]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: add orthogonality examples/tests for the Peirce decomposition.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 prefix='e',
58 category=None,
59 natural_basis=None,
60 check=True):
61 """
62 SETUP::
63
64 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
65
66 EXAMPLES:
67
68 By definition, Jordan multiplication commutes::
69
70 sage: set_random_seed()
71 sage: J = random_eja()
72 sage: x,y = J.random_elements(2)
73 sage: x*y == y*x
74 True
75
76 TESTS:
77
78 The ``field`` we're given must be real::
79
80 sage: JordanSpinEJA(2,QQbar)
81 Traceback (most recent call last):
82 ...
83 ValueError: field is not real
84
85 """
86 if check:
87 if not field.is_subring(RR):
88 # Note: this does return true for the real algebraic
89 # field, and any quadratic field where we've specified
90 # a real embedding.
91 raise ValueError('field is not real')
92
93 self._natural_basis = natural_basis
94
95 if category is None:
96 category = MagmaticAlgebras(field).FiniteDimensional()
97 category = category.WithBasis().Unital()
98
99 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
100 fda.__init__(field,
101 range(len(mult_table)),
102 prefix=prefix,
103 category=category)
104 self.print_options(bracket='')
105
106 # The multiplication table we're given is necessarily in terms
107 # of vectors, because we don't have an algebra yet for
108 # anything to be an element of. However, it's faster in the
109 # long run to have the multiplication table be in terms of
110 # algebra elements. We do this after calling the superclass
111 # constructor so that from_vector() knows what to do.
112 self._multiplication_table = [
113 list(map(lambda x: self.from_vector(x), ls))
114 for ls in mult_table
115 ]
116
117
118 def _element_constructor_(self, elt):
119 """
120 Construct an element of this algebra from its natural
121 representation.
122
123 This gets called only after the parent element _call_ method
124 fails to find a coercion for the argument.
125
126 SETUP::
127
128 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
129 ....: HadamardEJA,
130 ....: RealSymmetricEJA)
131
132 EXAMPLES:
133
134 The identity in `S^n` is converted to the identity in the EJA::
135
136 sage: J = RealSymmetricEJA(3)
137 sage: I = matrix.identity(QQ,3)
138 sage: J(I) == J.one()
139 True
140
141 This skew-symmetric matrix can't be represented in the EJA::
142
143 sage: J = RealSymmetricEJA(3)
144 sage: A = matrix(QQ,3, lambda i,j: i-j)
145 sage: J(A)
146 Traceback (most recent call last):
147 ...
148 ArithmeticError: vector is not in free module
149
150 TESTS:
151
152 Ensure that we can convert any element of the two non-matrix
153 simple algebras (whose natural representations are their usual
154 vector representations) back and forth faithfully::
155
156 sage: set_random_seed()
157 sage: J = HadamardEJA.random_instance()
158 sage: x = J.random_element()
159 sage: J(x.to_vector().column()) == x
160 True
161 sage: J = JordanSpinEJA.random_instance()
162 sage: x = J.random_element()
163 sage: J(x.to_vector().column()) == x
164 True
165
166 """
167 msg = "not a naturally-represented algebra element"
168 if elt == 0:
169 # The superclass implementation of random_element()
170 # needs to be able to coerce "0" into the algebra.
171 return self.zero()
172 elif elt in self.base_ring():
173 # Ensure that no base ring -> algebra coercion is performed
174 # by this method. There's some stupidity in sage that would
175 # otherwise propagate to this method; for example, sage thinks
176 # that the integer 3 belongs to the space of 2-by-2 matrices.
177 raise ValueError(msg)
178
179 natural_basis = self.natural_basis()
180 basis_space = natural_basis[0].matrix_space()
181 if elt not in basis_space:
182 raise ValueError(msg)
183
184 # Thanks for nothing! Matrix spaces aren't vector spaces in
185 # Sage, so we have to figure out its natural-basis coordinates
186 # ourselves. We use the basis space's ring instead of the
187 # element's ring because the basis space might be an algebraic
188 # closure whereas the base ring of the 3-by-3 identity matrix
189 # could be QQ instead of QQbar.
190 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
191 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
192 coords = W.coordinate_vector(_mat2vec(elt))
193 return self.from_vector(coords)
194
195 @staticmethod
196 def _max_test_case_size():
197 """
198 Return an integer "size" that is an upper bound on the size of
199 this algebra when it is used in a random test
200 case. Unfortunately, the term "size" is quite vague -- when
201 dealing with `R^n` under either the Hadamard or Jordan spin
202 product, the "size" refers to the dimension `n`. When dealing
203 with a matrix algebra (real symmetric or complex/quaternion
204 Hermitian), it refers to the size of the matrix, which is
205 far less than the dimension of the underlying vector space.
206
207 We default to five in this class, which is safe in `R^n`. The
208 matrix algebra subclasses (or any class where the "size" is
209 interpreted to be far less than the dimension) should override
210 with a smaller number.
211 """
212 return 5
213
214 def _repr_(self):
215 """
216 Return a string representation of ``self``.
217
218 SETUP::
219
220 sage: from mjo.eja.eja_algebra import JordanSpinEJA
221
222 TESTS:
223
224 Ensure that it says what we think it says::
225
226 sage: JordanSpinEJA(2, field=AA)
227 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
228 sage: JordanSpinEJA(3, field=RDF)
229 Euclidean Jordan algebra of dimension 3 over Real Double Field
230
231 """
232 fmt = "Euclidean Jordan algebra of dimension {} over {}"
233 return fmt.format(self.dimension(), self.base_ring())
234
235 def product_on_basis(self, i, j):
236 return self._multiplication_table[i][j]
237
238 @cached_method
239 def characteristic_polynomial_of(self):
240 """
241 Return the algebra's "characteristic polynomial of" function,
242 which is itself a multivariate polynomial that, when evaluated
243 at the coordinates of some algebra element, returns that
244 element's characteristic polynomial.
245
246 The resulting polynomial has `n+1` variables, where `n` is the
247 dimension of this algebra. The first `n` variables correspond to
248 the coordinates of an algebra element: when evaluated at the
249 coordinates of an algebra element with respect to a certain
250 basis, the result is a univariate polynomial (in the one
251 remaining variable ``t``), namely the characteristic polynomial
252 of that element.
253
254 SETUP::
255
256 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
257
258 EXAMPLES:
259
260 The characteristic polynomial in the spin algebra is given in
261 Alizadeh, Example 11.11::
262
263 sage: J = JordanSpinEJA(3)
264 sage: p = J.characteristic_polynomial_of(); p
265 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
266 sage: xvec = J.one().to_vector()
267 sage: p(*xvec)
268 t^2 - 2*t + 1
269
270 By definition, the characteristic polynomial is a monic
271 degree-zero polynomial in a rank-zero algebra. Note that
272 Cayley-Hamilton is indeed satisfied since the polynomial
273 ``1`` evaluates to the identity element of the algebra on
274 any argument::
275
276 sage: J = TrivialEJA()
277 sage: J.characteristic_polynomial_of()
278 1
279
280 """
281 r = self.rank()
282 n = self.dimension()
283
284 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
285 a = self._charpoly_coefficients()
286
287 # We go to a bit of trouble here to reorder the
288 # indeterminates, so that it's easier to evaluate the
289 # characteristic polynomial at x's coordinates and get back
290 # something in terms of t, which is what we want.
291 S = PolynomialRing(self.base_ring(),'t')
292 t = S.gen(0)
293 if r > 0:
294 R = a[0].parent()
295 S = PolynomialRing(S, R.variable_names())
296 t = S(t)
297
298 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
299
300
301 def inner_product(self, x, y):
302 """
303 The inner product associated with this Euclidean Jordan algebra.
304
305 Defaults to the trace inner product, but can be overridden by
306 subclasses if they are sure that the necessary properties are
307 satisfied.
