1:
1423 J1 = subalg
1424 else:
1425 raise ValueError("unexpected eigenvalue: %s" % eigval)
1426
1427 return (J0, J5, J1)
1428
1429
1430 def random_element(self, thorough=False):
1431 r"""
1432 Return a random element of this algebra.
1433
1434 Our algebra superclass method only returns a linear
1435 combination of at most two basis elements. We instead
1436 want the vector space "random element" method that
1437 returns a more diverse selection.
1438
1439 INPUT:
1440
1441 - ``thorough`` -- (boolean; default False) whether or not we
1442 should generate irrational coefficients for the random
1443 element when our base ring is irrational; this slows the
1444 algebra operations to a crawl, but any truly random method
1445 should include them
1446
1447 """
1448 # For a general base ring... maybe we can trust this to do the
1449 # right thing? Unlikely, but.
1450 V = self.vector_space()
1451 if self.base_ring() is AA and not thorough:
1452 # Now that AA generates actually random random elements
1453 # (post Trac 30875), we only need to de-thorough the
1454 # randomness when asked to.
1455 V = V.change_ring(QQ)
1456
1457 v = V.random_element()
1458 return self.from_vector(V.coordinate_vector(v))
1459
1460 def random_elements(self, count, thorough=False):
1461 """
1462 Return ``count`` random elements as a tuple.
1463
1464 INPUT:
1465
1466 - ``thorough`` -- (boolean; default False) whether or not we
1467 should generate irrational coefficients for the random
1468 elements when our base ring is irrational; this slows the
1469 algebra operations to a crawl, but any truly random method
1470 should include them
1471
1472 SETUP::
1473
1474 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1475
1476 EXAMPLES::
1477
1478 sage: J = JordanSpinEJA(3)
1479 sage: x,y,z = J.random_elements(3)
1480 sage: all( [ x in J, y in J, z in J ])
1481 True
1482 sage: len( J.random_elements(10) ) == 10
1483 True
1484
1485 """
1486 return tuple( self.random_element(thorough)
1487 for idx in range(count) )
1488
1489
1490 def operator_polynomial_matrix(self):
1491 r"""
1492 Return the matrix of polynomials (over this algebra's
1493 :meth:`coordinate_polynomial_ring`) that, when evaluated at
1494 the basis coordinates of an element `x`, produces the basis
1495 representation of `L_{x}`.
1496
1497 SETUP::
1498
1499 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1500 ....: JordanSpinEJA)
1501
1502 EXAMPLES::
1503
1504 sage: J = HadamardEJA(4)
1505 sage: L_x = J.operator_polynomial_matrix()
1506 sage: L_x
1507 [X0 0 0 0]
1508 [ 0 X1 0 0]
1509 [ 0 0 X2 0]
1510 [ 0 0 0 X3]
1511 sage: x = J.one()
1512 sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
1513 sage: L_x.subs(dict(d))
1514 [1 0 0 0]
1515 [0 1 0 0]
1516 [0 0 1 0]
1517 [0 0 0 1]
1518
1519 ::
1520
1521 sage: J = JordanSpinEJA(4)
1522 sage: L_x = J.operator_polynomial_matrix()
1523 sage: L_x
1524 [X0 X1 X2 X3]
1525 [X1 X0 0 0]
1526 [X2 0 X0 0]
1527 [X3 0 0 X0]
1528 sage: x = J.one()
1529 sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
1530 sage: L_x.subs(dict(d))
1531 [1 0 0 0]
1532 [0 1 0 0]
1533 [0 0 1 0]
1534 [0 0 0 1]
1535
1536 """
1537 R = self.coordinate_polynomial_ring()
1538
1539 def L_x_i_j(i,j):
1540 # From a result in my book, these are the entries of the
1541 # basis representation of L_x.
1542 return sum( v*self.monomial(k).operator().matrix()[i,j]
1543 for (k,v) in enumerate(R.gens()) )
1544
1545 n = self.dimension()
1546 return matrix(R, n, n, L_x_i_j)
1547
1548 @cached_method
1549 def _charpoly_coefficients(self):
1550 r"""
1551 The `r` polynomial coefficients of the "characteristic polynomial
1552 of" function.
1553
1554 SETUP::
1555
1556 sage: from mjo.eja.eja_algebra import random_eja
1557
1558 TESTS:
1559
1560 The theory shows that these are all homogeneous polynomials of
1561 a known degree::
1562
1563 sage: J = random_eja()
1564 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1565 True
1566
1567 """
1568 n = self.dimension()
1569 R = self.coordinate_polynomial_ring()
1570 F = R.fraction_field()
1571
1572 L_x = self.operator_polynomial_matrix()
1573
1574 r = None
1575 if self.rank.is_in_cache():
1576 r = self.rank()
1577 # There's no need to pad the system with redundant
1578 # columns if we *know* they'll be redundant.
1579 n = r
1580
1581 # Compute an extra power in case the rank is equal to
1582 # the dimension (otherwise, we would stop at x^(r-1)).
1583 x_powers = [ (L_x**k)*self.one().to_vector()
1584 for k in range(n+1) ]
1585 A = matrix.column(F, x_powers[:n])
1586 AE = A.extended_echelon_form()
1587 E = AE[:,n:]
1588 A_rref = AE[:,:n]
1589 if r is None:
1590 r = A_rref.rank()
1591 b = x_powers[r]
1592
1593 # The theory says that only the first "r" coefficients are
1594 # nonzero, and they actually live in the original polynomial
1595 # ring and not the fraction field. We negate them because in
1596 # the actual characteristic polynomial, they get moved to the
1597 # other side where x^r lives. We don't bother to trim A_rref
1598 # down to a square matrix and solve the resulting system,
1599 # because the upper-left r-by-r portion of A_rref is
1600 # guaranteed to be the identity matrix, so e.g.
1601 #
1602 # A_rref.solve_right(Y)
1603 #
1604 # would just be returning Y.
1605 return (-E*b)[:r].change_ring(R)
1606
1607 @cached_method
1608 def rank(self):
1609 r"""
1610 Return the rank of this EJA.
1611
1612 This is a cached method because we know the rank a priori for
1613 all of the algebras we can construct. Thus we can avoid the
1614 expensive ``_charpoly_coefficients()`` call unless we truly
1615 need to compute the whole characteristic polynomial.
1616
1617 SETUP::
1618
1619 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1620 ....: JordanSpinEJA,
1621 ....: RealSymmetricEJA,
1622 ....: ComplexHermitianEJA,
1623 ....: QuaternionHermitianEJA,
1624 ....: random_eja)
1625
1626 EXAMPLES:
1627
1628 The rank of the Jordan spin algebra is always two::
1629
1630 sage: JordanSpinEJA(2).rank()
1631 2
1632 sage: JordanSpinEJA(3).rank()
1633 2
1634 sage: JordanSpinEJA(4).rank()
1635 2
1636
1637 The rank of the `n`-by-`n` Hermitian real, complex, or
1638 quaternion matrices is `n`::
1639
1640 sage: RealSymmetricEJA(4).rank()
1641 4
1642 sage: ComplexHermitianEJA(3).rank()
1643 3
1644 sage: QuaternionHermitianEJA(2).rank()
1645 2
1646
1647 TESTS:
1648
1649 Ensure that every EJA that we know how to construct has a
1650 positive integer rank, unless the algebra is trivial in
1651 which case its rank will be zero::
1652
1653 sage: J = random_eja()
1654 sage: r = J.rank()
1655 sage: r in ZZ
1656 True
1657 sage: r > 0 or (r == 0 and J.is_trivial())
1658 True
1659
1660 Ensure that computing the rank actually works, since the ranks
1661 of all simple algebras are known and will be cached by default::
1662
1663 sage: J = random_eja() # long time
1664 sage: cached = J.rank() # long time
1665 sage: J.rank.clear_cache() # long time
1666 sage: J.rank() == cached # long time
1667 True
1668
1669 """
1670 return len(self._charpoly_coefficients())
1671
1672
1673 def subalgebra(self, basis, **kwargs):
1674 r"""
1675 Create a subalgebra of this algebra from the given basis.
1676 """
1677 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1678 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1679
1680
1681 def vector_space(self):
1682 """
1683 Return the vector space that underlies this algebra.
1684
1685 SETUP::
1686
1687 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1688
1689 EXAMPLES::
1690
1691 sage: J = RealSymmetricEJA(2)
1692 sage: J.vector_space()
1693 Vector space of dimension 3 over...
1694
1695 """
1696 return self.zero().to_vector().parent().ambient_vector_space()
1697
1698
1699
1700 class RationalBasisEJA(FiniteDimensionalEJA):
1701 r"""
1702 Algebras whose supplied basis elements have all rational entries.
1703
1704 SETUP::
1705
1706 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1707
1708 EXAMPLES:
1709
1710 The supplied basis is orthonormalized by default::
1711
1712 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1713 sage: J = BilinearFormEJA(B)
1714 sage: J.matrix_basis()
1715 (
1716 [1] [ 0] [ 0]
1717 [0] [1/5] [32/5]
1718 [0], [ 0], [ 5]
1719 )
1720
1721 """
1722 def __init__(self,
1723 basis,
1724 jordan_product,
1725 inner_product,
1726 field=AA,
1727 check_field=True,
1728 **kwargs):
1729
1730 if check_field:
1731 # Abuse the check_field parameter to check that the entries of
1732 # out basis (in ambient coordinates) are in the field QQ.
1733 # Use _all2list to get the vector coordinates of octonion
1734 # entries and not the octonions themselves (which are not
1735 # rational).
1736 if not all( all(b_i in QQ for b_i in _all2list(b))
1737 for b in basis ):
1738 raise TypeError("basis not rational")
1739
1740 super().__init__(basis,
1741 jordan_product,
1742 inner_product,
1743 field=field,
1744 check_field=check_field,
1745 **kwargs)
1746
1747 self._rational_algebra = None
1748 if field is not QQ:
1749 # There's no point in constructing the extra algebra if this
1750 # one is already rational.
