]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: add an ungodly hack to get fast charpolys back.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
9 from sage.categories.magmatic_algebras import MagmaticAlgebras
10 from sage.combinat.free_module import CombinatorialFreeModule
11 from sage.matrix.constructor import matrix
12 from sage.matrix.matrix_space import MatrixSpace
13 from sage.misc.cachefunc import cached_method
14 from sage.misc.prandom import choice
15 from sage.misc.table import table
16 from sage.modules.free_module import FreeModule, VectorSpace
17 from sage.rings.integer_ring import ZZ
18 from sage.rings.number_field.number_field import NumberField, QuadraticField
19 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
20 from sage.rings.rational_field import QQ
21 from sage.rings.real_lazy import CLF, RLF
22 from sage.structure.element import is_Matrix
23
24 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
25 from mjo.eja.eja_utils import _mat2vec
26
27 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
28 # This is an ugly hack needed to prevent the category framework
29 # from implementing a coercion from our base ring (e.g. the
30 # rationals) into the algebra. First of all -- such a coercion is
31 # nonsense to begin with. But more importantly, it tries to do so
32 # in the category of rings, and since our algebras aren't
33 # associative they generally won't be rings.
34 _no_generic_basering_coercion = True
35
36 def __init__(self,
37 field,
38 mult_table,
39 rank,
40 prefix='e',
41 category=None,
42 natural_basis=None):
43 """
44 SETUP::
45
46 sage: from mjo.eja.eja_algebra import random_eja
47
48 EXAMPLES:
49
50 By definition, Jordan multiplication commutes::
51
52 sage: set_random_seed()
53 sage: J = random_eja()
54 sage: x = J.random_element()
55 sage: y = J.random_element()
56 sage: x*y == y*x
57 True
58
59 """
60 self._rank = rank
61 self._natural_basis = natural_basis
62
63 # TODO: HACK for the charpoly.. needs redesign badly.
64 self._basis_normalizers = None
65
66 if category is None:
67 category = MagmaticAlgebras(field).FiniteDimensional()
68 category = category.WithBasis().Unital()
69
70 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
71 fda.__init__(field,
72 range(len(mult_table)),
73 prefix=prefix,
74 category=category)
75 self.print_options(bracket='')
76
77 # The multiplication table we're given is necessarily in terms
78 # of vectors, because we don't have an algebra yet for
79 # anything to be an element of. However, it's faster in the
80 # long run to have the multiplication table be in terms of
81 # algebra elements. We do this after calling the superclass
82 # constructor so that from_vector() knows what to do.
83 self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
84 for ls in mult_table ]
85
86
87 def _element_constructor_(self, elt):
88 """
89 Construct an element of this algebra from its natural
90 representation.
91
92 This gets called only after the parent element _call_ method
93 fails to find a coercion for the argument.
94
95 SETUP::
96
97 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
98 ....: RealCartesianProductEJA,
99 ....: RealSymmetricEJA)
100
101 EXAMPLES:
102
103 The identity in `S^n` is converted to the identity in the EJA::
104
105 sage: J = RealSymmetricEJA(3)
106 sage: I = matrix.identity(QQ,3)
107 sage: J(I) == J.one()
108 True
109
110 This skew-symmetric matrix can't be represented in the EJA::
111
112 sage: J = RealSymmetricEJA(3)
113 sage: A = matrix(QQ,3, lambda i,j: i-j)
114 sage: J(A)
115 Traceback (most recent call last):
116 ...
117 ArithmeticError: vector is not in free module
118
119 TESTS:
120
121 Ensure that we can convert any element of the two non-matrix
122 simple algebras (whose natural representations are their usual
123 vector representations) back and forth faithfully::
124
125 sage: set_random_seed()
126 sage: J = RealCartesianProductEJA(5)
127 sage: x = J.random_element()
128 sage: J(x.to_vector().column()) == x
129 True
130 sage: J = JordanSpinEJA(5)
131 sage: x = J.random_element()
132 sage: J(x.to_vector().column()) == x
133 True
134
135 """
136 if elt == 0:
137 # The superclass implementation of random_element()
138 # needs to be able to coerce "0" into the algebra.
139 return self.zero()
140
141 natural_basis = self.natural_basis()
142 basis_space = natural_basis[0].matrix_space()
143 if elt not in basis_space:
144 raise ValueError("not a naturally-represented algebra element")
145
146 # Thanks for nothing! Matrix spaces aren't vector spaces in
147 # Sage, so we have to figure out its natural-basis coordinates
148 # ourselves. We use the basis space's ring instead of the
149 # element's ring because the basis space might be an algebraic
150 # closure whereas the base ring of the 3-by-3 identity matrix
151 # could be QQ instead of QQbar.
152 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
153 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
154 coords = W.coordinate_vector(_mat2vec(elt))
155 return self.from_vector(coords)
156
157
158 def _repr_(self):
159 """
160 Return a string representation of ``self``.
161
162 SETUP::
163
164 sage: from mjo.eja.eja_algebra import JordanSpinEJA
165
166 TESTS:
167
168 Ensure that it says what we think it says::
169
170 sage: JordanSpinEJA(2, field=QQ)
171 Euclidean Jordan algebra of dimension 2 over Rational Field
172 sage: JordanSpinEJA(3, field=RDF)
173 Euclidean Jordan algebra of dimension 3 over Real Double Field
174
175 """
176 fmt = "Euclidean Jordan algebra of dimension {} over {}"
177 return fmt.format(self.dimension(), self.base_ring())
178
179 def product_on_basis(self, i, j):
180 return self._multiplication_table[i][j]
181
182 def _a_regular_element(self):
183 """
184 Guess a regular element. Needed to compute the basis for our
185 characteristic polynomial coefficients.
186
187 SETUP::
188
189 sage: from mjo.eja.eja_algebra import random_eja
190
191 TESTS:
192
193 Ensure that this hacky method succeeds for every algebra that we
194 know how to construct::
195
196 sage: set_random_seed()
197 sage: J = random_eja()
198 sage: J._a_regular_element().is_regular()
199 True
200
201 """
202 gs = self.gens()
203 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
204 if not z.is_regular():
205 raise ValueError("don't know a regular element")
206 return z
207
208
209 @cached_method
210 def _charpoly_basis_space(self):
211 """
212 Return the vector space spanned by the basis used in our
213 characteristic polynomial coefficients. This is used not only to
214 compute those coefficients, but also any time we need to
215 evaluate the coefficients (like when we compute the trace or
216 determinant).
