]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: refactor the class hierarchy to separate the matrix EJAs.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
9 from sage.categories.magmatic_algebras import MagmaticAlgebras
10 from sage.combinat.free_module import CombinatorialFreeModule
11 from sage.matrix.constructor import matrix
12 from sage.matrix.matrix_space import MatrixSpace
13 from sage.misc.cachefunc import cached_method
14 from sage.misc.prandom import choice
15 from sage.misc.table import table
16 from sage.modules.free_module import FreeModule, VectorSpace
17 from sage.rings.integer_ring import ZZ
18 from sage.rings.number_field.number_field import NumberField, QuadraticField
19 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
20 from sage.rings.rational_field import QQ
21 from sage.rings.real_lazy import CLF, RLF
22 from sage.structure.element import is_Matrix
23
24 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
25 from mjo.eja.eja_utils import _mat2vec
26
27 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
28 # This is an ugly hack needed to prevent the category framework
29 # from implementing a coercion from our base ring (e.g. the
30 # rationals) into the algebra. First of all -- such a coercion is
31 # nonsense to begin with. But more importantly, it tries to do so
32 # in the category of rings, and since our algebras aren't
33 # associative they generally won't be rings.
34 _no_generic_basering_coercion = True
35
36 def __init__(self,
37 field,
38 mult_table,
39 rank,
40 prefix='e',
41 category=None,
42 natural_basis=None):
43 """
44 SETUP::
45
46 sage: from mjo.eja.eja_algebra import random_eja
47
48 EXAMPLES:
49
50 By definition, Jordan multiplication commutes::
51
52 sage: set_random_seed()
53 sage: J = random_eja()
54 sage: x = J.random_element()
55 sage: y = J.random_element()
56 sage: x*y == y*x
57 True
58
59 """
60 self._rank = rank
61 self._natural_basis = natural_basis
62
63 # TODO: HACK for the charpoly.. needs redesign badly.
64 self._basis_normalizers = None
65
66 if category is None:
67 category = MagmaticAlgebras(field).FiniteDimensional()
68 category = category.WithBasis().Unital()
69
70 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
71 fda.__init__(field,
72 range(len(mult_table)),
73 prefix=prefix,
74 category=category)
75 self.print_options(bracket='')
76
77 # The multiplication table we're given is necessarily in terms
78 # of vectors, because we don't have an algebra yet for
79 # anything to be an element of. However, it's faster in the
80 # long run to have the multiplication table be in terms of
81 # algebra elements. We do this after calling the superclass
82 # constructor so that from_vector() knows what to do.
83 self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
84 for ls in mult_table ]
85
86
87 def _element_constructor_(self, elt):
88 """
89 Construct an element of this algebra from its natural
90 representation.
91
92 This gets called only after the parent element _call_ method
93 fails to find a coercion for the argument.
94
95 SETUP::
96
97 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
98 ....: RealCartesianProductEJA,
99 ....: RealSymmetricEJA)
100
101 EXAMPLES:
102
103 The identity in `S^n` is converted to the identity in the EJA::
104
105 sage: J = RealSymmetricEJA(3)
106 sage: I = matrix.identity(QQ,3)
107 sage: J(I) == J.one()
108 True
109
110 This skew-symmetric matrix can't be represented in the EJA::
111
112 sage: J = RealSymmetricEJA(3)
113 sage: A = matrix(QQ,3, lambda i,j: i-j)
114 sage: J(A)
115 Traceback (most recent call last):
116 ...
117 ArithmeticError: vector is not in free module
118
119 TESTS:
120
121 Ensure that we can convert any element of the two non-matrix
122 simple algebras (whose natural representations are their usual
123 vector representations) back and forth faithfully::
124
125 sage: set_random_seed()
126 sage: J = RealCartesianProductEJA.random_instance()
127 sage: x = J.random_element()
128 sage: J(x.to_vector().column()) == x
129 True
130 sage: J = JordanSpinEJA.random_instance()
131 sage: x = J.random_element()
132 sage: J(x.to_vector().column()) == x
133 True
134
135 """
136 if elt == 0:
137 # The superclass implementation of random_element()
138 # needs to be able to coerce "0" into the algebra.
139 return self.zero()
140
141 natural_basis = self.natural_basis()
142 basis_space = natural_basis[0].matrix_space()
143 if elt not in basis_space:
144 raise ValueError("not a naturally-represented algebra element")
145
146 # Thanks for nothing! Matrix spaces aren't vector spaces in
147 # Sage, so we have to figure out its natural-basis coordinates
148 # ourselves. We use the basis space's ring instead of the
149 # element's ring because the basis space might be an algebraic
150 # closure whereas the base ring of the 3-by-3 identity matrix
151 # could be QQ instead of QQbar.
152 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
153 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
154 coords = W.coordinate_vector(_mat2vec(elt))
155 return self.from_vector(coords)
156
157
158 @staticmethod
159 def _max_test_case_size():
160 """
161 Return an integer "size" that is an upper bound on the size of
162 this algebra when it is used in a random test
163 case. Unfortunately, the term "size" is quite vague -- when
164 dealing with `R^n` under either the Hadamard or Jordan spin
165 product, the "size" refers to the dimension `n`. When dealing
166 with a matrix algebra (real symmetric or complex/quaternion
167 Hermitian), it refers to the size of the matrix, which is
168 far less than the dimension of the underlying vector space.
169
170 We default to five in this class, which is safe in `R^n`. The
171 matrix algebra subclasses (or any class where the "size" is
172 interpreted to be far less than the dimension) should override
173 with a smaller number.
174 """
175 return 5
176
177
178 def _repr_(self):
179 """
180 Return a string representation of ``self``.
181
182 SETUP::
183
184 sage: from mjo.eja.eja_algebra import JordanSpinEJA
185
186 TESTS:
187
188 Ensure that it says what we think it says::
189
190 sage: JordanSpinEJA(2, field=QQ)
191 Euclidean Jordan algebra of dimension 2 over Rational Field
192 sage: JordanSpinEJA(3, field=RDF)
193 Euclidean Jordan algebra of dimension 3 over Real Double Field
194
195 """
196 fmt = "Euclidean Jordan algebra of dimension {} over {}"
197 return fmt.format(self.dimension(), self.base_ring())
198
199 def product_on_basis(self, i, j):
200 return self._multiplication_table[i][j]
201
202 def _a_regular_element(self):
203 """
204 Guess a regular element. Needed to compute the basis for our
205 characteristic polynomial coefficients.