1751 #
1752 # Note: the same Jordan and inner-products work here,
1753 # because they are necessarily defined with respect to
1754 # ambient coordinates and not any particular basis.
1755 self._rational_algebra = FiniteDimensionalEJA(
1756 basis,
1757 jordan_product,
1758 inner_product,
1759 field=QQ,
1760 matrix_space=self.matrix_space(),
1761 associative=self.is_associative(),
1762 orthonormalize=False,
1763 check_field=False,
1764 check_axioms=False)
1765
1766 def rational_algebra(self):
1767 # Using None as a flag here (rather than just assigning "self"
1768 # to self._rational_algebra by default) feels a little bit
1769 # more sane to me in a garbage-collected environment.
1770 if self._rational_algebra is None:
1771 return self
1772 else:
1773 return self._rational_algebra
1774
1775 @cached_method
1776 def _charpoly_coefficients(self):
1777 r"""
1778 SETUP::
1779
1780 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1781 ....: JordanSpinEJA)
1782
1783 EXAMPLES:
1784
1785 The base ring of the resulting polynomial coefficients is what
1786 it should be, and not the rationals (unless the algebra was
1787 already over the rationals)::
1788
1789 sage: J = JordanSpinEJA(3)
1790 sage: J._charpoly_coefficients()
1791 (X0^2 - X1^2 - X2^2, -2*X0)
1792 sage: a0 = J._charpoly_coefficients()[0]
1793 sage: J.base_ring()
1794 Algebraic Real Field
1795 sage: a0.base_ring()
1796 Algebraic Real Field
1797
1798 """
1799 if self.rational_algebra() is self:
1800 # Bypass the hijinks if they won't benefit us.
1801 return super()._charpoly_coefficients()
1802
1803 # Do the computation over the rationals.
1804 a = ( a_i.change_ring(self.base_ring())
1805 for a_i in self.rational_algebra()._charpoly_coefficients() )
1806
1807 # Convert our coordinate variables into deorthonormalized ones
1808 # and substitute them into the deorthonormalized charpoly
1809 # coefficients.
1810 R = self.coordinate_polynomial_ring()
1811 from sage.modules.free_module_element import vector
1812 X = vector(R, R.gens())
1813 BX = self._deortho_matrix*X
1814
1815 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1816 return tuple( a_i.subs(subs_dict) for a_i in a )
1817
1818 class ConcreteEJA(FiniteDimensionalEJA):
1819 r"""
1820 A class for the Euclidean Jordan algebras that we know by name.
1821
1822 These are the Jordan algebras whose basis, multiplication table,
1823 rank, and so on are known a priori. More to the point, they are
1824 the Euclidean Jordan algebras for which we are able to conjure up
1825 a "random instance."
1826
1827 SETUP::
1828
1829 sage: from mjo.eja.eja_algebra import ConcreteEJA
1830
1831 TESTS:
1832
1833 Our basis is normalized with respect to the algebra's inner
1834 product, unless we specify otherwise::
1835
1836 sage: J = ConcreteEJA.random_instance()
1837 sage: all( b.norm() == 1 for b in J.gens() )
1838 True
1839
1840 Since our basis is orthonormal with respect to the algebra's inner
1841 product, and since we know that this algebra is an EJA, any
1842 left-multiplication operator's matrix will be symmetric because
1843 natural->EJA basis representation is an isometry and within the
1844 EJA the operator is self-adjoint by the Jordan axiom::
1845
1846 sage: J = ConcreteEJA.random_instance()
1847 sage: x = J.random_element()
1848 sage: x.operator().is_self_adjoint()
1849 True
1850 """
1851
1852 @staticmethod
1853 def _max_random_instance_dimension():
1854 r"""
1855 The maximum dimension of any random instance. Ten dimensions seems
1856 to be about the point where everything takes a turn for the
1857 worse. And dimension ten (but not nine) allows the 4-by-4 real
1858 Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
1859 and the 2-by-2 octonion Hermitian matrices.
1860 """
1861 return 10
1862
1863 @staticmethod
1864 def _max_random_instance_size(max_dimension):
1865 """
1866 Return an integer "size" that is an upper bound on the size of
1867 this algebra when it is used in a random test case. This size
1868 (which can be passed to the algebra's constructor) is itself
1869 based on the ``max_dimension`` parameter.
1870
1871 This method must be implemented in each subclass.
1872 """
1873 raise NotImplementedError
1874
1875 @classmethod
1876 def random_instance(cls, max_dimension=None, *args, **kwargs):
1877 """
1878 Return a random instance of this type of algebra whose dimension
1879 is less than or equal to the lesser of ``max_dimension`` and
1880 the value returned by ``_max_random_instance_dimension()``. If
1881 the dimension bound is omitted, then only the
1882 ``_max_random_instance_dimension()`` is used as a bound.
1883
1884 This method should be implemented in each subclass.
1885
1886 SETUP::
1887
1888 sage: from mjo.eja.eja_algebra import ConcreteEJA
1889
1890 TESTS:
1891
1892 Both the class bound and the ``max_dimension`` argument are upper
1893 bounds on the dimension of the algebra returned::
1894
1895 sage: from sage.misc.prandom import choice
1896 sage: eja_class = choice(ConcreteEJA.__subclasses__())
1897 sage: class_max_d = eja_class._max_random_instance_dimension()
1898 sage: J = eja_class.random_instance(max_dimension=20,
1899 ....: field=QQ,
1900 ....: orthonormalize=False)
1901 sage: J.dimension() <= class_max_d
1902 True
1903 sage: J = eja_class.random_instance(max_dimension=2,
1904 ....: field=QQ,
1905 ....: orthonormalize=False)
1906 sage: J.dimension() <= 2
1907 True
1908
1909 """
1910 from sage.misc.prandom import choice
1911 eja_class = choice(cls.__subclasses__())
1912
1913 # These all bubble up to the RationalBasisEJA superclass
1914 # constructor, so any (kw)args valid there are also valid
1915 # here.
1916 return eja_class.random_instance(max_dimension, *args, **kwargs)
1917
1918
1919 class HermitianMatrixEJA(FiniteDimensionalEJA):
1920 @staticmethod
1921 def _denormalized_basis(A):
1922 """
1923 Returns a basis for the given Hermitian matrix space.
1924
1925 Why do we embed these? Basically, because all of numerical linear
1926 algebra assumes that you're working with vectors consisting of `n`
1927 entries from a field and scalars from the same field. There's no way
1928 to tell SageMath that (for example) the vectors contain complex
1929 numbers, while the scalar field is real.
1930
1931 SETUP::
1932
1933 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1934 ....: QuaternionMatrixAlgebra,
1935 ....: OctonionMatrixAlgebra)
1936 sage: from mjo.eja.eja_algebra import HermitianMatrixEJA
1937
1938 TESTS::
1939
1940 sage: n = ZZ.random_element(1,5)
1941 sage: A = MatrixSpace(QQ, n)
1942 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1943 sage: all( M.is_hermitian() for M in B)
1944 True
1945
1946 ::
1947
1948 sage: n = ZZ.random_element(1,5)
1949 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1950 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1951 sage: all( M.is_hermitian() for M in B)
1952 True
1953
1954 ::
1955
1956 sage: n = ZZ.random_element(1,5)
1957 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1958 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1959 sage: all( M.is_hermitian() for M in B )
1960 True
1961
1962 ::
1963
1964 sage: n = ZZ.random_element(1,5)
1965 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1966 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1967 sage: all( M.is_hermitian() for M in B )
1968 True
1969
1970 """
1971 # These work for real MatrixSpace, whose monomials only have
1972 # two coordinates (because the last one would always be "1").
1973 es = A.base_ring().gens()
1974 gen = lambda A,m: A.monomial(m[:2])
1975
1976 if hasattr(A, 'entry_algebra_gens'):
1977 # We've got a MatrixAlgebra, and its monomials will have
1978 # three coordinates.
1979 es = A.entry_algebra_gens()
1980 gen = lambda A,m: A.monomial(m)
1981
1982 basis = []
1983 for i in range(A.nrows()):
1984 for j in range(i+1):
1985 if i == j:
1986 E_ii = gen(A, (i,j,es[0]))
1987 basis.append(E_ii)
1988 else:
1989 for e in es:
1990 E_ij = gen(A, (i,j,e))
1991 E_ij += E_ij.conjugate_transpose()
1992 basis.append(E_ij)
1993
1994 return tuple( basis )
1995
1996 @staticmethod
1997 def jordan_product(X,Y):
1998 return (X*Y + Y*X)/2
1999
2000 @staticmethod
2001 def trace_inner_product(X,Y):
2002 r"""
2003 A trace inner-product for matrices that aren't embedded in the
2004 reals. It takes MATRICES as arguments, not EJA elements.
2005
2006 SETUP::
2007
2008 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
2009 ....: ComplexHermitianEJA,
2010 ....: QuaternionHermitianEJA,
2011 ....: OctonionHermitianEJA)
2012
2013 EXAMPLES::
2014
2015 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
2016 sage: I = J.one().to_matrix()
2017 sage: J.trace_inner_product(I, -I)
2018 -2
2019
2020 ::
2021
2022 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
2023 sage: I = J.one().to_matrix()
2024 sage: J.trace_inner_product(I, -I)
2025 -2
2026
2027 ::
2028
2029 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2030 sage: I = J.one().to_matrix()
2031 sage: J.trace_inner_product(I, -I)
2032 -2
2033
2034 ::
2035
2036 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
2037 sage: I = J.one().to_matrix()
2038 sage: J.trace_inner_product(I, -I)
2039 -2
2040
2041 """
2042 tr = (X*Y).trace()
2043 if hasattr(tr, 'coefficient'):
2044 # Works for octonions, and has to come first because they
2045 # also have a "real()" method that doesn't return an
2046 # element of the scalar ring.
