]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: fix the natural representation in trivial subalgebras.
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
9 from sage.categories.magmatic_algebras import MagmaticAlgebras
10 from sage.combinat.free_module import CombinatorialFreeModule
11 from sage.matrix.constructor import matrix
12 from sage.matrix.matrix_space import MatrixSpace
13 from sage.misc.cachefunc import cached_method
14 from sage.misc.prandom import choice
15 from sage.misc.table import table
16 from sage.modules.free_module import FreeModule, VectorSpace
17 from sage.rings.integer_ring import ZZ
18 from sage.rings.number_field.number_field import QuadraticField
19 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
20 from sage.rings.rational_field import QQ
21 from sage.structure.element import is_Matrix
22
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 from mjo.eja.eja_utils import _mat2vec
25
26 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
27 # This is an ugly hack needed to prevent the category framework
28 # from implementing a coercion from our base ring (e.g. the
29 # rationals) into the algebra. First of all -- such a coercion is
30 # nonsense to begin with. But more importantly, it tries to do so
31 # in the category of rings, and since our algebras aren't
32 # associative they generally won't be rings.
33 _no_generic_basering_coercion = True
34
35 def __init__(self,
36 field,
37 mult_table,
38 rank,
39 prefix='e',
40 category=None,
41 natural_basis=None):
42 """
43 SETUP::
44
45 sage: from mjo.eja.eja_algebra import random_eja
46
47 EXAMPLES:
48
49 By definition, Jordan multiplication commutes::
50
51 sage: set_random_seed()
52 sage: J = random_eja()
53 sage: x = J.random_element()
54 sage: y = J.random_element()
55 sage: x*y == y*x
56 True
57
58 """
59 self._rank = rank
60 self._natural_basis = natural_basis
61
62 if category is None:
63 category = MagmaticAlgebras(field).FiniteDimensional()
64 category = category.WithBasis().Unital()
65
66 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
67 fda.__init__(field,
68 range(len(mult_table)),
69 prefix=prefix,
70 category=category)
71 self.print_options(bracket='')
72
73 # The multiplication table we're given is necessarily in terms
74 # of vectors, because we don't have an algebra yet for
75 # anything to be an element of. However, it's faster in the
76 # long run to have the multiplication table be in terms of
77 # algebra elements. We do this after calling the superclass
78 # constructor so that from_vector() knows what to do.
79 self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
80 for ls in mult_table ]
81
82
83 def _element_constructor_(self, elt):
84 """
85 Construct an element of this algebra from its natural
86 representation.
87
88 This gets called only after the parent element _call_ method
89 fails to find a coercion for the argument.
90
91 SETUP::
92
93 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
94 ....: RealCartesianProductEJA,
95 ....: RealSymmetricEJA)
96
97 EXAMPLES:
98
99 The identity in `S^n` is converted to the identity in the EJA::
100
101 sage: J = RealSymmetricEJA(3)
102 sage: I = matrix.identity(QQ,3)
103 sage: J(I) == J.one()
104 True
105
106 This skew-symmetric matrix can't be represented in the EJA::
107
108 sage: J = RealSymmetricEJA(3)
109 sage: A = matrix(QQ,3, lambda i,j: i-j)
110 sage: J(A)
111 Traceback (most recent call last):
112 ...
113 ArithmeticError: vector is not in free module
114
115 TESTS:
116
117 Ensure that we can convert any element of the two non-matrix
118 simple algebras (whose natural representations are their usual
119 vector representations) back and forth faithfully::
120
121 sage: set_random_seed()
122 sage: J = RealCartesianProductEJA(5)
123 sage: x = J.random_element()
124 sage: J(x.to_vector().column()) == x
125 True
126 sage: J = JordanSpinEJA(5)
127 sage: x = J.random_element()
128 sage: J(x.to_vector().column()) == x
129 True
130
131 """
132 if elt == 0:
133 # The superclass implementation of random_element()
134 # needs to be able to coerce "0" into the algebra.
135 return self.zero()
136
137 natural_basis = self.natural_basis()
138 if elt not in natural_basis[0].matrix_space():
139 raise ValueError("not a naturally-represented algebra element")
140
141 # Thanks for nothing! Matrix spaces aren't vector
142 # spaces in Sage, so we have to figure out its
143 # natural-basis coordinates ourselves.
144 V = VectorSpace(elt.base_ring(), elt.nrows()*elt.ncols())
145 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
146 coords = W.coordinate_vector(_mat2vec(elt))
147 return self.from_vector(coords)
148
149
150 def _repr_(self):
151 """
152 Return a string representation of ``self``.
153
154 SETUP::
155
156 sage: from mjo.eja.eja_algebra import JordanSpinEJA
157
158 TESTS:
159
160 Ensure that it says what we think it says::
161
162 sage: JordanSpinEJA(2, field=QQ)
163 Euclidean Jordan algebra of dimension 2 over Rational Field
164 sage: JordanSpinEJA(3, field=RDF)
165 Euclidean Jordan algebra of dimension 3 over Real Double Field
166
167 """
168 fmt = "Euclidean Jordan algebra of dimension {} over {}"
169 return fmt.format(self.dimension(), self.base_ring())
170
171 def product_on_basis(self, i, j):
172 return self._multiplication_table[i][j]
173
174 def _a_regular_element(self):
175 """
176 Guess a regular element. Needed to compute the basis for our
177 characteristic polynomial coefficients.
