]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
4d0c802c38c8320a8f10f8faeb50678a85d84e95
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35
36 Missing from this list is the algebra of three-by-three octononion
37 Hermitian matrices, as there is (as of yet) no implementation of the
38 octonions in SageMath. In addition to these, we provide two other
39 example constructions,
40
41 * :class:`HadamardEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. And last but not least, the trivial
47 EJA is exactly what you think. Cartesian products of these are also
48 supported using the usual ``cartesian_product()`` function; as a
49 result, we support (up to isomorphism) all Euclidean Jordan algebras
50 that don't involve octonions.
51
52 SETUP::
53
54 sage: from mjo.eja.eja_algebra import random_eja
55
56 EXAMPLES::
57
58 sage: random_eja()
59 Euclidean Jordan algebra of dimension...
60 """
61
62 from itertools import repeat
63
64 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
65 from sage.categories.magmatic_algebras import MagmaticAlgebras
66 from sage.categories.sets_cat import cartesian_product
67 from sage.combinat.free_module import CombinatorialFreeModule
68 from sage.matrix.constructor import matrix
69 from sage.matrix.matrix_space import MatrixSpace
70 from sage.misc.cachefunc import cached_method
71 from sage.misc.table import table
72 from sage.modules.free_module import FreeModule, VectorSpace
73 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
74 PolynomialRing,
75 QuadraticField)
76 from mjo.eja.eja_element import FiniteDimensionalEJAElement
77 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
78 from mjo.eja.eja_utils import _all2list, _mat2vec
79
80 class FiniteDimensionalEJA(CombinatorialFreeModule):
81 r"""
82 A finite-dimensional Euclidean Jordan algebra.
83
84 INPUT:
85
86 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
87 form," which must be the same form as the arguments to
88 ``jordan_product`` and ``inner_product``. In reality, "matrix
89 form" can be either vectors, matrices, or a Cartesian product
90 (ordered tuple) of vectors or matrices. All of these would
91 ideally be vector spaces in sage with no special-casing
92 needed; but in reality we turn vectors into column-matrices
93 and Cartesian products `(a,b)` into column matrices
94 `(a,b)^{T}` after converting `a` and `b` themselves.
95
96 - ``jordan_product`` -- a function; afunction of two ``basis``
97 elements (in matrix form) that returns their jordan product,
98 also in matrix form; this will be applied to ``basis`` to
99 compute a multiplication table for the algebra.
100
101 - ``inner_product`` -- a function; a function of two ``basis``
102 elements (in matrix form) that returns their inner
103 product. This will be applied to ``basis`` to compute an
104 inner-product table (basically a matrix) for this algebra.
105
106 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
107 field for the algebra.
108
109 - ``orthonormalize`` -- boolean (default: ``True``); whether or
110 not to orthonormalize the basis. Doing so is expensive and
111 generally rules out using the rationals as your ``field``, but
112 is required for spectral decompositions.
113
114 SETUP::
115
116 sage: from mjo.eja.eja_algebra import random_eja
117
118 TESTS:
119
120 We should compute that an element subalgebra is associative even
121 if we circumvent the element method::
122
123 sage: set_random_seed()
124 sage: J = random_eja(field=QQ,orthonormalize=False)
125 sage: x = J.random_element()
126 sage: A = x.subalgebra_generated_by(orthonormalize=False)
127 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
128 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
129 True
130
131 """
132 Element = FiniteDimensionalEJAElement
133
134 def __init__(self,
135 basis,
136 jordan_product,
137 inner_product,
138 field=AA,
139 orthonormalize=True,
140 associative=None,
141 cartesian_product=False,
142 check_field=True,
143 check_axioms=True,
144 prefix="b"):
145
146 n = len(basis)
147
148 if check_field:
149 if not field.is_subring(RR):
150 # Note: this does return true for the real algebraic
151 # field, the rationals, and any quadratic field where
152 # we've specified a real embedding.
153 raise ValueError("scalar field is not real")
154
155 if check_axioms:
156 # Check commutativity of the Jordan and inner-products.
157 # This has to be done before we build the multiplication
158 # and inner-product tables/matrices, because we take
159 # advantage of symmetry in the process.
160 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
161 for bi in basis
162 for bj in basis ):
163 raise ValueError("Jordan product is not commutative")
164
165 if not all( inner_product(bi,bj) == inner_product(bj,bi)
166 for bi in basis
167 for bj in basis ):
168 raise ValueError("inner-product is not commutative")
169
170
171 category = MagmaticAlgebras(field).FiniteDimensional()
172 category = category.WithBasis().Unital().Commutative()
173
174 if associative is None:
175 # We should figure it out. As with check_axioms, we have to do
176 # this without the help of the _jordan_product_is_associative()
177 # method because we need to know the category before we
178 # initialize the algebra.
179 associative = all( jordan_product(jordan_product(bi,bj),bk)
180 ==
181 jordan_product(bi,jordan_product(bj,bk))
182 for bi in basis
183 for bj in basis
184 for bk in basis)
185
186 if associative:
187 # Element subalgebras can take advantage of this.
188 category = category.Associative()
189 if cartesian_product:
190 # Use join() here because otherwise we only get the
191 # "Cartesian product of..." and not the things themselves.
192 category = category.join([category,
193 category.CartesianProducts()])
194
195 # Call the superclass constructor so that we can use its from_vector()
196 # method to build our multiplication table.
197 CombinatorialFreeModule.__init__(self,
198 field,
199 range(n),
200 prefix=prefix,
201 category=category,
202 bracket=False)
203
204 # Now comes all of the hard work. We'll be constructing an
205 # ambient vector space V that our (vectorized) basis lives in,
206 # as well as a subspace W of V spanned by those (vectorized)
207 # basis elements. The W-coordinates are the coefficients that
208 # we see in things like x = 1*b1 + 2*b2.
209 vector_basis = basis
210
211 degree = 0
212 if n > 0:
213 degree = len(_all2list(basis[0]))
214
215 # Build an ambient space that fits our matrix basis when
216 # written out as "long vectors."
217 V = VectorSpace(field, degree)
218
219 # The matrix that will hole the orthonormal -> unorthonormal
220 # coordinate transformation.
221 self._deortho_matrix = None
222
223 if orthonormalize:
224 # Save a copy of the un-orthonormalized basis for later.
225 # Convert it to ambient V (vector) coordinates while we're
226 # at it, because we'd have to do it later anyway.
227 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
228
229 from mjo.eja.eja_utils import gram_schmidt
230 basis = tuple(gram_schmidt(basis, inner_product))
231
232 # Save the (possibly orthonormalized) matrix basis for
233 # later...
234 self._matrix_basis = basis
235
236 # Now create the vector space for the algebra, which will have
237 # its own set of non-ambient coordinates (in terms of the
238 # supplied basis).
239 vector_basis = tuple( V(_all2list(b)) for b in basis )
240 W = V.span_of_basis( vector_basis, check=check_axioms)
241
242 if orthonormalize:
243 # Now "W" is the vector space of our algebra coordinates. The
244 # variables "X1", "X2",... refer to the entries of vectors in
245 # W. Thus to convert back and forth between the orthonormal
246 # coordinates and the given ones, we need to stick the original
247 # basis in W.
248 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
249 self._deortho_matrix = matrix( U.coordinate_vector(q)
250 for q in vector_basis )
251
252
253 # Now we actually compute the multiplication and inner-product
254 # tables/matrices using the possibly-orthonormalized basis.
255 self._inner_product_matrix = matrix.identity(field, n)
256 self._multiplication_table = [ [0 for j in range(i+1)]
257 for i in range(n) ]
258
259 # Note: the Jordan and inner-products are defined in terms
260 # of the ambient basis. It's important that their arguments
261 # are in ambient coordinates as well.
262 for i in range(n):
263 for j in range(i+1):
264 # ortho basis w.r.t. ambient coords
265 q_i = basis[i]
266 q_j = basis[j]
267
268 # The jordan product returns a matrixy answer, so we
269 # have to convert it to the algebra coordinates.
270 elt = jordan_product(q_i, q_j)
271 elt = W.coordinate_vector(V(_all2list(elt)))
272 self._multiplication_table[i][j] = self.from_vector(elt)
273
274 if not orthonormalize:
275 # If we're orthonormalizing the basis with respect
276 # to an inner-product, then the inner-product
277 # matrix with respect to the resulting basis is
278 # just going to be the identity.
279 ip = inner_product(q_i, q_j)
280 self._inner_product_matrix[i,j] = ip
281 self._inner_product_matrix[j,i] = ip
282
283 self._inner_product_matrix._cache = {'hermitian': True}
284 self._inner_product_matrix.set_immutable()
285
286 if check_axioms:
287 if not self._is_jordanian():
288 raise ValueError("Jordan identity does not hold")
289 if not self._inner_product_is_associative():
290 raise ValueError("inner product is not associative")
291
292
293 def _coerce_map_from_base_ring(self):
294 """
295 Disable the map from the base ring into the algebra.
296
297 Performing a nonsense conversion like this automatically
298 is counterpedagogical. The fallback is to try the usual
299 element constructor, which should also fail.
300
301 SETUP::
302
303 sage: from mjo.eja.eja_algebra import random_eja
304
305 TESTS::
306
307 sage: set_random_seed()
308 sage: J = random_eja()
309 sage: J(1)
310 Traceback (most recent call last):
311 ...
312 ValueError: not an element of this algebra
313
314 """
315 return None
316
317
318 def product_on_basis(self, i, j):
319 r"""
320 Returns the Jordan product of the `i` and `j`th basis elements.
321
322 This completely defines the Jordan product on the algebra, and
323 is used direclty by our superclass machinery to implement
324 :meth:`product`.
325
326 SETUP::
327
328 sage: from mjo.eja.eja_algebra import random_eja
329
330 TESTS::
331
332 sage: set_random_seed()
333 sage: J = random_eja()
334 sage: n = J.dimension()
335 sage: bi = J.zero()
336 sage: bj = J.zero()
337 sage: bi_bj = J.zero()*J.zero()
338 sage: if n > 0:
339 ....: i = ZZ.random_element(n)
340 ....: j = ZZ.random_element(n)
341 ....: bi = J.monomial(i)
342 ....: bj = J.monomial(j)
343 ....: bi_bj = J.product_on_basis(i,j)
344 sage: bi*bj == bi_bj
345 True
346
347 """
348 # We only stored the lower-triangular portion of the
349 # multiplication table.
350 if j <= i:
351 return self._multiplication_table[i][j]
352 else:
353 return self._multiplication_table[j][i]
354
355 def inner_product(self, x, y):
356 """
357 The inner product associated with this Euclidean Jordan algebra.
358
359 Defaults to the trace inner product, but can be overridden by
360 subclasses if they are sure that the necessary properties are
361 satisfied.
362
363 SETUP::
364
365 sage: from mjo.eja.eja_algebra import (random_eja,
366 ....: HadamardEJA,
367 ....: BilinearFormEJA)
368
369 EXAMPLES:
370
371 Our inner product is "associative," which means the following for
372 a symmetric bilinear form::
373
374 sage: set_random_seed()
375 sage: J = random_eja()
376 sage: x,y,z = J.random_elements(3)
377 sage: (x*y).inner_product(z) == y.inner_product(x*z)
378 True
379
380 TESTS:
381
382 Ensure that this is the usual inner product for the algebras
383 over `R^n`::
384
385 sage: set_random_seed()
386 sage: J = HadamardEJA.random_instance()
387 sage: x,y = J.random_elements(2)
388 sage: actual = x.inner_product(y)
389 sage: expected = x.to_vector().inner_product(y.to_vector())
390 sage: actual == expected
391 True
392
393 Ensure that this is one-half of the trace inner-product in a
394 BilinearFormEJA that isn't just the reals (when ``n`` isn't
395 one). This is in Faraut and Koranyi, and also my "On the
396 symmetry..." paper::
397
398 sage: set_random_seed()
399 sage: J = BilinearFormEJA.random_instance()
400 sage: n = J.dimension()
401 sage: x = J.random_element()
402 sage: y = J.random_element()
403 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
404 True
405
406 """
407 B = self._inner_product_matrix
408 return (B*x.to_vector()).inner_product(y.to_vector())
409
410
411 def is_associative(self):
412 r"""
413 Return whether or not this algebra's Jordan product is associative.
414
415 SETUP::
416
417 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
418
419 EXAMPLES::
420
421 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
422 sage: J.is_associative()
423 False
424 sage: x = sum(J.gens())
425 sage: A = x.subalgebra_generated_by(orthonormalize=False)
426 sage: A.is_associative()
427 True
428
429 """
430 return "Associative" in self.category().axioms()
431
432 def _is_commutative(self):
433 r"""
434 Whether or not this algebra's multiplication table is commutative.
435
436 This method should of course always return ``True``, unless
437 this algebra was constructed with ``check_axioms=False`` and
438 passed an invalid multiplication table.
439 """
440 return all( x*y == y*x for x in self.gens() for y in self.gens() )
441
442 def _is_jordanian(self):
443 r"""
444 Whether or not this algebra's multiplication table respects the
445 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
446
447 We only check one arrangement of `x` and `y`, so for a
448 ``True`` result to be truly true, you should also check
449 :meth:`_is_commutative`. This method should of course always
450 return ``True``, unless this algebra was constructed with
451 ``check_axioms=False`` and passed an invalid multiplication table.
452 """
453 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
454 ==
455 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
456 for i in range(self.dimension())
457 for j in range(self.dimension()) )
458
459 def _jordan_product_is_associative(self):
460 r"""
461 Return whether or not this algebra's Jordan product is
462 associative; that is, whether or not `x*(y*z) = (x*y)*z`
463 for all `x,y,x`.