217 """
218 z = self._a_regular_element()
219 # Don't use the parent vector space directly here in case this
220 # happens to be a subalgebra. In that case, we would be e.g.
221 # two-dimensional but span_of_basis() would expect three
222 # coordinates.
223 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
224 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
225 V1 = V.span_of_basis( basis )
226 b = (V1.basis() + V1.complement().basis())
227 return V.span_of_basis(b)
228
229
230
231 @cached_method
232 def _charpoly_coeff(self, i):
233 """
234 Return the coefficient polynomial "a_{i}" of this algebra's
235 general characteristic polynomial.
236
237 Having this be a separate cached method lets us compute and
238 store the trace/determinant (a_{r-1} and a_{0} respectively)
239 separate from the entire characteristic polynomial.
240 """
241 if self._basis_normalizers is not None:
242 # Must be a matrix class?
243 # WARNING/TODO: this whole mess is mis-designed.
244 n = self.natural_basis_space().nrows()
245 field = self.base_ring().base_ring() # yeeeeaaaahhh
246 J = self.__class__(n, field, False)
247 (_,x,_,_) = J._charpoly_matrix_system()
248 p = J._charpoly_coeff(i)
249 # p might be missing some vars, have to substitute "optionally"
250 pairs = zip(x.base_ring().gens(), self._basis_normalizers)
251 substitutions = { v: v*c for (v,c) in pairs }
252 return p.subs(substitutions)
253
254 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
255 R = A_of_x.base_ring()
256 if i >= self.rank():
257 # Guaranteed by theory
258 return R.zero()
259
260 # Danger: the in-place modification is done for performance
261 # reasons (reconstructing a matrix with huge polynomial
262 # entries is slow), but I don't know how cached_method works,
263 # so it's highly possible that we're modifying some global
264 # list variable by reference, here. In other words, you
265 # probably shouldn't call this method twice on the same
266 # algebra, at the same time, in two threads
267 Ai_orig = A_of_x.column(i)
268 A_of_x.set_column(i,xr)
269 numerator = A_of_x.det()
270 A_of_x.set_column(i,Ai_orig)
271
272 # We're relying on the theory here to ensure that each a_i is
273 # indeed back in R, and the added negative signs are to make
274 # the whole charpoly expression sum to zero.
275 return R(-numerator/detA)
276
277
278 @cached_method
279 def _charpoly_matrix_system(self):
280 """
281 Compute the matrix whose entries A_ij are polynomials in
282 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
283 corresponding to `x^r` and the determinent of the matrix A =
284 [A_ij]. In other words, all of the fixed (cachable) data needed
285 to compute the coefficients of the characteristic polynomial.
286 """
287 r = self.rank()
288 n = self.dimension()
289
290 # Turn my vector space into a module so that "vectors" can
291 # have multivatiate polynomial entries.
292 names = tuple('X' + str(i) for i in range(1,n+1))
293 R = PolynomialRing(self.base_ring(), names)
294
295 # Using change_ring() on the parent's vector space doesn't work
296 # here because, in a subalgebra, that vector space has a basis
297 # and change_ring() tries to bring the basis along with it. And
298 # that doesn't work unless the new ring is a PID, which it usually
299 # won't be.
300 V = FreeModule(R,n)
301
302 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
303 # indeterminates...
304 x = V(names)
305
306 # And figure out the "left multiplication by x" matrix in
307 # that setting.
308 lmbx_cols = []
309 monomial_matrices = [ self.monomial(i).operator().matrix()
310 for i in range(n) ] # don't recompute these!
311 for k in range(n):
312 ek = self.monomial(k).to_vector()
313 lmbx_cols.append(
314 sum( x[i]*(monomial_matrices[i]*ek)
315 for i in range(n) ) )
316 Lx = matrix.column(R, lmbx_cols)
317
318 # Now we can compute powers of x "symbolically"
319 x_powers = [self.one().to_vector(), x]
320 for d in range(2, r+1):
321 x_powers.append( Lx*(x_powers[-1]) )
322
323 idmat = matrix.identity(R, n)
324
325 W = self._charpoly_basis_space()
326 W = W.change_ring(R.fraction_field())
327
328 # Starting with the standard coordinates x = (X1,X2,...,Xn)
329 # and then converting the entries to W-coordinates allows us
330 # to pass in the standard coordinates to the charpoly and get
331 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
332 # we have
333 #
334 # W.coordinates(x^2) eval'd at (standard z-coords)
335 # =
336 # W-coords of (z^2)
337 # =
338 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
339 #
340 # We want the middle equivalent thing in our matrix, but use
341 # the first equivalent thing instead so that we can pass in
342 # standard coordinates.
343 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
344 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
345 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
346 return (A_of_x, x, x_powers[r], A_of_x.det())
347
348
349 @cached_method
350 def characteristic_polynomial(self):
351 """
352 Return a characteristic polynomial that works for all elements
353 of this algebra.
354
355 The resulting polynomial has `n+1` variables, where `n` is the
356 dimension of this algebra. The first `n` variables correspond to
357 the coordinates of an algebra element: when evaluated at the
358 coordinates of an algebra element with respect to a certain
359 basis, the result is a univariate polynomial (in the one
360 remaining variable ``t``), namely the characteristic polynomial
361 of that element.
362
363 SETUP::
364
365 sage: from mjo.eja.eja_algebra import JordanSpinEJA
366
367 EXAMPLES:
368
369 The characteristic polynomial in the spin algebra is given in
370 Alizadeh, Example 11.11::
371
372 sage: J = JordanSpinEJA(3)
373 sage: p = J.characteristic_polynomial(); p
374 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
375 sage: xvec = J.one().to_vector()
376 sage: p(*xvec)
377 t^2 - 2*t + 1
378
379 """
380 r = self.rank()
381 n = self.dimension()
382
383 # The list of coefficient polynomials a_1, a_2, ..., a_n.
384 a = [ self._charpoly_coeff(i) for i in range(n) ]
385
386 # We go to a bit of trouble here to reorder the
387 # indeterminates, so that it's easier to evaluate the
388 # characteristic polynomial at x's coordinates and get back
389 # something in terms of t, which is what we want.
390 R = a[0].parent()
391 S = PolynomialRing(self.base_ring(),'t')
392 t = S.gen(0)
393 S = PolynomialRing(S, R.variable_names())
394 t = S(t)
395
396 # Note: all entries past the rth should be zero. The
397 # coefficient of the highest power (x^r) is 1, but it doesn't
398 # appear in the solution vector which contains coefficients
399 # for the other powers (to make them sum to x^r).