178
179 SETUP::
180
181 sage: from mjo.eja.eja_algebra import random_eja
182
183 TESTS:
184
185 Ensure that this hacky method succeeds for every algebra that we
186 know how to construct::
187
188 sage: set_random_seed()
189 sage: J = random_eja()
190 sage: J._a_regular_element().is_regular()
191 True
192
193 """
194 gs = self.gens()
195 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
196 if not z.is_regular():
197 raise ValueError("don't know a regular element")
198 return z
199
200
201 @cached_method
202 def _charpoly_basis_space(self):
203 """
204 Return the vector space spanned by the basis used in our
205 characteristic polynomial coefficients. This is used not only to
206 compute those coefficients, but also any time we need to
207 evaluate the coefficients (like when we compute the trace or
208 determinant).
209 """
210 z = self._a_regular_element()
211 # Don't use the parent vector space directly here in case this
212 # happens to be a subalgebra. In that case, we would be e.g.
213 # two-dimensional but span_of_basis() would expect three
214 # coordinates.
215 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
216 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
217 V1 = V.span_of_basis( basis )
218 b = (V1.basis() + V1.complement().basis())
219 return V.span_of_basis(b)
220
221
222 @cached_method
223 def _charpoly_coeff(self, i):
224 """
225 Return the coefficient polynomial "a_{i}" of this algebra's
226 general characteristic polynomial.
227
228 Having this be a separate cached method lets us compute and
229 store the trace/determinant (a_{r-1} and a_{0} respectively)
230 separate from the entire characteristic polynomial.
231 """
232 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
233 R = A_of_x.base_ring()
234 if i >= self.rank():
235 # Guaranteed by theory
236 return R.zero()
237
238 # Danger: the in-place modification is done for performance
239 # reasons (reconstructing a matrix with huge polynomial
240 # entries is slow), but I don't know how cached_method works,
241 # so it's highly possible that we're modifying some global
242 # list variable by reference, here. In other words, you
243 # probably shouldn't call this method twice on the same
244 # algebra, at the same time, in two threads
245 Ai_orig = A_of_x.column(i)
246 A_of_x.set_column(i,xr)
247 numerator = A_of_x.det()
248 A_of_x.set_column(i,Ai_orig)
249
250 # We're relying on the theory here to ensure that each a_i is
251 # indeed back in R, and the added negative signs are to make
252 # the whole charpoly expression sum to zero.
253 return R(-numerator/detA)
254
255
256 @cached_method
257 def _charpoly_matrix_system(self):
258 """
259 Compute the matrix whose entries A_ij are polynomials in
260 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
261 corresponding to `x^r` and the determinent of the matrix A =
262 [A_ij]. In other words, all of the fixed (cachable) data needed
263 to compute the coefficients of the characteristic polynomial.
264 """
265 r = self.rank()
266 n = self.dimension()
267
268 # Turn my vector space into a module so that "vectors" can
269 # have multivatiate polynomial entries.
270 names = tuple('X' + str(i) for i in range(1,n+1))
271 R = PolynomialRing(self.base_ring(), names)
272
273 # Using change_ring() on the parent's vector space doesn't work
274 # here because, in a subalgebra, that vector space has a basis
275 # and change_ring() tries to bring the basis along with it. And
276 # that doesn't work unless the new ring is a PID, which it usually
277 # won't be.
278 V = FreeModule(R,n)
279
280 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
281 # indeterminates...
282 x = V(names)
283
284 # And figure out the "left multiplication by x" matrix in
285 # that setting.
286 lmbx_cols = []
287 monomial_matrices = [ self.monomial(i).operator().matrix()
288 for i in range(n) ] # don't recompute these!
289 for k in range(n):
290 ek = self.monomial(k).to_vector()
291 lmbx_cols.append(
292 sum( x[i]*(monomial_matrices[i]*ek)
293 for i in range(n) ) )
294 Lx = matrix.column(R, lmbx_cols)
295
296 # Now we can compute powers of x "symbolically"
297 x_powers = [self.one().to_vector(), x]
298 for d in range(2, r+1):
299 x_powers.append( Lx*(x_powers[-1]) )
300
301 idmat = matrix.identity(R, n)
302
303 W = self._charpoly_basis_space()
304 W = W.change_ring(R.fraction_field())
305
306 # Starting with the standard coordinates x = (X1,X2,...,Xn)
307 # and then converting the entries to W-coordinates allows us
308 # to pass in the standard coordinates to the charpoly and get
309 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
310 # we have
311 #
312 # W.coordinates(x^2) eval'd at (standard z-coords)
313 # =
314 # W-coords of (z^2)
315 # =
316 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
317 #
318 # We want the middle equivalent thing in our matrix, but use
319 # the first equivalent thing instead so that we can pass in
320 # standard coordinates.
321 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
322 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
323 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
324 return (A_of_x, x, x_powers[r], A_of_x.det())
325
326
327 @cached_method
328 def characteristic_polynomial(self):
329 """
330 Return a characteristic polynomial that works for all elements
331 of this algebra.
332
333 The resulting polynomial has `n+1` variables, where `n` is the
334 dimension of this algebra. The first `n` variables correspond to
335 the coordinates of an algebra element: when evaluated at the
336 coordinates of an algebra element with respect to a certain
337 basis, the result is a univariate polynomial (in the one
338 remaining variable ``t``), namely the characteristic polynomial
339 of that element.