464
465 This method should agree with :meth:`is_associative` unless
466 you lied about the value of the ``associative`` parameter
467 when you constructed the algebra.
468
469 SETUP::
470
471 sage: from mjo.eja.eja_algebra import (random_eja,
472 ....: RealSymmetricEJA,
473 ....: ComplexHermitianEJA,
474 ....: QuaternionHermitianEJA)
475
476 EXAMPLES::
477
478 sage: J = RealSymmetricEJA(4, orthonormalize=False)
479 sage: J._jordan_product_is_associative()
480 False
481 sage: x = sum(J.gens())
482 sage: A = x.subalgebra_generated_by()
483 sage: A._jordan_product_is_associative()
484 True
485
486 ::
487
488 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
489 sage: J._jordan_product_is_associative()
490 False
491 sage: x = sum(J.gens())
492 sage: A = x.subalgebra_generated_by(orthonormalize=False)
493 sage: A._jordan_product_is_associative()
494 True
495
496 ::
497
498 sage: J = QuaternionHermitianEJA(2)
499 sage: J._jordan_product_is_associative()
500 False
501 sage: x = sum(J.gens())
502 sage: A = x.subalgebra_generated_by()
503 sage: A._jordan_product_is_associative()
504 True
505
506 TESTS:
507
508 The values we've presupplied to the constructors agree with
509 the computation::
510
511 sage: set_random_seed()
512 sage: J = random_eja()
513 sage: J.is_associative() == J._jordan_product_is_associative()
514 True
515
516 """
517 R = self.base_ring()
518
519 # Used to check whether or not something is zero.
520 epsilon = R.zero()
521 if not R.is_exact():
522 # I don't know of any examples that make this magnitude
523 # necessary because I don't know how to make an
524 # associative algebra when the element subalgebra
525 # construction is unreliable (as it is over RDF; we can't
526 # find the degree of an element because we can't compute
527 # the rank of a matrix). But even multiplication of floats
528 # is non-associative, so *some* epsilon is needed... let's
529 # just take the one from _inner_product_is_associative?
530 epsilon = 1e-15
531
532 for i in range(self.dimension()):
533 for j in range(self.dimension()):
534 for k in range(self.dimension()):
535 x = self.monomial(i)
536 y = self.monomial(j)
537 z = self.monomial(k)
538 diff = (x*y)*z - x*(y*z)
539
540 if diff.norm() > epsilon:
541 return False
542
543 return True
544
545 def _inner_product_is_associative(self):
546 r"""
547 Return whether or not this algebra's inner product `B` is
548 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
549
550 This method should of course always return ``True``, unless
551 this algebra was constructed with ``check_axioms=False`` and
552 passed an invalid Jordan or inner-product.
553 """
554 R = self.base_ring()
555
556 # Used to check whether or not something is zero.
557 epsilon = R.zero()
558 if not R.is_exact():
559 # This choice is sufficient to allow the construction of
560 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
561 epsilon = 1e-15
562
563 for i in range(self.dimension()):
564 for j in range(self.dimension()):
565 for k in range(self.dimension()):
566 x = self.monomial(i)
567 y = self.monomial(j)
568 z = self.monomial(k)
569 diff = (x*y).inner_product(z) - x.inner_product(y*z)
570
571 if diff.abs() > epsilon:
572 return False
573
574 return True
575
576 def _element_constructor_(self, elt):
577 """
578 Construct an element of this algebra from its vector or matrix
579 representation.
580
581 This gets called only after the parent element _call_ method
582 fails to find a coercion for the argument.
583
584 SETUP::
585
586 sage: from mjo.eja.eja_algebra import (random_eja,
587 ....: JordanSpinEJA,
588 ....: HadamardEJA,
589 ....: RealSymmetricEJA)
590
591 EXAMPLES:
592
593 The identity in `S^n` is converted to the identity in the EJA::
594
595 sage: J = RealSymmetricEJA(3)
596 sage: I = matrix.identity(QQ,3)
597 sage: J(I) == J.one()
598 True
599
600 This skew-symmetric matrix can't be represented in the EJA::
601
602 sage: J = RealSymmetricEJA(3)
603 sage: A = matrix(QQ,3, lambda i,j: i-j)
604 sage: J(A)
605 Traceback (most recent call last):
606 ...
607 ValueError: not an element of this algebra
608
609 Tuples work as well, provided that the matrix basis for the
610 algebra consists of them::
611
612 sage: J1 = HadamardEJA(3)
613 sage: J2 = RealSymmetricEJA(2)
614 sage: J = cartesian_product([J1,J2])
615 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
616 b1 + b5
617
618 TESTS:
619
620 Ensure that we can convert any element back and forth
621 faithfully between its matrix and algebra representations::
622
623 sage: set_random_seed()
624 sage: J = random_eja()
625 sage: x = J.random_element()
626 sage: J(x.to_matrix()) == x
627 True
628
629 We cannot coerce elements between algebras just because their
630 matrix representations are compatible::
631
632 sage: J1 = HadamardEJA(3)
633 sage: J2 = JordanSpinEJA(3)
634 sage: J2(J1.one())
635 Traceback (most recent call last):
636 ...
637 ValueError: not an element of this algebra
638 sage: J1(J2.zero())
639 Traceback (most recent call last):
640 ...
641 ValueError: not an element of this algebra
642 """
643 msg = "not an element of this algebra"
644 if elt in self.base_ring():
645 # Ensure that no base ring -> algebra coercion is performed
646 # by this method. There's some stupidity in sage that would
647 # otherwise propagate to this method; for example, sage thinks
648 # that the integer 3 belongs to the space of 2-by-2 matrices.
649 raise ValueError(msg)
650
651 try:
652 # Try to convert a vector into a column-matrix...
653 elt = elt.column()
654 except (AttributeError, TypeError):
655 # and ignore failure, because we weren't really expecting
656 # a vector as an argument anyway.
657 pass
658
659 if elt not in self.matrix_space():
660 raise ValueError(msg)
661
662 # Thanks for nothing! Matrix spaces aren't vector spaces in
663 # Sage, so we have to figure out its matrix-basis coordinates
664 # ourselves. We use the basis space's ring instead of the
665 # element's ring because the basis space might be an algebraic
666 # closure whereas the base ring of the 3-by-3 identity matrix
667 # could be QQ instead of QQbar.
668 #
669 # And, we also have to handle Cartesian product bases (when
670 # the matrix basis consists of tuples) here. The "good news"
671 # is that we're already converting everything to long vectors,
672 # and that strategy works for tuples as well.
673 #
674 # We pass check=False because the matrix basis is "guaranteed"
675 # to be linearly independent... right? Ha ha.
676 elt = _all2list(elt)
677 V = VectorSpace(self.base_ring(), len(elt))
678 W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
679 check=False)
680
681 try:
682 coords = W.coordinate_vector(V(elt))
683 except ArithmeticError: # vector is not in free module
684 raise ValueError(msg)
685
686 return self.from_vector(coords)
687
688 def _repr_(self):
689 """
690 Return a string representation of ``self``.
691
692 SETUP::
693
694 sage: from mjo.eja.eja_algebra import JordanSpinEJA
695
696 TESTS:
697
698 Ensure that it says what we think it says::
699
700 sage: JordanSpinEJA(2, field=AA)
701 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
702 sage: JordanSpinEJA(3, field=RDF)
703 Euclidean Jordan algebra of dimension 3 over Real Double Field
704
705 """
706 fmt = "Euclidean Jordan algebra of dimension {} over {}"
707 return fmt.format(self.dimension(), self.base_ring())
708
709
710 @cached_method
711 def characteristic_polynomial_of(self):
712 """
713 Return the algebra's "characteristic polynomial of" function,
714 which is itself a multivariate polynomial that, when evaluated
715 at the coordinates of some algebra element, returns that
716 element's characteristic polynomial.
717
718 The resulting polynomial has `n+1` variables, where `n` is the
719 dimension of this algebra. The first `n` variables correspond to
720 the coordinates of an algebra element: when evaluated at the
721 coordinates of an algebra element with respect to a certain
722 basis, the result is a univariate polynomial (in the one
723 remaining variable ``t``), namely the characteristic polynomial
724 of that element.
725
726 SETUP::
727
728 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
729
730 EXAMPLES:
731
732 The characteristic polynomial in the spin algebra is given in
733 Alizadeh, Example 11.11::
734
735 sage: J = JordanSpinEJA(3)
736 sage: p = J.characteristic_polynomial_of(); p
737 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
738 sage: xvec = J.one().to_vector()
739 sage: p(*xvec)
740 t^2 - 2*t + 1
741
742 By definition, the characteristic polynomial is a monic
743 degree-zero polynomial in a rank-zero algebra. Note that
744 Cayley-Hamilton is indeed satisfied since the polynomial
745 ``1`` evaluates to the identity element of the algebra on
746 any argument::
747
748 sage: J = TrivialEJA()
749 sage: J.characteristic_polynomial_of()
750 1
751
752 """
753 r = self.rank()
754 n = self.dimension()
755
756 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
757 a = self._charpoly_coefficients()
758
759 # We go to a bit of trouble here to reorder the
760 # indeterminates, so that it's easier to evaluate the
761 # characteristic polynomial at x's coordinates and get back
762 # something in terms of t, which is what we want.
763 S = PolynomialRing(self.base_ring(),'t')
764 t = S.gen(0)
765 if r > 0:
766 R = a[0].parent()
767 S = PolynomialRing(S, R.variable_names())
768 t = S(t)
769
770 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
771
772 def coordinate_polynomial_ring(self):
773 r"""
774 The multivariate polynomial ring in which this algebra's
775 :meth:`characteristic_polynomial_of` lives.
776
777 SETUP::
778
779 sage: from mjo.eja.eja_algebra import (HadamardEJA,
780 ....: RealSymmetricEJA)
781
782 EXAMPLES::
783
784 sage: J = HadamardEJA(2)
785 sage: J.coordinate_polynomial_ring()
786 Multivariate Polynomial Ring in X1, X2...
787 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
788 sage: J.coordinate_polynomial_ring()
789 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
790
791 """
792 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
793 return PolynomialRing(self.base_ring(), var_names)
794
795 def inner_product(self, x, y):
796 """
797 The inner product associated with this Euclidean Jordan algebra.
798
799 Defaults to the trace inner product, but can be overridden by
800 subclasses if they are sure that the necessary properties are
801 satisfied.
802
803 SETUP::
804
805 sage: from mjo.eja.eja_algebra import (random_eja,
806 ....: HadamardEJA,
807 ....: BilinearFormEJA)
808
809 EXAMPLES:
810
811 Our inner product is "associative," which means the following for
812 a symmetric bilinear form::
813
814 sage: set_random_seed()
815 sage: J = random_eja()
816 sage: x,y,z = J.random_elements(3)
817 sage: (x*y).inner_product(z) == y.inner_product(x*z)
818 True
819
820 TESTS:
821
822 Ensure that this is the usual inner product for the algebras
823 over `R^n`::
824
825 sage: set_random_seed()
826 sage: J = HadamardEJA.random_instance()
827 sage: x,y = J.random_elements(2)
828 sage: actual = x.inner_product(y)
829 sage: expected = x.to_vector().inner_product(y.to_vector())
830 sage: actual == expected
831 True
832
833 Ensure that this is one-half of the trace inner-product in a
834 BilinearFormEJA that isn't just the reals (when ``n`` isn't
835 one). This is in Faraut and Koranyi, and also my "On the
836 symmetry..." paper::
837
838 sage: set_random_seed()
839 sage: J = BilinearFormEJA.random_instance()
840 sage: n = J.dimension()
841 sage: x = J.random_element()
842 sage: y = J.random_element()
843 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
844 True
845 """
846 B = self._inner_product_matrix
847 return (B*x.to_vector()).inner_product(y.to_vector())
848
849
850 def is_trivial(self):
851 """
852 Return whether or not this algebra is trivial.
853
854 A trivial algebra contains only the zero element.
855
856 SETUP::
857
858 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
859 ....: TrivialEJA)
860
861 EXAMPLES::
862
863 sage: J = ComplexHermitianEJA(3)
864 sage: J.is_trivial()
865 False
866
867 ::
868
869 sage: J = TrivialEJA()
870 sage: J.is_trivial()
871 True
872
873 """
874 return self.dimension() == 0
875
876
877 def multiplication_table(self):
878 """
879 Return a visual representation of this algebra's multiplication
880 table (on basis elements).
881
882 SETUP::
883
884 sage: from mjo.eja.eja_algebra import JordanSpinEJA
885
886 EXAMPLES::
887
888 sage: J = JordanSpinEJA(4)
889 sage: J.multiplication_table()
890 +----++----+----+----+----+
891 | * || b0 | b1 | b2 | b3 |
892 +====++====+====+====+====+
893 | b0 || b0 | b1 | b2 | b3 |
894 +----++----+----+----+----+
895 | b1 || b1 | b0 | 0 | 0 |
896 +----++----+----+----+----+
897 | b2 || b2 | 0 | b0 | 0 |
898 +----++----+----+----+----+
899 | b3 || b3 | 0 | 0 | b0 |
900 +----++----+----+----+----+
901
902 """
903 n = self.dimension()
904 # Prepend the header row.
905 M = [["*"] + list(self.gens())]
906
907 # And to each subsequent row, prepend an entry that belongs to
908 # the left-side "header column."
909 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
910 for j in range(n) ]
911 for i in range(n) ]
912
913 return table(M, header_row=True, header_column=True, frame=True)
914
915
916 def matrix_basis(self):
917 """
918 Return an (often more natural) representation of this algebras
919 basis as an ordered tuple of matrices.