206
207 SETUP::
208
209 sage: from mjo.eja.eja_algebra import random_eja
210
211 TESTS:
212
213 Ensure that this hacky method succeeds for every algebra that we
214 know how to construct::
215
216 sage: set_random_seed()
217 sage: J = random_eja()
218 sage: J._a_regular_element().is_regular()
219 True
220
221 """
222 gs = self.gens()
223 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
224 if not z.is_regular():
225 raise ValueError("don't know a regular element")
226 return z
227
228
229 @cached_method
230 def _charpoly_basis_space(self):
231 """
232 Return the vector space spanned by the basis used in our
233 characteristic polynomial coefficients. This is used not only to
234 compute those coefficients, but also any time we need to
235 evaluate the coefficients (like when we compute the trace or
236 determinant).
237 """
238 z = self._a_regular_element()
239 # Don't use the parent vector space directly here in case this
240 # happens to be a subalgebra. In that case, we would be e.g.
241 # two-dimensional but span_of_basis() would expect three
242 # coordinates.
243 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
244 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
245 V1 = V.span_of_basis( basis )
246 b = (V1.basis() + V1.complement().basis())
247 return V.span_of_basis(b)
248
249
250
251 @cached_method
252 def _charpoly_coeff(self, i):
253 """
254 Return the coefficient polynomial "a_{i}" of this algebra's
255 general characteristic polynomial.
256
257 Having this be a separate cached method lets us compute and
258 store the trace/determinant (a_{r-1} and a_{0} respectively)
259 separate from the entire characteristic polynomial.
260 """
261 if self._basis_normalizers is not None:
262 # Must be a matrix class?
263 # WARNING/TODO: this whole mess is mis-designed.
264 n = self.natural_basis_space().nrows()
265 field = self.base_ring().base_ring() # yeeeeaaaahhh
266 J = self.__class__(n, field, False)
267 (_,x,_,_) = J._charpoly_matrix_system()
268 p = J._charpoly_coeff(i)
269 # p might be missing some vars, have to substitute "optionally"
270 pairs = zip(x.base_ring().gens(), self._basis_normalizers)
271 substitutions = { v: v*c for (v,c) in pairs }
272 return p.subs(substitutions)
273
274 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
275 R = A_of_x.base_ring()
276 if i >= self.rank():
277 # Guaranteed by theory
278 return R.zero()
279
280 # Danger: the in-place modification is done for performance
281 # reasons (reconstructing a matrix with huge polynomial
282 # entries is slow), but I don't know how cached_method works,
283 # so it's highly possible that we're modifying some global
284 # list variable by reference, here. In other words, you
285 # probably shouldn't call this method twice on the same
286 # algebra, at the same time, in two threads
287 Ai_orig = A_of_x.column(i)
288 A_of_x.set_column(i,xr)
289 numerator = A_of_x.det()
290 A_of_x.set_column(i,Ai_orig)
291
292 # We're relying on the theory here to ensure that each a_i is
293 # indeed back in R, and the added negative signs are to make
294 # the whole charpoly expression sum to zero.
295 return R(-numerator/detA)
296
297
298 @cached_method
299 def _charpoly_matrix_system(self):
300 """
301 Compute the matrix whose entries A_ij are polynomials in
302 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
303 corresponding to `x^r` and the determinent of the matrix A =
304 [A_ij]. In other words, all of the fixed (cachable) data needed
305 to compute the coefficients of the characteristic polynomial.
306 """
307 r = self.rank()
308 n = self.dimension()
309
310 # Turn my vector space into a module so that "vectors" can
311 # have multivatiate polynomial entries.
312 names = tuple('X' + str(i) for i in range(1,n+1))
313 R = PolynomialRing(self.base_ring(), names)
314
315 # Using change_ring() on the parent's vector space doesn't work
316 # here because, in a subalgebra, that vector space has a basis
317 # and change_ring() tries to bring the basis along with it. And
318 # that doesn't work unless the new ring is a PID, which it usually
319 # won't be.
320 V = FreeModule(R,n)
321
322 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
323 # indeterminates...
324 x = V(names)
325
326 # And figure out the "left multiplication by x" matrix in
327 # that setting.
328 lmbx_cols = []
329 monomial_matrices = [ self.monomial(i).operator().matrix()
330 for i in range(n) ] # don't recompute these!
331 for k in range(n):
332 ek = self.monomial(k).to_vector()
333 lmbx_cols.append(
334 sum( x[i]*(monomial_matrices[i]*ek)
335 for i in range(n) ) )
336 Lx = matrix.column(R, lmbx_cols)
337
338 # Now we can compute powers of x "symbolically"
339 x_powers = [self.one().to_vector(), x]
340 for d in range(2, r+1):
341 x_powers.append( Lx*(x_powers[-1]) )
342
343 idmat = matrix.identity(R, n)
344
345 W = self._charpoly_basis_space()
346 W = W.change_ring(R.fraction_field())
347
348 # Starting with the standard coordinates x = (X1,X2,...,Xn)
349 # and then converting the entries to W-coordinates allows us
350 # to pass in the standard coordinates to the charpoly and get
351 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
352 # we have
353 #
354 # W.coordinates(x^2) eval'd at (standard z-coords)
355 # =
356 # W-coords of (z^2)
357 # =
358 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
359 #
360 # We want the middle equivalent thing in our matrix, but use
361 # the first equivalent thing instead so that we can pass in
362 # standard coordinates.
363 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
364 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
365 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
366 return (A_of_x, x, x_powers[r], A_of_x.det())
367
368
369 @cached_method
370 def characteristic_polynomial(self):
371 """
372 Return a characteristic polynomial that works for all elements
373 of this algebra.
374
375 The resulting polynomial has `n+1` variables, where `n` is the
376 dimension of this algebra. The first `n` variables correspond to
377 the coordinates of an algebra element: when evaluated at the
378 coordinates of an algebra element with respect to a certain
379 basis, the result is a univariate polynomial (in the one
380 remaining variable ``t``), namely the characteristic polynomial
381 of that element.
382
383 SETUP::
384
385 sage: from mjo.eja.eja_algebra import JordanSpinEJA
386
387 EXAMPLES:
388
389 The characteristic polynomial in the spin algebra is given in
390 Alizadeh, Example 11.11::
391
392 sage: J = JordanSpinEJA(3)
393 sage: p = J.characteristic_polynomial(); p
394 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
395 sage: xvec = J.one().to_vector()
396 sage: p(*xvec)
397 t^2 - 2*t + 1
398
399 """
400 r = self.rank()
401 n = self.dimension()
402
403 # The list of coefficient polynomials a_1, a_2, ..., a_n.
404 a = [ self._charpoly_coeff(i) for i in range(n) ]
405
406 # We go to a bit of trouble here to reorder the
407 # indeterminates, so that it's easier to evaluate the
408 # characteristic polynomial at x's coordinates and get back
409 # something in terms of t, which is what we want.