340
341 SETUP::
342
343 sage: from mjo.eja.eja_algebra import JordanSpinEJA
344
345 EXAMPLES:
346
347 The characteristic polynomial in the spin algebra is given in
348 Alizadeh, Example 11.11::
349
350 sage: J = JordanSpinEJA(3)
351 sage: p = J.characteristic_polynomial(); p
352 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
353 sage: xvec = J.one().to_vector()
354 sage: p(*xvec)
355 t^2 - 2*t + 1
356
357 """
358 r = self.rank()
359 n = self.dimension()
360
361 # The list of coefficient polynomials a_1, a_2, ..., a_n.
362 a = [ self._charpoly_coeff(i) for i in range(n) ]
363
364 # We go to a bit of trouble here to reorder the
365 # indeterminates, so that it's easier to evaluate the
366 # characteristic polynomial at x's coordinates and get back
367 # something in terms of t, which is what we want.
368 R = a[0].parent()
369 S = PolynomialRing(self.base_ring(),'t')
370 t = S.gen(0)
371 S = PolynomialRing(S, R.variable_names())
372 t = S(t)
373
374 # Note: all entries past the rth should be zero. The
375 # coefficient of the highest power (x^r) is 1, but it doesn't
376 # appear in the solution vector which contains coefficients
377 # for the other powers (to make them sum to x^r).
378 if (r < n):
379 a[r] = 1 # corresponds to x^r
380 else:
381 # When the rank is equal to the dimension, trying to
382 # assign a[r] goes out-of-bounds.
383 a.append(1) # corresponds to x^r
384
385 return sum( a[k]*(t**k) for k in range(len(a)) )
386
387
388 def inner_product(self, x, y):
389 """
390 The inner product associated with this Euclidean Jordan algebra.
391
392 Defaults to the trace inner product, but can be overridden by
393 subclasses if they are sure that the necessary properties are
394 satisfied.
395
396 SETUP::
397
398 sage: from mjo.eja.eja_algebra import random_eja
399
400 EXAMPLES:
401
402 The inner product must satisfy its axiom for this algebra to truly
403 be a Euclidean Jordan Algebra::
404
405 sage: set_random_seed()
406 sage: J = random_eja()
407 sage: x = J.random_element()
408 sage: y = J.random_element()
409 sage: z = J.random_element()
410 sage: (x*y).inner_product(z) == y.inner_product(x*z)
411 True
412
413 """
414 if (not x in self) or (not y in self):
415 raise TypeError("arguments must live in this algebra")
416 return x.trace_inner_product(y)
417
418
419 def is_trivial(self):
420 """
421 Return whether or not this algebra is trivial.
422
423 A trivial algebra contains only the zero element.
424
425 SETUP::
426
427 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
428
429 EXAMPLES::
430
431 sage: J = ComplexHermitianEJA(3)
432 sage: J.is_trivial()
433 False
434 sage: A = J.zero().subalgebra_generated_by()
435 sage: A.is_trivial()
436 True
437
438 """
439 return self.dimension() == 0
440
441
442 def multiplication_table(self):
443 """
444 Return a visual representation of this algebra's multiplication
445 table (on basis elements).
446
447 SETUP::
448
449 sage: from mjo.eja.eja_algebra import JordanSpinEJA
450
451 EXAMPLES::
452
453 sage: J = JordanSpinEJA(4)
454 sage: J.multiplication_table()
455 +----++----+----+----+----+
456 | * || e0 | e1 | e2 | e3 |
457 +====++====+====+====+====+
458 | e0 || e0 | e1 | e2 | e3 |
459 +----++----+----+----+----+
460 | e1 || e1 | e0 | 0 | 0 |
461 +----++----+----+----+----+
462 | e2 || e2 | 0 | e0 | 0 |
463 +----++----+----+----+----+
464 | e3 || e3 | 0 | 0 | e0 |
465 +----++----+----+----+----+
466
467 """
468 M = list(self._multiplication_table) # copy
469 for i in range(len(M)):
470 # M had better be "square"
471 M[i] = [self.monomial(i)] + M[i]
472 M = [["*"] + list(self.gens())] + M
473 return table(M, header_row=True, header_column=True, frame=True)
474
475
476 def natural_basis(self):
477 """
478 Return a more-natural representation of this algebra's basis.
479
480 Every finite-dimensional Euclidean Jordan Algebra is a direct
481 sum of five simple algebras, four of which comprise Hermitian
482 matrices. This method returns the original "natural" basis
483 for our underlying vector space. (Typically, the natural basis
484 is used to construct the multiplication table in the first place.)
485
486 Note that this will always return a matrix. The standard basis
487 in `R^n` will be returned as `n`-by-`1` column matrices.
488
489 SETUP::
490
491 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
492 ....: RealSymmetricEJA)
493
494 EXAMPLES::
495
496 sage: J = RealSymmetricEJA(2)
497 sage: J.basis()
498 Finite family {0: e0, 1: e1, 2: e2}
499 sage: J.natural_basis()
500 (
501 [1 0] [0 1] [0 0]
502 [0 0], [1 0], [0 1]
503 )
504
505 ::
506
507 sage: J = JordanSpinEJA(2)
508 sage: J.basis()
509 Finite family {0: e0, 1: e1}
510 sage: J.natural_basis()
511 (
512 [1] [0]
513 [0], [1]
514 )
515
516 """
517 if self._natural_basis is None:
518 M = self.natural_basis_space()
519 return tuple( M(b.to_vector()) for b in self.basis() )
520 else:
521 return self._natural_basis
522
523
524 def natural_basis_space(self):
525 """
526 Return the matrix space in which this algebra's natural basis
527 elements live.