920
921 Every finite-dimensional Euclidean Jordan Algebra is a, up to
922 Jordan isomorphism, a direct sum of five simple
923 algebras---four of which comprise Hermitian matrices. And the
924 last type of algebra can of course be thought of as `n`-by-`1`
925 column matrices (ambiguusly called column vectors) to avoid
926 special cases. As a result, matrices (and column vectors) are
927 a natural representation format for Euclidean Jordan algebra
928 elements.
929
930 But, when we construct an algebra from a basis of matrices,
931 those matrix representations are lost in favor of coordinate
932 vectors *with respect to* that basis. We could eventually
933 convert back if we tried hard enough, but having the original
934 representations handy is valuable enough that we simply store
935 them and return them from this method.
936
937 Why implement this for non-matrix algebras? Avoiding special
938 cases for the :class:`BilinearFormEJA` pays with simplicity in
939 its own right. But mainly, we would like to be able to assume
940 that elements of a :class:`CartesianProductEJA` can be displayed
941 nicely, without having to have special classes for direct sums
942 one of whose components was a matrix algebra.
943
944 SETUP::
945
946 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
947 ....: RealSymmetricEJA)
948
949 EXAMPLES::
950
951 sage: J = RealSymmetricEJA(2)
952 sage: J.basis()
953 Finite family {0: b0, 1: b1, 2: b2}
954 sage: J.matrix_basis()
955 (
956 [1 0] [ 0 0.7071067811865475?] [0 0]
957 [0 0], [0.7071067811865475? 0], [0 1]
958 )
959
960 ::
961
962 sage: J = JordanSpinEJA(2)
963 sage: J.basis()
964 Finite family {0: b0, 1: b1}
965 sage: J.matrix_basis()
966 (
967 [1] [0]
968 [0], [1]
969 )
970 """
971 return self._matrix_basis
972
973
974 def matrix_space(self):
975 """
976 Return the matrix space in which this algebra's elements live, if
977 we think of them as matrices (including column vectors of the
978 appropriate size).
979
980 "By default" this will be an `n`-by-`1` column-matrix space,
981 except when the algebra is trivial. There it's `n`-by-`n`
982 (where `n` is zero), to ensure that two elements of the matrix
983 space (empty matrices) can be multiplied. For algebras of
984 matrices, this returns the space in which their
985 real embeddings live.
986
987 SETUP::
988
989 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
990 ....: JordanSpinEJA,
991 ....: QuaternionHermitianEJA,
992 ....: TrivialEJA)
993
994 EXAMPLES:
995
996 By default, the matrix representation is just a column-matrix
997 equivalent to the vector representation::
998
999 sage: J = JordanSpinEJA(3)
1000 sage: J.matrix_space()
1001 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1002 Real Field
1003
1004 The matrix representation in the trivial algebra is
1005 zero-by-zero instead of the usual `n`-by-one::
1006
1007 sage: J = TrivialEJA()
1008 sage: J.matrix_space()
1009 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1010 Real Field
1011
1012 The matrix space for complex/quaternion Hermitian matrix EJA
1013 is the space in which their real-embeddings live, not the
1014 original complex/quaternion matrix space::
1015
1016 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1017 sage: J.matrix_space()
1018 Full MatrixSpace of 4 by 4 dense matrices over Rational Field
1019 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1020 sage: J.matrix_space()
1021 Full MatrixSpace of 4 by 4 dense matrices over Rational Field
1022
1023 """
1024 if self.is_trivial():
1025 return MatrixSpace(self.base_ring(), 0)
1026 else:
1027 return self.matrix_basis()[0].parent()
1028
1029
1030 @cached_method
1031 def one(self):
1032 """
1033 Return the unit element of this algebra.
1034
1035 SETUP::
1036
1037 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1038 ....: random_eja)
1039
1040 EXAMPLES:
1041
1042 We can compute unit element in the Hadamard EJA::
1043
1044 sage: J = HadamardEJA(5)
1045 sage: J.one()
1046 b0 + b1 + b2 + b3 + b4
1047
1048 The unit element in the Hadamard EJA is inherited in the
1049 subalgebras generated by its elements::
1050
1051 sage: J = HadamardEJA(5)
1052 sage: J.one()
1053 b0 + b1 + b2 + b3 + b4
1054 sage: x = sum(J.gens())
1055 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1056 sage: A.one()
1057 c0
1058 sage: A.one().superalgebra_element()
1059 b0 + b1 + b2 + b3 + b4
1060
1061 TESTS:
1062
1063 The identity element acts like the identity, regardless of
1064 whether or not we orthonormalize::
1065
1066 sage: set_random_seed()
1067 sage: J = random_eja()
1068 sage: x = J.random_element()
1069 sage: J.one()*x == x and x*J.one() == x
1070 True
1071 sage: A = x.subalgebra_generated_by()
1072 sage: y = A.random_element()
1073 sage: A.one()*y == y and y*A.one() == y
1074 True
1075
1076 ::
1077
1078 sage: set_random_seed()
1079 sage: J = random_eja(field=QQ, orthonormalize=False)
1080 sage: x = J.random_element()
1081 sage: J.one()*x == x and x*J.one() == x
1082 True
1083 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1084 sage: y = A.random_element()
1085 sage: A.one()*y == y and y*A.one() == y
1086 True
1087
1088 The matrix of the unit element's operator is the identity,
1089 regardless of the base field and whether or not we
1090 orthonormalize::
1091
1092 sage: set_random_seed()
1093 sage: J = random_eja()
1094 sage: actual = J.one().operator().matrix()
1095 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1096 sage: actual == expected
1097 True
1098 sage: x = J.random_element()
1099 sage: A = x.subalgebra_generated_by()
1100 sage: actual = A.one().operator().matrix()
1101 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1102 sage: actual == expected
1103 True
1104
1105 ::
1106
1107 sage: set_random_seed()
1108 sage: J = random_eja(field=QQ, orthonormalize=False)
1109 sage: actual = J.one().operator().matrix()
1110 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1111 sage: actual == expected
1112 True
1113 sage: x = J.random_element()
1114 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1115 sage: actual = A.one().operator().matrix()
1116 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1117 sage: actual == expected
1118 True
1119
1120 Ensure that the cached unit element (often precomputed by
1121 hand) agrees with the computed one::
1122
1123 sage: set_random_seed()
1124 sage: J = random_eja()
1125 sage: cached = J.one()
1126 sage: J.one.clear_cache()
1127 sage: J.one() == cached
1128 True
1129
1130 ::
1131
1132 sage: set_random_seed()
1133 sage: J = random_eja(field=QQ, orthonormalize=False)
1134 sage: cached = J.one()
1135 sage: J.one.clear_cache()
1136 sage: J.one() == cached
1137 True
1138
1139 """
1140 # We can brute-force compute the matrices of the operators
1141 # that correspond to the basis elements of this algebra.
1142 # If some linear combination of those basis elements is the
1143 # algebra identity, then the same linear combination of
1144 # their matrices has to be the identity matrix.
1145 #
1146 # Of course, matrices aren't vectors in sage, so we have to
1147 # appeal to the "long vectors" isometry.
1148 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1149
1150 # Now we use basic linear algebra to find the coefficients,
1151 # of the matrices-as-vectors-linear-combination, which should
1152 # work for the original algebra basis too.
1153 A = matrix(self.base_ring(), oper_vecs)
1154
1155 # We used the isometry on the left-hand side already, but we
1156 # still need to do it for the right-hand side. Recall that we
1157 # wanted something that summed to the identity matrix.
1158 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1159
1160 # Now if there's an identity element in the algebra, this
1161 # should work. We solve on the left to avoid having to
1162 # transpose the matrix "A".
1163 return self.from_vector(A.solve_left(b))
1164
1165
1166 def peirce_decomposition(self, c):
1167 """
1168 The Peirce decomposition of this algebra relative to the
1169 idempotent ``c``.
1170
1171 In the future, this can be extended to a complete system of
1172 orthogonal idempotents.
1173
1174 INPUT:
1175
1176 - ``c`` -- an idempotent of this algebra.
1177
1178 OUTPUT:
1179
1180 A triple (J0, J5, J1) containing two subalgebras and one subspace
1181 of this algebra,
1182
1183 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1184 corresponding to the eigenvalue zero.
1185
1186 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1187 corresponding to the eigenvalue one-half.
1188
1189 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1190 corresponding to the eigenvalue one.
1191
1192 These are the only possible eigenspaces for that operator, and this
1193 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1194 orthogonal, and are subalgebras of this algebra with the appropriate
1195 restrictions.
1196
1197 SETUP::
1198
1199 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1200
1201 EXAMPLES:
1202
1203 The canonical example comes from the symmetric matrices, which
1204 decompose into diagonal and off-diagonal parts::
1205
1206 sage: J = RealSymmetricEJA(3)
1207 sage: C = matrix(QQ, [ [1,0,0],
1208 ....: [0,1,0],
1209 ....: [0,0,0] ])
1210 sage: c = J(C)
1211 sage: J0,J5,J1 = J.peirce_decomposition(c)
1212 sage: J0
1213 Euclidean Jordan algebra of dimension 1...
1214 sage: J5
1215 Vector space of degree 6 and dimension 2...
1216 sage: J1
1217 Euclidean Jordan algebra of dimension 3...
1218 sage: J0.one().to_matrix()
1219 [0 0 0]
1220 [0 0 0]
1221 [0 0 1]
1222 sage: orig_df = AA.options.display_format
1223 sage: AA.options.display_format = 'radical'
1224 sage: J.from_vector(J5.basis()[0]).to_matrix()
1225 [ 0 0 1/2*sqrt(2)]
1226 [ 0 0 0]
1227 [1/2*sqrt(2) 0 0]
1228 sage: J.from_vector(J5.basis()[1]).to_matrix()
1229 [ 0 0 0]
1230 [ 0 0 1/2*sqrt(2)]
1231 [ 0 1/2*sqrt(2) 0]
1232 sage: AA.options.display_format = orig_df
1233 sage: J1.one().to_matrix()
1234 [1 0 0]
1235 [0 1 0]
1236 [0 0 0]
1237
1238 TESTS:
1239
1240 Every algebra decomposes trivially with respect to its identity
1241 element::
1242
1243 sage: set_random_seed()
1244 sage: J = random_eja()
1245 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1246 sage: J0.dimension() == 0 and J5.dimension() == 0
1247 True
1248 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1249 True
1250
1251 The decomposition is into eigenspaces, and its components are
1252 therefore necessarily orthogonal. Moreover, the identity
1253 elements in the two subalgebras are the projections onto their
1254 respective subspaces of the superalgebra's identity element::
1255
1256 sage: set_random_seed()
1257 sage: J = random_eja()
1258 sage: x = J.random_element()
1259 sage: if not J.is_trivial():
1260 ....: while x.is_nilpotent():
1261 ....: x = J.random_element()
1262 sage: c = x.subalgebra_idempotent()
1263 sage: J0,J5,J1 = J.peirce_decomposition(c)
1264 sage: ipsum = 0
1265 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1266 ....: w = w.superalgebra_element()
1267 ....: y = J.from_vector(y)
1268 ....: z = z.superalgebra_element()
1269 ....: ipsum += w.inner_product(y).abs()
1270 ....: ipsum += w.inner_product(z).abs()
1271 ....: ipsum += y.inner_product(z).abs()
1272 sage: ipsum
1273 0
1274 sage: J1(c) == J1.one()
1275 True
1276 sage: J0(J.one() - c) == J0.one()
1277 True
1278
1279 """
1280 if not c.is_idempotent():
1281 raise ValueError("element is not idempotent: %s" % c)
1282
1283 # Default these to what they should be if they turn out to be
1284 # trivial, because eigenspaces_left() won't return eigenvalues
1285 # corresponding to trivial spaces (e.g. it returns only the
1286 # eigenspace corresponding to lambda=1 if you take the
1287 # decomposition relative to the identity element).
1288 trivial = self.subalgebra(())
1289 J0 = trivial # eigenvalue zero
1290 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1291 J1 = trivial # eigenvalue one
1292
1293 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1294 if eigval == ~(self.base_ring()(2)):
1295 J5 = eigspace
1296 else:
1297 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1298 subalg = self.subalgebra(gens, check_axioms=False)
1299 if eigval == 0:
1300 J0 = subalg
1301 elif eigval == 1:
1302 J1 = subalg
1303 else:
1304 raise ValueError("unexpected eigenvalue: %s" % eigval)
1305
1306 return (J0, J5, J1)
1307
1308
1309 def random_element(self, thorough=False):
1310 r"""
1311 Return a random element of this algebra.
1312
1313 Our algebra superclass method only returns a linear
1314 combination of at most two basis elements. We instead
1315 want the vector space "random element" method that
1316 returns a more diverse selection.
1317
1318 INPUT:
1319
1320 - ``thorough`` -- (boolean; default False) whether or not we
1321 should generate irrational coefficients for the random
1322 element when our base ring is irrational; this slows the
1323 algebra operations to a crawl, but any truly random method
1324 should include them
1325
1326 """
1327 # For a general base ring... maybe we can trust this to do the
1328 # right thing? Unlikely, but.
1329 V = self.vector_space()
1330 v = V.random_element()
1331
1332 if self.base_ring() is AA:
1333 # The "random element" method of the algebraic reals is
1334 # stupid at the moment, and only returns integers between
1335 # -2 and 2, inclusive:
1336 #
1337 # https://trac.sagemath.org/ticket/30875
1338 #
1339 # Instead, we implement our own "random vector" method,
1340 # and then coerce that into the algebra. We use the vector
1341 # space degree here instead of the dimension because a
1342 # subalgebra could (for example) be spanned by only two
1343 # vectors, each with five coordinates. We need to
1344 # generate all five coordinates.