410 R = a[0].parent()
411 S = PolynomialRing(self.base_ring(),'t')
412 t = S.gen(0)
413 S = PolynomialRing(S, R.variable_names())
414 t = S(t)
415
416 # Note: all entries past the rth should be zero. The
417 # coefficient of the highest power (x^r) is 1, but it doesn't
418 # appear in the solution vector which contains coefficients
419 # for the other powers (to make them sum to x^r).
420 if (r < n):
421 a[r] = 1 # corresponds to x^r
422 else:
423 # When the rank is equal to the dimension, trying to
424 # assign a[r] goes out-of-bounds.
425 a.append(1) # corresponds to x^r
426
427 return sum( a[k]*(t**k) for k in range(len(a)) )
428
429
430 def inner_product(self, x, y):
431 """
432 The inner product associated with this Euclidean Jordan algebra.
433
434 Defaults to the trace inner product, but can be overridden by
435 subclasses if they are sure that the necessary properties are
436 satisfied.
437
438 SETUP::
439
440 sage: from mjo.eja.eja_algebra import random_eja
441
442 EXAMPLES:
443
444 The inner product must satisfy its axiom for this algebra to truly
445 be a Euclidean Jordan Algebra::
446
447 sage: set_random_seed()
448 sage: J = random_eja()
449 sage: x = J.random_element()
450 sage: y = J.random_element()
451 sage: z = J.random_element()
452 sage: (x*y).inner_product(z) == y.inner_product(x*z)
453 True
454
455 """
456 X = x.natural_representation()
457 Y = y.natural_representation()
458 return self.natural_inner_product(X,Y)
459
460
461 def is_trivial(self):
462 """
463 Return whether or not this algebra is trivial.
464
465 A trivial algebra contains only the zero element.
466
467 SETUP::
468
469 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
470
471 EXAMPLES::
472
473 sage: J = ComplexHermitianEJA(3)
474 sage: J.is_trivial()
475 False
476 sage: A = J.zero().subalgebra_generated_by()
477 sage: A.is_trivial()
478 True
479
480 """
481 return self.dimension() == 0
482
483
484 def multiplication_table(self):
485 """
486 Return a visual representation of this algebra's multiplication
487 table (on basis elements).
488
489 SETUP::
490
491 sage: from mjo.eja.eja_algebra import JordanSpinEJA
492
493 EXAMPLES::
494
495 sage: J = JordanSpinEJA(4)
496 sage: J.multiplication_table()
497 +----++----+----+----+----+
498 | * || e0 | e1 | e2 | e3 |
499 +====++====+====+====+====+
500 | e0 || e0 | e1 | e2 | e3 |
501 +----++----+----+----+----+
502 | e1 || e1 | e0 | 0 | 0 |
503 +----++----+----+----+----+
504 | e2 || e2 | 0 | e0 | 0 |
505 +----++----+----+----+----+
506 | e3 || e3 | 0 | 0 | e0 |
507 +----++----+----+----+----+
508
509 """
510 M = list(self._multiplication_table) # copy
511 for i in range(len(M)):
512 # M had better be "square"
513 M[i] = [self.monomial(i)] + M[i]
514 M = [["*"] + list(self.gens())] + M
515 return table(M, header_row=True, header_column=True, frame=True)
516
517
518 def natural_basis(self):
519 """
520 Return a more-natural representation of this algebra's basis.
521
522 Every finite-dimensional Euclidean Jordan Algebra is a direct
523 sum of five simple algebras, four of which comprise Hermitian
524 matrices. This method returns the original "natural" basis
525 for our underlying vector space. (Typically, the natural basis
526 is used to construct the multiplication table in the first place.)
527
528 Note that this will always return a matrix. The standard basis
529 in `R^n` will be returned as `n`-by-`1` column matrices.
530
531 SETUP::
532
533 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
534 ....: RealSymmetricEJA)
535
536 EXAMPLES::
537
538 sage: J = RealSymmetricEJA(2)
539 sage: J.basis()
540 Finite family {0: e0, 1: e1, 2: e2}
541 sage: J.natural_basis()
542 (
543 [1 0] [ 0 1/2*sqrt2] [0 0]
544 [0 0], [1/2*sqrt2 0], [0 1]
545 )
546
547 ::
548
549 sage: J = JordanSpinEJA(2)
550 sage: J.basis()
551 Finite family {0: e0, 1: e1}
552 sage: J.natural_basis()
553 (
554 [1] [0]
555 [0], [1]
556 )
557
558 """
559 if self._natural_basis is None:
560 M = self.natural_basis_space()
561 return tuple( M(b.to_vector()) for b in self.basis() )
562 else:
563 return self._natural_basis
564
565
566 def natural_basis_space(self):
567 """
568 Return the matrix space in which this algebra's natural basis
569 elements live.
570 """
571 if self._natural_basis is None or len(self._natural_basis) == 0:
572 return MatrixSpace(self.base_ring(), self.dimension(), 1)
573 else:
574 return self._natural_basis[0].matrix_space()
575
576
577 @staticmethod
578 def natural_inner_product(X,Y):
579 """
580 Compute the inner product of two naturally-represented elements.
581
582 For example in the real symmetric matrix EJA, this will compute
583 the trace inner-product of two n-by-n symmetric matrices. The
584 default should work for the real cartesian product EJA, the
585 Jordan spin EJA, and the real symmetric matrices. The others
586 will have to be overridden.
587 """
588 return (X.conjugate_transpose()*Y).trace()
589
590
591 @cached_method
592 def one(self):
593 """
594 Return the unit element of this algebra.
595
596 SETUP::
597
598 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
599 ....: random_eja)
600
601 EXAMPLES::
602
603 sage: J = RealCartesianProductEJA(5)
604 sage: J.one()
605 e0 + e1 + e2 + e3 + e4
606
607 TESTS:
608
609 The identity element acts like the identity::
610
611 sage: set_random_seed()
612 sage: J = random_eja()
613 sage: x = J.random_element()
614 sage: J.one()*x == x and x*J.one() == x
615 True
616
617 The matrix of the unit element's operator is the identity::
618
619 sage: set_random_seed()
620 sage: J = random_eja()
621 sage: actual = J.one().operator().matrix()
622 sage: expected = matrix.identity(J.base_ring(), J.dimension())
623 sage: actual == expected
624 True
625
626 """
627 # We can brute-force compute the matrices of the operators
628 # that correspond to the basis elements of this algebra.
629 # If some linear combination of those basis elements is the
630 # algebra identity, then the same linear combination of
631 # their matrices has to be the identity matrix.
632 #
633 # Of course, matrices aren't vectors in sage, so we have to
634 # appeal to the "long vectors" isometry.