400 if (r < n):
401 a[r] = 1 # corresponds to x^r
402 else:
403 # When the rank is equal to the dimension, trying to
404 # assign a[r] goes out-of-bounds.
405 a.append(1) # corresponds to x^r
406
407 return sum( a[k]*(t**k) for k in range(len(a)) )
408
409
410 def inner_product(self, x, y):
411 """
412 The inner product associated with this Euclidean Jordan algebra.
413
414 Defaults to the trace inner product, but can be overridden by
415 subclasses if they are sure that the necessary properties are
416 satisfied.
417
418 SETUP::
419
420 sage: from mjo.eja.eja_algebra import random_eja
421
422 EXAMPLES:
423
424 The inner product must satisfy its axiom for this algebra to truly
425 be a Euclidean Jordan Algebra::
426
427 sage: set_random_seed()
428 sage: J = random_eja()
429 sage: x = J.random_element()
430 sage: y = J.random_element()
431 sage: z = J.random_element()
432 sage: (x*y).inner_product(z) == y.inner_product(x*z)
433 True
434
435 """
436 X = x.natural_representation()
437 Y = y.natural_representation()
438 return self.__class__.natural_inner_product(X,Y)
439
440
441 def is_trivial(self):
442 """
443 Return whether or not this algebra is trivial.
444
445 A trivial algebra contains only the zero element.
446
447 SETUP::
448
449 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
450
451 EXAMPLES::
452
453 sage: J = ComplexHermitianEJA(3)
454 sage: J.is_trivial()
455 False
456 sage: A = J.zero().subalgebra_generated_by()
457 sage: A.is_trivial()
458 True
459
460 """
461 return self.dimension() == 0
462
463
464 def multiplication_table(self):
465 """
466 Return a visual representation of this algebra's multiplication
467 table (on basis elements).
468
469 SETUP::
470
471 sage: from mjo.eja.eja_algebra import JordanSpinEJA
472
473 EXAMPLES::
474
475 sage: J = JordanSpinEJA(4)
476 sage: J.multiplication_table()
477 +----++----+----+----+----+
478 | * || e0 | e1 | e2 | e3 |
479 +====++====+====+====+====+
480 | e0 || e0 | e1 | e2 | e3 |
481 +----++----+----+----+----+
482 | e1 || e1 | e0 | 0 | 0 |
483 +----++----+----+----+----+
484 | e2 || e2 | 0 | e0 | 0 |
485 +----++----+----+----+----+
486 | e3 || e3 | 0 | 0 | e0 |
487 +----++----+----+----+----+
488
489 """
490 M = list(self._multiplication_table) # copy
491 for i in range(len(M)):
492 # M had better be "square"
493 M[i] = [self.monomial(i)] + M[i]
494 M = [["*"] + list(self.gens())] + M
495 return table(M, header_row=True, header_column=True, frame=True)
496
497
498 def natural_basis(self):
499 """
500 Return a more-natural representation of this algebra's basis.
501
502 Every finite-dimensional Euclidean Jordan Algebra is a direct
503 sum of five simple algebras, four of which comprise Hermitian
504 matrices. This method returns the original "natural" basis
505 for our underlying vector space. (Typically, the natural basis
506 is used to construct the multiplication table in the first place.)
507
508 Note that this will always return a matrix. The standard basis
509 in `R^n` will be returned as `n`-by-`1` column matrices.
510
511 SETUP::
512
513 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
514 ....: RealSymmetricEJA)
515
516 EXAMPLES::
517
518 sage: J = RealSymmetricEJA(2)
519 sage: J.basis()
520 Finite family {0: e0, 1: e1, 2: e2}
521 sage: J.natural_basis()
522 (
523 [1 0] [ 0 1/2*sqrt2] [0 0]
524 [0 0], [1/2*sqrt2 0], [0 1]
525 )
526
527 ::
528
529 sage: J = JordanSpinEJA(2)
530 sage: J.basis()
531 Finite family {0: e0, 1: e1}
532 sage: J.natural_basis()
533 (
534 [1] [0]
535 [0], [1]
536 )
537
538 """
539 if self._natural_basis is None:
540 M = self.natural_basis_space()
541 return tuple( M(b.to_vector()) for b in self.basis() )
542 else:
543 return self._natural_basis
544
545
546 def natural_basis_space(self):
547 """
548 Return the matrix space in which this algebra's natural basis
549 elements live.
550 """
551 if self._natural_basis is None or len(self._natural_basis) == 0:
552 return MatrixSpace(self.base_ring(), self.dimension(), 1)
553 else:
554 return self._natural_basis[0].matrix_space()
555
556
557 @staticmethod
558 def natural_inner_product(X,Y):
559 """
560 Compute the inner product of two naturally-represented elements.
561
562 For example in the real symmetric matrix EJA, this will compute
563 the trace inner-product of two n-by-n symmetric matrices. The
564 default should work for the real cartesian product EJA, the
565 Jordan spin EJA, and the real symmetric matrices. The others
566 will have to be overridden.
567 """
568 return (X.conjugate_transpose()*Y).trace()
569
570
571 @cached_method
572 def one(self):
573 """
574 Return the unit element of this algebra.
575
576 SETUP::
577
578 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
579 ....: random_eja)
580
581 EXAMPLES::
582
583 sage: J = RealCartesianProductEJA(5)
584 sage: J.one()
585 e0 + e1 + e2 + e3 + e4
586
587 TESTS:
588
589 The identity element acts like the identity::
590
591 sage: set_random_seed()
592 sage: J = random_eja()
593 sage: x = J.random_element()
594 sage: J.one()*x == x and x*J.one() == x
595 True
596
597 The matrix of the unit element's operator is the identity::
598
599 sage: set_random_seed()
600 sage: J = random_eja()
601 sage: actual = J.one().operator().matrix()
602 sage: expected = matrix.identity(J.base_ring(), J.dimension())
603 sage: actual == expected
604 True
605
606 """
607 # We can brute-force compute the matrices of the operators
608 # that correspond to the basis elements of this algebra.
609 # If some linear combination of those basis elements is the
610 # algebra identity, then the same linear combination of
611 # their matrices has to be the identity matrix.
612 #
613 # Of course, matrices aren't vectors in sage, so we have to
614 # appeal to the "long vectors" isometry.