1345 if thorough:
1346 v *= QQbar.random_element().real()
1347 else:
1348 v *= QQ.random_element()
1349
1350 return self.from_vector(V.coordinate_vector(v))
1351
1352 def random_elements(self, count, thorough=False):
1353 """
1354 Return ``count`` random elements as a tuple.
1355
1356 INPUT:
1357
1358 - ``thorough`` -- (boolean; default False) whether or not we
1359 should generate irrational coefficients for the random
1360 elements when our base ring is irrational; this slows the
1361 algebra operations to a crawl, but any truly random method
1362 should include them
1363
1364 SETUP::
1365
1366 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1367
1368 EXAMPLES::
1369
1370 sage: J = JordanSpinEJA(3)
1371 sage: x,y,z = J.random_elements(3)
1372 sage: all( [ x in J, y in J, z in J ])
1373 True
1374 sage: len( J.random_elements(10) ) == 10
1375 True
1376
1377 """
1378 return tuple( self.random_element(thorough)
1379 for idx in range(count) )
1380
1381
1382 @cached_method
1383 def _charpoly_coefficients(self):
1384 r"""
1385 The `r` polynomial coefficients of the "characteristic polynomial
1386 of" function.
1387
1388 SETUP::
1389
1390 sage: from mjo.eja.eja_algebra import random_eja
1391
1392 TESTS:
1393
1394 The theory shows that these are all homogeneous polynomials of
1395 a known degree::
1396
1397 sage: set_random_seed()
1398 sage: J = random_eja()
1399 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1400 True
1401
1402 """
1403 n = self.dimension()
1404 R = self.coordinate_polynomial_ring()
1405 vars = R.gens()
1406 F = R.fraction_field()
1407
1408 def L_x_i_j(i,j):
1409 # From a result in my book, these are the entries of the
1410 # basis representation of L_x.
1411 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1412 for k in range(n) )
1413
1414 L_x = matrix(F, n, n, L_x_i_j)
1415
1416 r = None
1417 if self.rank.is_in_cache():
1418 r = self.rank()
1419 # There's no need to pad the system with redundant
1420 # columns if we *know* they'll be redundant.
1421 n = r
1422
1423 # Compute an extra power in case the rank is equal to
1424 # the dimension (otherwise, we would stop at x^(r-1)).
1425 x_powers = [ (L_x**k)*self.one().to_vector()
1426 for k in range(n+1) ]
1427 A = matrix.column(F, x_powers[:n])
1428 AE = A.extended_echelon_form()
1429 E = AE[:,n:]
1430 A_rref = AE[:,:n]
1431 if r is None:
1432 r = A_rref.rank()
1433 b = x_powers[r]
1434
1435 # The theory says that only the first "r" coefficients are
1436 # nonzero, and they actually live in the original polynomial
1437 # ring and not the fraction field. We negate them because in
1438 # the actual characteristic polynomial, they get moved to the
1439 # other side where x^r lives. We don't bother to trim A_rref
1440 # down to a square matrix and solve the resulting system,
1441 # because the upper-left r-by-r portion of A_rref is
1442 # guaranteed to be the identity matrix, so e.g.
1443 #
1444 # A_rref.solve_right(Y)
1445 #
1446 # would just be returning Y.
1447 return (-E*b)[:r].change_ring(R)
1448
1449 @cached_method
1450 def rank(self):
1451 r"""
1452 Return the rank of this EJA.
1453
1454 This is a cached method because we know the rank a priori for
1455 all of the algebras we can construct. Thus we can avoid the
1456 expensive ``_charpoly_coefficients()`` call unless we truly
1457 need to compute the whole characteristic polynomial.
1458
1459 SETUP::
1460
1461 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1462 ....: JordanSpinEJA,
1463 ....: RealSymmetricEJA,
1464 ....: ComplexHermitianEJA,
1465 ....: QuaternionHermitianEJA,
1466 ....: random_eja)
1467
1468 EXAMPLES:
1469
1470 The rank of the Jordan spin algebra is always two::
1471
1472 sage: JordanSpinEJA(2).rank()
1473 2
1474 sage: JordanSpinEJA(3).rank()
1475 2
1476 sage: JordanSpinEJA(4).rank()
1477 2
1478
1479 The rank of the `n`-by-`n` Hermitian real, complex, or
1480 quaternion matrices is `n`::
1481
1482 sage: RealSymmetricEJA(4).rank()
1483 4
1484 sage: ComplexHermitianEJA(3).rank()
1485 3
1486 sage: QuaternionHermitianEJA(2).rank()
1487 2
1488
1489 TESTS:
1490
1491 Ensure that every EJA that we know how to construct has a
1492 positive integer rank, unless the algebra is trivial in
1493 which case its rank will be zero::
1494
1495 sage: set_random_seed()
1496 sage: J = random_eja()
1497 sage: r = J.rank()
1498 sage: r in ZZ
1499 True
1500 sage: r > 0 or (r == 0 and J.is_trivial())
1501 True
1502
1503 Ensure that computing the rank actually works, since the ranks
1504 of all simple algebras are known and will be cached by default::
1505
1506 sage: set_random_seed() # long time
1507 sage: J = random_eja() # long time
1508 sage: cached = J.rank() # long time
1509 sage: J.rank.clear_cache() # long time
1510 sage: J.rank() == cached # long time
1511 True
1512
1513 """
1514 return len(self._charpoly_coefficients())
1515
1516
1517 def subalgebra(self, basis, **kwargs):
1518 r"""
1519 Create a subalgebra of this algebra from the given basis.
1520 """
1521 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1522 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1523
1524
1525 def vector_space(self):
1526 """
1527 Return the vector space that underlies this algebra.
1528
1529 SETUP::
1530
1531 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1532
1533 EXAMPLES::
1534
1535 sage: J = RealSymmetricEJA(2)
1536 sage: J.vector_space()
1537 Vector space of dimension 3 over...
1538
1539 """
1540 return self.zero().to_vector().parent().ambient_vector_space()
1541
1542
1543
1544 class RationalBasisEJA(FiniteDimensionalEJA):
1545 r"""
1546 New class for algebras whose supplied basis elements have all rational entries.
1547
1548 SETUP::
1549
1550 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1551
1552 EXAMPLES:
1553
1554 The supplied basis is orthonormalized by default::
1555
1556 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1557 sage: J = BilinearFormEJA(B)
1558 sage: J.matrix_basis()
1559 (
1560 [1] [ 0] [ 0]
1561 [0] [1/5] [32/5]
1562 [0], [ 0], [ 5]
1563 )
1564
1565 """
1566 def __init__(self,
1567 basis,
1568 jordan_product,
1569 inner_product,
1570 field=AA,
1571 check_field=True,
1572 **kwargs):
1573
1574 if check_field:
1575 # Abuse the check_field parameter to check that the entries of
1576 # out basis (in ambient coordinates) are in the field QQ.
1577 if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
1578 raise TypeError("basis not rational")
1579
1580 super().__init__(basis,
1581 jordan_product,
1582 inner_product,
1583 field=field,
1584 check_field=check_field,
1585 **kwargs)
1586
1587 self._rational_algebra = None
1588 if field is not QQ:
1589 # There's no point in constructing the extra algebra if this
1590 # one is already rational.
1591 #
1592 # Note: the same Jordan and inner-products work here,
1593 # because they are necessarily defined with respect to
1594 # ambient coordinates and not any particular basis.
1595 self._rational_algebra = FiniteDimensionalEJA(
1596 basis,
1597 jordan_product,
1598 inner_product,
1599 field=QQ,
1600 associative=self.is_associative(),
1601 orthonormalize=False,
1602 check_field=False,
1603 check_axioms=False)
1604
1605 @cached_method
1606 def _charpoly_coefficients(self):
1607 r"""
1608 SETUP::
1609
1610 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1611 ....: JordanSpinEJA)
1612
1613 EXAMPLES:
1614
1615 The base ring of the resulting polynomial coefficients is what
1616 it should be, and not the rationals (unless the algebra was
1617 already over the rationals)::
1618
1619 sage: J = JordanSpinEJA(3)
1620 sage: J._charpoly_coefficients()
1621 (X1^2 - X2^2 - X3^2, -2*X1)
1622 sage: a0 = J._charpoly_coefficients()[0]
1623 sage: J.base_ring()
1624 Algebraic Real Field
1625 sage: a0.base_ring()
1626 Algebraic Real Field
1627
1628 """
1629 if self._rational_algebra is None:
1630 # There's no need to construct *another* algebra over the
1631 # rationals if this one is already over the
1632 # rationals. Likewise, if we never orthonormalized our
1633 # basis, we might as well just use the given one.
1634 return super()._charpoly_coefficients()
1635
1636 # Do the computation over the rationals. The answer will be
1637 # the same, because all we've done is a change of basis.
1638 # Then, change back from QQ to our real base ring
1639 a = ( a_i.change_ring(self.base_ring())
1640 for a_i in self._rational_algebra._charpoly_coefficients() )
1641
1642 if self._deortho_matrix is None:
1643 # This can happen if our base ring was, say, AA and we
1644 # chose not to (or didn't need to) orthonormalize. It's
1645 # still faster to do the computations over QQ even if
1646 # the numbers in the boxes stay the same.
1647 return tuple(a)
1648
1649 # Otherwise, convert the coordinate variables back to the
1650 # deorthonormalized ones.
1651 R = self.coordinate_polynomial_ring()
1652 from sage.modules.free_module_element import vector
1653 X = vector(R, R.gens())
1654 BX = self._deortho_matrix*X
1655
1656 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1657 return tuple( a_i.subs(subs_dict) for a_i in a )
1658
1659 class ConcreteEJA(RationalBasisEJA):
1660 r"""
1661 A class for the Euclidean Jordan algebras that we know by name.
1662
1663 These are the Jordan algebras whose basis, multiplication table,
1664 rank, and so on are known a priori. More to the point, they are
1665 the Euclidean Jordan algebras for which we are able to conjure up
1666 a "random instance."
1667
1668 SETUP::
1669
1670 sage: from mjo.eja.eja_algebra import ConcreteEJA
1671
1672 TESTS:
1673
1674 Our basis is normalized with respect to the algebra's inner
1675 product, unless we specify otherwise::
1676
1677 sage: set_random_seed()
1678 sage: J = ConcreteEJA.random_instance()
1679 sage: all( b.norm() == 1 for b in J.gens() )
1680 True
1681
1682 Since our basis is orthonormal with respect to the algebra's inner
1683 product, and since we know that this algebra is an EJA, any
1684 left-multiplication operator's matrix will be symmetric because
1685 natural->EJA basis representation is an isometry and within the
1686 EJA the operator is self-adjoint by the Jordan axiom::
1687
1688 sage: set_random_seed()
1689 sage: J = ConcreteEJA.random_instance()
1690 sage: x = J.random_element()
1691 sage: x.operator().is_self_adjoint()
1692 True
1693 """
1694
1695 @staticmethod
1696 def _max_random_instance_size():
1697 """
1698 Return an integer "size" that is an upper bound on the size of
1699 this algebra when it is used in a random test
1700 case. Unfortunately, the term "size" is ambiguous -- when
1701 dealing with `R^n` under either the Hadamard or Jordan spin
1702 product, the "size" refers to the dimension `n`. When dealing
1703 with a matrix algebra (real symmetric or complex/quaternion
1704 Hermitian), it refers to the size of the matrix, which is far
1705 less than the dimension of the underlying vector space.
1706
1707 This method must be implemented in each subclass.
1708 """
1709 raise NotImplementedError
1710
1711 @classmethod
1712 def random_instance(cls, *args, **kwargs):
1713 """
1714 Return a random instance of this type of algebra.
1715
1716 This method should be implemented in each subclass.
1717 """
1718 from sage.misc.prandom import choice
1719 eja_class = choice(cls.__subclasses__())
1720
1721 # These all bubble up to the RationalBasisEJA superclass
1722 # constructor, so any (kw)args valid there are also valid
1723 # here.
1724 return eja_class.random_instance(*args, **kwargs)
1725
1726
1727 class MatrixEJA:
1728 @staticmethod
1729 def dimension_over_reals():
1730 r"""
1731 The dimension of this matrix's base ring over the reals.
1732
1733 The reals are dimension one over themselves, obviously; that's
1734 just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
1735 have dimension two. Finally, the quaternions have dimension
1736 four over the reals.
1737
1738 This is used to determine the size of the matrix returned from
1739 :meth:`real_embed`, among other things.
1740 """
1741 raise NotImplementedError
1742
1743 @classmethod
1744 def real_embed(cls,M):
1745 """
1746 Embed the matrix ``M`` into a space of real matrices.
1747
1748 The matrix ``M`` can have entries in any field at the moment:
1749 the real numbers, complex numbers, or quaternions. And although
1750 they are not a field, we can probably support octonions at some
1751 point, too. This function returns a real matrix that "acts like"
1752 the original with respect to matrix multiplication; i.e.