635 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
636
637 # Now we use basis linear algebra to find the coefficients,
638 # of the matrices-as-vectors-linear-combination, which should
639 # work for the original algebra basis too.
640 A = matrix.column(self.base_ring(), oper_vecs)
641
642 # We used the isometry on the left-hand side already, but we
643 # still need to do it for the right-hand side. Recall that we
644 # wanted something that summed to the identity matrix.
645 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
646
647 # Now if there's an identity element in the algebra, this should work.
648 coeffs = A.solve_right(b)
649 return self.linear_combination(zip(self.gens(), coeffs))
650
651
652 def random_element(self):
653 # Temporary workaround for https://trac.sagemath.org/ticket/28327
654 if self.is_trivial():
655 return self.zero()
656 else:
657 s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
658 return s.random_element()
659
660
661 @classmethod
662 def random_instance(cls, field=QQ, **kwargs):
663 """
664 Return a random instance of this type of algebra.
665
666 In subclasses for algebras that we know how to construct, this
667 is a shortcut for constructing test cases and examples.
668 """
669 if cls is FiniteDimensionalEuclideanJordanAlgebra:
670 # Red flag! But in theory we could do this I guess. The
671 # only finite-dimensional exceptional EJA is the
672 # octononions. So, we could just create an EJA from an
673 # associative matrix algebra (generated by a subset of
674 # elements) with the symmetric product. Or, we could punt
675 # to random_eja() here, override it in our subclasses, and
676 # not worry about it.
677 raise NotImplementedError
678
679 n = ZZ.random_element(1, cls._max_test_case_size())
680 return cls(n, field, **kwargs)
681
682
683 def rank(self):
684 """
685 Return the rank of this EJA.
686
687 ALGORITHM:
688
689 The author knows of no algorithm to compute the rank of an EJA
690 where only the multiplication table is known. In lieu of one, we
691 require the rank to be specified when the algebra is created,
692 and simply pass along that number here.
693
694 SETUP::
695
696 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
697 ....: RealSymmetricEJA,
698 ....: ComplexHermitianEJA,
699 ....: QuaternionHermitianEJA,
700 ....: random_eja)
701
702 EXAMPLES:
703
704 The rank of the Jordan spin algebra is always two::
705
706 sage: JordanSpinEJA(2).rank()
707 2
708 sage: JordanSpinEJA(3).rank()
709 2
710 sage: JordanSpinEJA(4).rank()
711 2
712
713 The rank of the `n`-by-`n` Hermitian real, complex, or
714 quaternion matrices is `n`::
715
716 sage: RealSymmetricEJA(2).rank()
717 2
718 sage: ComplexHermitianEJA(2).rank()
719 2
720 sage: QuaternionHermitianEJA(2).rank()
721 2
722 sage: RealSymmetricEJA(5).rank()
723 5
724 sage: ComplexHermitianEJA(5).rank()
725 5
726 sage: QuaternionHermitianEJA(5).rank()
727 5
728
729 TESTS:
730
731 Ensure that every EJA that we know how to construct has a
732 positive integer rank::
733
734 sage: set_random_seed()
735 sage: r = random_eja().rank()
736 sage: r in ZZ and r > 0
737 True
738
739 """
740 return self._rank
741
742
743 def vector_space(self):
744 """
745 Return the vector space that underlies this algebra.
746
747 SETUP::
748
749 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
750
751 EXAMPLES::
752
753 sage: J = RealSymmetricEJA(2)
754 sage: J.vector_space()
755 Vector space of dimension 3 over...
756
757 """
758 return self.zero().to_vector().parent().ambient_vector_space()
759
760
761 Element = FiniteDimensionalEuclideanJordanAlgebraElement
762
763
764 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
765 """
766 Return the Euclidean Jordan Algebra corresponding to the set
767 `R^n` under the Hadamard product.
768
769 Note: this is nothing more than the Cartesian product of ``n``
770 copies of the spin algebra. Once Cartesian product algebras
771 are implemented, this can go.
772
773 SETUP::
774
775 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
776
777 EXAMPLES:
778
779 This multiplication table can be verified by hand::
780
781 sage: J = RealCartesianProductEJA(3)
782 sage: e0,e1,e2 = J.gens()
783 sage: e0*e0
784 e0
785 sage: e0*e1
786 0
787 sage: e0*e2
788 0
789 sage: e1*e1
790 e1
791 sage: e1*e2
792 0
793 sage: e2*e2
794 e2
795
796 TESTS:
797
798 We can change the generator prefix::
799
800 sage: RealCartesianProductEJA(3, prefix='r').gens()
801 (r0, r1, r2)
802
803 Our inner product satisfies the Jordan axiom::
804
805 sage: set_random_seed()
806 sage: J = RealCartesianProductEJA.random_instance()
807 sage: x = J.random_element()
808 sage: y = J.random_element()
809 sage: z = J.random_element()
810 sage: (x*y).inner_product(z) == y.inner_product(x*z)
811 True
812
813 """
814 def __init__(self, n, field=QQ, **kwargs):
815 V = VectorSpace(field, n)
816 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
817 for i in range(n) ]
818
819 fdeja = super(RealCartesianProductEJA, self)
820 return fdeja.__init__(field, mult_table, rank=n, **kwargs)
821
822 def inner_product(self, x, y):
823 """
824 Faster to reimplement than to use natural representations.
825
826 SETUP::
827
828 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
829
830 TESTS:
831
832 Ensure that this is the usual inner product for the algebras
833 over `R^n`::
834
835 sage: set_random_seed()
836 sage: J = RealCartesianProductEJA.random_instance()
837 sage: x = J.random_element()
838 sage: y = J.random_element()
839 sage: X = x.natural_representation()
840 sage: Y = y.natural_representation()
841 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
842 True
843
844 """
845 return x.to_vector().inner_product(y.to_vector())
846
847
848 def random_eja():
849 """
850 Return a "random" finite-dimensional Euclidean Jordan Algebra.
851
852 ALGORITHM:
853
854 For now, we choose a random natural number ``n`` (greater than zero)
855 and then give you back one of the following:
856
857 * The cartesian product of the rational numbers ``n`` times; this is
858 ``QQ^n`` with the Hadamard product.
859
860 * The Jordan spin algebra on ``QQ^n``.
861
862 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
863 product.
864
865 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
866 in the space of ``2n``-by-``2n`` real symmetric matrices.
867
868 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
869 in the space of ``4n``-by-``4n`` real symmetric matrices.