528 """
529 if self._natural_basis is None or len(self._natural_basis) == 0:
530 return MatrixSpace(self.base_ring(), self.dimension(), 1)
531 else:
532 return self._natural_basis[0].matrix_space()
533
534
535 @cached_method
536 def one(self):
537 """
538 Return the unit element of this algebra.
539
540 SETUP::
541
542 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
543 ....: random_eja)
544
545 EXAMPLES::
546
547 sage: J = RealCartesianProductEJA(5)
548 sage: J.one()
549 e0 + e1 + e2 + e3 + e4
550
551 TESTS:
552
553 The identity element acts like the identity::
554
555 sage: set_random_seed()
556 sage: J = random_eja()
557 sage: x = J.random_element()
558 sage: J.one()*x == x and x*J.one() == x
559 True
560
561 The matrix of the unit element's operator is the identity::
562
563 sage: set_random_seed()
564 sage: J = random_eja()
565 sage: actual = J.one().operator().matrix()
566 sage: expected = matrix.identity(J.base_ring(), J.dimension())
567 sage: actual == expected
568 True
569
570 """
571 # We can brute-force compute the matrices of the operators
572 # that correspond to the basis elements of this algebra.
573 # If some linear combination of those basis elements is the
574 # algebra identity, then the same linear combination of
575 # their matrices has to be the identity matrix.
576 #
577 # Of course, matrices aren't vectors in sage, so we have to
578 # appeal to the "long vectors" isometry.
579 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
580
581 # Now we use basis linear algebra to find the coefficients,
582 # of the matrices-as-vectors-linear-combination, which should
583 # work for the original algebra basis too.
584 A = matrix.column(self.base_ring(), oper_vecs)
585
586 # We used the isometry on the left-hand side already, but we
587 # still need to do it for the right-hand side. Recall that we
588 # wanted something that summed to the identity matrix.
589 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
590
591 # Now if there's an identity element in the algebra, this should work.
592 coeffs = A.solve_right(b)
593 return self.linear_combination(zip(self.gens(), coeffs))
594
595
596 def random_element(self):
597 # Temporary workaround for https://trac.sagemath.org/ticket/28327
598 if self.is_trivial():
599 return self.zero()
600 else:
601 s = super(FiniteDimensionalEuclideanJordanAlgebra, self)
602 return s.random_element()
603
604
605 def rank(self):
606 """
607 Return the rank of this EJA.
608
609 ALGORITHM:
610
611 The author knows of no algorithm to compute the rank of an EJA
612 where only the multiplication table is known. In lieu of one, we
613 require the rank to be specified when the algebra is created,
614 and simply pass along that number here.
615
616 SETUP::
617
618 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
619 ....: RealSymmetricEJA,
620 ....: ComplexHermitianEJA,
621 ....: QuaternionHermitianEJA,
622 ....: random_eja)
623
624 EXAMPLES:
625
626 The rank of the Jordan spin algebra is always two::
627
628 sage: JordanSpinEJA(2).rank()
629 2
630 sage: JordanSpinEJA(3).rank()
631 2
632 sage: JordanSpinEJA(4).rank()
633 2
634
635 The rank of the `n`-by-`n` Hermitian real, complex, or
636 quaternion matrices is `n`::
637
638 sage: RealSymmetricEJA(2).rank()
639 2
640 sage: ComplexHermitianEJA(2).rank()
641 2
642 sage: QuaternionHermitianEJA(2).rank()
643 2
644 sage: RealSymmetricEJA(5).rank()
645 5
646 sage: ComplexHermitianEJA(5).rank()
647 5
648 sage: QuaternionHermitianEJA(5).rank()
649 5
650
651 TESTS:
652
653 Ensure that every EJA that we know how to construct has a
654 positive integer rank::
655
656 sage: set_random_seed()
657 sage: r = random_eja().rank()
658 sage: r in ZZ and r > 0
659 True
660
661 """
662 return self._rank
663
664
665 def vector_space(self):
666 """
667 Return the vector space that underlies this algebra.
668
669 SETUP::
670
671 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
672
673 EXAMPLES::
674
675 sage: J = RealSymmetricEJA(2)
676 sage: J.vector_space()
677 Vector space of dimension 3 over Rational Field
678
679 """
680 return self.zero().to_vector().parent().ambient_vector_space()
681
682
683 Element = FiniteDimensionalEuclideanJordanAlgebraElement
684
685
686 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
687 """
688 Return the Euclidean Jordan Algebra corresponding to the set
689 `R^n` under the Hadamard product.
690
691 Note: this is nothing more than the Cartesian product of ``n``
692 copies of the spin algebra. Once Cartesian product algebras
693 are implemented, this can go.
694
695 SETUP::
696
697 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
698
699 EXAMPLES:
700
701 This multiplication table can be verified by hand::
702
703 sage: J = RealCartesianProductEJA(3)
704 sage: e0,e1,e2 = J.gens()
705 sage: e0*e0
706 e0
707 sage: e0*e1
708 0
709 sage: e0*e2
710 0
711 sage: e1*e1
712 e1
713 sage: e1*e2
714 0
715 sage: e2*e2
716 e2
717
718 TESTS:
719
720 We can change the generator prefix::
721
722 sage: RealCartesianProductEJA(3, prefix='r').gens()
723 (r0, r1, r2)
724
725 """
726 def __init__(self, n, field=QQ, **kwargs):
727 V = VectorSpace(field, n)
728 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
729 for i in range(n) ]
730
731 fdeja = super(RealCartesianProductEJA, self)
732 return fdeja.__init__(field, mult_table, rank=n, **kwargs)
733
734 def inner_product(self, x, y):
735 return _usual_ip(x,y)
736
737
738 def random_eja():
739 """
740 Return a "random" finite-dimensional Euclidean Jordan Algebra.
741
742 ALGORITHM:
743
744 For now, we choose a random natural number ``n`` (greater than zero)
745 and then give you back one of the following:
746
747 * The cartesian product of the rational numbers ``n`` times; this is
748 ``QQ^n`` with the Hadamard product.