2047 return tr.coefficient(0)
2048 elif hasattr(tr, 'coefficient_tuple'):
2049 # Works for quaternions.
2050 return tr.coefficient_tuple()[0]
2051
2052 # Works for real and complex numbers.
2053 return tr.real()
2054
2055
2056 def __init__(self, matrix_space, **kwargs):
2057 # We know this is a valid EJA, but will double-check
2058 # if the user passes check_axioms=True.
2059 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2060
2061 super().__init__(self._denormalized_basis(matrix_space),
2062 self.jordan_product,
2063 self.trace_inner_product,
2064 field=matrix_space.base_ring(),
2065 matrix_space=matrix_space,
2066 **kwargs)
2067
2068 self.rank.set_cache(matrix_space.nrows())
2069 self.one.set_cache( self(matrix_space.one()) )
2070
2071 class RealSymmetricEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2072 """
2073 The rank-n simple EJA consisting of real symmetric n-by-n
2074 matrices, the usual symmetric Jordan product, and the trace inner
2075 product. It has dimension `(n^2 + n)/2` over the reals.
2076
2077 SETUP::
2078
2079 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
2080
2081 EXAMPLES::
2082
2083 sage: J = RealSymmetricEJA(2)
2084 sage: b0, b1, b2 = J.gens()
2085 sage: b0*b0
2086 b0
2087 sage: b1*b1
2088 1/2*b0 + 1/2*b2
2089 sage: b2*b2
2090 b2
2091
2092 In theory, our "field" can be any subfield of the reals::
2093
2094 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
2095 Euclidean Jordan algebra of dimension 3 over Real Double Field
2096 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
2097 Euclidean Jordan algebra of dimension 3 over Real Field with
2098 53 bits of precision
2099
2100 TESTS:
2101
2102 The dimension of this algebra is `(n^2 + n) / 2`::
2103
2104 sage: d = RealSymmetricEJA._max_random_instance_dimension()
2105 sage: n = RealSymmetricEJA._max_random_instance_size(d)
2106 sage: J = RealSymmetricEJA(n)
2107 sage: J.dimension() == (n^2 + n)/2
2108 True
2109
2110 The Jordan multiplication is what we think it is::
2111
2112 sage: J = RealSymmetricEJA.random_instance()
2113 sage: x,y = J.random_elements(2)
2114 sage: actual = (x*y).to_matrix()
2115 sage: X = x.to_matrix()
2116 sage: Y = y.to_matrix()
2117 sage: expected = (X*Y + Y*X)/2
2118 sage: actual == expected
2119 True
2120 sage: J(expected) == x*y
2121 True
2122
2123 We can change the generator prefix::
2124
2125 sage: RealSymmetricEJA(3, prefix='q').gens()
2126 (q0, q1, q2, q3, q4, q5)
2127
2128 We can construct the (trivial) algebra of rank zero::
2129
2130 sage: RealSymmetricEJA(0)
2131 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2132
2133 """
2134 @staticmethod
2135 def _max_random_instance_size(max_dimension):
2136 # Obtained by solving d = (n^2 + n)/2.
2137 # The ZZ-int-ZZ thing is just "floor."
2138 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
2139
2140 @classmethod
2141 def random_instance(cls, max_dimension=None, *args, **kwargs):
2142 """
2143 Return a random instance of this type of algebra.
2144 """
2145 class_max_d = cls._max_random_instance_dimension()
2146 if (max_dimension is None or max_dimension > class_max_d):
2147 max_dimension = class_max_d
2148 max_size = cls._max_random_instance_size(max_dimension)
2149 n = ZZ.random_element(max_size + 1)
2150 return cls(n, **kwargs)
2151
2152 def __init__(self, n, field=AA, **kwargs):
2153 A = MatrixSpace(field, n)
2154 super().__init__(A, **kwargs)
2155
2156 from mjo.eja.eja_cache import real_symmetric_eja_coeffs
2157 a = real_symmetric_eja_coeffs(self)
2158 if a is not None:
2159 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2160
2161
2162
2163 class ComplexHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2164 """
2165 The rank-n simple EJA consisting of complex Hermitian n-by-n
2166 matrices over the real numbers, the usual symmetric Jordan product,
2167 and the real-part-of-trace inner product. It has dimension `n^2` over
2168 the reals.
2169
2170 SETUP::
2171
2172 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2173
2174 EXAMPLES:
2175
2176 In theory, our "field" can be any subfield of the reals, but we
2177 can't use inexact real fields at the moment because SageMath
2178 doesn't know how to convert their elements into complex numbers,
2179 or even into algebraic reals::
2180
2181 sage: QQbar(RDF(1))
2182 Traceback (most recent call last):
2183 ...
2184 TypeError: Illegal initializer for algebraic number
2185 sage: AA(RR(1))
2186 Traceback (most recent call last):
2187 ...
2188 TypeError: Illegal initializer for algebraic number
2189
2190 This causes the following error when we try to scale a matrix of
2191 complex numbers by an inexact real number::
2192
2193 sage: ComplexHermitianEJA(2,field=RR)
2194 Traceback (most recent call last):
2195 ...
2196 TypeError: Unable to coerce entries (=(1.00000000000000,
2197 -0.000000000000000)) to coefficients in Algebraic Real Field
2198
2199 TESTS:
2200
2201 The dimension of this algebra is `n^2`::
2202
2203 sage: d = ComplexHermitianEJA._max_random_instance_dimension()
2204 sage: n = ComplexHermitianEJA._max_random_instance_size(d)
2205 sage: J = ComplexHermitianEJA(n)
2206 sage: J.dimension() == n^2
2207 True
2208
2209 The Jordan multiplication is what we think it is::
2210
2211 sage: J = ComplexHermitianEJA.random_instance()
2212 sage: x,y = J.random_elements(2)
2213 sage: actual = (x*y).to_matrix()
2214 sage: X = x.to_matrix()
2215 sage: Y = y.to_matrix()
2216 sage: expected = (X*Y + Y*X)/2
2217 sage: actual == expected
2218 True
2219 sage: J(expected) == x*y
2220 True
2221
2222 We can change the generator prefix::
2223
2224 sage: ComplexHermitianEJA(2, prefix='z').gens()
2225 (z0, z1, z2, z3)
2226
2227 We can construct the (trivial) algebra of rank zero::
2228
2229 sage: ComplexHermitianEJA(0)
2230 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2231
2232 """
2233 def __init__(self, n, field=AA, **kwargs):
2234 from mjo.hurwitz import ComplexMatrixAlgebra
2235 A = ComplexMatrixAlgebra(n, scalars=field)
2236 super().__init__(A, **kwargs)
2237
2238 from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
2239 a = complex_hermitian_eja_coeffs(self)
2240 if a is not None:
2241 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2242
2243 @staticmethod
2244 def _max_random_instance_size(max_dimension):
2245 # Obtained by solving d = n^2.
2246 # The ZZ-int-ZZ thing is just "floor."
2247 return ZZ(int(ZZ(max_dimension).sqrt()))
2248
2249 @classmethod
2250 def random_instance(cls, max_dimension=None, *args, **kwargs):
2251 """
2252 Return a random instance of this type of algebra.
2253 """
2254 class_max_d = cls._max_random_instance_dimension()
2255 if (max_dimension is None or max_dimension > class_max_d):
2256 max_dimension = class_max_d
2257 max_size = cls._max_random_instance_size(max_dimension)
2258 n = ZZ.random_element(max_size + 1)
2259 return cls(n, **kwargs)
2260
2261
2262 class QuaternionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2263 r"""
2264 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2265 matrices, the usual symmetric Jordan product, and the
2266 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2267 the reals.
2268
2269 SETUP::
2270
2271 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2272
2273 EXAMPLES:
2274
2275 In theory, our "field" can be any subfield of the reals::
2276
2277 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2278 Euclidean Jordan algebra of dimension 6 over Real Double Field
2279 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2280 Euclidean Jordan algebra of dimension 6 over Real Field with
2281 53 bits of precision
2282
2283 TESTS:
2284
2285 The dimension of this algebra is `2*n^2 - n`::
2286
2287 sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
2288 sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
2289 sage: J = QuaternionHermitianEJA(n)
2290 sage: J.dimension() == 2*(n^2) - n
2291 True
2292
2293 The Jordan multiplication is what we think it is::
2294
2295 sage: J = QuaternionHermitianEJA.random_instance()
2296 sage: x,y = J.random_elements(2)
2297 sage: actual = (x*y).to_matrix()
2298 sage: X = x.to_matrix()
2299 sage: Y = y.to_matrix()
2300 sage: expected = (X*Y + Y*X)/2
2301 sage: actual == expected
2302 True
2303 sage: J(expected) == x*y
2304 True
2305
2306 We can change the generator prefix::
2307
2308 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2309 (a0, a1, a2, a3, a4, a5)
2310
2311 We can construct the (trivial) algebra of rank zero::
2312
2313 sage: QuaternionHermitianEJA(0)
2314 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2315
2316 """
2317 def __init__(self, n, field=AA, **kwargs):
2318 from mjo.hurwitz import QuaternionMatrixAlgebra
2319 A = QuaternionMatrixAlgebra(n, scalars=field)
2320 super().__init__(A, **kwargs)
2321
2322 from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
2323 a = quaternion_hermitian_eja_coeffs(self)
2324 if a is not None:
2325 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2326
2327
2328
2329 @staticmethod
2330 def _max_random_instance_size(max_dimension):
2331 r"""
2332 The maximum rank of a random QuaternionHermitianEJA.
2333 """
2334 # Obtained by solving d = 2n^2 - n.
2335 # The ZZ-int-ZZ thing is just "floor."