870
871 Later this might be extended to return Cartesian products of the
872 EJAs above.
873
874 SETUP::
875
876 sage: from mjo.eja.eja_algebra import random_eja
877
878 TESTS::
879
880 sage: random_eja()
881 Euclidean Jordan algebra of dimension...
882
883 """
884 classname = choice([RealCartesianProductEJA,
885 JordanSpinEJA,
886 RealSymmetricEJA,
887 ComplexHermitianEJA,
888 QuaternionHermitianEJA])
889 return classname.random_instance()
890
891
892
893
894
895
896 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
897 @staticmethod
898 def _max_test_case_size():
899 # Play it safe, since this will be squared and the underlying
900 # field can have dimension 4 (quaternions) too.
901 return 3
902
903 @classmethod
904 def _denormalized_basis(cls, n, field):
905 raise NotImplementedError
906
907 def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
908 S = self._denormalized_basis(n, field)
909
910 if n > 1 and normalize_basis:
911 # We'll need sqrt(2) to normalize the basis, and this
912 # winds up in the multiplication table, so the whole
913 # algebra needs to be over the field extension.
914 R = PolynomialRing(field, 'z')
915 z = R.gen()
916 p = z**2 - 2
917 if p.is_irreducible():
918 field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
919 S = [ s.change_ring(field) for s in S ]
920 self._basis_normalizers = tuple(
921 ~(self.natural_inner_product(s,s).sqrt()) for s in S )
922 S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
923
924 Qs = self.multiplication_table_from_matrix_basis(S)
925
926 fdeja = super(MatrixEuclideanJordanAlgebra, self)
927 return fdeja.__init__(field,
928 Qs,
929 rank=n,
930 natural_basis=S,
931 **kwargs)
932
933
934 @staticmethod
935 def multiplication_table_from_matrix_basis(basis):
936 """
937 At least three of the five simple Euclidean Jordan algebras have the
938 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
939 multiplication on the right is matrix multiplication. Given a basis
940 for the underlying matrix space, this function returns a
941 multiplication table (obtained by looping through the basis
942 elements) for an algebra of those matrices.
943 """
944 # In S^2, for example, we nominally have four coordinates even
945 # though the space is of dimension three only. The vector space V
946 # is supposed to hold the entire long vector, and the subspace W
947 # of V will be spanned by the vectors that arise from symmetric
948 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
949 field = basis[0].base_ring()
950 dimension = basis[0].nrows()
951
952 V = VectorSpace(field, dimension**2)
953 W = V.span_of_basis( _mat2vec(s) for s in basis )
954 n = len(basis)
955 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
956 for i in range(n):
957 for j in range(n):
958 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
959 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
960
961 return mult_table
962
963
964 @staticmethod
965 def real_embed(M):
966 """
967 Embed the matrix ``M`` into a space of real matrices.
968
969 The matrix ``M`` can have entries in any field at the moment:
970 the real numbers, complex numbers, or quaternions. And although
971 they are not a field, we can probably support octonions at some
972 point, too. This function returns a real matrix that "acts like"
973 the original with respect to matrix multiplication; i.e.
974
975 real_embed(M*N) = real_embed(M)*real_embed(N)
976
977 """
978 raise NotImplementedError
979
980
981 @staticmethod
982 def real_unembed(M):
983 """
984 The inverse of :meth:`real_embed`.
985 """
986 raise NotImplementedError
987
988
989 @classmethod
990 def natural_inner_product(cls,X,Y):
991 Xu = cls.real_unembed(X)
992 Yu = cls.real_unembed(Y)
993 tr = (Xu*Yu).trace()
994 if tr in RLF:
995 # It's real already.
996 return tr
997
998 # Otherwise, try the thing that works for complex numbers; and
999 # if that doesn't work, the thing that works for quaternions.
1000 try:
1001 return tr.vector()[0] # real part, imag part is index 1
1002 except AttributeError:
1003 # A quaternions doesn't have a vector() method, but does
1004 # have coefficient_tuple() method that returns the
1005 # coefficients of 1, i, j, and k -- in that order.
1006 return tr.coefficient_tuple()[0]
1007
1008
1009 class RealSymmetricEJA(MatrixEuclideanJordanAlgebra):
1010 """
1011 The rank-n simple EJA consisting of real symmetric n-by-n
1012 matrices, the usual symmetric Jordan product, and the trace inner
1013 product. It has dimension `(n^2 + n)/2` over the reals.
1014
1015 SETUP::
1016
1017 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1018
1019 EXAMPLES::
1020
1021 sage: J = RealSymmetricEJA(2)
1022 sage: e0, e1, e2 = J.gens()
1023 sage: e0*e0
1024 e0
1025 sage: e1*e1
1026 1/2*e0 + 1/2*e2
1027 sage: e2*e2
1028 e2
1029
1030 TESTS:
1031
1032 The dimension of this algebra is `(n^2 + n) / 2`::
1033
1034 sage: set_random_seed()
1035 sage: n_max = RealSymmetricEJA._max_test_case_size()
1036 sage: n = ZZ.random_element(1, n_max)
1037 sage: J = RealSymmetricEJA(n)
1038 sage: J.dimension() == (n^2 + n)/2
1039 True
1040
1041 The Jordan multiplication is what we think it is::
1042
1043 sage: set_random_seed()
1044 sage: J = RealSymmetricEJA.random_instance()
1045 sage: x = J.random_element()
1046 sage: y = J.random_element()
1047 sage: actual = (x*y).natural_representation()
1048 sage: X = x.natural_representation()
1049 sage: Y = y.natural_representation()
1050 sage: expected = (X*Y + Y*X)/2
1051 sage: actual == expected
1052 True
1053 sage: J(expected) == x*y
1054 True
1055
1056 We can change the generator prefix::
1057
1058 sage: RealSymmetricEJA(3, prefix='q').gens()
1059 (q0, q1, q2, q3, q4, q5)
1060
1061 Our inner product satisfies the Jordan axiom::
1062
1063 sage: set_random_seed()
1064 sage: J = RealSymmetricEJA.random_instance()
1065 sage: x = J.random_element()
1066 sage: y = J.random_element()
1067 sage: z = J.random_element()
1068 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1069 True
1070
1071 Our natural basis is normalized with respect to the natural inner
1072 product unless we specify otherwise::
1073
1074 sage: set_random_seed()
1075 sage: J = RealSymmetricEJA.random_instance()
1076 sage: all( b.norm() == 1 for b in J.gens() )
1077 True
1078
1079 Since our natural basis is normalized with respect to the natural
1080 inner product, and since we know that this algebra is an EJA, any
1081 left-multiplication operator's matrix will be symmetric because
1082 natural->EJA basis representation is an isometry and within the EJA
1083 the operator is self-adjoint by the Jordan axiom::
1084
1085 sage: set_random_seed()
1086 sage: x = RealSymmetricEJA.random_instance().random_element()
1087 sage: x.operator().matrix().is_symmetric()
1088 True
1089
1090 """
1091 @classmethod
1092 def _denormalized_basis(cls, n, field):
1093 """
1094 Return a basis for the space of real symmetric n-by-n matrices.
1095
1096 SETUP::
1097
1098 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1099
1100 TESTS::
1101
1102 sage: set_random_seed()
1103 sage: n = ZZ.random_element(1,5)
1104 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1105 sage: all( M.is_symmetric() for M in B)
1106 True
1107
1108 """
1109 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1110 # coordinates.