1753
1754 real_embed(M*N) = real_embed(M)*real_embed(N)
1755
1756 """
1757 if M.ncols() != M.nrows():
1758 raise ValueError("the matrix 'M' must be square")
1759 return M
1760
1761
1762 @classmethod
1763 def real_unembed(cls,M):
1764 """
1765 The inverse of :meth:`real_embed`.
1766 """
1767 if M.ncols() != M.nrows():
1768 raise ValueError("the matrix 'M' must be square")
1769 if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
1770 raise ValueError("the matrix 'M' must be a real embedding")
1771 return M
1772
1773 @staticmethod
1774 def jordan_product(X,Y):
1775 return (X*Y + Y*X)/2
1776
1777 @classmethod
1778 def trace_inner_product(cls,X,Y):
1779 r"""
1780 Compute the trace inner-product of two real-embeddings.
1781
1782 SETUP::
1783
1784 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1785 ....: ComplexHermitianEJA,
1786 ....: QuaternionHermitianEJA)
1787
1788 EXAMPLES::
1789
1790 This gives the same answer as it would if we computed the trace
1791 from the unembedded (original) matrices::
1792
1793 sage: set_random_seed()
1794 sage: J = RealSymmetricEJA.random_instance()
1795 sage: x,y = J.random_elements(2)
1796 sage: Xe = x.to_matrix()
1797 sage: Ye = y.to_matrix()
1798 sage: X = J.real_unembed(Xe)
1799 sage: Y = J.real_unembed(Ye)
1800 sage: expected = (X*Y).trace()
1801 sage: actual = J.trace_inner_product(Xe,Ye)
1802 sage: actual == expected
1803 True
1804
1805 ::
1806
1807 sage: set_random_seed()
1808 sage: J = ComplexHermitianEJA.random_instance()
1809 sage: x,y = J.random_elements(2)
1810 sage: Xe = x.to_matrix()
1811 sage: Ye = y.to_matrix()
1812 sage: X = J.real_unembed(Xe)
1813 sage: Y = J.real_unembed(Ye)
1814 sage: expected = (X*Y).trace().real()
1815 sage: actual = J.trace_inner_product(Xe,Ye)
1816 sage: actual == expected
1817 True
1818
1819 ::
1820
1821 sage: set_random_seed()
1822 sage: J = QuaternionHermitianEJA.random_instance()
1823 sage: x,y = J.random_elements(2)
1824 sage: Xe = x.to_matrix()
1825 sage: Ye = y.to_matrix()
1826 sage: X = J.real_unembed(Xe)
1827 sage: Y = J.real_unembed(Ye)
1828 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1829 sage: actual = J.trace_inner_product(Xe,Ye)
1830 sage: actual == expected
1831 True
1832
1833 """
1834 # This does in fact compute the real part of the trace.
1835 # If we compute the trace of e.g. a complex matrix M,
1836 # then we do so by adding up its diagonal entries --
1837 # call them z_1 through z_n. The real embedding of z_1
1838 # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
1839 # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
1840 return (X*Y).trace()/cls.dimension_over_reals()
1841
1842
1843 class RealMatrixEJA(MatrixEJA):
1844 @staticmethod
1845 def dimension_over_reals():
1846 return 1
1847
1848
1849 class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
1850 """
1851 The rank-n simple EJA consisting of real symmetric n-by-n
1852 matrices, the usual symmetric Jordan product, and the trace inner
1853 product. It has dimension `(n^2 + n)/2` over the reals.
1854
1855 SETUP::
1856
1857 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1858
1859 EXAMPLES::
1860
1861 sage: J = RealSymmetricEJA(2)
1862 sage: b0, b1, b2 = J.gens()
1863 sage: b0*b0
1864 b0
1865 sage: b1*b1
1866 1/2*b0 + 1/2*b2
1867 sage: b2*b2
1868 b2
1869
1870 In theory, our "field" can be any subfield of the reals::
1871
1872 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
1873 Euclidean Jordan algebra of dimension 3 over Real Double Field
1874 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
1875 Euclidean Jordan algebra of dimension 3 over Real Field with
1876 53 bits of precision
1877
1878 TESTS:
1879
1880 The dimension of this algebra is `(n^2 + n) / 2`::
1881
1882 sage: set_random_seed()
1883 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1884 sage: n = ZZ.random_element(1, n_max)
1885 sage: J = RealSymmetricEJA(n)
1886 sage: J.dimension() == (n^2 + n)/2
1887 True
1888
1889 The Jordan multiplication is what we think it is::
1890
1891 sage: set_random_seed()
1892 sage: J = RealSymmetricEJA.random_instance()
1893 sage: x,y = J.random_elements(2)
1894 sage: actual = (x*y).to_matrix()
1895 sage: X = x.to_matrix()
1896 sage: Y = y.to_matrix()
1897 sage: expected = (X*Y + Y*X)/2
1898 sage: actual == expected
1899 True
1900 sage: J(expected) == x*y
1901 True
1902
1903 We can change the generator prefix::
1904
1905 sage: RealSymmetricEJA(3, prefix='q').gens()
1906 (q0, q1, q2, q3, q4, q5)
1907
1908 We can construct the (trivial) algebra of rank zero::
1909
1910 sage: RealSymmetricEJA(0)
1911 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1912
1913 """
1914 @classmethod
1915 def _denormalized_basis(cls, n, field):
1916 """
1917 Return a basis for the space of real symmetric n-by-n matrices.
1918
1919 SETUP::
1920
1921 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1922
1923 TESTS::
1924
1925 sage: set_random_seed()
1926 sage: n = ZZ.random_element(1,5)
1927 sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
1928 sage: all( M.is_symmetric() for M in B)
1929 True
1930
1931 """
1932 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1933 # coordinates.
1934 S = []
1935 for i in range(n):
1936 for j in range(i+1):
1937 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1938 if i == j:
1939 Sij = Eij
1940 else:
1941 Sij = Eij + Eij.transpose()
1942 S.append(Sij)
1943 return tuple(S)
1944
1945
1946 @staticmethod
1947 def _max_random_instance_size():
1948 return 4 # Dimension 10
1949
1950 @classmethod
1951 def random_instance(cls, **kwargs):
1952 """
1953 Return a random instance of this type of algebra.
1954 """
1955 n = ZZ.random_element(cls._max_random_instance_size() + 1)
1956 return cls(n, **kwargs)
1957
1958 def __init__(self, n, field=AA, **kwargs):
1959 # We know this is a valid EJA, but will double-check
1960 # if the user passes check_axioms=True.
1961 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
1962
1963 associative = False
1964 if n <= 1:
1965 associative = True
1966
1967 super().__init__(self._denormalized_basis(n,field),
1968 self.jordan_product,
1969 self.trace_inner_product,
1970 field=field,
1971 associative=associative,
1972 **kwargs)
1973
1974 # TODO: this could be factored out somehow, but is left here
1975 # because the MatrixEJA is not presently a subclass of the
1976 # FDEJA class that defines rank() and one().
1977 self.rank.set_cache(n)
1978 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
1979 self.one.set_cache(self(idV))
1980
1981
1982
1983 class ComplexMatrixEJA(MatrixEJA):
1984 # A manual dictionary-cache for the complex_extension() method,
1985 # since apparently @classmethods can't also be @cached_methods.
1986 _complex_extension = {}
1987
1988 @classmethod
1989 def complex_extension(cls,field):
1990 r"""
1991 The complex field that we embed/unembed, as an extension
1992 of the given ``field``.
1993 """
1994 if field in cls._complex_extension:
1995 return cls._complex_extension[field]
1996
1997 # Sage doesn't know how to adjoin the complex "i" (the root of
1998 # x^2 + 1) to a field in a general way. Here, we just enumerate
1999 # all of the cases that I have cared to support so far.
2000 if field is AA:
2001 # Sage doesn't know how to embed AA into QQbar, i.e. how
2002 # to adjoin sqrt(-1) to AA.
2003 F = QQbar
2004 elif not field.is_exact():
2005 # RDF or RR
2006 F = field.complex_field()
2007 else:
2008 # Works for QQ and... maybe some other fields.
2009 R = PolynomialRing(field, 'z')
2010 z = R.gen()
2011 F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
2012
2013 cls._complex_extension[field] = F
2014 return F
2015
2016 @staticmethod
2017 def dimension_over_reals():
2018 return 2
2019
2020 @classmethod
2021 def real_embed(cls,M):
2022 """
2023 Embed the n-by-n complex matrix ``M`` into the space of real
2024 matrices of size 2n-by-2n via the map the sends each entry `z = a +
2025 bi` to the block matrix ``[[a,b],[-b,a]]``.
2026
2027 SETUP::
2028
2029 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
2030
2031 EXAMPLES::
2032
2033 sage: F = QuadraticField(-1, 'I')
2034 sage: x1 = F(4 - 2*i)
2035 sage: x2 = F(1 + 2*i)
2036 sage: x3 = F(-i)
2037 sage: x4 = F(6)
2038 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
2039 sage: ComplexMatrixEJA.real_embed(M)
2040 [ 4 -2| 1 2]
2041 [ 2 4|-2 1]
2042 [-----+-----]
2043 [ 0 -1| 6 0]
2044 [ 1 0| 0 6]
2045
2046 TESTS:
2047
2048 Embedding is a homomorphism (isomorphism, in fact)::
2049
2050 sage: set_random_seed()
2051 sage: n = ZZ.random_element(3)
2052 sage: F = QuadraticField(-1, 'I')
2053 sage: X = random_matrix(F, n)
2054 sage: Y = random_matrix(F, n)
2055 sage: Xe = ComplexMatrixEJA.real_embed(X)
2056 sage: Ye = ComplexMatrixEJA.real_embed(Y)
2057 sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
2058 sage: Xe*Ye == XYe
2059 True
2060
2061 """
2062 super().real_embed(M)
2063 n = M.nrows()
2064
2065 # We don't need any adjoined elements...
2066 field = M.base_ring().base_ring()
2067
2068 blocks = []
2069 for z in M.list():
2070 a = z.real()
2071 b = z.imag()
2072 blocks.append(matrix(field, 2, [ [ a, b],
2073 [-b, a] ]))
2074
2075 return matrix.block(field, n, blocks)
2076
2077
2078 @classmethod
2079 def real_unembed(cls,M):
2080 """
2081 The inverse of _embed_complex_matrix().
2082
2083 SETUP::
2084
2085 sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
2086
2087 EXAMPLES::
2088
2089 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
2090 ....: [-2, 1, -4, 3],
2091 ....: [ 9, 10, 11, 12],
2092 ....: [-10, 9, -12, 11] ])
2093 sage: ComplexMatrixEJA.real_unembed(A)
2094 [ 2*I + 1 4*I + 3]
2095 [ 10*I + 9 12*I + 11]
2096
2097 TESTS:
2098
2099 Unembedding is the inverse of embedding::
2100
2101 sage: set_random_seed()
2102 sage: F = QuadraticField(-1, 'I')
2103 sage: M = random_matrix(F, 3)
2104 sage: Me = ComplexMatrixEJA.real_embed(M)
2105 sage: ComplexMatrixEJA.real_unembed(Me) == M
2106 True
2107
2108 """
2109 super().real_unembed(M)
2110 n = ZZ(M.nrows())
2111 d = cls.dimension_over_reals()
2112 F = cls.complex_extension(M.base_ring())
2113 i = F.gen()
2114
2115 # Go top-left to bottom-right (reading order), converting every
2116 # 2-by-2 block we see to a single complex element.
2117 elements = []
2118 for k in range(n/d):
2119 for j in range(n/d):
2120 submat = M[d*k:d*k+d,d*j:d*j+d]
2121 if submat[0,0] != submat[1,1]:
2122 raise ValueError('bad on-diagonal submatrix')
2123 if submat[0,1] != -submat[1,0]:
2124 raise ValueError('bad off-diagonal submatrix')
2125 z = submat[0,0] + submat[0,1]*i
2126 elements.append(z)
2127
2128 return matrix(F, n/d, elements)
2129
2130
2131 class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
2132 """
2133 The rank-n simple EJA consisting of complex Hermitian n-by-n
2134 matrices over the real numbers, the usual symmetric Jordan product,
2135 and the real-part-of-trace inner product. It has dimension `n^2` over
2136 the reals.
2137
2138 SETUP::
2139
2140 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2141
2142 EXAMPLES:
2143
2144 In theory, our "field" can be any subfield of the reals::
2145
2146 sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
2147 Euclidean Jordan algebra of dimension 4 over Real Double Field
2148 sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
2149 Euclidean Jordan algebra of dimension 4 over Real Field with
2150 53 bits of precision
2151
2152 TESTS:
2153
2154 The dimension of this algebra is `n^2`::
2155
2156 sage: set_random_seed()
2157 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
2158 sage: n = ZZ.random_element(1, n_max)
2159 sage: J = ComplexHermitianEJA(n)
2160 sage: J.dimension() == n^2
2161 True
2162
2163 The Jordan multiplication is what we think it is::
2164
2165 sage: set_random_seed()
2166 sage: J = ComplexHermitianEJA.random_instance()
2167 sage: x,y = J.random_elements(2)
2168 sage: actual = (x*y).to_matrix()
2169 sage: X = x.to_matrix()
2170 sage: Y = y.to_matrix()
2171 sage: expected = (X*Y + Y*X)/2
2172 sage: actual == expected
2173 True
2174 sage: J(expected) == x*y
2175 True
2176
2177 We can change the generator prefix::
2178
2179 sage: ComplexHermitianEJA(2, prefix='z').gens()
2180 (z0, z1, z2, z3)
2181
2182 We can construct the (trivial) algebra of rank zero::
2183
2184 sage: ComplexHermitianEJA(0)
2185 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2186
2187 """
2188
2189 @classmethod
2190 def _denormalized_basis(cls, n, field):
2191 """
2192 Returns a basis for the space of complex Hermitian n-by-n matrices.
2193
2194 Why do we embed these? Basically, because all of numerical linear
2195 algebra assumes that you're working with vectors consisting of `n`
2196 entries from a field and scalars from the same field. There's no way
2197 to tell SageMath that (for example) the vectors contain complex
2198 numbers, while the scalar field is real.
2199
2200 SETUP::
2201
2202 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2203
2204 TESTS::
2205
2206 sage: set_random_seed()
2207 sage: n = ZZ.random_element(1,5)
2208 sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
2209 sage: all( M.is_symmetric() for M in B)
2210 True
2211
2212 """
2213 R = PolynomialRing(ZZ, 'z')
2214 z = R.gen()
2215 F = ZZ.extension(z**2 + 1, 'I')
2216 I = F.gen(1)
2217
2218 # This is like the symmetric case, but we need to be careful:
2219 #
2220 # * We want conjugate-symmetry, not just symmetry.