2336 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
2337
2338 @classmethod
2339 def random_instance(cls, max_dimension=None, *args, **kwargs):
2340 """
2341 Return a random instance of this type of algebra.
2342 """
2343 class_max_d = cls._max_random_instance_dimension()
2344 if (max_dimension is None or max_dimension > class_max_d):
2345 max_dimension = class_max_d
2346 max_size = cls._max_random_instance_size(max_dimension)
2347 n = ZZ.random_element(max_size + 1)
2348 return cls(n, **kwargs)
2349
2350 class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2351 r"""
2352 SETUP::
2353
2354 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2355 ....: OctonionHermitianEJA)
2356 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2357
2358 EXAMPLES:
2359
2360 The 3-by-3 algebra satisfies the axioms of an EJA::
2361
2362 sage: OctonionHermitianEJA(3, # long time
2363 ....: field=QQ, # long time
2364 ....: orthonormalize=False, # long time
2365 ....: check_axioms=True) # long time
2366 Euclidean Jordan algebra of dimension 27 over Rational Field
2367
2368 After a change-of-basis, the 2-by-2 algebra has the same
2369 multiplication table as the ten-dimensional Jordan spin algebra::
2370
2371 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2372 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2373 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2374 sage: jp = OctonionHermitianEJA.jordan_product
2375 sage: ip = OctonionHermitianEJA.trace_inner_product
2376 sage: J = FiniteDimensionalEJA(basis,
2377 ....: jp,
2378 ....: ip,
2379 ....: field=QQ,
2380 ....: orthonormalize=False)
2381 sage: J.multiplication_table()
2382 +----++----+----+----+----+----+----+----+----+----+----+
2383 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2384 +====++====+====+====+====+====+====+====+====+====+====+
2385 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2386 +----++----+----+----+----+----+----+----+----+----+----+
2387 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2388 +----++----+----+----+----+----+----+----+----+----+----+
2389 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2390 +----++----+----+----+----+----+----+----+----+----+----+
2391 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2392 +----++----+----+----+----+----+----+----+----+----+----+
2393 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2394 +----++----+----+----+----+----+----+----+----+----+----+
2395 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2396 +----++----+----+----+----+----+----+----+----+----+----+
2397 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2398 +----++----+----+----+----+----+----+----+----+----+----+
2399 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2400 +----++----+----+----+----+----+----+----+----+----+----+
2401 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2402 +----++----+----+----+----+----+----+----+----+----+----+
2403 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2404 +----++----+----+----+----+----+----+----+----+----+----+
2405
2406 TESTS:
2407
2408 We can actually construct the 27-dimensional Albert algebra,
2409 and we get the right unit element if we recompute it::
2410
2411 sage: J = OctonionHermitianEJA(3, # long time
2412 ....: field=QQ, # long time
2413 ....: orthonormalize=False) # long time
2414 sage: J.one.clear_cache() # long time
2415 sage: J.one() # long time
2416 b0 + b9 + b26
2417 sage: J.one().to_matrix() # long time
2418 +----+----+----+
2419 | e0 | 0 | 0 |
2420 +----+----+----+
2421 | 0 | e0 | 0 |
2422 +----+----+----+
2423 | 0 | 0 | e0 |
2424 +----+----+----+
2425
2426 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2427 spin algebra, but just to be sure, we recompute its rank::
2428
2429 sage: J = OctonionHermitianEJA(2, # long time
2430 ....: field=QQ, # long time
2431 ....: orthonormalize=False) # long time
2432 sage: J.rank.clear_cache() # long time
2433 sage: J.rank() # long time
2434 2
2435
2436 """
2437 @staticmethod
2438 def _max_random_instance_size(max_dimension):
2439 r"""
2440 The maximum rank of a random OctonionHermitianEJA.
2441 """
2442 # There's certainly a formula for this, but with only four
2443 # cases to worry about, I'm not that motivated to derive it.
2444 if max_dimension >= 27:
2445 return 3
2446 elif max_dimension >= 10:
2447 return 2
2448 elif max_dimension >= 1:
2449 return 1
2450 else:
2451 return 0
2452
2453 @classmethod
2454 def random_instance(cls, max_dimension=None, *args, **kwargs):
2455 """
2456 Return a random instance of this type of algebra.
2457 """
2458 class_max_d = cls._max_random_instance_dimension()
2459 if (max_dimension is None or max_dimension > class_max_d):
2460 max_dimension = class_max_d
2461 max_size = cls._max_random_instance_size(max_dimension)
2462 n = ZZ.random_element(max_size + 1)
2463 return cls(n, **kwargs)
2464
2465 def __init__(self, n, field=AA, **kwargs):
2466 if n > 3:
2467 # Otherwise we don't get an EJA.
2468 raise ValueError("n cannot exceed 3")
2469
2470 # We know this is a valid EJA, but will double-check
2471 # if the user passes check_axioms=True.
2472 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2473
2474 from mjo.hurwitz import OctonionMatrixAlgebra
2475 A = OctonionMatrixAlgebra(n, scalars=field)
2476 super().__init__(A, **kwargs)
2477
2478 from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
2479 a = octonion_hermitian_eja_coeffs(self)
2480 if a is not None:
2481 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2482
2483
2484 class AlbertEJA(OctonionHermitianEJA):
2485 r"""
2486 The Albert algebra is the algebra of three-by-three Hermitian
2487 matrices whose entries are octonions.
2488
2489 SETUP::
2490
2491 sage: from mjo.eja.eja_algebra import AlbertEJA
2492
2493 EXAMPLES::
2494
2495 sage: AlbertEJA(field=QQ, orthonormalize=False)
2496 Euclidean Jordan algebra of dimension 27 over Rational Field
2497 sage: AlbertEJA() # long time
2498 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2499
2500 """
2501 def __init__(self, *args, **kwargs):
2502 super().__init__(3, *args, **kwargs)
2503
2504
2505 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2506 """
2507 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2508 (pointwise real-number multiplication) Jordan product and the
2509 usual inner-product.
2510
2511 This is nothing more than the Cartesian product of ``n`` copies of
2512 the one-dimensional Jordan spin algebra, and is the most common
2513 example of a non-simple Euclidean Jordan algebra.
2514
2515 SETUP::
2516
2517 sage: from mjo.eja.eja_algebra import HadamardEJA
2518
2519 EXAMPLES:
2520
2521 This multiplication table can be verified by hand::
2522
2523 sage: J = HadamardEJA(3)
2524 sage: b0,b1,b2 = J.gens()
2525 sage: b0*b0
2526 b0
2527 sage: b0*b1
2528 0
2529 sage: b0*b2
2530 0
2531 sage: b1*b1
2532 b1
2533 sage: b1*b2
2534 0
2535 sage: b2*b2
2536 b2
2537
2538 TESTS:
2539
2540 We can change the generator prefix::
2541
2542 sage: HadamardEJA(3, prefix='r').gens()
2543 (r0, r1, r2)
2544 """
2545 def __init__(self, n, field=AA, **kwargs):
2546 MS = MatrixSpace(field, n, 1)
2547
2548 if n == 0:
2549 jordan_product = lambda x,y: x
2550 inner_product = lambda x,y: x
2551 else:
2552 def jordan_product(x,y):
2553 return MS( xi*yi for (xi,yi) in zip(x,y) )
2554
2555 def inner_product(x,y):
2556 return (x.T*y)[0,0]
2557
2558 # New defaults for keyword arguments. Don't orthonormalize
2559 # because our basis is already orthonormal with respect to our
2560 # inner-product. Don't check the axioms, because we know this
2561 # is a valid EJA... but do double-check if the user passes
2562 # check_axioms=True. Note: we DON'T override the "check_field"
2563 # default here, because the user can pass in a field!
2564 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2565 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2566
2567 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2568 super().__init__(column_basis,
2569 jordan_product,
2570 inner_product,
2571 field=field,
2572 matrix_space=MS,
2573 associative=True,
2574 **kwargs)
2575 self.rank.set_cache(n)
2576
2577 self.one.set_cache( self.sum(self.gens()) )
2578
2579 @staticmethod
2580 def _max_random_instance_dimension():
2581 r"""
2582 There's no reason to go higher than five here. That's
2583 enough to get the point across.
2584 """
2585 return 5
2586
2587 @staticmethod
2588 def _max_random_instance_size(max_dimension):
2589 r"""
2590 The maximum size (=dimension) of a random HadamardEJA.
2591 """
2592 return max_dimension
2593
2594 @classmethod
2595 def random_instance(cls, max_dimension=None, *args, **kwargs):
2596 """
2597 Return a random instance of this type of algebra.
2598 """
2599 class_max_d = cls._max_random_instance_dimension()
2600 if (max_dimension is None or max_dimension > class_max_d):
2601 max_dimension = class_max_d
2602 max_size = cls._max_random_instance_size(max_dimension)
2603 n = ZZ.random_element(max_size + 1)
2604 return cls(n, **kwargs)
2605
2606
2607 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2608 r"""
2609 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2610 with the half-trace inner product and jordan product ``x*y =
2611 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2612 a symmetric positive-definite "bilinear form" matrix. Its
2613 dimension is the size of `B`, and it has rank two in dimensions
2614 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2615 the identity matrix of order ``n``.
2616
2617 We insist that the one-by-one upper-left identity block of `B` be
2618 passed in as well so that we can be passed a matrix of size zero
2619 to construct a trivial algebra.
2620
2621 SETUP::
2622
2623 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2624 ....: JordanSpinEJA)
2625
2626 EXAMPLES:
2627
2628 When no bilinear form is specified, the identity matrix is used,
2629 and the resulting algebra is the Jordan spin algebra::
2630
2631 sage: B = matrix.identity(AA,3)
2632 sage: J0 = BilinearFormEJA(B)
2633 sage: J1 = JordanSpinEJA(3)
2634 sage: J0.multiplication_table() == J0.multiplication_table()
2635 True
2636
2637 An error is raised if the matrix `B` does not correspond to a
2638 positive-definite bilinear form::
2639
2640 sage: B = matrix.random(QQ,2,3)
2641 sage: J = BilinearFormEJA(B)
2642 Traceback (most recent call last):
2643 ...
2644 ValueError: bilinear form is not positive-definite
2645 sage: B = matrix.zero(QQ,3)
2646 sage: J = BilinearFormEJA(B)
2647 Traceback (most recent call last):
2648 ...