308
309 SETUP::
310
311 sage: from mjo.eja.eja_algebra import random_eja
312
313 EXAMPLES:
314
315 Our inner product is "associative," which means the following for
316 a symmetric bilinear form::
317
318 sage: set_random_seed()
319 sage: J = random_eja()
320 sage: x,y,z = J.random_elements(3)
321 sage: (x*y).inner_product(z) == y.inner_product(x*z)
322 True
323
324 """
325 X = x.natural_representation()
326 Y = y.natural_representation()
327 return self.natural_inner_product(X,Y)
328
329
330 def is_trivial(self):
331 """
332 Return whether or not this algebra is trivial.
333
334 A trivial algebra contains only the zero element.
335
336 SETUP::
337
338 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
339 ....: TrivialEJA)
340
341 EXAMPLES::
342
343 sage: J = ComplexHermitianEJA(3)
344 sage: J.is_trivial()
345 False
346
347 ::
348
349 sage: J = TrivialEJA()
350 sage: J.is_trivial()
351 True
352
353 """
354 return self.dimension() == 0
355
356
357 def multiplication_table(self):
358 """
359 Return a visual representation of this algebra's multiplication
360 table (on basis elements).
361
362 SETUP::
363
364 sage: from mjo.eja.eja_algebra import JordanSpinEJA
365
366 EXAMPLES::
367
368 sage: J = JordanSpinEJA(4)
369 sage: J.multiplication_table()
370 +----++----+----+----+----+
371 | * || e0 | e1 | e2 | e3 |
372 +====++====+====+====+====+
373 | e0 || e0 | e1 | e2 | e3 |
374 +----++----+----+----+----+
375 | e1 || e1 | e0 | 0 | 0 |
376 +----++----+----+----+----+
377 | e2 || e2 | 0 | e0 | 0 |
378 +----++----+----+----+----+
379 | e3 || e3 | 0 | 0 | e0 |
380 +----++----+----+----+----+
381
382 """
383 M = list(self._multiplication_table) # copy
384 for i in range(len(M)):
385 # M had better be "square"
386 M[i] = [self.monomial(i)] + M[i]
387 M = [["*"] + list(self.gens())] + M
388 return table(M, header_row=True, header_column=True, frame=True)
389
390
391 def natural_basis(self):
392 """
393 Return a more-natural representation of this algebra's basis.
394
395 Every finite-dimensional Euclidean Jordan Algebra is a direct
396 sum of five simple algebras, four of which comprise Hermitian
397 matrices. This method returns the original "natural" basis
398 for our underlying vector space. (Typically, the natural basis
399 is used to construct the multiplication table in the first place.)
400
401 Note that this will always return a matrix. The standard basis
402 in `R^n` will be returned as `n`-by-`1` column matrices.
403
404 SETUP::
405
406 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
407 ....: RealSymmetricEJA)
408
409 EXAMPLES::
410
411 sage: J = RealSymmetricEJA(2)
412 sage: J.basis()
413 Finite family {0: e0, 1: e1, 2: e2}
414 sage: J.natural_basis()
415 (
416 [1 0] [ 0 0.7071067811865475?] [0 0]
417 [0 0], [0.7071067811865475? 0], [0 1]
418 )
419
420 ::
421
422 sage: J = JordanSpinEJA(2)
423 sage: J.basis()
424 Finite family {0: e0, 1: e1}
425 sage: J.natural_basis()
426 (
427 [1] [0]
428 [0], [1]
429 )
430
431 """
432 if self._natural_basis is None:
433 M = self.natural_basis_space()
434 return tuple( M(b.to_vector()) for b in self.basis() )
435 else:
436 return self._natural_basis
437
438
439 def natural_basis_space(self):
440 """
441 Return the matrix space in which this algebra's natural basis
442 elements live.
443
444 Generally this will be an `n`-by-`1` column-vector space,
445 except when the algebra is trivial. There it's `n`-by-`n`
446 (where `n` is zero), to ensure that two elements of the
447 natural basis space (empty matrices) can be multiplied.
448 """
449 if self.is_trivial():
450 return MatrixSpace(self.base_ring(), 0)
451 elif self._natural_basis is None or len(self._natural_basis) == 0:
452 return MatrixSpace(self.base_ring(), self.dimension(), 1)
453 else:
454 return self._natural_basis[0].matrix_space()
455
456
457 @staticmethod
458 def natural_inner_product(X,Y):
459 """
460 Compute the inner product of two naturally-represented elements.
461
462 For example in the real symmetric matrix EJA, this will compute
463 the trace inner-product of two n-by-n symmetric matrices. The
464 default should work for the real cartesian product EJA, the
465 Jordan spin EJA, and the real symmetric matrices. The others
466 will have to be overridden.
467 """
468 return (X.conjugate_transpose()*Y).trace()
469
470
471 @cached_method
472 def one(self):
473 """
474 Return the unit element of this algebra.
475
476 SETUP::
477
478 sage: from mjo.eja.eja_algebra import (HadamardEJA,
479 ....: random_eja)
480
481 EXAMPLES::
482
483 sage: J = HadamardEJA(5)
484 sage: J.one()
485 e0 + e1 + e2 + e3 + e4
486
487 TESTS:
488
489 The identity element acts like the identity::
490
491 sage: set_random_seed()
492 sage: J = random_eja()
493 sage: x = J.random_element()
494 sage: J.one()*x == x and x*J.one() == x
495 True
496
497 The matrix of the unit element's operator is the identity::
498
499 sage: set_random_seed()
500 sage: J = random_eja()
501 sage: actual = J.one().operator().matrix()
502 sage: expected = matrix.identity(J.base_ring(), J.dimension())
503 sage: actual == expected
504 True
505
506 """
507 # We can brute-force compute the matrices of the operators
508 # that correspond to the basis elements of this algebra.
509 # If some linear combination of those basis elements is the
510 # algebra identity, then the same linear combination of
511 # their matrices has to be the identity matrix.
512 #
513 # Of course, matrices aren't vectors in sage, so we have to
514 # appeal to the "long vectors" isometry.
515 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
516
517 # Now we use basis linear algebra to find the coefficients,
518 # of the matrices-as-vectors-linear-combination, which should
519 # work for the original algebra basis too.
520 A = matrix.column(self.base_ring(), oper_vecs)
521
522 # We used the isometry on the left-hand side already, but we
523 # still need to do it for the right-hand side. Recall that we
524 # wanted something that summed to the identity matrix.
525 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
526
527 # Now if there's an identity element in the algebra, this should work.
528 coeffs = A.solve_right(b)
529 return self.linear_combination(zip(self.gens(), coeffs))
530
531
532 def peirce_decomposition(self, c):
533 """
534 The Peirce decomposition of this algebra relative to the
535 idempotent ``c``.
536
537 In the future, this can be extended to a complete system of
538 orthogonal idempotents.
539
540 INPUT:
541
542 - ``c`` -- an idempotent of this algebra.
543
544 OUTPUT:
545
546 A triple (J0, J5, J1) containing two subalgebras and one subspace
547 of this algebra,
548
549 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
550 corresponding to the eigenvalue zero.
551
552 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
553 corresponding to the eigenvalue one-half.
554
555 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
556 corresponding to the eigenvalue one.
557
558 These are the only possible eigenspaces for that operator, and this
559 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
560 orthogonal, and are subalgebras of this algebra with the appropriate
561 restrictions.