749
750 * The Jordan spin algebra on ``QQ^n``.
751
752 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
753 product.
754
755 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
756 in the space of ``2n``-by-``2n`` real symmetric matrices.
757
758 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
759 in the space of ``4n``-by-``4n`` real symmetric matrices.
760
761 Later this might be extended to return Cartesian products of the
762 EJAs above.
763
764 SETUP::
765
766 sage: from mjo.eja.eja_algebra import random_eja
767
768 TESTS::
769
770 sage: random_eja()
771 Euclidean Jordan algebra of dimension...
772
773 """
774
775 # The max_n component lets us choose different upper bounds on the
776 # value "n" that gets passed to the constructor. This is needed
777 # because e.g. R^{10} is reasonable to test, while the Hermitian
778 # 10-by-10 quaternion matrices are not.
779 (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
780 (JordanSpinEJA, 6),
781 (RealSymmetricEJA, 5),
782 (ComplexHermitianEJA, 4),
783 (QuaternionHermitianEJA, 3)])
784 n = ZZ.random_element(1, max_n)
785 return constructor(n, field=QQ)
786
787
788
789 def _real_symmetric_basis(n, field=QQ):
790 """
791 Return a basis for the space of real symmetric n-by-n matrices.
792 """
793 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
794 # coordinates.
795 S = []
796 for i in xrange(n):
797 for j in xrange(i+1):
798 Eij = matrix(field, n, lambda k,l: k==i and l==j)
799 if i == j:
800 Sij = Eij
801 else:
802 # Beware, orthogonal but not normalized!
803 Sij = Eij + Eij.transpose()
804 S.append(Sij)
805 return tuple(S)
806
807
808 def _complex_hermitian_basis(n, field=QQ):
809 """
810 Returns a basis for the space of complex Hermitian n-by-n matrices.
811
812 SETUP::
813
814 sage: from mjo.eja.eja_algebra import _complex_hermitian_basis
815
816 TESTS::
817
818 sage: set_random_seed()
819 sage: n = ZZ.random_element(1,5)
820 sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
821 True
822
823 """
824 F = QuadraticField(-1, 'I')
825 I = F.gen()
826
827 # This is like the symmetric case, but we need to be careful:
828 #
829 # * We want conjugate-symmetry, not just symmetry.
830 # * The diagonal will (as a result) be real.
831 #
832 S = []
833 for i in xrange(n):
834 for j in xrange(i+1):
835 Eij = matrix(field, n, lambda k,l: k==i and l==j)
836 if i == j:
837 Sij = _embed_complex_matrix(Eij)
838 S.append(Sij)
839 else:
840 # Beware, orthogonal but not normalized! The second one
841 # has a minus because it's conjugated.
842 Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
843 S.append(Sij_real)
844 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
845 S.append(Sij_imag)
846 return tuple(S)
847
848
849 def _quaternion_hermitian_basis(n, field=QQ):
850 """
851 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
852
853 SETUP::
854
855 sage: from mjo.eja.eja_algebra import _quaternion_hermitian_basis
856
857 TESTS::
858
859 sage: set_random_seed()
860 sage: n = ZZ.random_element(1,5)
861 sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
862 True
863
864 """
865 Q = QuaternionAlgebra(QQ,-1,-1)
866 I,J,K = Q.gens()
867
868 # This is like the symmetric case, but we need to be careful:
869 #
870 # * We want conjugate-symmetry, not just symmetry.
871 # * The diagonal will (as a result) be real.
872 #
873 S = []
874 for i in xrange(n):
875 for j in xrange(i+1):
876 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
877 if i == j:
878 Sij = _embed_quaternion_matrix(Eij)
879 S.append(Sij)
880 else:
881 # Beware, orthogonal but not normalized! The second,
882 # third, and fourth ones have a minus because they're
883 # conjugated.
884 Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
885 S.append(Sij_real)
886 Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
887 S.append(Sij_I)
888 Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
889 S.append(Sij_J)
890 Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
891 S.append(Sij_K)
892 return tuple(S)
893
894
895
896 def _multiplication_table_from_matrix_basis(basis):
897 """
898 At least three of the five simple Euclidean Jordan algebras have the
899 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
900 multiplication on the right is matrix multiplication. Given a basis
901 for the underlying matrix space, this function returns a
902 multiplication table (obtained by looping through the basis
903 elements) for an algebra of those matrices.
904 """
905 # In S^2, for example, we nominally have four coordinates even
906 # though the space is of dimension three only. The vector space V
907 # is supposed to hold the entire long vector, and the subspace W
908 # of V will be spanned by the vectors that arise from symmetric
909 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
910 field = basis[0].base_ring()
911 dimension = basis[0].nrows()
912
913 V = VectorSpace(field, dimension**2)
914 W = V.span_of_basis( _mat2vec(s) for s in basis )
915 n = len(basis)
916 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
917 for i in range(n):
918 for j in range(n):
919 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
920 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
921
922 return mult_table
923
924
925 def _embed_complex_matrix(M):
926 """
927 Embed the n-by-n complex matrix ``M`` into the space of real
928 matrices of size 2n-by-2n via the map the sends each entry `z = a +
929 bi` to the block matrix ``[[a,b],[-b,a]]``.