2649 ValueError: bilinear form is not positive-definite
2650
2651 TESTS:
2652
2653 We can create a zero-dimensional algebra::
2654
2655 sage: B = matrix.identity(AA,0)
2656 sage: J = BilinearFormEJA(B)
2657 sage: J.basis()
2658 Finite family {}
2659
2660 We can check the multiplication condition given in the Jordan, von
2661 Neumann, and Wigner paper (and also discussed on my "On the
2662 symmetry..." paper). Note that this relies heavily on the standard
2663 choice of basis, as does anything utilizing the bilinear form
2664 matrix. We opt not to orthonormalize the basis, because if we
2665 did, we would have to normalize the `s_{i}` in a similar manner::
2666
2667 sage: n = ZZ.random_element(5)
2668 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2669 sage: B11 = matrix.identity(QQ,1)
2670 sage: B22 = M.transpose()*M
2671 sage: B = block_matrix(2,2,[ [B11,0 ],
2672 ....: [0, B22 ] ])
2673 sage: J = BilinearFormEJA(B, orthonormalize=False)
2674 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2675 sage: V = J.vector_space()
2676 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2677 ....: for ei in eis ]
2678 sage: actual = [ sis[i]*sis[j]
2679 ....: for i in range(n-1)
2680 ....: for j in range(n-1) ]
2681 sage: expected = [ J.one() if i == j else J.zero()
2682 ....: for i in range(n-1)
2683 ....: for j in range(n-1) ]
2684 sage: actual == expected
2685 True
2686
2687 """
2688 def __init__(self, B, field=AA, **kwargs):
2689 # The matrix "B" is supplied by the user in most cases,
2690 # so it makes sense to check whether or not its positive-
2691 # definite unless we are specifically asked not to...
2692 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2693 if not B.is_positive_definite():
2694 raise ValueError("bilinear form is not positive-definite")
2695
2696 # However, all of the other data for this EJA is computed
2697 # by us in manner that guarantees the axioms are
2698 # satisfied. So, again, unless we are specifically asked to
2699 # verify things, we'll skip the rest of the checks.
2700 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2701
2702 n = B.nrows()
2703 MS = MatrixSpace(field, n, 1)
2704
2705 def inner_product(x,y):
2706 return (y.T*B*x)[0,0]
2707
2708 def jordan_product(x,y):
2709 x0 = x[0,0]
2710 xbar = x[1:,0]
2711 y0 = y[0,0]
2712 ybar = y[1:,0]
2713 z0 = inner_product(y,x)
2714 zbar = y0*xbar + x0*ybar
2715 return MS([z0] + zbar.list())
2716
2717 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2718
2719 # TODO: I haven't actually checked this, but it seems legit.
2720 associative = False
2721 if n <= 2:
2722 associative = True
2723
2724 super().__init__(column_basis,
2725 jordan_product,
2726 inner_product,
2727 field=field,
2728 matrix_space=MS,
2729 associative=associative,
2730 **kwargs)
2731
2732 # The rank of this algebra is two, unless we're in a
2733 # one-dimensional ambient space (because the rank is bounded
2734 # by the ambient dimension).
2735 self.rank.set_cache(min(n,2))
2736 if n == 0:
2737 self.one.set_cache( self.zero() )
2738 else:
2739 self.one.set_cache( self.monomial(0) )
2740
2741 @staticmethod
2742 def _max_random_instance_dimension():
2743 r"""
2744 There's no reason to go higher than five here. That's
2745 enough to get the point across.
2746 """
2747 return 5
2748
2749 @staticmethod
2750 def _max_random_instance_size(max_dimension):
2751 r"""
2752 The maximum size (=dimension) of a random BilinearFormEJA.
2753 """
2754 return max_dimension
2755
2756 @classmethod
2757 def random_instance(cls, max_dimension=None, *args, **kwargs):
2758 """
2759 Return a random instance of this algebra.
2760 """
2761 class_max_d = cls._max_random_instance_dimension()
2762 if (max_dimension is None or max_dimension > class_max_d):
2763 max_dimension = class_max_d
2764 max_size = cls._max_random_instance_size(max_dimension)
2765 n = ZZ.random_element(max_size + 1)
2766
2767 if n.is_zero():
2768 B = matrix.identity(ZZ, n)
2769 return cls(B, **kwargs)
2770
2771 B11 = matrix.identity(ZZ, 1)
2772 M = matrix.random(ZZ, n-1)
2773 I = matrix.identity(ZZ, n-1)
2774 alpha = ZZ.zero()
2775 while alpha.is_zero():
2776 alpha = ZZ.random_element().abs()
2777
2778 B22 = M.transpose()*M + alpha*I
2779
2780 from sage.matrix.special import block_matrix
2781 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2782 [ZZ(0), B22 ] ])
2783
2784 return cls(B, **kwargs)
2785
2786
2787 class JordanSpinEJA(BilinearFormEJA):
2788 """
2789 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2790 with the usual inner product and jordan product ``x*y =
2791 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2792 the reals.
2793
2794 SETUP::
2795
2796 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2797
2798 EXAMPLES:
2799
2800 This multiplication table can be verified by hand::
2801
2802 sage: J = JordanSpinEJA(4)
2803 sage: b0,b1,b2,b3 = J.gens()
2804 sage: b0*b0
2805 b0
2806 sage: b0*b1
2807 b1
2808 sage: b0*b2
2809 b2
2810 sage: b0*b3
2811 b3
2812 sage: b1*b2
2813 0
2814 sage: b1*b3
2815 0
2816 sage: b2*b3
2817 0
2818
2819 We can change the generator prefix::
2820
2821 sage: JordanSpinEJA(2, prefix='B').gens()
2822 (B0, B1)
2823
2824 TESTS:
2825
2826 Ensure that we have the usual inner product on `R^n`::
2827
2828 sage: J = JordanSpinEJA.random_instance()
2829 sage: x,y = J.random_elements(2)
2830 sage: actual = x.inner_product(y)
2831 sage: expected = x.to_vector().inner_product(y.to_vector())
2832 sage: actual == expected
2833 True
2834
2835 """
2836 def __init__(self, n, *args, **kwargs):
2837 # This is a special case of the BilinearFormEJA with the
2838 # identity matrix as its bilinear form.
2839 B = matrix.identity(ZZ, n)
2840
2841 # Don't orthonormalize because our basis is already
2842 # orthonormal with respect to our inner-product.
2843 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2844
2845 # But also don't pass check_field=False here, because the user
2846 # can pass in a field!
2847 super().__init__(B, *args, **kwargs)
2848
2849 @classmethod
2850 def random_instance(cls, max_dimension=None, *args, **kwargs):
2851 """
2852 Return a random instance of this type of algebra.
2853
2854 Needed here to override the implementation for ``BilinearFormEJA``.
2855 """
2856 class_max_d = cls._max_random_instance_dimension()
2857 if (max_dimension is None or max_dimension > class_max_d):
2858 max_dimension = class_max_d
2859 max_size = cls._max_random_instance_size(max_dimension)
2860 n = ZZ.random_element(max_size + 1)
2861 return cls(n, **kwargs)
2862
2863
2864 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2865 """
2866 The trivial Euclidean Jordan algebra consisting of only a zero element.
2867
2868 SETUP::
2869
2870 sage: from mjo.eja.eja_algebra import TrivialEJA
2871
2872 EXAMPLES::
2873
2874 sage: J = TrivialEJA()
2875 sage: J.dimension()
2876 0
2877 sage: J.zero()
2878 0
2879 sage: J.one()
2880 0
2881 sage: 7*J.one()*12*J.one()
2882 0
2883 sage: J.one().inner_product(J.one())
2884 0
2885 sage: J.one().norm()
2886 0
2887 sage: J.one().subalgebra_generated_by()
2888 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2889 sage: J.rank()
2890 0
2891
2892 """
2893 def __init__(self, field=AA, **kwargs):
2894 jordan_product = lambda x,y: x
2895 inner_product = lambda x,y: field.zero()
2896 basis = ()
2897 MS = MatrixSpace(field,0)
2898
2899 # New defaults for keyword arguments
2900 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2901 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2902
2903 super().__init__(basis,
2904 jordan_product,
2905 inner_product,
2906 associative=True,
2907 field=field,
2908 matrix_space=MS,
2909 **kwargs)
2910
2911 # The rank is zero using my definition, namely the dimension of the
2912 # largest subalgebra generated by any element.
2913 self.rank.set_cache(0)
2914 self.one.set_cache( self.zero() )
2915
2916 @classmethod
2917 def random_instance(cls, max_dimension=None, *args, **kwargs):
2918 # We don't take a "size" argument so the superclass method is
2919 # inappropriate for us. The ``max_dimension`` argument is
2920 # included so that if this method is called generically with a
2921 # ``max_dimension=<whatever>`` argument, we don't try to pass
2922 # it on to the algebra constructor.
2923 return cls(**kwargs)
2924
2925
2926 class CartesianProductEJA(FiniteDimensionalEJA):
2927 r"""
2928 The external (orthogonal) direct sum of two or more Euclidean
2929 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2930 orthogonal direct sum of simple Euclidean Jordan algebras which is
2931 then isometric to a Cartesian product, so no generality is lost by
2932 providing only this construction.