615 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
616
617 # Now we use basis linear algebra to find the coefficients,
618 # of the matrices-as-vectors-linear-combination, which should
619 # work for the original algebra basis too.
620 A = matrix.column(self.base_ring(), oper_vecs)
621
622 # We used the isometry on the left-hand side already, but we
623 # still need to do it for the right-hand side. Recall that we
624 # wanted something that summed to the identity matrix.
625 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
626
627 # Now if there's an identity element in the algebra, this should work.
628 coeffs = A.solve_right(b)
629 return self.linear_combination(zip(self.gens(), coeffs))
630
631
632 def random_element(self):
633 # Temporary workaround for https://trac.sagemath.org/ticket/28327
634 if self.is_trivial():
635 return self.zero()
636 else:
637 s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
638 return s.random_element()
639
640
641 def rank(self):
642 """
643 Return the rank of this EJA.
644
645 ALGORITHM:
646
647 The author knows of no algorithm to compute the rank of an EJA
648 where only the multiplication table is known. In lieu of one, we
649 require the rank to be specified when the algebra is created,
650 and simply pass along that number here.
651
652 SETUP::
653
654 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
655 ....: RealSymmetricEJA,
656 ....: ComplexHermitianEJA,
657 ....: QuaternionHermitianEJA,
658 ....: random_eja)
659
660 EXAMPLES:
661
662 The rank of the Jordan spin algebra is always two::
663
664 sage: JordanSpinEJA(2).rank()
665 2
666 sage: JordanSpinEJA(3).rank()
667 2
668 sage: JordanSpinEJA(4).rank()
669 2
670
671 The rank of the `n`-by-`n` Hermitian real, complex, or
672 quaternion matrices is `n`::
673
674 sage: RealSymmetricEJA(2).rank()
675 2
676 sage: ComplexHermitianEJA(2).rank()
677 2
678 sage: QuaternionHermitianEJA(2).rank()
679 2
680 sage: RealSymmetricEJA(5).rank()
681 5
682 sage: ComplexHermitianEJA(5).rank()
683 5
684 sage: QuaternionHermitianEJA(5).rank()
685 5
686
687 TESTS:
688
689 Ensure that every EJA that we know how to construct has a
690 positive integer rank::
691
692 sage: set_random_seed()
693 sage: r = random_eja().rank()
694 sage: r in ZZ and r > 0
695 True
696
697 """
698 return self._rank
699
700
701 def vector_space(self):
702 """
703 Return the vector space that underlies this algebra.
704
705 SETUP::
706
707 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
708
709 EXAMPLES::
710
711 sage: J = RealSymmetricEJA(2)
712 sage: J.vector_space()
713 Vector space of dimension 3 over...
714
715 """
716 return self.zero().to_vector().parent().ambient_vector_space()
717
718
719 Element = FiniteDimensionalEuclideanJordanAlgebraElement
720
721
722 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
723 """
724 Return the Euclidean Jordan Algebra corresponding to the set
725 `R^n` under the Hadamard product.
726
727 Note: this is nothing more than the Cartesian product of ``n``
728 copies of the spin algebra. Once Cartesian product algebras
729 are implemented, this can go.
730
731 SETUP::
732
733 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
734
735 EXAMPLES:
736
737 This multiplication table can be verified by hand::
738
739 sage: J = RealCartesianProductEJA(3)
740 sage: e0,e1,e2 = J.gens()
741 sage: e0*e0
742 e0
743 sage: e0*e1
744 0
745 sage: e0*e2
746 0
747 sage: e1*e1
748 e1
749 sage: e1*e2
750 0
751 sage: e2*e2
752 e2
753
754 TESTS:
755
756 We can change the generator prefix::
757
758 sage: RealCartesianProductEJA(3, prefix='r').gens()
759 (r0, r1, r2)
760
761 Our inner product satisfies the Jordan axiom::
762
763 sage: set_random_seed()
764 sage: n = ZZ.random_element(1,5)
765 sage: J = RealCartesianProductEJA(n)
766 sage: x = J.random_element()
767 sage: y = J.random_element()
768 sage: z = J.random_element()
769 sage: (x*y).inner_product(z) == y.inner_product(x*z)
770 True
771
772 """
773 def __init__(self, n, field=QQ, **kwargs):
774 V = VectorSpace(field, n)
775 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
776 for i in range(n) ]
777
778 fdeja = super(RealCartesianProductEJA, self)
779 return fdeja.__init__(field, mult_table, rank=n, **kwargs)
780
781 def inner_product(self, x, y):
782 """
783 Faster to reimplement than to use natural representations.
784
785 SETUP::
786
787 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
788
789 TESTS:
790
791 Ensure that this is the usual inner product for the algebras
792 over `R^n`::
793
794 sage: set_random_seed()
795 sage: n = ZZ.random_element(1,5)
796 sage: J = RealCartesianProductEJA(n)
797 sage: x = J.random_element()
798 sage: y = J.random_element()
799 sage: X = x.natural_representation()
800 sage: Y = y.natural_representation()
801 sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
802 True
803
804 """
805 return x.to_vector().inner_product(y.to_vector())
806
807
808 def random_eja():
809 """
810 Return a "random" finite-dimensional Euclidean Jordan Algebra.
811
812 ALGORITHM:
813
814 For now, we choose a random natural number ``n`` (greater than zero)
815 and then give you back one of the following:
816
817 * The cartesian product of the rational numbers ``n`` times; this is
818 ``QQ^n`` with the Hadamard product.
819
820 * The Jordan spin algebra on ``QQ^n``.
821
822 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
823 product.
824
825 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
826 in the space of ``2n``-by-``2n`` real symmetric matrices.
827
828 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
829 in the space of ``4n``-by-``4n`` real symmetric matrices.
830
831 Later this might be extended to return Cartesian products of the
832 EJAs above.
833
834 SETUP::
835
836 sage: from mjo.eja.eja_algebra import random_eja
837
838 TESTS::
839
840 sage: random_eja()
841 Euclidean Jordan algebra of dimension...
842
843 """
844
845 # The max_n component lets us choose different upper bounds on the
846 # value "n" that gets passed to the constructor. This is needed
847 # because e.g. R^{10} is reasonable to test, while the Hermitian
848 # 10-by-10 quaternion matrices are not.