930
931 SETUP::
932
933 sage: from mjo.eja.eja_algebra import _embed_complex_matrix
934
935 EXAMPLES::
936
937 sage: F = QuadraticField(-1,'i')
938 sage: x1 = F(4 - 2*i)
939 sage: x2 = F(1 + 2*i)
940 sage: x3 = F(-i)
941 sage: x4 = F(6)
942 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
943 sage: _embed_complex_matrix(M)
944 [ 4 -2| 1 2]
945 [ 2 4|-2 1]
946 [-----+-----]
947 [ 0 -1| 6 0]
948 [ 1 0| 0 6]
949
950 TESTS:
951
952 Embedding is a homomorphism (isomorphism, in fact)::
953
954 sage: set_random_seed()
955 sage: n = ZZ.random_element(5)
956 sage: F = QuadraticField(-1, 'i')
957 sage: X = random_matrix(F, n)
958 sage: Y = random_matrix(F, n)
959 sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
960 sage: expected = _embed_complex_matrix(X*Y)
961 sage: actual == expected
962 True
963
964 """
965 n = M.nrows()
966 if M.ncols() != n:
967 raise ValueError("the matrix 'M' must be square")
968 field = M.base_ring()
969 blocks = []
970 for z in M.list():
971 a = z.real()
972 b = z.imag()
973 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
974
975 # We can drop the imaginaries here.
976 return matrix.block(field.base_ring(), n, blocks)
977
978
979 def _unembed_complex_matrix(M):
980 """
981 The inverse of _embed_complex_matrix().
982
983 SETUP::
984
985 sage: from mjo.eja.eja_algebra import (_embed_complex_matrix,
986 ....: _unembed_complex_matrix)
987
988 EXAMPLES::
989
990 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
991 ....: [-2, 1, -4, 3],
992 ....: [ 9, 10, 11, 12],
993 ....: [-10, 9, -12, 11] ])
994 sage: _unembed_complex_matrix(A)
995 [ 2*i + 1 4*i + 3]
996 [ 10*i + 9 12*i + 11]
997
998 TESTS:
999
1000 Unembedding is the inverse of embedding::
1001
1002 sage: set_random_seed()
1003 sage: F = QuadraticField(-1, 'i')
1004 sage: M = random_matrix(F, 3)
1005 sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
1006 True
1007
1008 """
1009 n = ZZ(M.nrows())
1010 if M.ncols() != n:
1011 raise ValueError("the matrix 'M' must be square")
1012 if not n.mod(2).is_zero():
1013 raise ValueError("the matrix 'M' must be a complex embedding")
1014
1015 F = QuadraticField(-1, 'i')
1016 i = F.gen()
1017
1018 # Go top-left to bottom-right (reading order), converting every
1019 # 2-by-2 block we see to a single complex element.
1020 elements = []
1021 for k in xrange(n/2):
1022 for j in xrange(n/2):
1023 submat = M[2*k:2*k+2,2*j:2*j+2]
1024 if submat[0,0] != submat[1,1]:
1025 raise ValueError('bad on-diagonal submatrix')
1026 if submat[0,1] != -submat[1,0]:
1027 raise ValueError('bad off-diagonal submatrix')
1028 z = submat[0,0] + submat[0,1]*i
1029 elements.append(z)
1030
1031 return matrix(F, n/2, elements)
1032
1033
1034 def _embed_quaternion_matrix(M):
1035 """
1036 Embed the n-by-n quaternion matrix ``M`` into the space of real
1037 matrices of size 4n-by-4n by first sending each quaternion entry
1038 `z = a + bi + cj + dk` to the block-complex matrix
1039 ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
1040 a real matrix.
1041
1042 SETUP::
1043
1044 sage: from mjo.eja.eja_algebra import _embed_quaternion_matrix
1045
1046 EXAMPLES::
1047
1048 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1049 sage: i,j,k = Q.gens()
1050 sage: x = 1 + 2*i + 3*j + 4*k
1051 sage: M = matrix(Q, 1, [[x]])
1052 sage: _embed_quaternion_matrix(M)
1053 [ 1 2 3 4]
1054 [-2 1 -4 3]
1055 [-3 4 1 -2]
1056 [-4 -3 2 1]
1057
1058 Embedding is a homomorphism (isomorphism, in fact)::
1059
1060 sage: set_random_seed()
1061 sage: n = ZZ.random_element(5)
1062 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1063 sage: X = random_matrix(Q, n)
1064 sage: Y = random_matrix(Q, n)
1065 sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
1066 sage: expected = _embed_quaternion_matrix(X*Y)
1067 sage: actual == expected
1068 True
1069
1070 """
1071 quaternions = M.base_ring()
1072 n = M.nrows()
1073 if M.ncols() != n:
1074 raise ValueError("the matrix 'M' must be square")
1075
1076 F = QuadraticField(-1, 'i')
1077 i = F.gen()
1078
1079 blocks = []
1080 for z in M.list():
1081 t = z.coefficient_tuple()
1082 a = t[0]
1083 b = t[1]
1084 c = t[2]
1085 d = t[3]
1086 cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
1087 [-c + d*i, a - b*i]])
1088 blocks.append(_embed_complex_matrix(cplx_matrix))
1089
1090 # We should have real entries by now, so use the realest field
1091 # we've got for the return value.