2933
2934 SETUP::
2935
2936 sage: from mjo.eja.eja_algebra import (random_eja,
2937 ....: CartesianProductEJA,
2938 ....: ComplexHermitianEJA,
2939 ....: HadamardEJA,
2940 ....: JordanSpinEJA,
2941 ....: RealSymmetricEJA)
2942
2943 EXAMPLES:
2944
2945 The Jordan product is inherited from our factors and implemented by
2946 our CombinatorialFreeModule Cartesian product superclass::
2947
2948 sage: J1 = HadamardEJA(2)
2949 sage: J2 = RealSymmetricEJA(2)
2950 sage: J = cartesian_product([J1,J2])
2951 sage: x,y = J.random_elements(2)
2952 sage: x*y in J
2953 True
2954
2955 The ability to retrieve the original factors is implemented by our
2956 CombinatorialFreeModule Cartesian product superclass::
2957
2958 sage: J1 = HadamardEJA(2, field=QQ)
2959 sage: J2 = JordanSpinEJA(3, field=QQ)
2960 sage: J = cartesian_product([J1,J2])
2961 sage: J.cartesian_factors()
2962 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2963 Euclidean Jordan algebra of dimension 3 over Rational Field)
2964
2965 You can provide more than two factors::
2966
2967 sage: J1 = HadamardEJA(2)
2968 sage: J2 = JordanSpinEJA(3)
2969 sage: J3 = RealSymmetricEJA(3)
2970 sage: cartesian_product([J1,J2,J3])
2971 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2972 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2973 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2974 Algebraic Real Field
2975
2976 Rank is additive on a Cartesian product::
2977
2978 sage: J1 = HadamardEJA(1)
2979 sage: J2 = RealSymmetricEJA(2)
2980 sage: J = cartesian_product([J1,J2])
2981 sage: J1.rank.clear_cache()
2982 sage: J2.rank.clear_cache()
2983 sage: J.rank.clear_cache()
2984 sage: J.rank()
2985 3
2986 sage: J.rank() == J1.rank() + J2.rank()
2987 True
2988
2989 The same rank computation works over the rationals, with whatever
2990 basis you like::
2991
2992 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
2993 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
2994 sage: J = cartesian_product([J1,J2])
2995 sage: J1.rank.clear_cache()
2996 sage: J2.rank.clear_cache()
2997 sage: J.rank.clear_cache()
2998 sage: J.rank()
2999 3
3000 sage: J.rank() == J1.rank() + J2.rank()
3001 True
3002
3003 The product algebra will be associative if and only if all of its
3004 components are associative::
3005
3006 sage: J1 = HadamardEJA(2)
3007 sage: J1.is_associative()
3008 True
3009 sage: J2 = HadamardEJA(3)
3010 sage: J2.is_associative()
3011 True
3012 sage: J3 = RealSymmetricEJA(3)
3013 sage: J3.is_associative()
3014 False
3015 sage: CP1 = cartesian_product([J1,J2])
3016 sage: CP1.is_associative()
3017 True
3018 sage: CP2 = cartesian_product([J1,J3])
3019 sage: CP2.is_associative()
3020 False
3021
3022 Cartesian products of Cartesian products work::
3023
3024 sage: J1 = JordanSpinEJA(1)
3025 sage: J2 = JordanSpinEJA(1)
3026 sage: J3 = JordanSpinEJA(1)
3027 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3028 sage: J.multiplication_table()
3029 +----++----+----+----+
3030 | * || b0 | b1 | b2 |
3031 +====++====+====+====+
3032 | b0 || b0 | 0 | 0 |
3033 +----++----+----+----+
3034 | b1 || 0 | b1 | 0 |
3035 +----++----+----+----+
3036 | b2 || 0 | 0 | b2 |
3037 +----++----+----+----+
3038 sage: HadamardEJA(3).multiplication_table()
3039 +----++----+----+----+
3040 | * || b0 | b1 | b2 |
3041 +====++====+====+====+
3042 | b0 || b0 | 0 | 0 |
3043 +----++----+----+----+
3044 | b1 || 0 | b1 | 0 |
3045 +----++----+----+----+
3046 | b2 || 0 | 0 | b2 |
3047 +----++----+----+----+
3048
3049 The "matrix space" of a Cartesian product always consists of
3050 ordered pairs (or triples, or...) whose components are the
3051 matrix spaces of its factors::
3052
3053 sage: J1 = HadamardEJA(2)
3054 sage: J2 = ComplexHermitianEJA(2)
3055 sage: J = cartesian_product([J1,J2])
3056 sage: J.matrix_space()
3057 The Cartesian product of (Full MatrixSpace of 2 by 1 dense
3058 matrices over Algebraic Real Field, Module of 2 by 2 matrices
3059 with entries in Algebraic Field over the scalar ring Algebraic
3060 Real Field)
3061 sage: J.one().to_matrix()[0]
3062 [1]
3063 [1]
3064 sage: J.one().to_matrix()[1]
3065 +---+---+
3066 | 1 | 0 |
3067 +---+---+
3068 | 0 | 1 |
3069 +---+---+
3070
3071 TESTS:
3072
3073 All factors must share the same base field::
3074
3075 sage: J1 = HadamardEJA(2, field=QQ)
3076 sage: J2 = RealSymmetricEJA(2)
3077 sage: CartesianProductEJA((J1,J2))
3078 Traceback (most recent call last):
3079 ...
3080 ValueError: all factors must share the same base field
3081
3082 The cached unit element is the same one that would be computed::
3083
3084 sage: J1 = random_eja() # long time
3085 sage: J2 = random_eja() # long time
3086 sage: J = cartesian_product([J1,J2]) # long time
3087 sage: actual = J.one() # long time
3088 sage: J.one.clear_cache() # long time
3089 sage: expected = J.one() # long time
3090 sage: actual == expected # long time
3091 True
3092 """
3093 Element = CartesianProductEJAElement
3094 def __init__(self, factors, **kwargs):
3095 m = len(factors)
3096 if m == 0:
3097 return TrivialEJA()
3098
3099 self._sets = factors
3100
3101 field = factors[0].base_ring()
3102 if not all( J.base_ring() == field for J in factors ):
3103 raise ValueError("all factors must share the same base field")
3104
3105 # Figure out the category to use.
3106 associative = all( f.is_associative() for f in factors )
3107 category = EuclideanJordanAlgebras(field)
3108 if associative: category = category.Associative()
3109 category = category.join([category, category.CartesianProducts()])
3110
3111 # Compute my matrix space. We don't simply use the
3112 # ``cartesian_product()`` functor here because it acts
3113 # differently on SageMath MatrixSpaces and our custom
3114 # MatrixAlgebras, which are CombinatorialFreeModules. We
3115 # always want the result to be represented (and indexed) as an
3116 # ordered tuple. This category isn't perfect, but is good
3117 # enough for what we need to do.
3118 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
3119 MS_cat = MS_cat.Unital().CartesianProducts()
3120 MS_factors = tuple( J.matrix_space() for J in factors )
3121 from sage.sets.cartesian_product import CartesianProduct
3122 self._matrix_space = CartesianProduct(MS_factors, MS_cat)
3123
3124 self._matrix_basis = []
3125 zero = self._matrix_space.zero()
3126 for i in range(m):
3127 for b in factors[i].matrix_basis():
3128 z = list(zero)
3129 z[i] = b
3130 self._matrix_basis.append(z)
3131
3132 self._matrix_basis = tuple( self._matrix_space(b)
3133 for b in self._matrix_basis )
3134 n = len(self._matrix_basis)
3135
3136 # We already have what we need for the super-superclass constructor.
3137 CombinatorialFreeModule.__init__(self,
3138 field,
3139 range(n),
3140 prefix="b",
3141 category=category,
3142 bracket=False)
3143
3144 # Now create the vector space for the algebra, which will have
3145 # its own set of non-ambient coordinates (in terms of the
3146 # supplied basis).
3147 degree = sum( f._matrix_span.ambient_vector_space().degree()
3148 for f in factors )
3149 V = VectorSpace(field, degree)
3150 vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis )
3151
3152 # Save the span of our matrix basis (when written out as long
3153 # vectors) because otherwise we'll have to reconstruct it
3154 # every time we want to coerce a matrix into the algebra.
3155 self._matrix_span = V.span_of_basis( vector_basis, check=False)
3156
3157 # Since we don't (re)orthonormalize the basis, the FDEJA
3158 # constructor is going to set self._deortho_matrix to the
3159 # identity matrix. Here we set it to the correct value using
3160 # the deortho matrices from our factors.
3161 self._deortho_matrix = matrix.block_diagonal(
3162 [J._deortho_matrix for J in factors]
3163 )
3164
3165 self._inner_product_matrix = matrix.block_diagonal(
3166 [J._inner_product_matrix for J in factors]
3167 )
3168 self._inner_product_matrix._cache = {'hermitian': True}
3169 self._inner_product_matrix.set_immutable()
3170
3171 # Building the multiplication table is a bit more tricky
3172 # because we have to embed the entries of the factors'
3173 # multiplication tables into the product EJA.
3174 zed = self.zero()
3175 self._multiplication_table = [ [zed for j in range(i+1)]
3176 for i in range(n) ]
3177
3178 # Keep track of an offset that tallies the dimensions of all
3179 # previous factors. If the second factor is dim=2 and if the
3180 # first one is dim=3, then we want to skip the first 3x3 block
3181 # when copying the multiplication table for the second factor.
3182 offset = 0
3183 for f in range(m):
3184 phi_f = self.cartesian_embedding(f)
3185 factor_dim = factors[f].dimension()
3186 for i in range(factor_dim):
3187 for j in range(i+1):
3188 f_ij = factors[f]._multiplication_table[i][j]
3189 e = phi_f(f_ij)
3190 self._multiplication_table[offset+i][offset+j] = e
3191 offset += factor_dim
3192
3193 self.rank.set_cache(sum(J.rank() for J in factors))
3194 ones = tuple(J.one().to_matrix() for J in factors)
3195 self.one.set_cache(self(ones))
3196
3197 def _sets_keys(self):
3198 r"""
3199
3200 SETUP::
3201
3202 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
3203 ....: RealSymmetricEJA)
3204
3205 TESTS:
3206
3207 The superclass uses ``_sets_keys()`` to implement its
3208 ``cartesian_factors()`` method::
3209
3210 sage: J1 = RealSymmetricEJA(2,
3211 ....: field=QQ,
3212 ....: orthonormalize=False,
3213 ....: prefix="a")
3214 sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
3215 sage: J = cartesian_product([J1,J2])
3216 sage: x = sum(i*J.gens()[i] for i in range(len(J.gens())))
3217 sage: x.cartesian_factors()
3218 (a1 + 2*a2, 3*b0 + 4*b1 + 5*b2 + 6*b3)
3219
3220 """
3221 # Copy/pasted from CombinatorialFreeModule_CartesianProduct,
3222 # but returning a tuple instead of a list.