562
563 SETUP::
564
565 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
566
567 EXAMPLES:
568
569 The canonical example comes from the symmetric matrices, which
570 decompose into diagonal and off-diagonal parts::
571
572 sage: J = RealSymmetricEJA(3)
573 sage: C = matrix(QQ, [ [1,0,0],
574 ....: [0,1,0],
575 ....: [0,0,0] ])
576 sage: c = J(C)
577 sage: J0,J5,J1 = J.peirce_decomposition(c)
578 sage: J0
579 Euclidean Jordan algebra of dimension 1...
580 sage: J5
581 Vector space of degree 6 and dimension 2...
582 sage: J1
583 Euclidean Jordan algebra of dimension 3...
584 sage: J0.one().natural_representation()
585 [0 0 0]
586 [0 0 0]
587 [0 0 1]
588 sage: orig_df = AA.options.display_format
589 sage: AA.options.display_format = 'radical'
590 sage: J.from_vector(J5.basis()[0]).natural_representation()
591 [ 0 0 1/2*sqrt(2)]
592 [ 0 0 0]
593 [1/2*sqrt(2) 0 0]
594 sage: J.from_vector(J5.basis()[1]).natural_representation()
595 [ 0 0 0]
596 [ 0 0 1/2*sqrt(2)]
597 [ 0 1/2*sqrt(2) 0]
598 sage: AA.options.display_format = orig_df
599 sage: J1.one().natural_representation()
600 [1 0 0]
601 [0 1 0]
602 [0 0 0]
603
604 TESTS:
605
606 Every algebra decomposes trivially with respect to its identity
607 element::
608
609 sage: set_random_seed()
610 sage: J = random_eja()
611 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
612 sage: J0.dimension() == 0 and J5.dimension() == 0
613 True
614 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
615 True
616
617 The decomposition is into eigenspaces, and its components are
618 therefore necessarily orthogonal. Moreover, the identity
619 elements in the two subalgebras are the projections onto their
620 respective subspaces of the superalgebra's identity element::
621
622 sage: set_random_seed()
623 sage: J = random_eja()
624 sage: x = J.random_element()
625 sage: if not J.is_trivial():
626 ....: while x.is_nilpotent():
627 ....: x = J.random_element()
628 sage: c = x.subalgebra_idempotent()
629 sage: J0,J5,J1 = J.peirce_decomposition(c)
630 sage: ipsum = 0
631 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
632 ....: w = w.superalgebra_element()
633 ....: y = J.from_vector(y)
634 ....: z = z.superalgebra_element()
635 ....: ipsum += w.inner_product(y).abs()
636 ....: ipsum += w.inner_product(z).abs()
637 ....: ipsum += y.inner_product(z).abs()
638 sage: ipsum
639 0
640 sage: J1(c) == J1.one()
641 True
642 sage: J0(J.one() - c) == J0.one()
643 True
644
645 """
646 if not c.is_idempotent():
647 raise ValueError("element is not idempotent: %s" % c)
648
649 # Default these to what they should be if they turn out to be
650 # trivial, because eigenspaces_left() won't return eigenvalues
651 # corresponding to trivial spaces (e.g. it returns only the
652 # eigenspace corresponding to lambda=1 if you take the
653 # decomposition relative to the identity element).
654 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
655 J0 = trivial # eigenvalue zero
656 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
657 J1 = trivial # eigenvalue one
658
659 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
660 if eigval == ~(self.base_ring()(2)):
661 J5 = eigspace
662 else:
663 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
664 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
665 if eigval == 0:
666 J0 = subalg
667 elif eigval == 1:
668 J1 = subalg
669 else:
670 raise ValueError("unexpected eigenvalue: %s" % eigval)
671
672 return (J0, J5, J1)
673
674
675 def random_elements(self, count):
676 """
677 Return ``count`` random elements as a tuple.
678
679 SETUP::
680
681 sage: from mjo.eja.eja_algebra import JordanSpinEJA
682
683 EXAMPLES::
684
685 sage: J = JordanSpinEJA(3)
686 sage: x,y,z = J.random_elements(3)
687 sage: all( [ x in J, y in J, z in J ])
688 True
689 sage: len( J.random_elements(10) ) == 10
690 True
691
692 """
693 return tuple( self.random_element() for idx in range(count) )
694
695 @classmethod
696 def random_instance(cls, field=AA, **kwargs):
697 """
698 Return a random instance of this type of algebra.
699
700 Beware, this will crash for "most instances" because the
701 constructor below looks wrong.
702 """
703 if cls is TrivialEJA:
704 # The TrivialEJA class doesn't take an "n" argument because
705 # there's only one.
706 return cls(field)
707
708 n = ZZ.random_element(cls._max_test_case_size() + 1)
709 return cls(n, field, **kwargs)
710
711 @cached_method
712 def _charpoly_coefficients(self):
713 r"""
714 The `r` polynomial coefficients of the "characteristic polynomial
715 of" function.
716 """
717 n = self.dimension()
718 var_names = [ "X" + str(z) for z in range(1,n+1) ]
719 R = PolynomialRing(self.base_ring(), var_names)
720 vars = R.gens()
721 F = R.fraction_field()
722
723 def L_x_i_j(i,j):
724 # From a result in my book, these are the entries of the
725 # basis representation of L_x.
726 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
727 for k in range(n) )
728
729 L_x = matrix(F, n, n, L_x_i_j)
730
731 r = None
732 if self.rank.is_in_cache():
733 r = self.rank()
734 # There's no need to pad the system with redundant
735 # columns if we *know* they'll be redundant.
736 n = r
737
738 # Compute an extra power in case the rank is equal to
739 # the dimension (otherwise, we would stop at x^(r-1)).
740 x_powers = [ (L_x**k)*self.one().to_vector()
741 for k in range(n+1) ]
742 A = matrix.column(F, x_powers[:n])
743 AE = A.extended_echelon_form()
744 E = AE[:,n:]
745 A_rref = AE[:,:n]
746 if r is None:
747 r = A_rref.rank()
748 b = x_powers[r]
749
750 # The theory says that only the first "r" coefficients are
751 # nonzero, and they actually live in the original polynomial
752 # ring and not the fraction field. We negate them because
753 # in the actual characteristic polynomial, they get moved
754 # to the other side where x^r lives.
755 return -A_rref.solve_right(E*b).change_ring(R)[:r]
756
757 @cached_method
758 def rank(self):
759 r"""
760 Return the rank of this EJA.
761
762 This is a cached method because we know the rank a priori for
763 all of the algebras we can construct. Thus we can avoid the
764 expensive ``_charpoly_coefficients()`` call unless we truly
765 need to compute the whole characteristic polynomial.
766
767 SETUP::
768
769 sage: from mjo.eja.eja_algebra import (HadamardEJA,
770 ....: JordanSpinEJA,
771 ....: RealSymmetricEJA,
772 ....: ComplexHermitianEJA,
773 ....: QuaternionHermitianEJA,
774 ....: random_eja)
775
776 EXAMPLES:
777
778 The rank of the Jordan spin algebra is always two::
779
780 sage: JordanSpinEJA(2).rank()
781 2
782 sage: JordanSpinEJA(3).rank()
783 2
784 sage: JordanSpinEJA(4).rank()
785 2
786
787 The rank of the `n`-by-`n` Hermitian real, complex, or
788 quaternion matrices is `n`::
789
790 sage: RealSymmetricEJA(4).rank()
791 4
792 sage: ComplexHermitianEJA(3).rank()
793 3
794 sage: QuaternionHermitianEJA(2).rank()
795 2
796
797 TESTS:
798
799 Ensure that every EJA that we know how to construct has a
800 positive integer rank, unless the algebra is trivial in
801 which case its rank will be zero::
802
803 sage: set_random_seed()
804 sage: J = random_eja()
805 sage: r = J.rank()
806 sage: r in ZZ
807 True
808 sage: r > 0 or (r == 0 and J.is_trivial())
809 True
810
811 Ensure that computing the rank actually works, since the ranks
812 of all simple algebras are known and will be cached by default::
813
814 sage: J = HadamardEJA(4)
815 sage: J.rank.clear_cache()
816 sage: J.rank()
817 4
818
819 ::
820
821 sage: J = JordanSpinEJA(4)
822 sage: J.rank.clear_cache()
823 sage: J.rank()
824 2
825
826 ::
827
828 sage: J = RealSymmetricEJA(3)
829 sage: J.rank.clear_cache()
830 sage: J.rank()
831 3
832
833 ::
834
835 sage: J = ComplexHermitianEJA(2)
836 sage: J.rank.clear_cache()
837 sage: J.rank()
838 2
839
840 ::
841
842 sage: J = QuaternionHermitianEJA(2)
843 sage: J.rank.clear_cache()
844 sage: J.rank()
845 2
846 """
847 return len(self._charpoly_coefficients())
848
849
850 def vector_space(self):
851 """