1092 return matrix.block(quaternions.base_ring(), n, blocks)
1093
1094
1095 def _unembed_quaternion_matrix(M):
1096 """
1097 The inverse of _embed_quaternion_matrix().
1098
1099 SETUP::
1100
1101 sage: from mjo.eja.eja_algebra import (_embed_quaternion_matrix,
1102 ....: _unembed_quaternion_matrix)
1103
1104 EXAMPLES::
1105
1106 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1107 ....: [-2, 1, -4, 3],
1108 ....: [-3, 4, 1, -2],
1109 ....: [-4, -3, 2, 1]])
1110 sage: _unembed_quaternion_matrix(M)
1111 [1 + 2*i + 3*j + 4*k]
1112
1113 TESTS:
1114
1115 Unembedding is the inverse of embedding::
1116
1117 sage: set_random_seed()
1118 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1119 sage: M = random_matrix(Q, 3)
1120 sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
1121 True
1122
1123 """
1124 n = ZZ(M.nrows())
1125 if M.ncols() != n:
1126 raise ValueError("the matrix 'M' must be square")
1127 if not n.mod(4).is_zero():
1128 raise ValueError("the matrix 'M' must be a complex embedding")
1129
1130 Q = QuaternionAlgebra(QQ,-1,-1)
1131 i,j,k = Q.gens()
1132
1133 # Go top-left to bottom-right (reading order), converting every
1134 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1135 # quaternion block.
1136 elements = []
1137 for l in xrange(n/4):
1138 for m in xrange(n/4):
1139 submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
1140 if submat[0,0] != submat[1,1].conjugate():
1141 raise ValueError('bad on-diagonal submatrix')
1142 if submat[0,1] != -submat[1,0].conjugate():
1143 raise ValueError('bad off-diagonal submatrix')
1144 z = submat[0,0].real() + submat[0,0].imag()*i
1145 z += submat[0,1].real()*j + submat[0,1].imag()*k
1146 elements.append(z)
1147
1148 return matrix(Q, n/4, elements)
1149
1150
1151 # The usual inner product on R^n.
1152 def _usual_ip(x,y):
1153 return x.to_vector().inner_product(y.to_vector())
1154
1155 # The inner product used for the real symmetric simple EJA.
1156 # We keep it as a separate function because e.g. the complex
1157 # algebra uses the same inner product, except divided by 2.
1158 def _matrix_ip(X,Y):
1159 X_mat = X.natural_representation()
1160 Y_mat = Y.natural_representation()
1161 return (X_mat*Y_mat).trace()
1162
1163
1164 class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
1165 """
1166 The rank-n simple EJA consisting of real symmetric n-by-n
1167 matrices, the usual symmetric Jordan product, and the trace inner
1168 product. It has dimension `(n^2 + n)/2` over the reals.
1169
1170 SETUP::
1171
1172 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1173
1174 EXAMPLES::
1175
1176 sage: J = RealSymmetricEJA(2)
1177 sage: e0, e1, e2 = J.gens()
1178 sage: e0*e0
1179 e0
1180 sage: e1*e1
1181 e0 + e2
1182 sage: e2*e2
1183 e2
1184
1185 TESTS:
1186
1187 The dimension of this algebra is `(n^2 + n) / 2`::
1188
1189 sage: set_random_seed()
1190 sage: n = ZZ.random_element(1,5)
1191 sage: J = RealSymmetricEJA(n)
1192 sage: J.dimension() == (n^2 + n)/2
1193 True
1194
1195 The Jordan multiplication is what we think it is::
1196
1197 sage: set_random_seed()
1198 sage: n = ZZ.random_element(1,5)
1199 sage: J = RealSymmetricEJA(n)
1200 sage: x = J.random_element()
1201 sage: y = J.random_element()
1202 sage: actual = (x*y).natural_representation()
1203 sage: X = x.natural_representation()
1204 sage: Y = y.natural_representation()
1205 sage: expected = (X*Y + Y*X)/2
1206 sage: actual == expected
1207 True
1208 sage: J(expected) == x*y
1209 True
1210
1211 We can change the generator prefix::
1212
1213 sage: RealSymmetricEJA(3, prefix='q').gens()
1214 (q0, q1, q2, q3, q4, q5)
1215
1216 """
1217 def __init__(self, n, field=QQ, **kwargs):
1218 S = _real_symmetric_basis(n, field=field)
1219 Qs = _multiplication_table_from_matrix_basis(S)
1220
1221 fdeja = super(RealSymmetricEJA, self)
1222 return fdeja.__init__(field,
1223 Qs,
1224 rank=n,
1225 natural_basis=S,
1226 **kwargs)
1227
1228 def inner_product(self, x, y):
1229 return _matrix_ip(x,y)
1230
1231
1232 class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1233 """
1234 The rank-n simple EJA consisting of complex Hermitian n-by-n
1235 matrices over the real numbers, the usual symmetric Jordan product,
1236 and the real-part-of-trace inner product. It has dimension `n^2` over
1237 the reals.