3223 return tuple(range(len(self.cartesian_factors())))
3224
3225 def cartesian_factors(self):
3226 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3227 return self._sets
3228
3229 def cartesian_factor(self, i):
3230 r"""
3231 Return the ``i``th factor of this algebra.
3232 """
3233 return self._sets[i]
3234
3235 def _repr_(self):
3236 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3237 from sage.categories.cartesian_product import cartesian_product
3238 return cartesian_product.symbol.join("%s" % factor
3239 for factor in self._sets)
3240
3241
3242 @cached_method
3243 def cartesian_projection(self, i):
3244 r"""
3245 SETUP::
3246
3247 sage: from mjo.eja.eja_algebra import (random_eja,
3248 ....: JordanSpinEJA,
3249 ....: HadamardEJA,
3250 ....: RealSymmetricEJA,
3251 ....: ComplexHermitianEJA)
3252
3253 EXAMPLES:
3254
3255 The projection morphisms are Euclidean Jordan algebra
3256 operators::
3257
3258 sage: J1 = HadamardEJA(2)
3259 sage: J2 = RealSymmetricEJA(2)
3260 sage: J = cartesian_product([J1,J2])
3261 sage: J.cartesian_projection(0)
3262 Linear operator between finite-dimensional Euclidean Jordan
3263 algebras represented by the matrix:
3264 [1 0 0 0 0]
3265 [0 1 0 0 0]
3266 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3267 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3268 Algebraic Real Field
3269 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3270 Real Field
3271 sage: J.cartesian_projection(1)
3272 Linear operator between finite-dimensional Euclidean Jordan
3273 algebras represented by the matrix:
3274 [0 0 1 0 0]
3275 [0 0 0 1 0]
3276 [0 0 0 0 1]
3277 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3278 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3279 Algebraic Real Field
3280 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3281 Real Field
3282
3283 The projections work the way you'd expect on the vector
3284 representation of an element::
3285
3286 sage: J1 = JordanSpinEJA(2)
3287 sage: J2 = ComplexHermitianEJA(2)
3288 sage: J = cartesian_product([J1,J2])
3289 sage: pi_left = J.cartesian_projection(0)
3290 sage: pi_right = J.cartesian_projection(1)
3291 sage: pi_left(J.one()).to_vector()
3292 (1, 0)
3293 sage: pi_right(J.one()).to_vector()
3294 (1, 0, 0, 1)
3295 sage: J.one().to_vector()
3296 (1, 0, 1, 0, 0, 1)
3297
3298 TESTS:
3299
3300 The answer never changes::
3301
3302 sage: J1 = random_eja()
3303 sage: J2 = random_eja()
3304 sage: J = cartesian_product([J1,J2])
3305 sage: P0 = J.cartesian_projection(0)
3306 sage: P1 = J.cartesian_projection(0)
3307 sage: P0 == P1
3308 True
3309
3310 """
3311 offset = sum( self.cartesian_factor(k).dimension()
3312 for k in range(i) )
3313 Ji = self.cartesian_factor(i)
3314 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3315 codomain=Ji)
3316
3317 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3318
3319 @cached_method
3320 def cartesian_embedding(self, i):
3321 r"""
3322 SETUP::
3323
3324 sage: from mjo.eja.eja_algebra import (random_eja,
3325 ....: JordanSpinEJA,
3326 ....: HadamardEJA,
3327 ....: RealSymmetricEJA)
3328
3329 EXAMPLES:
3330
3331 The embedding morphisms are Euclidean Jordan algebra
3332 operators::
3333
3334 sage: J1 = HadamardEJA(2)
3335 sage: J2 = RealSymmetricEJA(2)
3336 sage: J = cartesian_product([J1,J2])
3337 sage: J.cartesian_embedding(0)
3338 Linear operator between finite-dimensional Euclidean Jordan
3339 algebras represented by the matrix:
3340 [1 0]
3341 [0 1]
3342 [0 0]
3343 [0 0]
3344 [0 0]
3345 Domain: Euclidean Jordan algebra of dimension 2 over
3346 Algebraic Real Field
3347 Codomain: Euclidean Jordan algebra of dimension 2 over
3348 Algebraic Real Field (+) Euclidean Jordan algebra of
3349 dimension 3 over Algebraic Real Field
3350 sage: J.cartesian_embedding(1)
3351 Linear operator between finite-dimensional Euclidean Jordan
3352 algebras represented by the matrix:
3353 [0 0 0]
3354 [0 0 0]
3355 [1 0 0]
3356 [0 1 0]
3357 [0 0 1]
3358 Domain: Euclidean Jordan algebra of dimension 3 over
3359 Algebraic Real Field
3360 Codomain: Euclidean Jordan algebra of dimension 2 over
3361 Algebraic Real Field (+) Euclidean Jordan algebra of
3362 dimension 3 over Algebraic Real Field
3363
3364 The embeddings work the way you'd expect on the vector
3365 representation of an element::
3366
3367 sage: J1 = JordanSpinEJA(3)
3368 sage: J2 = RealSymmetricEJA(2)
3369 sage: J = cartesian_product([J1,J2])
3370 sage: iota_left = J.cartesian_embedding(0)
3371 sage: iota_right = J.cartesian_embedding(1)
3372 sage: iota_left(J1.zero()) == J.zero()
3373 True
3374 sage: iota_right(J2.zero()) == J.zero()
3375 True
3376 sage: J1.one().to_vector()
3377 (1, 0, 0)
3378 sage: iota_left(J1.one()).to_vector()
3379 (1, 0, 0, 0, 0, 0)
3380 sage: J2.one().to_vector()
3381 (1, 0, 1)
3382 sage: iota_right(J2.one()).to_vector()
3383 (0, 0, 0, 1, 0, 1)
3384 sage: J.one().to_vector()
3385 (1, 0, 0, 1, 0, 1)
3386
3387 TESTS:
3388
3389 The answer never changes::
3390
3391 sage: J1 = random_eja()
3392 sage: J2 = random_eja()
3393 sage: J = cartesian_product([J1,J2])
3394 sage: E0 = J.cartesian_embedding(0)
3395 sage: E1 = J.cartesian_embedding(0)
3396 sage: E0 == E1
3397 True
3398
3399 Composing a projection with the corresponding inclusion should
3400 produce the identity map, and mismatching them should produce
3401 the zero map::
3402
3403 sage: J1 = random_eja()
3404 sage: J2 = random_eja()
3405 sage: J = cartesian_product([J1,J2])
3406 sage: iota_left = J.cartesian_embedding(0)
3407 sage: iota_right = J.cartesian_embedding(1)
3408 sage: pi_left = J.cartesian_projection(0)
3409 sage: pi_right = J.cartesian_projection(1)
3410 sage: pi_left*iota_left == J1.one().operator()
3411 True
3412 sage: pi_right*iota_right == J2.one().operator()
3413 True
3414 sage: (pi_left*iota_right).is_zero()
3415 True
3416 sage: (pi_right*iota_left).is_zero()
3417 True
3418
3419 """
3420 offset = sum( self.cartesian_factor(k).dimension()
3421 for k in range(i) )
3422 Ji = self.cartesian_factor(i)
3423 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3424 codomain=self)
3425 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3426
3427
3428
3429 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3430
3431 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3432 RationalBasisEJA):
3433 r"""
3434 A separate class for products of algebras for which we know a
3435 rational basis.
3436
3437 SETUP::
3438
3439 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
3440 ....: HadamardEJA,
3441 ....: JordanSpinEJA,
3442 ....: RealSymmetricEJA)
3443
3444 EXAMPLES:
3445
3446 This gives us fast characteristic polynomial computations in
3447 product algebras, too::
3448
3449
3450 sage: J1 = JordanSpinEJA(2)
3451 sage: J2 = RealSymmetricEJA(3)
3452 sage: J = cartesian_product([J1,J2])
3453 sage: J.characteristic_polynomial_of().degree()
3454 5
3455 sage: J.rank()
3456 5
3457
3458 TESTS:
3459
3460 The ``cartesian_product()`` function only uses the first factor to
3461 decide where the result will live; thus we have to be careful to
3462 check that all factors do indeed have a ``rational_algebra()`` method
3463 before we construct an algebra that claims to have a rational basis::
3464
3465 sage: J1 = HadamardEJA(2)
3466 sage: jp = lambda X,Y: X*Y
3467 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
3468 sage: b1 = matrix(QQ, [[1]])
3469 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip)
3470 sage: cartesian_product([J2,J1]) # factor one not RationalBasisEJA
3471 Euclidean Jordan algebra of dimension 1 over Algebraic Real
3472 Field (+) Euclidean Jordan algebra of dimension 2 over Algebraic
3473 Real Field
3474 sage: cartesian_product([J1,J2]) # factor one is RationalBasisEJA
3475 Traceback (most recent call last):
3476 ...
3477 ValueError: factor not a RationalBasisEJA
3478
3479 """
3480 def __init__(self, algebras, **kwargs):
3481 if not all( hasattr(r, "rational_algebra") for r in algebras ):
3482 raise ValueError("factor not a RationalBasisEJA")
3483
3484 CartesianProductEJA.__init__(self, algebras, **kwargs)
3485
3486 @cached_method
3487 def rational_algebra(self):
3488 if self.base_ring() is QQ:
3489 return self
3490
3491 return cartesian_product([
3492 r.rational_algebra() for r in self.cartesian_factors()
3493 ])
3494
3495
3496 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3497
3498 def random_eja(max_dimension=None, *args, **kwargs):
3499 r"""
3500
3501 SETUP::
3502
3503 sage: from mjo.eja.eja_algebra import random_eja
3504
3505 TESTS::
3506
3507 sage: n = ZZ.random_element(1,5)
3508 sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False)
3509 sage: J.dimension() <= n
3510 True
3511
3512 """
3513 # Use the ConcreteEJA default as the total upper bound (regardless
3514 # of any whether or not any individual factors set a lower limit).