1111 S = []
1112 for i in xrange(n):
1113 for j in xrange(i+1):
1114 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1115 if i == j:
1116 Sij = Eij
1117 else:
1118 Sij = Eij + Eij.transpose()
1119 S.append(Sij)
1120 return tuple(S)
1121
1122
1123 @staticmethod
1124 def _max_test_case_size():
1125 return 5 # Dimension 10
1126
1127 @staticmethod
1128 def real_embed(M):
1129 """
1130 Embed the matrix ``M`` into a space of real matrices.
1131
1132 The matrix ``M`` can have entries in any field at the moment:
1133 the real numbers, complex numbers, or quaternions. And although
1134 they are not a field, we can probably support octonions at some
1135 point, too. This function returns a real matrix that "acts like"
1136 the original with respect to matrix multiplication; i.e.
1137
1138 real_embed(M*N) = real_embed(M)*real_embed(N)
1139
1140 """
1141 return M
1142
1143
1144 @staticmethod
1145 def real_unembed(M):
1146 """
1147 The inverse of :meth:`real_embed`.
1148 """
1149 return M
1150
1151
1152
1153 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1154 @staticmethod
1155 def real_embed(M):
1156 """
1157 Embed the n-by-n complex matrix ``M`` into the space of real
1158 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1159 bi` to the block matrix ``[[a,b],[-b,a]]``.
1160
1161 SETUP::
1162
1163 sage: from mjo.eja.eja_algebra import \
1164 ....: ComplexMatrixEuclideanJordanAlgebra
1165
1166 EXAMPLES::
1167
1168 sage: F = QuadraticField(-1, 'i')
1169 sage: x1 = F(4 - 2*i)
1170 sage: x2 = F(1 + 2*i)
1171 sage: x3 = F(-i)
1172 sage: x4 = F(6)
1173 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1174 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1175 [ 4 -2| 1 2]
1176 [ 2 4|-2 1]
1177 [-----+-----]
1178 [ 0 -1| 6 0]
1179 [ 1 0| 0 6]
1180
1181 TESTS:
1182
1183 Embedding is a homomorphism (isomorphism, in fact)::
1184
1185 sage: set_random_seed()
1186 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1187 sage: n = ZZ.random_element(n_max)
1188 sage: F = QuadraticField(-1, 'i')
1189 sage: X = random_matrix(F, n)
1190 sage: Y = random_matrix(F, n)
1191 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1192 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1193 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1194 sage: Xe*Ye == XYe
1195 True
1196
1197 """
1198 n = M.nrows()
1199 if M.ncols() != n:
1200 raise ValueError("the matrix 'M' must be square")
1201 field = M.base_ring()
1202 blocks = []
1203 for z in M.list():
1204 a = z.vector()[0] # real part, I guess
1205 b = z.vector()[1] # imag part, I guess
1206 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1207
1208 # We can drop the imaginaries here.
1209 return matrix.block(field.base_ring(), n, blocks)
1210
1211
1212 @staticmethod
1213 def real_unembed(M):
1214 """
1215 The inverse of _embed_complex_matrix().
1216
1217 SETUP::
1218
1219 sage: from mjo.eja.eja_algebra import \
1220 ....: ComplexMatrixEuclideanJordanAlgebra
1221
1222 EXAMPLES::
1223
1224 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1225 ....: [-2, 1, -4, 3],
1226 ....: [ 9, 10, 11, 12],
1227 ....: [-10, 9, -12, 11] ])
1228 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1229 [ 2*i + 1 4*i + 3]
1230 [ 10*i + 9 12*i + 11]
1231
1232 TESTS:
1233
1234 Unembedding is the inverse of embedding::
1235
1236 sage: set_random_seed()
1237 sage: F = QuadraticField(-1, 'i')
1238 sage: M = random_matrix(F, 3)
1239 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1240 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1241 True
1242
1243 """
1244 n = ZZ(M.nrows())
1245 if M.ncols() != n:
1246 raise ValueError("the matrix 'M' must be square")
1247 if not n.mod(2).is_zero():
1248 raise ValueError("the matrix 'M' must be a complex embedding")
1249
1250 field = M.base_ring() # This should already have sqrt2
1251 R = PolynomialRing(field, 'z')
1252 z = R.gen()
1253 F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
1254 i = F.gen()
1255
1256 # Go top-left to bottom-right (reading order), converting every
1257 # 2-by-2 block we see to a single complex element.
1258 elements = []
1259 for k in xrange(n/2):
1260 for j in xrange(n/2):
1261 submat = M[2*k:2*k+2,2*j:2*j+2]
1262 if submat[0,0] != submat[1,1]:
1263 raise ValueError('bad on-diagonal submatrix')
1264 if submat[0,1] != -submat[1,0]:
1265 raise ValueError('bad off-diagonal submatrix')
1266 z = submat[0,0] + submat[0,1]*i
1267 elements.append(z)
1268
1269 return matrix(F, n/2, elements)
1270
1271
1272 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
1273 """
1274 The rank-n simple EJA consisting of complex Hermitian n-by-n
1275 matrices over the real numbers, the usual symmetric Jordan product,
1276 and the real-part-of-trace inner product. It has dimension `n^2` over
1277 the reals.