852 Return the vector space that underlies this algebra.
853
854 SETUP::
855
856 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
857
858 EXAMPLES::
859
860 sage: J = RealSymmetricEJA(2)
861 sage: J.vector_space()
862 Vector space of dimension 3 over...
863
864 """
865 return self.zero().to_vector().parent().ambient_vector_space()
866
867
868 Element = FiniteDimensionalEuclideanJordanAlgebraElement
869
870
871 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra):
872 """
873 Return the Euclidean Jordan Algebra corresponding to the set
874 `R^n` under the Hadamard product.
875
876 Note: this is nothing more than the Cartesian product of ``n``
877 copies of the spin algebra. Once Cartesian product algebras
878 are implemented, this can go.
879
880 SETUP::
881
882 sage: from mjo.eja.eja_algebra import HadamardEJA
883
884 EXAMPLES:
885
886 This multiplication table can be verified by hand::
887
888 sage: J = HadamardEJA(3)
889 sage: e0,e1,e2 = J.gens()
890 sage: e0*e0
891 e0
892 sage: e0*e1
893 0
894 sage: e0*e2
895 0
896 sage: e1*e1
897 e1
898 sage: e1*e2
899 0
900 sage: e2*e2
901 e2
902
903 TESTS:
904
905 We can change the generator prefix::
906
907 sage: HadamardEJA(3, prefix='r').gens()
908 (r0, r1, r2)
909
910 """
911 def __init__(self, n, field=AA, **kwargs):
912 V = VectorSpace(field, n)
913 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
914 for i in range(n) ]
915
916 fdeja = super(HadamardEJA, self)
917 fdeja.__init__(field, mult_table, **kwargs)
918 self.rank.set_cache(n)
919
920 def inner_product(self, x, y):
921 """
922 Faster to reimplement than to use natural representations.
923
924 SETUP::
925
926 sage: from mjo.eja.eja_algebra import HadamardEJA
927
928 TESTS:
929
930 Ensure that this is the usual inner product for the algebras
931 over `R^n`::
932
933 sage: set_random_seed()
934 sage: J = HadamardEJA.random_instance()
935 sage: x,y = J.random_elements(2)
936 sage: X = x.natural_representation()
937 sage: Y = y.natural_representation()
938 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
939 True
940
941 """
942 return x.to_vector().inner_product(y.to_vector())
943
944
945 def random_eja(field=AA):
946 """
947 Return a "random" finite-dimensional Euclidean Jordan Algebra.
948
949 SETUP::
950
951 sage: from mjo.eja.eja_algebra import random_eja
952
953 TESTS::
954
955 sage: random_eja()
956 Euclidean Jordan algebra of dimension...
957
958 """
959 classname = choice([TrivialEJA,
960 HadamardEJA,
961 JordanSpinEJA,
962 RealSymmetricEJA,
963 ComplexHermitianEJA,
964 QuaternionHermitianEJA])
965 return classname.random_instance(field=field)
966
967
968
969
970 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
971 @staticmethod
972 def _max_test_case_size():
973 # Play it safe, since this will be squared and the underlying
974 # field can have dimension 4 (quaternions) too.
975 return 2
976
977 def __init__(self, field, basis, normalize_basis=True, **kwargs):
978 """
979 Compared to the superclass constructor, we take a basis instead of
980 a multiplication table because the latter can be computed in terms
981 of the former when the product is known (like it is here).
982 """
983 # Used in this class's fast _charpoly_coefficients() override.
984 self._basis_normalizers = None
985
986 # We're going to loop through this a few times, so now's a good
987 # time to ensure that it isn't a generator expression.
988 basis = tuple(basis)
989
990 if len(basis) > 1 and normalize_basis:
991 # We'll need sqrt(2) to normalize the basis, and this
992 # winds up in the multiplication table, so the whole
993 # algebra needs to be over the field extension.
994 R = PolynomialRing(field, 'z')
995 z = R.gen()
996 p = z**2 - 2
997 if p.is_irreducible():
998 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
999 basis = tuple( s.change_ring(field) for s in basis )
1000 self._basis_normalizers = tuple(
1001 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1002 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1003
1004 Qs = self.multiplication_table_from_matrix_basis(basis)
1005
1006 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1007 fdeja.__init__(field, Qs, natural_basis=basis, **kwargs)
1008 return
1009
1010
1011 @cached_method
1012 def _charpoly_coefficients(self):
1013 r"""
1014 Override the parent method with something that tries to compute
1015 over a faster (non-extension) field.
1016 """
1017 if self._basis_normalizers is None:
1018 # We didn't normalize, so assume that the basis we started
1019 # with had entries in a nice field.
1020 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
1021 else:
1022 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1023 self._basis_normalizers) )
1024
1025 # Do this over the rationals and convert back at the end.
1026 # Only works because we know the entries of the basis are
1027 # integers.
1028 J = MatrixEuclideanJordanAlgebra(QQ,
1029 basis,
1030 normalize_basis=False)
1031 a = J._charpoly_coefficients()
1032
1033 # Unfortunately, changing the basis does change the
1034 # coefficients of the characteristic polynomial, but since
1035 # these are really the coefficients of the "characteristic
1036 # polynomial of" function, everything is still nice and
1037 # unevaluated. It's therefore "obvious" how scaling the
1038 # basis affects the coordinate variables X1, X2, et
1039 # cetera. Scaling the first basis vector up by "n" adds a
1040 # factor of 1/n into every "X1" term, for example. So here
1041 # we simply undo the basis_normalizer scaling that we
1042 # performed earlier.
1043 #
1044 # The a[0] access here is safe because trivial algebras
1045 # won't have any basis normalizers and therefore won't
1046 # make it to this "else" branch.
1047 XS = a[0].parent().gens()
1048 subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
1049 for i in range(len(XS)) }
1050 return tuple( a_i.subs(subs_dict) for a_i in a )
1051
1052
1053 @staticmethod
1054 def multiplication_table_from_matrix_basis(basis):
1055 """
1056 At least three of the five simple Euclidean Jordan algebras have the
1057 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1058 multiplication on the right is matrix multiplication. Given a basis
1059 for the underlying matrix space, this function returns a
1060 multiplication table (obtained by looping through the basis
1061 elements) for an algebra of those matrices.
1062 """
1063 # In S^2, for example, we nominally have four coordinates even
1064 # though the space is of dimension three only. The vector space V
1065 # is supposed to hold the entire long vector, and the subspace W
1066 # of V will be spanned by the vectors that arise from symmetric
1067 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1068 if len(basis) == 0:
1069 return []
1070
1071 field = basis[0].base_ring()
1072 dimension = basis[0].nrows()
1073
1074 V = VectorSpace(field, dimension**2)
1075 W = V.span_of_basis( _mat2vec(s) for s in basis )
1076 n = len(basis)
1077 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1078 for i in range(n):
1079 for j in range(n):
1080 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1081 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1082
1083 return mult_table
1084
1085
1086 @staticmethod
1087 def real_embed(M):
1088 """
1089 Embed the matrix ``M`` into a space of real matrices.
1090
1091 The matrix ``M`` can have entries in any field at the moment:
1092 the real numbers, complex numbers, or quaternions. And although
1093 they are not a field, we can probably support octonions at some
1094 point, too. This function returns a real matrix that "acts like"
1095 the original with respect to matrix multiplication; i.e.