2221 # * The diagonal will (as a result) be real.
2222 #
2223 S = []
2224 Eij = matrix.zero(F,n)
2225 for i in range(n):
2226 for j in range(i+1):
2227 # "build" E_ij
2228 Eij[i,j] = 1
2229 if i == j:
2230 Sij = cls.real_embed(Eij)
2231 S.append(Sij)
2232 else:
2233 # The second one has a minus because it's conjugated.
2234 Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
2235 Sij_real = cls.real_embed(Eij)
2236 S.append(Sij_real)
2237 # Eij = I*Eij - I*Eij.transpose()
2238 Eij[i,j] = I
2239 Eij[j,i] = -I
2240 Sij_imag = cls.real_embed(Eij)
2241 S.append(Sij_imag)
2242 Eij[j,i] = 0
2243 # "erase" E_ij
2244 Eij[i,j] = 0
2245
2246 # Since we embedded the entries, we can drop back to the
2247 # desired real "field" instead of the extension "F".
2248 return tuple( s.change_ring(field) for s in S )
2249
2250
2251 def __init__(self, n, field=AA, **kwargs):
2252 # We know this is a valid EJA, but will double-check
2253 # if the user passes check_axioms=True.
2254 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2255
2256 associative = False
2257 if n <= 1:
2258 associative = True
2259
2260 super().__init__(self._denormalized_basis(n,field),
2261 self.jordan_product,
2262 self.trace_inner_product,
2263 field=field,
2264 associative=associative,
2265 **kwargs)
2266 # TODO: this could be factored out somehow, but is left here
2267 # because the MatrixEJA is not presently a subclass of the
2268 # FDEJA class that defines rank() and one().
2269 self.rank.set_cache(n)
2270 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2271 self.one.set_cache(self(idV))
2272
2273 @staticmethod
2274 def _max_random_instance_size():
2275 return 3 # Dimension 9
2276
2277 @classmethod
2278 def random_instance(cls, **kwargs):
2279 """
2280 Return a random instance of this type of algebra.
2281 """
2282 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2283 return cls(n, **kwargs)
2284
2285 class QuaternionMatrixEJA(MatrixEJA):
2286
2287 # A manual dictionary-cache for the quaternion_extension() method,
2288 # since apparently @classmethods can't also be @cached_methods.
2289 _quaternion_extension = {}
2290
2291 @classmethod
2292 def quaternion_extension(cls,field):
2293 r"""
2294 The quaternion field that we embed/unembed, as an extension
2295 of the given ``field``.
2296 """
2297 if field in cls._quaternion_extension:
2298 return cls._quaternion_extension[field]
2299
2300 Q = QuaternionAlgebra(field,-1,-1)
2301
2302 cls._quaternion_extension[field] = Q
2303 return Q
2304
2305 @staticmethod
2306 def dimension_over_reals():
2307 return 4
2308
2309 @classmethod
2310 def real_embed(cls,M):
2311 """
2312 Embed the n-by-n quaternion matrix ``M`` into the space of real
2313 matrices of size 4n-by-4n by first sending each quaternion entry `z
2314 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
2315 c+di],[-c + di, a-bi]]`, and then embedding those into a real
2316 matrix.
2317
2318 SETUP::
2319
2320 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2321
2322 EXAMPLES::
2323
2324 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2325 sage: i,j,k = Q.gens()
2326 sage: x = 1 + 2*i + 3*j + 4*k
2327 sage: M = matrix(Q, 1, [[x]])
2328 sage: QuaternionMatrixEJA.real_embed(M)
2329 [ 1 2 3 4]
2330 [-2 1 -4 3]
2331 [-3 4 1 -2]
2332 [-4 -3 2 1]
2333
2334 Embedding is a homomorphism (isomorphism, in fact)::
2335
2336 sage: set_random_seed()
2337 sage: n = ZZ.random_element(2)
2338 sage: Q = QuaternionAlgebra(QQ,-1,-1)
2339 sage: X = random_matrix(Q, n)
2340 sage: Y = random_matrix(Q, n)
2341 sage: Xe = QuaternionMatrixEJA.real_embed(X)
2342 sage: Ye = QuaternionMatrixEJA.real_embed(Y)
2343 sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
2344 sage: Xe*Ye == XYe
2345 True
2346
2347 """
2348 super().real_embed(M)
2349 quaternions = M.base_ring()
2350 n = M.nrows()
2351
2352 F = QuadraticField(-1, 'I')
2353 i = F.gen()
2354
2355 blocks = []
2356 for z in M.list():
2357 t = z.coefficient_tuple()
2358 a = t[0]
2359 b = t[1]
2360 c = t[2]
2361 d = t[3]
2362 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
2363 [-c + d*i, a - b*i]])
2364 realM = ComplexMatrixEJA.real_embed(cplxM)
2365 blocks.append(realM)
2366
2367 # We should have real entries by now, so use the realest field
2368 # we've got for the return value.
2369 return matrix.block(quaternions.base_ring(), n, blocks)
2370
2371
2372
2373 @classmethod
2374 def real_unembed(cls,M):
2375 """
2376 The inverse of _embed_quaternion_matrix().
2377
2378 SETUP::
2379
2380 sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
2381
2382 EXAMPLES::
2383
2384 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
2385 ....: [-2, 1, -4, 3],
2386 ....: [-3, 4, 1, -2],
2387 ....: [-4, -3, 2, 1]])
2388 sage: QuaternionMatrixEJA.real_unembed(M)
2389 [1 + 2*i + 3*j + 4*k]
2390
2391 TESTS:
2392
2393 Unembedding is the inverse of embedding::
2394
2395 sage: set_random_seed()
2396 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2397 sage: M = random_matrix(Q, 3)
2398 sage: Me = QuaternionMatrixEJA.real_embed(M)
2399 sage: QuaternionMatrixEJA.real_unembed(Me) == M
2400 True
2401
2402 """
2403 super().real_unembed(M)
2404 n = ZZ(M.nrows())
2405 d = cls.dimension_over_reals()
2406
2407 # Use the base ring of the matrix to ensure that its entries can be
2408 # multiplied by elements of the quaternion algebra.
2409 Q = cls.quaternion_extension(M.base_ring())
2410 i,j,k = Q.gens()
2411
2412 # Go top-left to bottom-right (reading order), converting every
2413 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2414 # quaternion block.
2415 elements = []
2416 for l in range(n/d):
2417 for m in range(n/d):
2418 submat = ComplexMatrixEJA.real_unembed(
2419 M[d*l:d*l+d,d*m:d*m+d] )
2420 if submat[0,0] != submat[1,1].conjugate():
2421 raise ValueError('bad on-diagonal submatrix')
2422 if submat[0,1] != -submat[1,0].conjugate():
2423 raise ValueError('bad off-diagonal submatrix')
2424 z = submat[0,0].real()
2425 z += submat[0,0].imag()*i
2426 z += submat[0,1].real()*j
2427 z += submat[0,1].imag()*k
2428 elements.append(z)
2429
2430 return matrix(Q, n/d, elements)
2431
2432
2433 class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
2434 r"""
2435 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2436 matrices, the usual symmetric Jordan product, and the
2437 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2438 the reals.
2439
2440 SETUP::
2441
2442 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2443
2444 EXAMPLES:
2445
2446 In theory, our "field" can be any subfield of the reals::
2447
2448 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2449 Euclidean Jordan algebra of dimension 6 over Real Double Field
2450 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2451 Euclidean Jordan algebra of dimension 6 over Real Field with
2452 53 bits of precision
2453
2454 TESTS:
2455
2456 The dimension of this algebra is `2*n^2 - n`::
2457
2458 sage: set_random_seed()
2459 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2460 sage: n = ZZ.random_element(1, n_max)
2461 sage: J = QuaternionHermitianEJA(n)
2462 sage: J.dimension() == 2*(n^2) - n
2463 True
2464
2465 The Jordan multiplication is what we think it is::
2466
2467 sage: set_random_seed()
2468 sage: J = QuaternionHermitianEJA.random_instance()
2469 sage: x,y = J.random_elements(2)
2470 sage: actual = (x*y).to_matrix()
2471 sage: X = x.to_matrix()
2472 sage: Y = y.to_matrix()
2473 sage: expected = (X*Y + Y*X)/2
2474 sage: actual == expected
2475 True
2476 sage: J(expected) == x*y
2477 True
2478
2479 We can change the generator prefix::
2480
2481 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2482 (a0, a1, a2, a3, a4, a5)
2483
2484 We can construct the (trivial) algebra of rank zero::
2485
2486 sage: QuaternionHermitianEJA(0)
2487 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2488
2489 """
2490 @classmethod
2491 def _denormalized_basis(cls, n, field):
2492 """
2493 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2494
2495 Why do we embed these? Basically, because all of numerical
2496 linear algebra assumes that you're working with vectors consisting
2497 of `n` entries from a field and scalars from the same field. There's
2498 no way to tell SageMath that (for example) the vectors contain
2499 complex numbers, while the scalar field is real.
2500
2501 SETUP::
2502
2503 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2504
2505 TESTS::
2506
2507 sage: set_random_seed()
2508 sage: n = ZZ.random_element(1,5)
2509 sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
2510 sage: all( M.is_symmetric() for M in B )
2511 True
2512
2513 """
2514 Q = QuaternionAlgebra(QQ,-1,-1)
2515 I,J,K = Q.gens()
2516
2517 # This is like the symmetric case, but we need to be careful:
2518 #
2519 # * We want conjugate-symmetry, not just symmetry.
2520 # * The diagonal will (as a result) be real.
2521 #
2522 S = []
2523 Eij = matrix.zero(Q,n)
2524 for i in range(n):
2525 for j in range(i+1):
2526 # "build" E_ij
2527 Eij[i,j] = 1
2528 if i == j:
2529 Sij = cls.real_embed(Eij)
2530 S.append(Sij)
2531 else:
2532 # The second, third, and fourth ones have a minus
2533 # because they're conjugated.
2534 # Eij = Eij + Eij.transpose()
2535 Eij[j,i] = 1
2536 Sij_real = cls.real_embed(Eij)
2537 S.append(Sij_real)
2538 # Eij = I*(Eij - Eij.transpose())
2539 Eij[i,j] = I
2540 Eij[j,i] = -I
2541 Sij_I = cls.real_embed(Eij)
2542 S.append(Sij_I)
2543 # Eij = J*(Eij - Eij.transpose())
2544 Eij[i,j] = J
2545 Eij[j,i] = -J
2546 Sij_J = cls.real_embed(Eij)
2547 S.append(Sij_J)
2548 # Eij = K*(Eij - Eij.transpose())
2549 Eij[i,j] = K
2550 Eij[j,i] = -K
2551 Sij_K = cls.real_embed(Eij)
2552 S.append(Sij_K)
2553 Eij[j,i] = 0
2554 # "erase" E_ij
2555 Eij[i,j] = 0
2556
2557 # Since we embedded the entries, we can drop back to the
2558 # desired real "field" instead of the quaternion algebra "Q".
2559 return tuple( s.change_ring(field) for s in S )
2560
2561
2562 def __init__(self, n, field=AA, **kwargs):
2563 # We know this is a valid EJA, but will double-check
2564 # if the user passes check_axioms=True.
2565 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2566
2567 associative = False
2568 if n <= 1:
2569 associative = True
2570
2571 super().__init__(self._denormalized_basis(n,field),
2572 self.jordan_product,
2573 self.trace_inner_product,
2574 field=field,
2575 associative=associative,
2576 **kwargs)
2577
2578 # TODO: this could be factored out somehow, but is left here
2579 # because the MatrixEJA is not presently a subclass of the
2580 # FDEJA class that defines rank() and one().
2581 self.rank.set_cache(n)
2582 idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
2583 self.one.set_cache(self(idV))
2584
2585
2586 @staticmethod
2587 def _max_random_instance_size():
2588 r"""
2589 The maximum rank of a random QuaternionHermitianEJA.
2590 """
2591 return 2 # Dimension 6
2592
2593 @classmethod
2594 def random_instance(cls, **kwargs):
2595 """
2596 Return a random instance of this type of algebra.
2597 """
2598 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2599 return cls(n, **kwargs)
2600
2601
2602 class HadamardEJA(ConcreteEJA):
2603 """
2604 Return the Euclidean Jordan Algebra corresponding to the set
2605 `R^n` under the Hadamard product.
2606
2607 Note: this is nothing more than the Cartesian product of ``n``
2608 copies of the spin algebra. Once Cartesian product algebras
2609 are implemented, this can go.
2610
2611 SETUP::
2612
2613 sage: from mjo.eja.eja_algebra import HadamardEJA
2614
2615 EXAMPLES:
2616
2617 This multiplication table can be verified by hand::
2618
2619 sage: J = HadamardEJA(3)
2620 sage: b0,b1,b2 = J.gens()
2621 sage: b0*b0
2622 b0
2623 sage: b0*b1
2624 0
2625 sage: b0*b2
2626 0
2627 sage: b1*b1
2628 b1
2629 sage: b1*b2
2630 0
2631 sage: b2*b2
2632 b2
2633
2634 TESTS:
2635
2636 We can change the generator prefix::
2637
2638 sage: HadamardEJA(3, prefix='r').gens()
2639 (r0, r1, r2)
2640
2641 """
2642 def __init__(self, n, field=AA, **kwargs):
2643 if n == 0:
2644 jordan_product = lambda x,y: x
2645 inner_product = lambda x,y: x
2646 else:
2647 def jordan_product(x,y):
2648 P = x.parent()
2649 return P( xi*yi for (xi,yi) in zip(x,y) )
2650
2651 def inner_product(x,y):
2652 return (x.T*y)[0,0]
2653
2654 # New defaults for keyword arguments. Don't orthonormalize
2655 # because our basis is already orthonormal with respect to our
2656 # inner-product. Don't check the axioms, because we know this
2657 # is a valid EJA... but do double-check if the user passes
2658 # check_axioms=True. Note: we DON'T override the "check_field"
2659 # default here, because the user can pass in a field!