1278
1279 SETUP::
1280
1281 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1282
1283 TESTS:
1284
1285 The dimension of this algebra is `n^2`::
1286
1287 sage: set_random_seed()
1288 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1289 sage: n = ZZ.random_element(1, n_max)
1290 sage: J = ComplexHermitianEJA(n)
1291 sage: J.dimension() == n^2
1292 True
1293
1294 The Jordan multiplication is what we think it is::
1295
1296 sage: set_random_seed()
1297 sage: J = ComplexHermitianEJA.random_instance()
1298 sage: x = J.random_element()
1299 sage: y = J.random_element()
1300 sage: actual = (x*y).natural_representation()
1301 sage: X = x.natural_representation()
1302 sage: Y = y.natural_representation()
1303 sage: expected = (X*Y + Y*X)/2
1304 sage: actual == expected
1305 True
1306 sage: J(expected) == x*y
1307 True
1308
1309 We can change the generator prefix::
1310
1311 sage: ComplexHermitianEJA(2, prefix='z').gens()
1312 (z0, z1, z2, z3)
1313
1314 Our inner product satisfies the Jordan axiom::
1315
1316 sage: set_random_seed()
1317 sage: J = ComplexHermitianEJA.random_instance()
1318 sage: x = J.random_element()
1319 sage: y = J.random_element()
1320 sage: z = J.random_element()
1321 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1322 True
1323
1324 Our natural basis is normalized with respect to the natural inner
1325 product unless we specify otherwise::
1326
1327 sage: set_random_seed()
1328 sage: J = ComplexHermitianEJA.random_instance()
1329 sage: all( b.norm() == 1 for b in J.gens() )
1330 True
1331
1332 Since our natural basis is normalized with respect to the natural
1333 inner product, and since we know that this algebra is an EJA, any
1334 left-multiplication operator's matrix will be symmetric because
1335 natural->EJA basis representation is an isometry and within the EJA
1336 the operator is self-adjoint by the Jordan axiom::
1337
1338 sage: set_random_seed()
1339 sage: x = ComplexHermitianEJA.random_instance().random_element()
1340 sage: x.operator().matrix().is_symmetric()
1341 True
1342
1343 """
1344 @classmethod
1345 def _denormalized_basis(cls, n, field):
1346 """
1347 Returns a basis for the space of complex Hermitian n-by-n matrices.
1348
1349 Why do we embed these? Basically, because all of numerical linear
1350 algebra assumes that you're working with vectors consisting of `n`
1351 entries from a field and scalars from the same field. There's no way
1352 to tell SageMath that (for example) the vectors contain complex
1353 numbers, while the scalar field is real.
1354
1355 SETUP::
1356
1357 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1358
1359 TESTS::
1360
1361 sage: set_random_seed()
1362 sage: n = ZZ.random_element(1,5)
1363 sage: field = QuadraticField(2, 'sqrt2')
1364 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1365 sage: all( M.is_symmetric() for M in B)
1366 True
1367
1368 """
1369 R = PolynomialRing(field, 'z')
1370 z = R.gen()
1371 F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
1372 I = F.gen()
1373
1374 # This is like the symmetric case, but we need to be careful:
1375 #
1376 # * We want conjugate-symmetry, not just symmetry.
1377 # * The diagonal will (as a result) be real.
1378 #
1379 S = []
1380 for i in xrange(n):
1381 for j in xrange(i+1):
1382 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1383 if i == j:
1384 Sij = cls.real_embed(Eij)
1385 S.append(Sij)
1386 else:
1387 # The second one has a minus because it's conjugated.
1388 Sij_real = cls.real_embed(Eij + Eij.transpose())
1389 S.append(Sij_real)
1390 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1391 S.append(Sij_imag)
1392
1393 # Since we embedded these, we can drop back to the "field" that we
1394 # started with instead of the complex extension "F".
1395 return tuple( s.change_ring(field) for s in S )
1396
1397
1398
1399 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1400 @staticmethod
1401 def real_embed(M):
1402 """
1403 Embed the n-by-n quaternion matrix ``M`` into the space of real
1404 matrices of size 4n-by-4n by first sending each quaternion entry `z
1405 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1406 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1407 matrix.
1408
1409 SETUP::
1410
1411 sage: from mjo.eja.eja_algebra import \
1412 ....: QuaternionMatrixEuclideanJordanAlgebra
1413
1414 EXAMPLES::
1415
1416 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1417 sage: i,j,k = Q.gens()
1418 sage: x = 1 + 2*i + 3*j + 4*k
1419 sage: M = matrix(Q, 1, [[x]])
1420 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1421 [ 1 2 3 4]
1422 [-2 1 -4 3]
1423 [-3 4 1 -2]
1424 [-4 -3 2 1]
1425
1426 Embedding is a homomorphism (isomorphism, in fact)::
1427
1428 sage: set_random_seed()
1429 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1430 sage: n = ZZ.random_element(n_max)
1431 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1432 sage: X = random_matrix(Q, n)
1433 sage: Y = random_matrix(Q, n)
1434 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1435 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1436 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1437 sage: Xe*Ye == XYe
1438 True
1439
1440 """
1441 quaternions = M.base_ring()
1442 n = M.nrows()
1443 if M.ncols() != n:
1444 raise ValueError("the matrix 'M' must be square")
1445
1446 F = QuadraticField(-1, 'i')
1447 i = F.gen()
1448
1449 blocks = []
1450 for z in M.list():
1451 t = z.coefficient_tuple()
1452 a = t[0]
1453 b = t[1]
1454 c = t[2]
1455 d = t[3]
1456 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1457 [-c + d*i, a - b*i]])
1458 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1459 blocks.append(realM)
1460
1461 # We should have real entries by now, so use the realest field
1462 # we've got for the return value.
1463 return matrix.block(quaternions.base_ring(), n, blocks)
1464
1465
1466
1467 @staticmethod
1468 def real_unembed(M):
1469 """
1470 The inverse of _embed_quaternion_matrix().
1471
1472 SETUP::
1473
1474 sage: from mjo.eja.eja_algebra import \
1475 ....: QuaternionMatrixEuclideanJordanAlgebra
1476
1477 EXAMPLES::
1478
1479 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1480 ....: [-2, 1, -4, 3],
1481 ....: [-3, 4, 1, -2],
1482 ....: [-4, -3, 2, 1]])
1483 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1484 [1 + 2*i + 3*j + 4*k]
1485
1486 TESTS:
1487
1488 Unembedding is the inverse of embedding::
1489
1490 sage: set_random_seed()
1491 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1492 sage: M = random_matrix(Q, 3)
1493 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1494 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1495 True
1496
1497 """
1498 n = ZZ(M.nrows())
1499 if M.ncols() != n:
1500 raise ValueError("the matrix 'M' must be square")
1501 if not n.mod(4).is_zero():
1502 raise ValueError("the matrix 'M' must be a complex embedding")
1503
1504 # Use the base ring of the matrix to ensure that its entries can be
1505 # multiplied by elements of the quaternion algebra.
1506 field = M.base_ring()
1507 Q = QuaternionAlgebra(field,-1,-1)
1508 i,j,k = Q.gens()
1509
1510 # Go top-left to bottom-right (reading order), converting every
1511 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1512 # quaternion block.