1096
1097 real_embed(M*N) = real_embed(M)*real_embed(N)
1098
1099 """
1100 raise NotImplementedError
1101
1102
1103 @staticmethod
1104 def real_unembed(M):
1105 """
1106 The inverse of :meth:`real_embed`.
1107 """
1108 raise NotImplementedError
1109
1110
1111 @classmethod
1112 def natural_inner_product(cls,X,Y):
1113 Xu = cls.real_unembed(X)
1114 Yu = cls.real_unembed(Y)
1115 tr = (Xu*Yu).trace()
1116
1117 if tr in RLF:
1118 # It's real already.
1119 return tr
1120
1121 # Otherwise, try the thing that works for complex numbers; and
1122 # if that doesn't work, the thing that works for quaternions.
1123 try:
1124 return tr.vector()[0] # real part, imag part is index 1
1125 except AttributeError:
1126 # A quaternions doesn't have a vector() method, but does
1127 # have coefficient_tuple() method that returns the
1128 # coefficients of 1, i, j, and k -- in that order.
1129 return tr.coefficient_tuple()[0]
1130
1131
1132 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1133 @staticmethod
1134 def real_embed(M):
1135 """
1136 The identity function, for embedding real matrices into real
1137 matrices.
1138 """
1139 return M
1140
1141 @staticmethod
1142 def real_unembed(M):
1143 """
1144 The identity function, for unembedding real matrices from real
1145 matrices.
1146 """
1147 return M
1148
1149
1150 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
1151 """
1152 The rank-n simple EJA consisting of real symmetric n-by-n
1153 matrices, the usual symmetric Jordan product, and the trace inner
1154 product. It has dimension `(n^2 + n)/2` over the reals.
1155
1156 SETUP::
1157
1158 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1159
1160 EXAMPLES::
1161
1162 sage: J = RealSymmetricEJA(2)
1163 sage: e0, e1, e2 = J.gens()
1164 sage: e0*e0
1165 e0
1166 sage: e1*e1
1167 1/2*e0 + 1/2*e2
1168 sage: e2*e2
1169 e2
1170
1171 In theory, our "field" can be any subfield of the reals::
1172
1173 sage: RealSymmetricEJA(2, RDF)
1174 Euclidean Jordan algebra of dimension 3 over Real Double Field
1175 sage: RealSymmetricEJA(2, RR)
1176 Euclidean Jordan algebra of dimension 3 over Real Field with
1177 53 bits of precision
1178
1179 TESTS:
1180
1181 The dimension of this algebra is `(n^2 + n) / 2`::
1182
1183 sage: set_random_seed()
1184 sage: n_max = RealSymmetricEJA._max_test_case_size()
1185 sage: n = ZZ.random_element(1, n_max)
1186 sage: J = RealSymmetricEJA(n)
1187 sage: J.dimension() == (n^2 + n)/2
1188 True
1189
1190 The Jordan multiplication is what we think it is::
1191
1192 sage: set_random_seed()
1193 sage: J = RealSymmetricEJA.random_instance()
1194 sage: x,y = J.random_elements(2)
1195 sage: actual = (x*y).natural_representation()
1196 sage: X = x.natural_representation()
1197 sage: Y = y.natural_representation()
1198 sage: expected = (X*Y + Y*X)/2
1199 sage: actual == expected
1200 True
1201 sage: J(expected) == x*y
1202 True
1203
1204 We can change the generator prefix::
1205
1206 sage: RealSymmetricEJA(3, prefix='q').gens()
1207 (q0, q1, q2, q3, q4, q5)
1208
1209 Our natural basis is normalized with respect to the natural inner
1210 product unless we specify otherwise::
1211
1212 sage: set_random_seed()
1213 sage: J = RealSymmetricEJA.random_instance()
1214 sage: all( b.norm() == 1 for b in J.gens() )
1215 True
1216
1217 Since our natural basis is normalized with respect to the natural
1218 inner product, and since we know that this algebra is an EJA, any
1219 left-multiplication operator's matrix will be symmetric because
1220 natural->EJA basis representation is an isometry and within the EJA
1221 the operator is self-adjoint by the Jordan axiom::
1222
1223 sage: set_random_seed()
1224 sage: x = RealSymmetricEJA.random_instance().random_element()
1225 sage: x.operator().matrix().is_symmetric()
1226 True
1227
1228 We can construct the (trivial) algebra of rank zero::
1229
1230 sage: RealSymmetricEJA(0)
1231 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1232
1233 """
1234 @classmethod
1235 def _denormalized_basis(cls, n, field):
1236 """
1237 Return a basis for the space of real symmetric n-by-n matrices.
1238
1239 SETUP::
1240
1241 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1242
1243 TESTS::
1244
1245 sage: set_random_seed()
1246 sage: n = ZZ.random_element(1,5)
1247 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1248 sage: all( M.is_symmetric() for M in B)
1249 True
1250
1251 """
1252 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1253 # coordinates.
1254 S = []
1255 for i in range(n):
1256 for j in range(i+1):
1257 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1258 if i == j:
1259 Sij = Eij
1260 else:
1261 Sij = Eij + Eij.transpose()
1262 S.append(Sij)
1263 return S
1264
1265
1266 @staticmethod
1267 def _max_test_case_size():
1268 return 4 # Dimension 10
1269
1270
1271 def __init__(self, n, field=AA, **kwargs):
1272 basis = self._denormalized_basis(n, field)
1273 super(RealSymmetricEJA, self).__init__(field, basis, **kwargs)
1274 self.rank.set_cache(n)
1275
1276
1277 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1278 @staticmethod
1279 def real_embed(M):
1280 """
1281 Embed the n-by-n complex matrix ``M`` into the space of real
1282 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1283 bi` to the block matrix ``[[a,b],[-b,a]]``.
1284
1285 SETUP::
1286
1287 sage: from mjo.eja.eja_algebra import \
1288 ....: ComplexMatrixEuclideanJordanAlgebra
1289
1290 EXAMPLES::
1291
1292 sage: F = QuadraticField(-1, 'I')
1293 sage: x1 = F(4 - 2*i)
1294 sage: x2 = F(1 + 2*i)
1295 sage: x3 = F(-i)
1296 sage: x4 = F(6)
1297 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1298 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1299 [ 4 -2| 1 2]
1300 [ 2 4|-2 1]
1301 [-----+-----]
1302 [ 0 -1| 6 0]
1303 [ 1 0| 0 6]
1304
1305 TESTS:
1306
1307 Embedding is a homomorphism (isomorphism, in fact)::
1308
1309 sage: set_random_seed()
1310 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1311 sage: n = ZZ.random_element(n_max)
1312 sage: F = QuadraticField(-1, 'I')
1313 sage: X = random_matrix(F, n)
1314 sage: Y = random_matrix(F, n)
1315 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1316 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1317 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1318 sage: Xe*Ye == XYe
1319 True
1320
1321 """
1322 n = M.nrows()
1323 if M.ncols() != n:
1324 raise ValueError("the matrix 'M' must be square")
1325
1326 # We don't need any adjoined elements...