3515 if max_dimension is None:
3516 max_dimension = ConcreteEJA._max_random_instance_dimension()
3517 J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
3518
3519
3520 # Roll the dice to see if we attempt a Cartesian product.
3521 dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
3522 new_max_dimension = max_dimension - J1.dimension()
3523 if new_max_dimension == 0 or dice_roll != 0:
3524 # If it's already as big as we're willing to tolerate, just
3525 # return it and don't worry about Cartesian products.
3526 return J1
3527 else:
3528 # Use random_eja() again so we can get more than two factors
3529 # if the sub-call also Decides on a cartesian product.
3530 J2 = random_eja(new_max_dimension, *args, **kwargs)
3531 return cartesian_product([J1,J2])
3532
3533
3534 class ComplexSkewSymmetricEJA(RationalBasisEJA, ConcreteEJA):
3535 r"""
3536 The skew-symmetric EJA of order `2n` described in Faraut and
3537 Koranyi's Exercise III.1.b. It has dimension `2n^2 - n`.
3538
3539 It is (not obviously) isomorphic to the QuaternionHermitianEJA of
3540 order `n`, as can be inferred by comparing rank/dimension or
3541 explicitly from their "characteristic polynomial of" functions,
3542 which just so happen to align nicely.
3543
3544 SETUP::
3545
3546 sage: from mjo.eja.eja_algebra import (ComplexSkewSymmetricEJA,
3547 ....: QuaternionHermitianEJA)
3548 sage: from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
3549
3550 EXAMPLES:
3551
3552 This EJA is isomorphic to the quaternions::
3553
3554 sage: J = ComplexSkewSymmetricEJA(2, field=QQ, orthonormalize=False)
3555 sage: K = QuaternionHermitianEJA(2, field=QQ, orthonormalize=False)
3556 sage: jordan_isom_matrix = matrix.diagonal(QQ,[-1,1,1,1,1,-1])
3557 sage: phi = FiniteDimensionalEJAOperator(J,K,jordan_isom_matrix)
3558 sage: all( phi(x*y) == phi(x)*phi(y)
3559 ....: for x in J.gens()
3560 ....: for y in J.gens() )
3561 True
3562 sage: x,y = J.random_elements(2)
3563 sage: phi(x*y) == phi(x)*phi(y)
3564 True
3565
3566 TESTS:
3567
3568 Random elements should satisfy the same conditions that the basis
3569 elements do::
3570
3571 sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
3572 ....: orthonormalize=False)
3573 sage: x,y = K.random_elements(2)
3574 sage: z = x*y
3575 sage: x = x.to_matrix()
3576 sage: y = y.to_matrix()
3577 sage: z = z.to_matrix()
3578 sage: all( e.is_skew_symmetric() for e in (x,y,z) )
3579 True
3580 sage: J = -K.one().to_matrix()
3581 sage: all( e*J == J*e.conjugate() for e in (x,y,z) )
3582 True
3583
3584 The power law in Faraut & Koranyi's II.7.a is satisfied.
3585 We're in a subalgebra of theirs, but powers are still
3586 defined the same::
3587
3588 sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
3589 ....: orthonormalize=False)
3590 sage: x = K.random_element()
3591 sage: k = ZZ.random_element(5)
3592 sage: actual = x^k
3593 sage: J = -K.one().to_matrix()
3594 sage: expected = K(-J*(J*x.to_matrix())^k)
3595 sage: actual == expected
3596 True
3597
3598 """
3599 @staticmethod
3600 def _max_random_instance_size(max_dimension):
3601 # Obtained by solving d = 2n^2 - n, which comes from noticing
3602 # that, in 2x2 block form, any element of this algebra has a
3603 # free skew-symmetric top-left block, a Hermitian top-right
3604 # block, and two bottom blocks that are determined by the top.
3605 # The ZZ-int-ZZ thing is just "floor."
3606 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
3607
3608 @classmethod
3609 def random_instance(cls, max_dimension=None, *args, **kwargs):
3610 """
3611 Return a random instance of this type of algebra.
3612 """
3613 class_max_d = cls._max_random_instance_dimension()
3614 if (max_dimension is None or max_dimension > class_max_d):
3615 max_dimension = class_max_d
3616 max_size = cls._max_random_instance_size(max_dimension)
3617 n = ZZ.random_element(max_size + 1)
3618 return cls(n, **kwargs)
3619
3620 @staticmethod
3621 def _denormalized_basis(A):
3622 """
3623 SETUP::
3624
3625 sage: from mjo.hurwitz import ComplexMatrixAlgebra
3626 sage: from mjo.eja.eja_algebra import ComplexSkewSymmetricEJA
3627
3628 TESTS:
3629
3630 The basis elements are all skew-Hermitian::
3631
3632 sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
3633 sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
3634 sage: n = ZZ.random_element(n_max + 1)
3635 sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
3636 sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
3637 sage: all( M.is_skew_symmetric() for M in B)
3638 True
3639
3640 The basis elements ``b`` all satisfy ``b*J == J*b.conjugate()``,
3641 as in the definition of the algebra::
3642
3643 sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
3644 sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
3645 sage: n = ZZ.random_element(n_max + 1)
3646 sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
3647 sage: I_n = matrix.identity(ZZ, n)
3648 sage: J = matrix.block(ZZ, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
3649 sage: J = A.from_list(J.rows())
3650 sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
3651 sage: all( b*J == J*b.conjugate() for b in B )
3652 True
3653
3654 """
3655 es = A.entry_algebra_gens()
3656 gen = lambda A,m: A.monomial(m)
3657
3658 basis = []
3659
3660 # The size of the blocks. We're going to treat these thing as
3661 # 2x2 block matrices,
3662 #
3663 # [ x1 x2 ]
3664 # [ -x2-conj x1-conj ]
3665 #
3666 # where x1 is skew-symmetric and x2 is Hermitian.
3667 #
3668 m = A.nrows()/2
3669
3670 # We only loop through the top half of the matrix, because the
3671 # bottom can be constructed from the top.
3672 for i in range(m):
3673 # First do the top-left block, which is skew-symmetric.
3674 # We can compute the bottom-right block in the process.
3675 for j in range(i+1):
3676 if i != j:
3677 # Skew-symmetry implies zeros for (i == j).
3678 for e in es:
3679 # Top-left block's entry.
3680 E_ij = gen(A, (i,j,e))
3681 E_ij -= gen(A, (j,i,e))
3682
3683 # Bottom-right block's entry.
3684 F_ij = gen(A, (i+m,j+m,e)).conjugate()
3685 F_ij -= gen(A, (j+m,i+m,e)).conjugate()
3686
3687 basis.append(E_ij + F_ij)
3688
3689 # Now do the top-right block, which is Hermitian, and compute
3690 # the bottom-left block along the way.
3691 for j in range(m,i+m+1):
3692 if (i+m) == j:
3693 # Hermitian matrices have real diagonal entries.
3694 # Top-right block's entry.
3695 E_ii = gen(A, (i,j,es[0]))
3696
3697 # Bottom-left block's entry. Don't conjugate
3698 # 'cause it's real.
3699 E_ii -= gen(A, (i+m,j-m,es[0]))
3700 basis.append(E_ii)
3701 else:
3702 for e in es:
3703 # Top-right block's entry. BEWARE! We're not
3704 # reflecting across the main diagonal as in
3705 # (i,j)~(j,i). We're only reflecting across
3706 # the diagonal for the top-right block.
3707 E_ij = gen(A, (i,j,e))
3708
3709 # Shift it back to non-offset coords, transpose,
3710 # conjugate, and put it back:
3711 #
3712 # (i,j) -> (i,j-m) -> (j-m, i) -> (j-m, i+m)
3713 E_ij += gen(A, (j-m,i+m,e)).conjugate()
3714
3715 # Bottom-left's block's below-diagonal entry.
3716 # Just shift the top-right coords down m and
3717 # left m.
3718 F_ij = -gen(A, (i+m,j-m,e)).conjugate()
3719 F_ij += -gen(A, (j,i,e)) # double-conjugate cancels
3720
3721 basis.append(E_ij + F_ij)
3722
3723 return tuple( basis )
3724
3725 @staticmethod
3726 @cached_method
3727 def _J_matrix(matrix_space):
3728 n = matrix_space.nrows() // 2
3729 F = matrix_space.base_ring()
3730 I_n = matrix.identity(F, n)
3731 J = matrix.block(F, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
3732 return matrix_space.from_list(J.rows())
3733
3734 def J_matrix(self):
3735 return ComplexSkewSymmetricEJA._J_matrix(self.matrix_space())
3736
3737 def __init__(self, n, field=AA, **kwargs):
3738 # New code; always check the axioms.
3739 #if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
3740
3741 from mjo.hurwitz import ComplexMatrixAlgebra
3742 A = ComplexMatrixAlgebra(2*n, scalars=field)
3743 J = ComplexSkewSymmetricEJA._J_matrix(A)
3744
3745 def jordan_product(X,Y):
3746 return (X*J*Y + Y*J*X)/2
3747
3748 def inner_product(X,Y):
3749 return (X.conjugate_transpose()*Y).trace().real()
3750
3751 super().__init__(self._denormalized_basis(A),
3752 jordan_product,
3753 inner_product,
3754 field=field,
3755 matrix_space=A,
3756 **kwargs)
3757
3758 # This algebra is conjectured (by me) to be isomorphic to
3759 # the quaternion Hermitian EJA of size n, and the rank
3760 # would follow from that.
3761 #self.rank.set_cache(n)
3762 self.one.set_cache( self(-J) )