2660 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2661 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2662
2663 column_basis = tuple( b.column()
2664 for b in FreeModule(field, n).basis() )
2665 super().__init__(column_basis,
2666 jordan_product,
2667 inner_product,
2668 field=field,
2669 associative=True,
2670 **kwargs)
2671 self.rank.set_cache(n)
2672
2673 if n == 0:
2674 self.one.set_cache( self.zero() )
2675 else:
2676 self.one.set_cache( sum(self.gens()) )
2677
2678 @staticmethod
2679 def _max_random_instance_size():
2680 r"""
2681 The maximum dimension of a random HadamardEJA.
2682 """
2683 return 5
2684
2685 @classmethod
2686 def random_instance(cls, **kwargs):
2687 """
2688 Return a random instance of this type of algebra.
2689 """
2690 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2691 return cls(n, **kwargs)
2692
2693
2694 class BilinearFormEJA(ConcreteEJA):
2695 r"""
2696 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2697 with the half-trace inner product and jordan product ``x*y =
2698 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2699 a symmetric positive-definite "bilinear form" matrix. Its
2700 dimension is the size of `B`, and it has rank two in dimensions
2701 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2702 the identity matrix of order ``n``.
2703
2704 We insist that the one-by-one upper-left identity block of `B` be
2705 passed in as well so that we can be passed a matrix of size zero
2706 to construct a trivial algebra.
2707
2708 SETUP::
2709
2710 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2711 ....: JordanSpinEJA)
2712
2713 EXAMPLES:
2714
2715 When no bilinear form is specified, the identity matrix is used,
2716 and the resulting algebra is the Jordan spin algebra::
2717
2718 sage: B = matrix.identity(AA,3)
2719 sage: J0 = BilinearFormEJA(B)
2720 sage: J1 = JordanSpinEJA(3)
2721 sage: J0.multiplication_table() == J0.multiplication_table()
2722 True
2723
2724 An error is raised if the matrix `B` does not correspond to a
2725 positive-definite bilinear form::
2726
2727 sage: B = matrix.random(QQ,2,3)
2728 sage: J = BilinearFormEJA(B)
2729 Traceback (most recent call last):
2730 ...
2731 ValueError: bilinear form is not positive-definite
2732 sage: B = matrix.zero(QQ,3)
2733 sage: J = BilinearFormEJA(B)
2734 Traceback (most recent call last):
2735 ...
2736 ValueError: bilinear form is not positive-definite
2737
2738 TESTS:
2739
2740 We can create a zero-dimensional algebra::
2741
2742 sage: B = matrix.identity(AA,0)
2743 sage: J = BilinearFormEJA(B)
2744 sage: J.basis()
2745 Finite family {}
2746
2747 We can check the multiplication condition given in the Jordan, von
2748 Neumann, and Wigner paper (and also discussed on my "On the
2749 symmetry..." paper). Note that this relies heavily on the standard
2750 choice of basis, as does anything utilizing the bilinear form
2751 matrix. We opt not to orthonormalize the basis, because if we
2752 did, we would have to normalize the `s_{i}` in a similar manner::
2753
2754 sage: set_random_seed()
2755 sage: n = ZZ.random_element(5)
2756 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2757 sage: B11 = matrix.identity(QQ,1)
2758 sage: B22 = M.transpose()*M
2759 sage: B = block_matrix(2,2,[ [B11,0 ],
2760 ....: [0, B22 ] ])
2761 sage: J = BilinearFormEJA(B, orthonormalize=False)
2762 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2763 sage: V = J.vector_space()
2764 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2765 ....: for ei in eis ]
2766 sage: actual = [ sis[i]*sis[j]
2767 ....: for i in range(n-1)
2768 ....: for j in range(n-1) ]
2769 sage: expected = [ J.one() if i == j else J.zero()
2770 ....: for i in range(n-1)
2771 ....: for j in range(n-1) ]
2772 sage: actual == expected
2773 True
2774
2775 """
2776 def __init__(self, B, field=AA, **kwargs):
2777 # The matrix "B" is supplied by the user in most cases,
2778 # so it makes sense to check whether or not its positive-
2779 # definite unless we are specifically asked not to...
2780 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2781 if not B.is_positive_definite():
2782 raise ValueError("bilinear form is not positive-definite")
2783
2784 # However, all of the other data for this EJA is computed
2785 # by us in manner that guarantees the axioms are
2786 # satisfied. So, again, unless we are specifically asked to
2787 # verify things, we'll skip the rest of the checks.
2788 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2789
2790 def inner_product(x,y):
2791 return (y.T*B*x)[0,0]
2792
2793 def jordan_product(x,y):
2794 P = x.parent()
2795 x0 = x[0,0]
2796 xbar = x[1:,0]
2797 y0 = y[0,0]
2798 ybar = y[1:,0]
2799 z0 = inner_product(y,x)
2800 zbar = y0*xbar + x0*ybar
2801 return P([z0] + zbar.list())
2802
2803 n = B.nrows()
2804 column_basis = tuple( b.column()
2805 for b in FreeModule(field, n).basis() )
2806
2807 # TODO: I haven't actually checked this, but it seems legit.
2808 associative = False
2809 if n <= 2:
2810 associative = True
2811
2812 super().__init__(column_basis,
2813 jordan_product,
2814 inner_product,
2815 field=field,
2816 associative=associative,
2817 **kwargs)
2818
2819 # The rank of this algebra is two, unless we're in a
2820 # one-dimensional ambient space (because the rank is bounded
2821 # by the ambient dimension).
2822 self.rank.set_cache(min(n,2))
2823
2824 if n == 0:
2825 self.one.set_cache( self.zero() )
2826 else:
2827 self.one.set_cache( self.monomial(0) )
2828
2829 @staticmethod
2830 def _max_random_instance_size():
2831 r"""
2832 The maximum dimension of a random BilinearFormEJA.
2833 """
2834 return 5
2835
2836 @classmethod
2837 def random_instance(cls, **kwargs):
2838 """
2839 Return a random instance of this algebra.
2840 """
2841 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2842 if n.is_zero():
2843 B = matrix.identity(ZZ, n)
2844 return cls(B, **kwargs)
2845
2846 B11 = matrix.identity(ZZ, 1)
2847 M = matrix.random(ZZ, n-1)
2848 I = matrix.identity(ZZ, n-1)
2849 alpha = ZZ.zero()
2850 while alpha.is_zero():
2851 alpha = ZZ.random_element().abs()
2852 B22 = M.transpose()*M + alpha*I
2853
2854 from sage.matrix.special import block_matrix
2855 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2856 [ZZ(0), B22 ] ])
2857
2858 return cls(B, **kwargs)
2859
2860
2861 class JordanSpinEJA(BilinearFormEJA):
2862 """
2863 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2864 with the usual inner product and jordan product ``x*y =
2865 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2866 the reals.
2867
2868 SETUP::
2869
2870 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2871
2872 EXAMPLES:
2873
2874 This multiplication table can be verified by hand::
2875
2876 sage: J = JordanSpinEJA(4)
2877 sage: b0,b1,b2,b3 = J.gens()
2878 sage: b0*b0
2879 b0
2880 sage: b0*b1
2881 b1
2882 sage: b0*b2
2883 b2
2884 sage: b0*b3
2885 b3
2886 sage: b1*b2
2887 0
2888 sage: b1*b3
2889 0
2890 sage: b2*b3
2891 0
2892
2893 We can change the generator prefix::
2894
2895 sage: JordanSpinEJA(2, prefix='B').gens()
2896 (B0, B1)
2897
2898 TESTS:
2899
2900 Ensure that we have the usual inner product on `R^n`::
2901
2902 sage: set_random_seed()
2903 sage: J = JordanSpinEJA.random_instance()
2904 sage: x,y = J.random_elements(2)
2905 sage: actual = x.inner_product(y)
2906 sage: expected = x.to_vector().inner_product(y.to_vector())
2907 sage: actual == expected
2908 True
2909
2910 """
2911 def __init__(self, n, *args, **kwargs):
2912 # This is a special case of the BilinearFormEJA with the
2913 # identity matrix as its bilinear form.
2914 B = matrix.identity(ZZ, n)
2915
2916 # Don't orthonormalize because our basis is already
2917 # orthonormal with respect to our inner-product.
2918 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2919
2920 # But also don't pass check_field=False here, because the user
2921 # can pass in a field!
2922 super().__init__(B, *args, **kwargs)
2923
2924 @staticmethod
2925 def _max_random_instance_size():
2926 r"""
2927 The maximum dimension of a random JordanSpinEJA.
2928 """
2929 return 5
2930
2931 @classmethod
2932 def random_instance(cls, **kwargs):
2933 """
2934 Return a random instance of this type of algebra.
2935
2936 Needed here to override the implementation for ``BilinearFormEJA``.
2937 """
2938 n = ZZ.random_element(cls._max_random_instance_size() + 1)
2939 return cls(n, **kwargs)
2940
2941
2942 class TrivialEJA(ConcreteEJA):
2943 """
2944 The trivial Euclidean Jordan algebra consisting of only a zero element.
2945
2946 SETUP::
2947
2948 sage: from mjo.eja.eja_algebra import TrivialEJA
2949
2950 EXAMPLES::
2951
2952 sage: J = TrivialEJA()
2953 sage: J.dimension()
2954 0
2955 sage: J.zero()
2956 0
2957 sage: J.one()
2958 0
2959 sage: 7*J.one()*12*J.one()
2960 0
2961 sage: J.one().inner_product(J.one())
2962 0
2963 sage: J.one().norm()
2964 0
2965 sage: J.one().subalgebra_generated_by()
2966 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2967 sage: J.rank()
2968 0
2969
2970 """
2971 def __init__(self, **kwargs):
2972 jordan_product = lambda x,y: x
2973 inner_product = lambda x,y: 0
2974 basis = ()
2975
2976 # New defaults for keyword arguments
2977 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2978 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2979
2980 super().__init__(basis,
2981 jordan_product,
2982 inner_product,
2983 associative=True,
2984 **kwargs)
2985
2986 # The rank is zero using my definition, namely the dimension of the
2987 # largest subalgebra generated by any element.
2988 self.rank.set_cache(0)
2989 self.one.set_cache( self.zero() )
2990
2991 @classmethod
2992 def random_instance(cls, **kwargs):
2993 # We don't take a "size" argument so the superclass method is
2994 # inappropriate for us.
2995 return cls(**kwargs)
2996
2997
2998 class CartesianProductEJA(FiniteDimensionalEJA):
2999 r"""
3000 The external (orthogonal) direct sum of two or more Euclidean
3001 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
3002 orthogonal direct sum of simple Euclidean Jordan algebras which is
3003 then isometric to a Cartesian product, so no generality is lost by
3004 providing only this construction.
3005
3006 SETUP::
3007
3008 sage: from mjo.eja.eja_algebra import (random_eja,
3009 ....: CartesianProductEJA,
3010 ....: HadamardEJA,
3011 ....: JordanSpinEJA,
3012 ....: RealSymmetricEJA)
3013
3014 EXAMPLES:
3015
3016 The Jordan product is inherited from our factors and implemented by
3017 our CombinatorialFreeModule Cartesian product superclass::
3018
3019 sage: set_random_seed()
3020 sage: J1 = HadamardEJA(2)
3021 sage: J2 = RealSymmetricEJA(2)
3022 sage: J = cartesian_product([J1,J2])
3023 sage: x,y = J.random_elements(2)
3024 sage: x*y in J
3025 True
3026
3027 The ability to retrieve the original factors is implemented by our
3028 CombinatorialFreeModule Cartesian product superclass::
3029
3030 sage: J1 = HadamardEJA(2, field=QQ)
3031 sage: J2 = JordanSpinEJA(3, field=QQ)
3032 sage: J = cartesian_product([J1,J2])
3033 sage: J.cartesian_factors()
3034 (Euclidean Jordan algebra of dimension 2 over Rational Field,
3035 Euclidean Jordan algebra of dimension 3 over Rational Field)
3036
3037 You can provide more than two factors::
3038
3039 sage: J1 = HadamardEJA(2)
3040 sage: J2 = JordanSpinEJA(3)
3041 sage: J3 = RealSymmetricEJA(3)
3042 sage: cartesian_product([J1,J2,J3])
3043 Euclidean Jordan algebra of dimension 2 over Algebraic Real
3044 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
3045 Real Field (+) Euclidean Jordan algebra of dimension 6 over
3046 Algebraic Real Field
3047
3048 Rank is additive on a Cartesian product::
3049
3050 sage: J1 = HadamardEJA(1)
3051 sage: J2 = RealSymmetricEJA(2)
3052 sage: J = cartesian_product([J1,J2])
3053 sage: J1.rank.clear_cache()
3054 sage: J2.rank.clear_cache()
3055 sage: J.rank.clear_cache()
3056 sage: J.rank()
3057 3
3058 sage: J.rank() == J1.rank() + J2.rank()
3059 True
3060
3061 The same rank computation works over the rationals, with whatever
3062 basis you like::
3063
3064 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
3065 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
3066 sage: J = cartesian_product([J1,J2])
3067 sage: J1.rank.clear_cache()
3068 sage: J2.rank.clear_cache()
3069 sage: J.rank.clear_cache()
3070 sage: J.rank()
3071 3
3072 sage: J.rank() == J1.rank() + J2.rank()
3073 True
3074
3075 The product algebra will be associative if and only if all of its
3076 components are associative::
3077
3078 sage: J1 = HadamardEJA(2)
3079 sage: J1.is_associative()
3080 True
3081 sage: J2 = HadamardEJA(3)
3082 sage: J2.is_associative()
3083 True
3084 sage: J3 = RealSymmetricEJA(3)
3085 sage: J3.is_associative()
3086 False
3087 sage: CP1 = cartesian_product([J1,J2])
3088 sage: CP1.is_associative()
3089 True
3090 sage: CP2 = cartesian_product([J1,J3])
3091 sage: CP2.is_associative()
3092 False
3093
3094 Cartesian products of Cartesian products work::
3095
3096 sage: J1 = JordanSpinEJA(1)
3097 sage: J2 = JordanSpinEJA(1)
3098 sage: J3 = JordanSpinEJA(1)
3099 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3100 sage: J.multiplication_table()
3101 +----++----+----+----+
3102 | * || b0 | b1 | b2 |
3103 +====++====+====+====+
3104 | b0 || b0 | 0 | 0 |
3105 +----++----+----+----+
3106 | b1 || 0 | b1 | 0 |
3107 +----++----+----+----+
3108 | b2 || 0 | 0 | b2 |
3109 +----++----+----+----+
3110 sage: HadamardEJA(3).multiplication_table()
3111 +----++----+----+----+
3112 | * || b0 | b1 | b2 |
3113 +====++====+====+====+
3114 | b0 || b0 | 0 | 0 |
3115 +----++----+----+----+
3116 | b1 || 0 | b1 | 0 |
3117 +----++----+----+----+
3118 | b2 || 0 | 0 | b2 |
3119 +----++----+----+----+
3120
3121 TESTS:
3122
3123 All factors must share the same base field::
3124
3125 sage: J1 = HadamardEJA(2, field=QQ)
3126 sage: J2 = RealSymmetricEJA(2)
3127 sage: CartesianProductEJA((J1,J2))
3128 Traceback (most recent call last):
3129 ...