849 (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
850 (JordanSpinEJA, 6),
851 (RealSymmetricEJA, 5),
852 (ComplexHermitianEJA, 4),
853 (QuaternionHermitianEJA, 3)])
854 n = ZZ.random_element(1, max_n)
855 return constructor(n, field=QQ)
856
857
858
859 def _real_symmetric_basis(n, field):
860 """
861 Return a basis for the space of real symmetric n-by-n matrices.
862
863 SETUP::
864
865 sage: from mjo.eja.eja_algebra import _real_symmetric_basis
866
867 TESTS::
868
869 sage: set_random_seed()
870 sage: n = ZZ.random_element(1,5)
871 sage: B = _real_symmetric_basis(n, QQ)
872 sage: all( M.is_symmetric() for M in B)
873 True
874
875 """
876 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
877 # coordinates.
878 S = []
879 for i in xrange(n):
880 for j in xrange(i+1):
881 Eij = matrix(field, n, lambda k,l: k==i and l==j)
882 if i == j:
883 Sij = Eij
884 else:
885 Sij = Eij + Eij.transpose()
886 S.append(Sij)
887 return tuple(S)
888
889
890 def _complex_hermitian_basis(n, field):
891 """
892 Returns a basis for the space of complex Hermitian n-by-n matrices.
893
894 Why do we embed these? Basically, because all of numerical linear
895 algebra assumes that you're working with vectors consisting of `n`
896 entries from a field and scalars from the same field. There's no way
897 to tell SageMath that (for example) the vectors contain complex
898 numbers, while the scalar field is real.
899
900 SETUP::
901
902 sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
903
904 TESTS::
905
906 sage: set_random_seed()
907 sage: n = ZZ.random_element(1,5)
908 sage: field = QuadraticField(2, 'sqrt2')
909 sage: B = _complex_hermitian_basis(n, field)
910 sage: all( M.is_symmetric() for M in B)
911 True
912
913 """
914 R = PolynomialRing(field, 'z')
915 z = R.gen()
916 F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
917 I = F.gen()
918
919 # This is like the symmetric case, but we need to be careful:
920 #
921 # * We want conjugate-symmetry, not just symmetry.
922 # * The diagonal will (as a result) be real.
923 #
924 S = []
925 for i in xrange(n):
926 for j in xrange(i+1):
927 Eij = matrix(F, n, lambda k,l: k==i and l==j)
928 if i == j:
929 Sij = _embed_complex_matrix(Eij)
930 S.append(Sij)
931 else:
932 # The second one has a minus because it's conjugated.
933 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
934 S.append(Sij_real)
935 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
936 S.append(Sij_imag)
937
938 # Since we embedded these, we can drop back to the "field" that we
939 # started with instead of the complex extension "F".
940 return tuple( s.change_ring(field) for s in S )
941
942
943
944 def _quaternion_hermitian_basis(n, field, normalize):
945 """
946 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
947
948 Why do we embed these? Basically, because all of numerical linear
949 algebra assumes that you're working with vectors consisting of `n`
950 entries from a field and scalars from the same field. There's no way
951 to tell SageMath that (for example) the vectors contain complex
952 numbers, while the scalar field is real.
953
954 SETUP::
955
956 sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
957
958 TESTS::
959
960 sage: set_random_seed()
961 sage: n = ZZ.random_element(1,5)
962 sage: B = _quaternion_hermitian_basis(n, QQ, False)
963 sage: all( M.is_symmetric() for M in B )
964 True
965
966 """
967 Q = QuaternionAlgebra(QQ,-1,-1)
968 I,J,K = Q.gens()
969
970 # This is like the symmetric case, but we need to be careful:
971 #
972 # * We want conjugate-symmetry, not just symmetry.
973 # * The diagonal will (as a result) be real.
974 #
975 S = []
976 for i in xrange(n):
977 for j in xrange(i+1):
978 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
979 if i == j:
980 Sij = _embed_quaternion_matrix(Eij)
981 S.append(Sij)
982 else:
983 # Beware, orthogonal but not normalized! The second,
984 # third, and fourth ones have a minus because they're
985 # conjugated.
986 Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
987 S.append(Sij_real)
988 Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
989 S.append(Sij_I)
990 Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
991 S.append(Sij_J)
992 Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
993 S.append(Sij_K)
994 return tuple(S)
995
996
997
998 def _multiplication_table_from_matrix_basis(basis):
999 """
1000 At least three of the five simple Euclidean Jordan algebras have the
1001 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1002 multiplication on the right is matrix multiplication. Given a basis
1003 for the underlying matrix space, this function returns a
1004 multiplication table (obtained by looping through the basis
1005 elements) for an algebra of those matrices.
1006 """
1007 # In S^2, for example, we nominally have four coordinates even
1008 # though the space is of dimension three only. The vector space V
1009 # is supposed to hold the entire long vector, and the subspace W
1010 # of V will be spanned by the vectors that arise from symmetric
1011 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1012 field = basis[0].base_ring()
1013 dimension = basis[0].nrows()
1014
1015 V = VectorSpace(field, dimension**2)
1016 W = V.span_of_basis( _mat2vec(s) for s in basis )
1017 n = len(basis)
1018 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1019 for i in range(n):
1020 for j in range(n):
1021 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1022 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1023
1024 return mult_table
1025
1026
1027 def _embed_complex_matrix(M):
1028 """
1029 Embed the n-by-n complex matrix ``M`` into the space of real
1030 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1031 bi` to the block matrix ``[[a,b],[-b,a]]``.
1032
1033 SETUP::
1034
1035 sage: from mjo.eja.eja_algebra import _embed_complex_matrix
1036
1037 EXAMPLES::
1038
1039 sage: F = QuadraticField(-1, 'i')
1040 sage: x1 = F(4 - 2*i)
1041 sage: x2 = F(1 + 2*i)
1042 sage: x3 = F(-i)
1043 sage: x4 = F(6)
1044 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1045 sage: _embed_complex_matrix(M)
1046 [ 4 -2| 1 2]
1047 [ 2 4|-2 1]
1048 [-----+-----]
1049 [ 0 -1| 6 0]
1050 [ 1 0| 0 6]
1051
1052 TESTS:
1053
1054 Embedding is a homomorphism (isomorphism, in fact)::
1055
1056 sage: set_random_seed()
1057 sage: n = ZZ.random_element(5)
1058 sage: F = QuadraticField(-1, 'i')
1059 sage: X = random_matrix(F, n)
1060 sage: Y = random_matrix(F, n)
1061 sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
1062 sage: expected = _embed_complex_matrix(X*Y)
1063 sage: actual == expected
1064 True
1065
1066 """
1067 n = M.nrows()
1068 if M.ncols() != n:
1069 raise ValueError("the matrix 'M' must be square")
1070 field = M.base_ring()
1071 blocks = []
1072 for z in M.list():
1073 a = z.vector()[0] # real part, I guess
1074 b = z.vector()[1] # imag part, I guess
1075 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1076
1077 # We can drop the imaginaries here.