1327 field = M.base_ring().base_ring()
1328
1329 blocks = []
1330 for z in M.list():
1331 a = z.list()[0] # real part, I guess
1332 b = z.list()[1] # imag part, I guess
1333 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1334
1335 return matrix.block(field, n, blocks)
1336
1337
1338 @staticmethod
1339 def real_unembed(M):
1340 """
1341 The inverse of _embed_complex_matrix().
1342
1343 SETUP::
1344
1345 sage: from mjo.eja.eja_algebra import \
1346 ....: ComplexMatrixEuclideanJordanAlgebra
1347
1348 EXAMPLES::
1349
1350 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1351 ....: [-2, 1, -4, 3],
1352 ....: [ 9, 10, 11, 12],
1353 ....: [-10, 9, -12, 11] ])
1354 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1355 [ 2*I + 1 4*I + 3]
1356 [ 10*I + 9 12*I + 11]
1357
1358 TESTS:
1359
1360 Unembedding is the inverse of embedding::
1361
1362 sage: set_random_seed()
1363 sage: F = QuadraticField(-1, 'I')
1364 sage: M = random_matrix(F, 3)
1365 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1366 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1367 True
1368
1369 """
1370 n = ZZ(M.nrows())
1371 if M.ncols() != n:
1372 raise ValueError("the matrix 'M' must be square")
1373 if not n.mod(2).is_zero():
1374 raise ValueError("the matrix 'M' must be a complex embedding")
1375
1376 # If "M" was normalized, its base ring might have roots
1377 # adjoined and they can stick around after unembedding.
1378 field = M.base_ring()
1379 R = PolynomialRing(field, 'z')
1380 z = R.gen()
1381 if field is AA:
1382 # Sage doesn't know how to embed AA into QQbar, i.e. how
1383 # to adjoin sqrt(-1) to AA.
1384 F = QQbar
1385 else:
1386 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1387 i = F.gen()
1388
1389 # Go top-left to bottom-right (reading order), converting every
1390 # 2-by-2 block we see to a single complex element.
1391 elements = []
1392 for k in range(n/2):
1393 for j in range(n/2):
1394 submat = M[2*k:2*k+2,2*j:2*j+2]
1395 if submat[0,0] != submat[1,1]:
1396 raise ValueError('bad on-diagonal submatrix')
1397 if submat[0,1] != -submat[1,0]:
1398 raise ValueError('bad off-diagonal submatrix')
1399 z = submat[0,0] + submat[0,1]*i
1400 elements.append(z)
1401
1402 return matrix(F, n/2, elements)
1403
1404
1405 @classmethod
1406 def natural_inner_product(cls,X,Y):
1407 """
1408 Compute a natural inner product in this algebra directly from
1409 its real embedding.
1410
1411 SETUP::
1412
1413 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1414
1415 TESTS:
1416
1417 This gives the same answer as the slow, default method implemented
1418 in :class:`MatrixEuclideanJordanAlgebra`::
1419
1420 sage: set_random_seed()
1421 sage: J = ComplexHermitianEJA.random_instance()
1422 sage: x,y = J.random_elements(2)
1423 sage: Xe = x.natural_representation()
1424 sage: Ye = y.natural_representation()
1425 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1426 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1427 sage: expected = (X*Y).trace().real()
1428 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1429 sage: actual == expected
1430 True
1431
1432 """
1433 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1434
1435
1436 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1437 """
1438 The rank-n simple EJA consisting of complex Hermitian n-by-n
1439 matrices over the real numbers, the usual symmetric Jordan product,
1440 and the real-part-of-trace inner product. It has dimension `n^2` over
1441 the reals.
1442
1443 SETUP::
1444
1445 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1446
1447 EXAMPLES:
1448
1449 In theory, our "field" can be any subfield of the reals::
1450
1451 sage: ComplexHermitianEJA(2, RDF)
1452 Euclidean Jordan algebra of dimension 4 over Real Double Field
1453 sage: ComplexHermitianEJA(2, RR)
1454 Euclidean Jordan algebra of dimension 4 over Real Field with
1455 53 bits of precision
1456
1457 TESTS:
1458
1459 The dimension of this algebra is `n^2`::
1460
1461 sage: set_random_seed()
1462 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1463 sage: n = ZZ.random_element(1, n_max)
1464 sage: J = ComplexHermitianEJA(n)
1465 sage: J.dimension() == n^2
1466 True
1467
1468 The Jordan multiplication is what we think it is::
1469
1470 sage: set_random_seed()
1471 sage: J = ComplexHermitianEJA.random_instance()
1472 sage: x,y = J.random_elements(2)
1473 sage: actual = (x*y).natural_representation()
1474 sage: X = x.natural_representation()
1475 sage: Y = y.natural_representation()
1476 sage: expected = (X*Y + Y*X)/2
1477 sage: actual == expected
1478 True
1479 sage: J(expected) == x*y
1480 True
1481
1482 We can change the generator prefix::
1483
1484 sage: ComplexHermitianEJA(2, prefix='z').gens()
1485 (z0, z1, z2, z3)
1486
1487 Our natural basis is normalized with respect to the natural inner
1488 product unless we specify otherwise::
1489
1490 sage: set_random_seed()
1491 sage: J = ComplexHermitianEJA.random_instance()
1492 sage: all( b.norm() == 1 for b in J.gens() )
1493 True
1494
1495 Since our natural basis is normalized with respect to the natural
1496 inner product, and since we know that this algebra is an EJA, any
1497 left-multiplication operator's matrix will be symmetric because
1498 natural->EJA basis representation is an isometry and within the EJA
1499 the operator is self-adjoint by the Jordan axiom::
1500
1501 sage: set_random_seed()
1502 sage: x = ComplexHermitianEJA.random_instance().random_element()
1503 sage: x.operator().matrix().is_symmetric()
1504 True
1505
1506 We can construct the (trivial) algebra of rank zero::
1507
1508 sage: ComplexHermitianEJA(0)
1509 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1510
1511 """
1512
1513 @classmethod
1514 def _denormalized_basis(cls, n, field):
1515 """
1516 Returns a basis for the space of complex Hermitian n-by-n matrices.
1517
1518 Why do we embed these? Basically, because all of numerical linear
1519 algebra assumes that you're working with vectors consisting of `n`
1520 entries from a field and scalars from the same field. There's no way
1521 to tell SageMath that (for example) the vectors contain complex
1522 numbers, while the scalar field is real.
1523
1524 SETUP::
1525
1526 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1527
1528 TESTS::
1529
1530 sage: set_random_seed()
1531 sage: n = ZZ.random_element(1,5)
1532 sage: field = QuadraticField(2, 'sqrt2')
1533 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1534 sage: all( M.is_symmetric() for M in B)
1535 True
1536
1537 """
1538 R = PolynomialRing(field, 'z')
1539 z = R.gen()
1540 F = field.extension(z**2 + 1, 'I')
1541 I = F.gen()
1542
1543 # This is like the symmetric case, but we need to be careful:
1544 #
1545 # * We want conjugate-symmetry, not just symmetry.
1546 # * The diagonal will (as a result) be real.
1547 #
1548 S = []
1549 for i in range(n):
1550 for j in range(i+1):
1551 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1552 if i == j:
1553 Sij = cls.real_embed(Eij)
1554 S.append(Sij)
1555 else:
1556 # The second one has a minus because it's conjugated.
1557 Sij_real = cls.real_embed(Eij + Eij.transpose())
1558 S.append(Sij_real)
1559 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1560 S.append(Sij_imag)
1561
1562 # Since we embedded these, we can drop back to the "field" that we
1563 # started with instead of the complex extension "F".
1564 return ( s.change_ring(field) for s in S )
1565
1566
1567 def __init__(self, n, field=AA, **kwargs):
1568 basis = self._denormalized_basis(n,field)
1569 super(ComplexHermitianEJA,self).__init__(field, basis, **kwargs)
1570 self.rank.set_cache(n)
1571
1572
1573 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1574 @staticmethod
1575 def real_embed(M):
1576 """
1577 Embed the n-by-n quaternion matrix ``M`` into the space of real
1578 matrices of size 4n-by-4n by first sending each quaternion entry `z
1579 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1580 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1581 matrix.