1513 elements = []
1514 for l in xrange(n/4):
1515 for m in xrange(n/4):
1516 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1517 M[4*l:4*l+4,4*m:4*m+4] )
1518 if submat[0,0] != submat[1,1].conjugate():
1519 raise ValueError('bad on-diagonal submatrix')
1520 if submat[0,1] != -submat[1,0].conjugate():
1521 raise ValueError('bad off-diagonal submatrix')
1522 z = submat[0,0].vector()[0] # real part
1523 z += submat[0,0].vector()[1]*i # imag part
1524 z += submat[0,1].vector()[0]*j # real part
1525 z += submat[0,1].vector()[1]*k # imag part
1526 elements.append(z)
1527
1528 return matrix(Q, n/4, elements)
1529
1530
1531
1532 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
1533 """
1534 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1535 matrices, the usual symmetric Jordan product, and the
1536 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1537 the reals.
1538
1539 SETUP::
1540
1541 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1542
1543 TESTS:
1544
1545 The dimension of this algebra is `2*n^2 - n`::
1546
1547 sage: set_random_seed()
1548 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1549 sage: n = ZZ.random_element(1, n_max)
1550 sage: J = QuaternionHermitianEJA(n)
1551 sage: J.dimension() == 2*(n^2) - n
1552 True
1553
1554 The Jordan multiplication is what we think it is::
1555
1556 sage: set_random_seed()
1557 sage: J = QuaternionHermitianEJA.random_instance()
1558 sage: x = J.random_element()
1559 sage: y = J.random_element()
1560 sage: actual = (x*y).natural_representation()
1561 sage: X = x.natural_representation()
1562 sage: Y = y.natural_representation()
1563 sage: expected = (X*Y + Y*X)/2
1564 sage: actual == expected
1565 True
1566 sage: J(expected) == x*y
1567 True
1568
1569 We can change the generator prefix::
1570
1571 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1572 (a0, a1, a2, a3, a4, a5)
1573
1574 Our inner product satisfies the Jordan axiom::
1575
1576 sage: set_random_seed()
1577 sage: J = QuaternionHermitianEJA.random_instance()
1578 sage: x = J.random_element()
1579 sage: y = J.random_element()
1580 sage: z = J.random_element()
1581 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1582 True
1583
1584 Our natural basis is normalized with respect to the natural inner
1585 product unless we specify otherwise::
1586
1587 sage: set_random_seed()
1588 sage: J = QuaternionHermitianEJA.random_instance()
1589 sage: all( b.norm() == 1 for b in J.gens() )
1590 True
1591
1592 Since our natural basis is normalized with respect to the natural
1593 inner product, and since we know that this algebra is an EJA, any
1594 left-multiplication operator's matrix will be symmetric because
1595 natural->EJA basis representation is an isometry and within the EJA
1596 the operator is self-adjoint by the Jordan axiom::
1597
1598 sage: set_random_seed()
1599 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1600 sage: x.operator().matrix().is_symmetric()
1601 True
1602
1603 """
1604 @classmethod
1605 def _denormalized_basis(cls, n, field):
1606 """
1607 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1608
1609 Why do we embed these? Basically, because all of numerical
1610 linear algebra assumes that you're working with vectors consisting
1611 of `n` entries from a field and scalars from the same field. There's
1612 no way to tell SageMath that (for example) the vectors contain
1613 complex numbers, while the scalar field is real.
1614
1615 SETUP::
1616
1617 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1618
1619 TESTS::
1620
1621 sage: set_random_seed()
1622 sage: n = ZZ.random_element(1,5)
1623 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1624 sage: all( M.is_symmetric() for M in B )
1625 True
1626
1627 """
1628 Q = QuaternionAlgebra(QQ,-1,-1)
1629 I,J,K = Q.gens()
1630
1631 # This is like the symmetric case, but we need to be careful:
1632 #
1633 # * We want conjugate-symmetry, not just symmetry.
1634 # * The diagonal will (as a result) be real.
1635 #
1636 S = []
1637 for i in xrange(n):
1638 for j in xrange(i+1):
1639 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1640 if i == j:
1641 Sij = cls.real_embed(Eij)
1642 S.append(Sij)
1643 else:
1644 # The second, third, and fourth ones have a minus
1645 # because they're conjugated.
1646 Sij_real = cls.real_embed(Eij + Eij.transpose())
1647 S.append(Sij_real)
1648 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1649 S.append(Sij_I)
1650 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1651 S.append(Sij_J)
1652 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1653 S.append(Sij_K)
1654 return tuple(S)
1655
1656
1657
1658 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1659 """
1660 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1661 with the usual inner product and jordan product ``x*y =
1662 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1663 the reals.
1664
1665 SETUP::
1666
1667 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1668
1669 EXAMPLES:
1670
1671 This multiplication table can be verified by hand::
1672
1673 sage: J = JordanSpinEJA(4)
1674 sage: e0,e1,e2,e3 = J.gens()
1675 sage: e0*e0
1676 e0
1677 sage: e0*e1
1678 e1
1679 sage: e0*e2
1680 e2
1681 sage: e0*e3
1682 e3
1683 sage: e1*e2
1684 0
1685 sage: e1*e3
1686 0
1687 sage: e2*e3
1688 0
1689
1690 We can change the generator prefix::
1691
1692 sage: JordanSpinEJA(2, prefix='B').gens()
1693 (B0, B1)
1694
1695 Our inner product satisfies the Jordan axiom::
1696
1697 sage: set_random_seed()
1698 sage: J = JordanSpinEJA.random_instance()
1699 sage: x = J.random_element()
1700 sage: y = J.random_element()
1701 sage: z = J.random_element()
1702 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1703 True
1704
1705 """
1706 def __init__(self, n, field=QQ, **kwargs):
1707 V = VectorSpace(field, n)
1708 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1709 for i in range(n):
1710 for j in range(n):
1711 x = V.gen(i)
1712 y = V.gen(j)
1713 x0 = x[0]
1714 xbar = x[1:]
1715 y0 = y[0]
1716 ybar = y[1:]
1717 # z = x*y
1718 z0 = x.inner_product(y)
1719 zbar = y0*xbar + x0*ybar
1720 z = V([z0] + zbar.list())
1721 mult_table[i][j] = z
1722
1723 # The rank of the spin algebra is two, unless we're in a
1724 # one-dimensional ambient space (because the rank is bounded by
1725 # the ambient dimension).
1726 fdeja = super(JordanSpinEJA, self)
1727 return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
1728
1729 def inner_product(self, x, y):
1730 """
1731 Faster to reimplement than to use natural representations.
1732
1733 SETUP::
1734
1735 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1736
1737 TESTS:
1738
1739 Ensure that this is the usual inner product for the algebras
1740 over `R^n`::
1741
1742 sage: set_random_seed()
1743 sage: J = JordanSpinEJA.random_instance()
1744 sage: x = J.random_element()
1745 sage: y = J.random_element()
1746 sage: X = x.natural_representation()
1747 sage: Y = y.natural_representation()
1748 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1749 True
1750
1751 """
1752 return x.to_vector().inner_product(y.to_vector())