1078 return matrix.block(field.base_ring(), n, blocks)
1079
1080
1081 def _unembed_complex_matrix(M):
1082 """
1083 The inverse of _embed_complex_matrix().
1084
1085 SETUP::
1086
1087 sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
1088 ....: _unembed_complex_matrix)
1089
1090 EXAMPLES::
1091
1092 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1093 ....: [-2, 1, -4, 3],
1094 ....: [ 9, 10, 11, 12],
1095 ....: [-10, 9, -12, 11] ])
1096 sage: _unembed_complex_matrix(A)
1097 [ 2*i + 1 4*i + 3]
1098 [ 10*i + 9 12*i + 11]
1099
1100 TESTS:
1101
1102 Unembedding is the inverse of embedding::
1103
1104 sage: set_random_seed()
1105 sage: F = QuadraticField(-1, 'i')
1106 sage: M = random_matrix(F, 3)
1107 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1108 True
1109
1110 """
1111 n = ZZ(M.nrows())
1112 if M.ncols() != n:
1113 raise ValueError("the matrix 'M' must be square")
1114 if not n.mod(2).is_zero():
1115 raise ValueError("the matrix 'M' must be a complex embedding")
1116
1117 field = M.base_ring() # This should already have sqrt2
1118 R = PolynomialRing(field, 'z')
1119 z = R.gen()
1120 F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt())
1121 i = F.gen()
1122
1123 # Go top-left to bottom-right (reading order), converting every
1124 # 2-by-2 block we see to a single complex element.
1125 elements = []
1126 for k in xrange(n/2):
1127 for j in xrange(n/2):
1128 submat = M[2*k:2*k+2,2*j:2*j+2]
1129 if submat[0,0] != submat[1,1]:
1130 raise ValueError('bad on-diagonal submatrix')
1131 if submat[0,1] != -submat[1,0]:
1132 raise ValueError('bad off-diagonal submatrix')
1133 z = submat[0,0] + submat[0,1]*i
1134 elements.append(z)
1135
1136 return matrix(F, n/2, elements)
1137
1138
1139 def _embed_quaternion_matrix(M):
1140 """
1141 Embed the n-by-n quaternion matrix ``M`` into the space of real
1142 matrices of size 4n-by-4n by first sending each quaternion entry
1143 `z = a + bi + cj + dk` to the block-complex matrix
1144 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1145 a real matrix.
1146
1147 SETUP::
1148
1149 sage: from mjo.eja.eja_algebra import _embed_quaternion_matrix
1150
1151 EXAMPLES::
1152
1153 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1154 sage: i,j,k = Q.gens()
1155 sage: x = 1 + 2*i + 3*j + 4*k
1156 sage: M = matrix(Q, 1, [[x]])
1157 sage: _embed_quaternion_matrix(M)
1158 [ 1 2 3 4]
1159 [-2 1 -4 3]
1160 [-3 4 1 -2]
1161 [-4 -3 2 1]
1162
1163 Embedding is a homomorphism (isomorphism, in fact)::
1164
1165 sage: set_random_seed()
1166 sage: n = ZZ.random_element(5)
1167 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1168 sage: X = random_matrix(Q, n)
1169 sage: Y = random_matrix(Q, n)
1170 sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
1171 sage: expected = _embed_quaternion_matrix(X*Y)
1172 sage: actual == expected
1173 True
1174
1175 """
1176 quaternions = M.base_ring()
1177 n = M.nrows()
1178 if M.ncols() != n:
1179 raise ValueError("the matrix 'M' must be square")
1180
1181 F = QuadraticField(-1, 'i')
1182 i = F.gen()
1183
1184 blocks = []
1185 for z in M.list():
1186 t = z.coefficient_tuple()
1187 a = t[0]
1188 b = t[1]
1189 c = t[2]
1190 d = t[3]
1191 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1192 [-c + d*i, a - b*i]])
1193 blocks.append(_embed_complex_matrix(cplx_matrix))
1194
1195 # We should have real entries by now, so use the realest field
1196 # we've got for the return value.
1197 return matrix.block(quaternions.base_ring(), n, blocks)
1198
1199
1200 def _unembed_quaternion_matrix(M):
1201 """
1202 The inverse of _embed_quaternion_matrix().
1203
1204 SETUP::
1205
1206 sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
1207 ....: _unembed_quaternion_matrix)
1208
1209 EXAMPLES::
1210
1211 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1212 ....: [-2, 1, -4, 3],
1213 ....: [-3, 4, 1, -2],
1214 ....: [-4, -3, 2, 1]])
1215 sage: _unembed_quaternion_matrix(M)
1216 [1 + 2*i + 3*j + 4*k]
1217
1218 TESTS:
1219
1220 Unembedding is the inverse of embedding::
1221
1222 sage: set_random_seed()
1223 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1224 sage: M = random_matrix(Q, 3)
1225 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1226 True
1227
1228 """
1229 n = ZZ(M.nrows())
1230 if M.ncols() != n:
1231 raise ValueError("the matrix 'M' must be square")
1232 if not n.mod(4).is_zero():
1233 raise ValueError("the matrix 'M' must be a complex embedding")
1234
1235 Q = QuaternionAlgebra(QQ,-1,-1)
1236 i,j,k = Q.gens()
1237
1238 # Go top-left to bottom-right (reading order), converting every
1239 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1240 # quaternion block.
1241 elements = []
1242 for l in xrange(n/4):
1243 for m in xrange(n/4):
1244 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1245 if submat[0,0] != submat[1,1].conjugate():
1246 raise ValueError('bad on-diagonal submatrix')
1247 if submat[0,1] != -submat[1,0].conjugate():
1248 raise ValueError('bad off-diagonal submatrix')
1249 z = submat[0,0].real() + submat[0,0].imag()*i
1250 z += submat[0,1].real()*j + submat[0,1].imag()*k
1251 elements.append(z)
1252
1253 return matrix(Q, n/4, elements)
1254
1255
1256 # The inner product used for the real symmetric simple EJA.