1238
1239 SETUP::
1240
1241 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1242
1243 TESTS:
1244
1245 The dimension of this algebra is `n^2`::
1246
1247 sage: set_random_seed()
1248 sage: n = ZZ.random_element(1,5)
1249 sage: J = ComplexHermitianEJA(n)
1250 sage: J.dimension() == n^2
1251 True
1252
1253 The Jordan multiplication is what we think it is::
1254
1255 sage: set_random_seed()
1256 sage: n = ZZ.random_element(1,5)
1257 sage: J = ComplexHermitianEJA(n)
1258 sage: x = J.random_element()
1259 sage: y = J.random_element()
1260 sage: actual = (x*y).natural_representation()
1261 sage: X = x.natural_representation()
1262 sage: Y = y.natural_representation()
1263 sage: expected = (X*Y + Y*X)/2
1264 sage: actual == expected
1265 True
1266 sage: J(expected) == x*y
1267 True
1268
1269 We can change the generator prefix::
1270
1271 sage: ComplexHermitianEJA(2, prefix='z').gens()
1272 (z0, z1, z2, z3)
1273
1274 """
1275 def __init__(self, n, field=QQ, **kwargs):
1276 S = _complex_hermitian_basis(n)
1277 Qs = _multiplication_table_from_matrix_basis(S)
1278
1279 fdeja = super(ComplexHermitianEJA, self)
1280 return fdeja.__init__(field,
1281 Qs,
1282 rank=n,
1283 natural_basis=S,
1284 **kwargs)
1285
1286
1287 def inner_product(self, x, y):
1288 # Since a+bi on the diagonal is represented as
1289 #
1290 # a + bi = [ a b ]
1291 # [ -b a ],
1292 #
1293 # we'll double-count the "a" entries if we take the trace of
1294 # the embedding.
1295 return _matrix_ip(x,y)/2
1296
1297
1298 class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
1299 """
1300 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1301 matrices, the usual symmetric Jordan product, and the
1302 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1303 the reals.
1304
1305 SETUP::
1306
1307 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1308
1309 TESTS:
1310
1311 The dimension of this algebra is `n^2`::
1312
1313 sage: set_random_seed()
1314 sage: n = ZZ.random_element(1,5)
1315 sage: J = QuaternionHermitianEJA(n)
1316 sage: J.dimension() == 2*(n^2) - n
1317 True
1318
1319 The Jordan multiplication is what we think it is::
1320
1321 sage: set_random_seed()
1322 sage: n = ZZ.random_element(1,5)
1323 sage: J = QuaternionHermitianEJA(n)
1324 sage: x = J.random_element()
1325 sage: y = J.random_element()
1326 sage: actual = (x*y).natural_representation()
1327 sage: X = x.natural_representation()
1328 sage: Y = y.natural_representation()
1329 sage: expected = (X*Y + Y*X)/2
1330 sage: actual == expected
1331 True
1332 sage: J(expected) == x*y
1333 True
1334
1335 We can change the generator prefix::
1336
1337 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1338 (a0, a1, a2, a3, a4, a5)
1339
1340 """
1341 def __init__(self, n, field=QQ, **kwargs):
1342 S = _quaternion_hermitian_basis(n)
1343 Qs = _multiplication_table_from_matrix_basis(S)
1344
1345 fdeja = super(QuaternionHermitianEJA, self)
1346 return fdeja.__init__(field,
1347 Qs,
1348 rank=n,
1349 natural_basis=S,
1350 **kwargs)
1351
1352 def inner_product(self, x, y):
1353 # Since a+bi+cj+dk on the diagonal is represented as
1354 #
1355 # a + bi +cj + dk = [ a b c d]
1356 # [ -b a -d c]
1357 # [ -c d a -b]
1358 # [ -d -c b a],
1359 #
1360 # we'll quadruple-count the "a" entries if we take the trace of
1361 # the embedding.
1362 return _matrix_ip(x,y)/4
1363
1364
1365 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
1366 """
1367 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1368 with the usual inner product and jordan product ``x*y =
1369 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1370 the reals.
1371
1372 SETUP::
1373
1374 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1375
1376 EXAMPLES:
1377
1378 This multiplication table can be verified by hand::
1379
1380 sage: J = JordanSpinEJA(4)
1381 sage: e0,e1,e2,e3 = J.gens()
1382 sage: e0*e0
1383 e0
1384 sage: e0*e1
1385 e1
1386 sage: e0*e2
1387 e2
1388 sage: e0*e3
1389 e3
1390 sage: e1*e2
1391 0
1392 sage: e1*e3
1393 0
1394 sage: e2*e3
1395 0
1396
1397 We can change the generator prefix::
1398
1399 sage: JordanSpinEJA(2, prefix='B').gens()
1400 (B0, B1)
1401
1402 """
1403 def __init__(self, n, field=QQ, **kwargs):
1404 V = VectorSpace(field, n)
1405 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
1406 for i in range(n):
1407 for j in range(n):
1408 x = V.gen(i)
1409 y = V.gen(j)
1410 x0 = x[0]
1411 xbar = x[1:]
1412 y0 = y[0]
1413 ybar = y[1:]
1414 # z = x*y
1415 z0 = x.inner_product(y)
1416 zbar = y0*xbar + x0*ybar
1417 z = V([z0] + zbar.list())
1418 mult_table[i][j] = z
1419
1420 # The rank of the spin algebra is two, unless we're in a
1421 # one-dimensional ambient space (because the rank is bounded by
1422 # the ambient dimension).
1423 fdeja = super(JordanSpinEJA, self)
1424 return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
1425
1426 def inner_product(self, x, y):
1427 return _usual_ip(x,y)