1582
1583 SETUP::
1584
1585 sage: from mjo.eja.eja_algebra import \
1586 ....: QuaternionMatrixEuclideanJordanAlgebra
1587
1588 EXAMPLES::
1589
1590 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1591 sage: i,j,k = Q.gens()
1592 sage: x = 1 + 2*i + 3*j + 4*k
1593 sage: M = matrix(Q, 1, [[x]])
1594 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1595 [ 1 2 3 4]
1596 [-2 1 -4 3]
1597 [-3 4 1 -2]
1598 [-4 -3 2 1]
1599
1600 Embedding is a homomorphism (isomorphism, in fact)::
1601
1602 sage: set_random_seed()
1603 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1604 sage: n = ZZ.random_element(n_max)
1605 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1606 sage: X = random_matrix(Q, n)
1607 sage: Y = random_matrix(Q, n)
1608 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1609 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1610 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1611 sage: Xe*Ye == XYe
1612 True
1613
1614 """
1615 quaternions = M.base_ring()
1616 n = M.nrows()
1617 if M.ncols() != n:
1618 raise ValueError("the matrix 'M' must be square")
1619
1620 F = QuadraticField(-1, 'I')
1621 i = F.gen()
1622
1623 blocks = []
1624 for z in M.list():
1625 t = z.coefficient_tuple()
1626 a = t[0]
1627 b = t[1]
1628 c = t[2]
1629 d = t[3]
1630 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1631 [-c + d*i, a - b*i]])
1632 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1633 blocks.append(realM)
1634
1635 # We should have real entries by now, so use the realest field
1636 # we've got for the return value.
1637 return matrix.block(quaternions.base_ring(), n, blocks)
1638
1639
1640
1641 @staticmethod
1642 def real_unembed(M):
1643 """
1644 The inverse of _embed_quaternion_matrix().
1645
1646 SETUP::
1647
1648 sage: from mjo.eja.eja_algebra import \
1649 ....: QuaternionMatrixEuclideanJordanAlgebra
1650
1651 EXAMPLES::
1652
1653 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1654 ....: [-2, 1, -4, 3],
1655 ....: [-3, 4, 1, -2],
1656 ....: [-4, -3, 2, 1]])
1657 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1658 [1 + 2*i + 3*j + 4*k]
1659
1660 TESTS:
1661
1662 Unembedding is the inverse of embedding::
1663
1664 sage: set_random_seed()
1665 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1666 sage: M = random_matrix(Q, 3)
1667 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1668 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1669 True
1670
1671 """
1672 n = ZZ(M.nrows())
1673 if M.ncols() != n:
1674 raise ValueError("the matrix 'M' must be square")
1675 if not n.mod(4).is_zero():
1676 raise ValueError("the matrix 'M' must be a quaternion embedding")
1677
1678 # Use the base ring of the matrix to ensure that its entries can be
1679 # multiplied by elements of the quaternion algebra.
1680 field = M.base_ring()
1681 Q = QuaternionAlgebra(field,-1,-1)
1682 i,j,k = Q.gens()
1683
1684 # Go top-left to bottom-right (reading order), converting every
1685 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1686 # quaternion block.
1687 elements = []
1688 for l in range(n/4):
1689 for m in range(n/4):
1690 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1691 M[4*l:4*l+4,4*m:4*m+4] )
1692 if submat[0,0] != submat[1,1].conjugate():
1693 raise ValueError('bad on-diagonal submatrix')
1694 if submat[0,1] != -submat[1,0].conjugate():
1695 raise ValueError('bad off-diagonal submatrix')
1696 z = submat[0,0].real()
1697 z += submat[0,0].imag()*i
1698 z += submat[0,1].real()*j
1699 z += submat[0,1].imag()*k
1700 elements.append(z)
1701
1702 return matrix(Q, n/4, elements)
1703
1704
1705 @classmethod
1706 def natural_inner_product(cls,X,Y):
1707 """
1708 Compute a natural inner product in this algebra directly from
1709 its real embedding.
1710
1711 SETUP::
1712
1713 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1714
1715 TESTS:
1716
1717 This gives the same answer as the slow, default method implemented
1718 in :class:`MatrixEuclideanJordanAlgebra`::
1719
1720 sage: set_random_seed()
1721 sage: J = QuaternionHermitianEJA.random_instance()
1722 sage: x,y = J.random_elements(2)
1723 sage: Xe = x.natural_representation()
1724 sage: Ye = y.natural_representation()
1725 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1726 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1727 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1728 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1729 sage: actual == expected
1730 True
1731
1732 """
1733 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1734
1735
1736 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1737 """
1738 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1739 matrices, the usual symmetric Jordan product, and the
1740 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1741 the reals.
1742
1743 SETUP::
1744
1745 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1746
1747 EXAMPLES:
1748
1749 In theory, our "field" can be any subfield of the reals::
1750
1751 sage: QuaternionHermitianEJA(2, RDF)
1752 Euclidean Jordan algebra of dimension 6 over Real Double Field
1753 sage: QuaternionHermitianEJA(2, RR)
1754 Euclidean Jordan algebra of dimension 6 over Real Field with
1755 53 bits of precision
1756
1757 TESTS:
1758
1759 The dimension of this algebra is `2*n^2 - n`::
1760
1761 sage: set_random_seed()
1762 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1763 sage: n = ZZ.random_element(1, n_max)
1764 sage: J = QuaternionHermitianEJA(n)
1765 sage: J.dimension() == 2*(n^2) - n
1766 True
1767
1768 The Jordan multiplication is what we think it is::
1769
1770 sage: set_random_seed()
1771 sage: J = QuaternionHermitianEJA.random_instance()
1772 sage: x,y = J.random_elements(2)
1773 sage: actual = (x*y).natural_representation()
1774 sage: X = x.natural_representation()
1775 sage: Y = y.natural_representation()
1776 sage: expected = (X*Y + Y*X)/2
1777 sage: actual == expected
1778 True
1779 sage: J(expected) == x*y
1780 True
1781
1782 We can change the generator prefix::
1783
1784 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1785 (a0, a1, a2, a3, a4, a5)
1786
1787 Our natural basis is normalized with respect to the natural inner
1788 product unless we specify otherwise::
1789
1790 sage: set_random_seed()
1791 sage: J = QuaternionHermitianEJA.random_instance()
1792 sage: all( b.norm() == 1 for b in J.gens() )
1793 True
1794
1795 Since our natural basis is normalized with respect to the natural
1796 inner product, and since we know that this algebra is an EJA, any
1797 left-multiplication operator's matrix will be symmetric because
1798 natural->EJA basis representation is an isometry and within the EJA
1799 the operator is self-adjoint by the Jordan axiom::
1800
1801 sage: set_random_seed()
1802 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1803 sage: x.operator().matrix().is_symmetric()
1804 True
1805
1806 We can construct the (trivial) algebra of rank zero::
1807
1808 sage: QuaternionHermitianEJA(0)
1809 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1810
1811 """
1812 @classmethod
1813 def _denormalized_basis(cls, n, field):
1814 """
1815 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1816
1817 Why do we embed these? Basically, because all of numerical
1818 linear algebra assumes that you're working with vectors consisting
1819 of `n` entries from a field and scalars from the same field. There's
1820 no way to tell SageMath that (for example) the vectors contain
1821 complex numbers, while the scalar field is real.