1257 # We keep it as a separate function because e.g. the complex
1258 # algebra uses the same inner product, except divided by 2.
1259 def _matrix_ip(X,Y):
1260 X_mat = X.natural_representation()
1261 Y_mat = Y.natural_representation()
1262 return (X_mat*Y_mat).trace()
1263
1264
1265 class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
1266 """
1267 The rank-n simple EJA consisting of real symmetric n-by-n
1268 matrices, the usual symmetric Jordan product, and the trace inner
1269 product. It has dimension `(n^2 + n)/2` over the reals.
1270
1271 SETUP::
1272
1273 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1274
1275 EXAMPLES::
1276
1277 sage: J = RealSymmetricEJA(2)
1278 sage: e0, e1, e2 = J.gens()
1279 sage: e0*e0
1280 e0
1281 sage: e1*e1
1282 1/2*e0 + 1/2*e2
1283 sage: e2*e2
1284 e2
1285
1286 TESTS:
1287
1288 The dimension of this algebra is `(n^2 + n) / 2`::
1289
1290 sage: set_random_seed()
1291 sage: n = ZZ.random_element(1,5)
1292 sage: J = RealSymmetricEJA(n)
1293 sage: J.dimension() == (n^2 + n)/2
1294 True
1295
1296 The Jordan multiplication is what we think it is::
1297
1298 sage: set_random_seed()
1299 sage: n = ZZ.random_element(1,5)
1300 sage: J = RealSymmetricEJA(n)
1301 sage: x = J.random_element()
1302 sage: y = J.random_element()
1303 sage: actual = (x*y).natural_representation()
1304 sage: X = x.natural_representation()
1305 sage: Y = y.natural_representation()
1306 sage: expected = (X*Y + Y*X)/2
1307 sage: actual == expected
1308 True
1309 sage: J(expected) == x*y
1310 True
1311
1312 We can change the generator prefix::
1313
1314 sage: RealSymmetricEJA(3, prefix='q').gens()
1315 (q0, q1, q2, q3, q4, q5)
1316
1317 Our inner product satisfies the Jordan axiom::
1318
1319 sage: set_random_seed()
1320 sage: n = ZZ.random_element(1,5)
1321 sage: J = RealSymmetricEJA(n)
1322 sage: x = J.random_element()
1323 sage: y = J.random_element()
1324 sage: z = J.random_element()
1325 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1326 True
1327
1328 Our basis is normalized with respect to the natural inner product::
1329
1330 sage: set_random_seed()
1331 sage: n = ZZ.random_element(1,5)
1332 sage: J = RealSymmetricEJA(n)
1333 sage: all( b.norm() == 1 for b in J.gens() )
1334 True
1335
1336 Left-multiplication operators are symmetric because they satisfy
1337 the Jordan axiom::
1338
1339 sage: set_random_seed()
1340 sage: n = ZZ.random_element(1,5)
1341 sage: x = RealSymmetricEJA(n).random_element()
1342 sage: x.operator().matrix().is_symmetric()
1343 True
1344
1345 """
1346 def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
1347 S = _real_symmetric_basis(n, field)
1348
1349 if n > 1 and normalize_basis:
1350 # We'll need sqrt(2) to normalize the basis, and this
1351 # winds up in the multiplication table, so the whole
1352 # algebra needs to be over the field extension.
1353 R = PolynomialRing(field, 'z')
1354 z = R.gen()
1355 p = z**2 - 2
1356 if p.is_irreducible():
1357 field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
1358 S = [ s.change_ring(field) for s in S ]
1359 self._basis_normalizers = tuple(
1360 ~(self.__class__.natural_inner_product(s,s).sqrt())
1361 for s in S )
1362 S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
1363
1364 Qs = _multiplication_table_from_matrix_basis(S)
1365
1366 fdeja = super(RealSymmetricEJA, self)
1367 return fdeja.__init__(field,
1368 Qs,
1369 rank=n,
1370 natural_basis=S,
1371 **kwargs)
1372
1373
1374
1375 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1376 """
1377 The rank-n simple EJA consisting of complex Hermitian n-by-n
1378 matrices over the real numbers, the usual symmetric Jordan product,
1379 and the real-part-of-trace inner product. It has dimension `n^2` over
1380 the reals.
1381
1382 SETUP::
1383
1384 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1385
1386 TESTS:
1387
1388 The dimension of this algebra is `n^2`::
1389
1390 sage: set_random_seed()
1391 sage: n = ZZ.random_element(1,5)
1392 sage: J = ComplexHermitianEJA(n)
1393 sage: J.dimension() == n^2
1394 True
1395
1396 The Jordan multiplication is what we think it is::
1397
1398 sage: set_random_seed()
1399 sage: n = ZZ.random_element(1,5)
1400 sage: J = ComplexHermitianEJA(n)
1401 sage: x = J.random_element()
1402 sage: y = J.random_element()
1403 sage: actual = (x*y).natural_representation()
1404 sage: X = x.natural_representation()
1405 sage: Y = y.natural_representation()
1406 sage: expected = (X*Y + Y*X)/2
1407 sage: actual == expected
1408 True
1409 sage: J(expected) == x*y
1410 True
1411
1412 We can change the generator prefix::
1413
1414 sage: ComplexHermitianEJA(2, prefix='z').gens()
1415 (z0, z1, z2, z3)
1416
1417 Our inner product satisfies the Jordan axiom::
1418
1419 sage: set_random_seed()
1420 sage: n = ZZ.random_element(1,5)
1421 sage: J = ComplexHermitianEJA(n)
1422 sage: x = J.random_element()
1423 sage: y = J.random_element()
1424 sage: z = J.random_element()
1425 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1426 True
1427
1428 Our basis is normalized with respect to the natural inner product::
1429
1430 sage: set_random_seed()
1431 sage: n = ZZ.random_element(1,4)
1432 sage: J = ComplexHermitianEJA(n)
1433 sage: all( b.norm() == 1 for b in J.gens() )
1434 True
1435
1436 Left-multiplication operators are symmetric because they satisfy
1437 the Jordan axiom::
1438
1439 sage: set_random_seed()
1440 sage: n = ZZ.random_element(1,5)
1441 sage: x = ComplexHermitianEJA(n).random_element()
1442 sage: x.operator().matrix().is_symmetric()
1443 True
1444
1445 """
1446 def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
1447 S = _complex_hermitian_basis(n, field)
1448
1449 if n > 1 and normalize_basis:
1450 # We'll need sqrt(2) to normalize the basis, and this
1451 # winds up in the multiplication table, so the whole
1452 # algebra needs to be over the field extension.