3130 ValueError: all factors must share the same base field
3131
3132 The cached unit element is the same one that would be computed::
3133
3134 sage: set_random_seed() # long time
3135 sage: J1 = random_eja() # long time
3136 sage: J2 = random_eja() # long time
3137 sage: J = cartesian_product([J1,J2]) # long time
3138 sage: actual = J.one() # long time
3139 sage: J.one.clear_cache() # long time
3140 sage: expected = J.one() # long time
3141 sage: actual == expected # long time
3142 True
3143
3144 """
3145 Element = FiniteDimensionalEJAElement
3146
3147
3148 def __init__(self, factors, **kwargs):
3149 m = len(factors)
3150 if m == 0:
3151 return TrivialEJA()
3152
3153 self._sets = factors
3154
3155 field = factors[0].base_ring()
3156 if not all( J.base_ring() == field for J in factors ):
3157 raise ValueError("all factors must share the same base field")
3158
3159 associative = all( f.is_associative() for f in factors )
3160
3161 MS = self.matrix_space()
3162 basis = []
3163 zero = MS.zero()
3164 for i in range(m):
3165 for b in factors[i].matrix_basis():
3166 z = list(zero)
3167 z[i] = b
3168 basis.append(z)
3169
3170 basis = tuple( MS(b) for b in basis )
3171
3172 # Define jordan/inner products that operate on that matrix_basis.
3173 def jordan_product(x,y):
3174 return MS(tuple(
3175 (factors[i](x[i])*factors[i](y[i])).to_matrix()
3176 for i in range(m)
3177 ))
3178
3179 def inner_product(x, y):
3180 return sum(
3181 factors[i](x[i]).inner_product(factors[i](y[i]))
3182 for i in range(m)
3183 )
3184
3185 # There's no need to check the field since it already came
3186 # from an EJA. Likewise the axioms are guaranteed to be
3187 # satisfied, unless the guy writing this class sucks.
3188 #
3189 # If you want the basis to be orthonormalized, orthonormalize
3190 # the factors.
3191 FiniteDimensionalEJA.__init__(self,
3192 basis,
3193 jordan_product,
3194 inner_product,
3195 field=field,
3196 orthonormalize=False,
3197 associative=associative,
3198 cartesian_product=True,
3199 check_field=False,
3200 check_axioms=False)
3201
3202 ones = tuple(J.one().to_matrix() for J in factors)
3203 self.one.set_cache(self(ones))
3204 self.rank.set_cache(sum(J.rank() for J in factors))
3205
3206 def cartesian_factors(self):
3207 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3208 return self._sets
3209
3210 def cartesian_factor(self, i):
3211 r"""
3212 Return the ``i``th factor of this algebra.
3213 """
3214 return self._sets[i]
3215
3216 def _repr_(self):
3217 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3218 from sage.categories.cartesian_product import cartesian_product
3219 return cartesian_product.symbol.join("%s" % factor
3220 for factor in self._sets)
3221
3222 def matrix_space(self):
3223 r"""
3224 Return the space that our matrix basis lives in as a Cartesian
3225 product.
3226
3227 SETUP::
3228
3229 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3230 ....: RealSymmetricEJA)
3231
3232 EXAMPLES::
3233
3234 sage: J1 = HadamardEJA(1)
3235 sage: J2 = RealSymmetricEJA(2)
3236 sage: J = cartesian_product([J1,J2])
3237 sage: J.matrix_space()
3238 The Cartesian product of (Full MatrixSpace of 1 by 1 dense
3239 matrices over Algebraic Real Field, Full MatrixSpace of 2
3240 by 2 dense matrices over Algebraic Real Field)
3241
3242 """
3243 from sage.categories.cartesian_product import cartesian_product
3244 return cartesian_product( [J.matrix_space()
3245 for J in self.cartesian_factors()] )
3246
3247 @cached_method
3248 def cartesian_projection(self, i):
3249 r"""
3250 SETUP::
3251
3252 sage: from mjo.eja.eja_algebra import (random_eja,
3253 ....: JordanSpinEJA,
3254 ....: HadamardEJA,
3255 ....: RealSymmetricEJA,
3256 ....: ComplexHermitianEJA)
3257
3258 EXAMPLES:
3259
3260 The projection morphisms are Euclidean Jordan algebra
3261 operators::
3262
3263 sage: J1 = HadamardEJA(2)
3264 sage: J2 = RealSymmetricEJA(2)
3265 sage: J = cartesian_product([J1,J2])
3266 sage: J.cartesian_projection(0)
3267 Linear operator between finite-dimensional Euclidean Jordan
3268 algebras represented by the matrix:
3269 [1 0 0 0 0]
3270 [0 1 0 0 0]
3271 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3272 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3273 Algebraic Real Field
3274 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3275 Real Field
3276 sage: J.cartesian_projection(1)
3277 Linear operator between finite-dimensional Euclidean Jordan
3278 algebras represented by the matrix:
3279 [0 0 1 0 0]
3280 [0 0 0 1 0]
3281 [0 0 0 0 1]
3282 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3283 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3284 Algebraic Real Field
3285 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3286 Real Field
3287
3288 The projections work the way you'd expect on the vector
3289 representation of an element::
3290
3291 sage: J1 = JordanSpinEJA(2)
3292 sage: J2 = ComplexHermitianEJA(2)
3293 sage: J = cartesian_product([J1,J2])
3294 sage: pi_left = J.cartesian_projection(0)
3295 sage: pi_right = J.cartesian_projection(1)
3296 sage: pi_left(J.one()).to_vector()
3297 (1, 0)
3298 sage: pi_right(J.one()).to_vector()
3299 (1, 0, 0, 1)
3300 sage: J.one().to_vector()
3301 (1, 0, 1, 0, 0, 1)
3302
3303 TESTS:
3304
3305 The answer never changes::
3306
3307 sage: set_random_seed()
3308 sage: J1 = random_eja()
3309 sage: J2 = random_eja()
3310 sage: J = cartesian_product([J1,J2])
3311 sage: P0 = J.cartesian_projection(0)
3312 sage: P1 = J.cartesian_projection(0)
3313 sage: P0 == P1
3314 True
3315
3316 """
3317 offset = sum( self.cartesian_factor(k).dimension()
3318 for k in range(i) )
3319 Ji = self.cartesian_factor(i)
3320 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3321 codomain=Ji)
3322
3323 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3324
3325 @cached_method
3326 def cartesian_embedding(self, i):
3327 r"""
3328 SETUP::
3329
3330 sage: from mjo.eja.eja_algebra import (random_eja,
3331 ....: JordanSpinEJA,
3332 ....: HadamardEJA,
3333 ....: RealSymmetricEJA)
3334
3335 EXAMPLES:
3336
3337 The embedding morphisms are Euclidean Jordan algebra
3338 operators::
3339
3340 sage: J1 = HadamardEJA(2)
3341 sage: J2 = RealSymmetricEJA(2)
3342 sage: J = cartesian_product([J1,J2])
3343 sage: J.cartesian_embedding(0)
3344 Linear operator between finite-dimensional Euclidean Jordan
3345 algebras represented by the matrix:
3346 [1 0]
3347 [0 1]
3348 [0 0]
3349 [0 0]
3350 [0 0]
3351 Domain: Euclidean Jordan algebra of dimension 2 over
3352 Algebraic Real Field
3353 Codomain: Euclidean Jordan algebra of dimension 2 over
3354 Algebraic Real Field (+) Euclidean Jordan algebra of
3355 dimension 3 over Algebraic Real Field
3356 sage: J.cartesian_embedding(1)
3357 Linear operator between finite-dimensional Euclidean Jordan
3358 algebras represented by the matrix:
3359 [0 0 0]
3360 [0 0 0]
3361 [1 0 0]
3362 [0 1 0]
3363 [0 0 1]
3364 Domain: Euclidean Jordan algebra of dimension 3 over
3365 Algebraic Real Field
3366 Codomain: Euclidean Jordan algebra of dimension 2 over
3367 Algebraic Real Field (+) Euclidean Jordan algebra of
3368 dimension 3 over Algebraic Real Field
3369
3370 The embeddings work the way you'd expect on the vector
3371 representation of an element::
3372
3373 sage: J1 = JordanSpinEJA(3)
3374 sage: J2 = RealSymmetricEJA(2)
3375 sage: J = cartesian_product([J1,J2])
3376 sage: iota_left = J.cartesian_embedding(0)
3377 sage: iota_right = J.cartesian_embedding(1)
3378 sage: iota_left(J1.zero()) == J.zero()
3379 True
3380 sage: iota_right(J2.zero()) == J.zero()
3381 True
3382 sage: J1.one().to_vector()
3383 (1, 0, 0)
3384 sage: iota_left(J1.one()).to_vector()
3385 (1, 0, 0, 0, 0, 0)
3386 sage: J2.one().to_vector()
3387 (1, 0, 1)
3388 sage: iota_right(J2.one()).to_vector()
3389 (0, 0, 0, 1, 0, 1)
3390 sage: J.one().to_vector()
3391 (1, 0, 0, 1, 0, 1)
3392
3393 TESTS:
3394
3395 The answer never changes::
3396
3397 sage: set_random_seed()
3398 sage: J1 = random_eja()
3399 sage: J2 = random_eja()
3400 sage: J = cartesian_product([J1,J2])
3401 sage: E0 = J.cartesian_embedding(0)
3402 sage: E1 = J.cartesian_embedding(0)
3403 sage: E0 == E1
3404 True
3405
3406 Composing a projection with the corresponding inclusion should
3407 produce the identity map, and mismatching them should produce
3408 the zero map::
3409
3410 sage: set_random_seed()
3411 sage: J1 = random_eja()
3412 sage: J2 = random_eja()
3413 sage: J = cartesian_product([J1,J2])
3414 sage: iota_left = J.cartesian_embedding(0)
3415 sage: iota_right = J.cartesian_embedding(1)
3416 sage: pi_left = J.cartesian_projection(0)
3417 sage: pi_right = J.cartesian_projection(1)
3418 sage: pi_left*iota_left == J1.one().operator()
3419 True
3420 sage: pi_right*iota_right == J2.one().operator()
3421 True
3422 sage: (pi_left*iota_right).is_zero()
3423 True
3424 sage: (pi_right*iota_left).is_zero()
3425 True
3426
3427 """
3428 offset = sum( self.cartesian_factor(k).dimension()
3429 for k in range(i) )
3430 Ji = self.cartesian_factor(i)
3431 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3432 codomain=self)
3433 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3434
3435
3436
3437 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3438
3439 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3440 RationalBasisEJA):
3441 r"""
3442 A separate class for products of algebras for which we know a
3443 rational basis.
3444
3445 SETUP::
3446
3447 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
3448 ....: RealSymmetricEJA)
3449
3450 EXAMPLES:
3451
3452 This gives us fast characteristic polynomial computations in
3453 product algebras, too::
3454
3455
3456 sage: J1 = JordanSpinEJA(2)
3457 sage: J2 = RealSymmetricEJA(3)
3458 sage: J = cartesian_product([J1,J2])
3459 sage: J.characteristic_polynomial_of().degree()
3460 5
3461 sage: J.rank()
3462 5
3463
3464 """
3465 def __init__(self, algebras, **kwargs):
3466 CartesianProductEJA.__init__(self, algebras, **kwargs)
3467
3468 self._rational_algebra = None
3469 if self.vector_space().base_field() is not QQ:
3470 self._rational_algebra = cartesian_product([
3471 r._rational_algebra for r in algebras
3472 ])
3473
3474
3475 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3476
3477 def random_eja(*args, **kwargs):
3478 J1 = ConcreteEJA.random_instance(*args, **kwargs)
3479
3480 # This might make Cartesian products appear roughly as often as
3481 # any other ConcreteEJA.
3482 if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
3483 # Use random_eja() again so we can get more than two factors.
3484 J2 = random_eja(*args, **kwargs)
3485 J = cartesian_product([J1,J2])
3486 return J
3487 else:
3488 return J1