1822
1823 SETUP::
1824
1825 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1826
1827 TESTS::
1828
1829 sage: set_random_seed()
1830 sage: n = ZZ.random_element(1,5)
1831 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1832 sage: all( M.is_symmetric() for M in B )
1833 True
1834
1835 """
1836 Q = QuaternionAlgebra(QQ,-1,-1)
1837 I,J,K = Q.gens()
1838
1839 # This is like the symmetric case, but we need to be careful:
1840 #
1841 # * We want conjugate-symmetry, not just symmetry.
1842 # * The diagonal will (as a result) be real.
1843 #
1844 S = []
1845 for i in range(n):
1846 for j in range(i+1):
1847 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1848 if i == j:
1849 Sij = cls.real_embed(Eij)
1850 S.append(Sij)
1851 else:
1852 # The second, third, and fourth ones have a minus
1853 # because they're conjugated.
1854 Sij_real = cls.real_embed(Eij + Eij.transpose())
1855 S.append(Sij_real)
1856 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1857 S.append(Sij_I)
1858 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1859 S.append(Sij_J)
1860 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1861 S.append(Sij_K)
1862
1863 # Since we embedded these, we can drop back to the "field" that we
1864 # started with instead of the quaternion algebra "Q".
1865 return ( s.change_ring(field) for s in S )
1866
1867
1868 def __init__(self, n, field=AA, **kwargs):
1869 basis = self._denormalized_basis(n,field)
1870 super(QuaternionHermitianEJA,self).__init__(field, basis, **kwargs)
1871 self.rank.set_cache(n)
1872
1873
1874 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra):
1875 r"""
1876 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1877 with the half-trace inner product and jordan product ``x*y =
1878 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
1879 symmetric positive-definite "bilinear form" matrix. It has
1880 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
1881 when ``B`` is the identity matrix of order ``n-1``.
1882
1883 SETUP::
1884
1885 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1886 ....: JordanSpinEJA)
1887
1888 EXAMPLES:
1889
1890 When no bilinear form is specified, the identity matrix is used,
1891 and the resulting algebra is the Jordan spin algebra::
1892
1893 sage: J0 = BilinearFormEJA(3)
1894 sage: J1 = JordanSpinEJA(3)
1895 sage: J0.multiplication_table() == J0.multiplication_table()
1896 True
1897
1898 TESTS:
1899
1900 We can create a zero-dimensional algebra::
1901
1902 sage: J = BilinearFormEJA(0)
1903 sage: J.basis()
1904 Finite family {}
1905
1906 We can check the multiplication condition given in the Jordan, von
1907 Neumann, and Wigner paper (and also discussed on my "On the
1908 symmetry..." paper). Note that this relies heavily on the standard
1909 choice of basis, as does anything utilizing the bilinear form matrix::
1910
1911 sage: set_random_seed()
1912 sage: n = ZZ.random_element(5)
1913 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1914 sage: B = M.transpose()*M
1915 sage: J = BilinearFormEJA(n, B=B)
1916 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
1917 sage: V = J.vector_space()
1918 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
1919 ....: for ei in eis ]
1920 sage: actual = [ sis[i]*sis[j]
1921 ....: for i in range(n-1)
1922 ....: for j in range(n-1) ]
1923 sage: expected = [ J.one() if i == j else J.zero()
1924 ....: for i in range(n-1)
1925 ....: for j in range(n-1) ]
1926 sage: actual == expected
1927 True
1928 """
1929 def __init__(self, n, field=AA, B=None, **kwargs):
1930 if B is None:
1931 self._B = matrix.identity(field, max(0,n-1))
1932 else:
1933 self._B = B
1934
1935 V = VectorSpace(field, n)
1936 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1937 for i in range(n):
1938 for j in range(n):
1939 x = V.gen(i)
1940 y = V.gen(j)
1941 x0 = x[0]
1942 xbar = x[1:]
1943 y0 = y[0]
1944 ybar = y[1:]
1945 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
1946 zbar = y0*xbar + x0*ybar
1947 z = V([z0] + zbar.list())
1948 mult_table[i][j] = z
1949
1950 # The rank of this algebra is two, unless we're in a
1951 # one-dimensional ambient space (because the rank is bounded
1952 # by the ambient dimension).
1953 fdeja = super(BilinearFormEJA, self)
1954 fdeja.__init__(field, mult_table, **kwargs)
1955 self.rank.set_cache(min(n,2))
1956
1957 def inner_product(self, x, y):
1958 r"""
1959 Half of the trace inner product.
1960
1961 This is defined so that the special case of the Jordan spin
1962 algebra gets the usual inner product.
1963
1964 SETUP::
1965
1966 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1967
1968 TESTS:
1969
1970 Ensure that this is one-half of the trace inner-product when
1971 the algebra isn't just the reals (when ``n`` isn't one). This
1972 is in Faraut and Koranyi, and also my "On the symmetry..."
1973 paper::
1974
1975 sage: set_random_seed()
1976 sage: n = ZZ.random_element(2,5)
1977 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
1978 sage: B = M.transpose()*M
1979 sage: J = BilinearFormEJA(n, B=B)
1980 sage: x = J.random_element()
1981 sage: y = J.random_element()
1982 sage: x.inner_product(y) == (x*y).trace()/2
1983 True
1984
1985 """
1986 xvec = x.to_vector()
1987 xbar = xvec[1:]
1988 yvec = y.to_vector()
1989 ybar = yvec[1:]
1990 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
1991
1992
1993 class JordanSpinEJA(BilinearFormEJA):
1994 """
1995 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1996 with the usual inner product and jordan product ``x*y =
1997 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1998 the reals.
1999
2000 SETUP::
2001
2002 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2003
2004 EXAMPLES:
2005
2006 This multiplication table can be verified by hand::
2007
2008 sage: J = JordanSpinEJA(4)
2009 sage: e0,e1,e2,e3 = J.gens()
2010 sage: e0*e0
2011 e0
2012 sage: e0*e1
2013 e1
2014 sage: e0*e2
2015 e2
2016 sage: e0*e3
2017 e3
2018 sage: e1*e2
2019 0
2020 sage: e1*e3
2021 0
2022 sage: e2*e3
2023 0
2024
2025 We can change the generator prefix::
2026
2027 sage: JordanSpinEJA(2, prefix='B').gens()
2028 (B0, B1)
2029
2030 TESTS:
2031
2032 Ensure that we have the usual inner product on `R^n`::
2033
2034 sage: set_random_seed()
2035 sage: J = JordanSpinEJA.random_instance()
2036 sage: x,y = J.random_elements(2)
2037 sage: X = x.natural_representation()
2038 sage: Y = y.natural_representation()
2039 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2040 True
2041
2042 """
2043 def __init__(self, n, field=AA, **kwargs):
2044 # This is a special case of the BilinearFormEJA with the identity
2045 # matrix as its bilinear form.
2046 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2047
2048
2049 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra):
2050 """
2051 The trivial Euclidean Jordan algebra consisting of only a zero element.
2052
2053 SETUP::
2054
2055 sage: from mjo.eja.eja_algebra import TrivialEJA
2056
2057 EXAMPLES::
2058
2059 sage: J = TrivialEJA()
2060 sage: J.dimension()
2061 0
2062 sage: J.zero()
2063 0
2064 sage: J.one()
2065 0
2066 sage: 7*J.one()*12*J.one()
2067 0
2068 sage: J.one().inner_product(J.one())
2069 0
2070 sage: J.one().norm()
2071 0
2072 sage: J.one().subalgebra_generated_by()
2073 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2074 sage: J.rank()
2075 0
2076
2077 """
2078 def __init__(self, field=AA, **kwargs):
2079 mult_table = []
2080 fdeja = super(TrivialEJA, self)
2081 # The rank is zero using my definition, namely the dimension of the
2082 # largest subalgebra generated by any element.
2083 fdeja.__init__(field, mult_table, **kwargs)
2084 self.rank.set_cache(0)