1453 R = PolynomialRing(field, 'z')
1454 z = R.gen()
1455 p = z**2 - 2
1456 if p.is_irreducible():
1457 field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
1458 S = [ s.change_ring(field) for s in S ]
1459 self._basis_normalizers = tuple(
1460 ~(self.__class__.natural_inner_product(s,s).sqrt())
1461 for s in S )
1462 S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
1463
1464 Qs = _multiplication_table_from_matrix_basis(S)
1465
1466 fdeja = super(ComplexHermitianEJA, self)
1467 return fdeja.__init__(field,
1468 Qs,
1469 rank=n,
1470 natural_basis=S,
1471 **kwargs)
1472
1473
1474 @staticmethod
1475 def natural_inner_product(X,Y):
1476 Xu = _unembed_complex_matrix(X)
1477 Yu = _unembed_complex_matrix(Y)
1478 # The trace need not be real; consider Xu = (i*I) and Yu = I.
1479 return ((Xu*Yu).trace()).vector()[0] # real part, I guess
1480
1481 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1482 """
1483 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1484 matrices, the usual symmetric Jordan product, and the
1485 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1486 the reals.
1487
1488 SETUP::
1489
1490 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1491
1492 TESTS:
1493
1494 The dimension of this algebra is `n^2`::
1495
1496 sage: set_random_seed()
1497 sage: n = ZZ.random_element(1,5)
1498 sage: J = QuaternionHermitianEJA(n)
1499 sage: J.dimension() == 2*(n^2) - n
1500 True
1501
1502 The Jordan multiplication is what we think it is::
1503
1504 sage: set_random_seed()
1505 sage: n = ZZ.random_element(1,5)
1506 sage: J = QuaternionHermitianEJA(n)
1507 sage: x = J.random_element()
1508 sage: y = J.random_element()
1509 sage: actual = (x*y).natural_representation()
1510 sage: X = x.natural_representation()
1511 sage: Y = y.natural_representation()
1512 sage: expected = (X*Y + Y*X)/2
1513 sage: actual == expected
1514 True
1515 sage: J(expected) == x*y
1516 True
1517
1518 We can change the generator prefix::
1519
1520 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1521 (a0, a1, a2, a3, a4, a5)
1522
1523 Our inner product satisfies the Jordan axiom::
1524
1525 sage: set_random_seed()
1526 sage: n = ZZ.random_element(1,5)
1527 sage: J = QuaternionHermitianEJA(n)
1528 sage: x = J.random_element()
1529 sage: y = J.random_element()
1530 sage: z = J.random_element()
1531 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1532 True
1533
1534 """
1535 def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
1536 S = _quaternion_hermitian_basis(n, field, normalize_basis)
1537 Qs = _multiplication_table_from_matrix_basis(S)
1538
1539 fdeja = super(QuaternionHermitianEJA, self)
1540 return fdeja.__init__(field,
1541 Qs,
1542 rank=n,
1543 natural_basis=S,
1544 **kwargs)
1545
1546 def inner_product(self, x, y):
1547 # Since a+bi+cj+dk on the diagonal is represented as
1548 #
1549 # a + bi +cj + dk = [ a b c d]
1550 # [ -b a -d c]
1551 # [ -c d a -b]
1552 # [ -d -c b a],
1553 #
1554 # we'll quadruple-count the "a" entries if we take the trace of
1555 # the embedding.
1556 return _matrix_ip(x,y)/4
1557
1558
1559 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1560 """
1561 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1562 with the usual inner product and jordan product ``x*y =
1563 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1564 the reals.
1565
1566 SETUP::
1567
1568 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1569
1570 EXAMPLES:
1571
1572 This multiplication table can be verified by hand::
1573
1574 sage: J = JordanSpinEJA(4)
1575 sage: e0,e1,e2,e3 = J.gens()
1576 sage: e0*e0
1577 e0
1578 sage: e0*e1
1579 e1
1580 sage: e0*e2
1581 e2
1582 sage: e0*e3
1583 e3
1584 sage: e1*e2
1585 0
1586 sage: e1*e3
1587 0
1588 sage: e2*e3
1589 0
1590
1591 We can change the generator prefix::
1592
1593 sage: JordanSpinEJA(2, prefix='B').gens()
1594 (B0, B1)
1595
1596 Our inner product satisfies the Jordan axiom::
1597
1598 sage: set_random_seed()
1599 sage: n = ZZ.random_element(1,5)
1600 sage: J = JordanSpinEJA(n)
1601 sage: x = J.random_element()
1602 sage: y = J.random_element()
1603 sage: z = J.random_element()
1604 sage: (x*y).inner_product(z) == y.inner_product(x*z)
1605 True
1606
1607 """
1608 def __init__(self, n, field=QQ, **kwargs):
1609 V = VectorSpace(field, n)
1610 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1611 for i in range(n):
1612 for j in range(n):
1613 x = V.gen(i)
1614 y = V.gen(j)
1615 x0 = x[0]
1616 xbar = x[1:]
1617 y0 = y[0]
1618 ybar = y[1:]
1619 # z = x*y
1620 z0 = x.inner_product(y)
1621 zbar = y0*xbar + x0*ybar
1622 z = V([z0] + zbar.list())
1623 mult_table[i][j] = z
1624
1625 # The rank of the spin algebra is two, unless we're in a
1626 # one-dimensional ambient space (because the rank is bounded by
1627 # the ambient dimension).
1628 fdeja = super(JordanSpinEJA, self)
1629 return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
1630
1631 def inner_product(self, x, y):
1632 """
1633 Faster to reimplement than to use natural representations.
1634
1635 SETUP::
1636
1637 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1638
1639 TESTS:
1640
1641 Ensure that this is the usual inner product for the algebras
1642 over `R^n`::
1643
1644 sage: set_random_seed()
1645 sage: n = ZZ.random_element(1,5)
1646 sage: J = JordanSpinEJA(n)
1647 sage: x = J.random_element()
1648 sage: y = J.random_element()
1649 sage: X = x.natural_representation()
1650 sage: Y = y.natural_representation()
1651 sage: x.inner_product(y) == J.__class__.natural_inner_product(X,Y)
1652 True
1653
1654 """
1655 return x.to_vector().inner_product(y.to_vector())