]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
3361bfaaeb6490f425ac383d0b14904b2e02b76c
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide two other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43
44 The Jordan spin algebra is a bilinear form algebra where the bilinear
45 form is the identity. The Hadamard EJA is simply a Cartesian product
46 of one-dimensional spin algebras. The Albert EJA is simply a special
47 case of the :class:`OctonionHermitianEJA` where the matrices are
48 three-by-three and the resulting space has dimension 27. And
49 last/least, the trivial EJA is exactly what you think it is; it could
50 also be obtained by constructing a dimension-zero instance of any of
51 the other algebras. Cartesian products of these are also supported
52 using the usual ``cartesian_product()`` function; as a result, we
53 support (up to isomorphism) all Euclidean Jordan algebras.
54
55 At a minimum, the following are required to construct a Euclidean
56 Jordan algebra:
57
58 * A basis of matrices, column vectors, or MatrixAlgebra elements
59 * A Jordan product defined on the basis
60 * Its inner product defined on the basis
61
62 The real numbers form a Euclidean Jordan algebra when both the Jordan
63 and inner products are the usual multiplication. We use this as our
64 example, and demonstrate a few ways to construct an EJA.
65
66 First, we can use one-by-one SageMath matrices with algebraic real
67 entries to represent real numbers. We define the Jordan and inner
68 products to be essentially real-number multiplication, with the only
69 difference being that the Jordan product again returns a one-by-one
70 matrix, whereas the inner product must return a scalar. Our basis for
71 the one-by-one matrices is of course the set consisting of a single
72 matrix with its sole entry non-zero::
73
74 sage: from mjo.eja.eja_algebra import FiniteDimensionalEJA
75 sage: jp = lambda X,Y: X*Y
76 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
77 sage: b1 = matrix(AA, [[1]])
78 sage: J1 = FiniteDimensionalEJA((b1,), jp, ip)
79 sage: J1
80 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
81
82 In fact, any positive scalar multiple of that inner-product would work::
83
84 sage: ip2 = lambda X,Y: 16*ip(X,Y)
85 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip2)
86 sage: J2
87 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
88
89 But beware that your basis will be orthonormalized _with respect to the
90 given inner-product_ unless you pass ``orthonormalize=False`` to the
91 constructor. For example::
92
93 sage: J3 = FiniteDimensionalEJA((b1,), jp, ip2, orthonormalize=False)
94 sage: J3
95 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
96
97 To see the difference, you can take the first and only basis element
98 of the resulting algebra, and ask for it to be converted back into
99 matrix form::
100
101 sage: J1.basis()[0].to_matrix()
102 [1]
103 sage: J2.basis()[0].to_matrix()
104 [1/4]
105 sage: J3.basis()[0].to_matrix()
106 [1]
107
108 Since square roots are used in that process, the default scalar field
109 that we use is the field of algebraic real numbers, ``AA``. You can
110 also Use rational numbers, but only if you either pass
111 ``orthonormalize=False`` or know that orthonormalizing your basis
112 won't stray beyond the rational numbers. The example above would
113 have worked only because ``sqrt(16) == 4`` is rational.
114
115 Another option for your basis is to use elemebts of a
116 :class:`MatrixAlgebra`::
117
118 sage: from mjo.matrix_algebra import MatrixAlgebra
119 sage: A = MatrixAlgebra(1,AA,AA)
120 sage: J4 = FiniteDimensionalEJA(A.gens(), jp, ip)
121 sage: J4
122 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
123 sage: J4.basis()[0].to_matrix()
124 +---+
125 | 1 |
126 +---+
127
128 An easier way to view the entire EJA basis in its original (but
129 perhaps orthonormalized) matrix form is to use the ``matrix_basis``
130 method::
131
132 sage: J4.matrix_basis()
133 (+---+
134 | 1 |
135 +---+,)
136
137 In particular, a :class:`MatrixAlgebra` is needed to work around the
138 fact that matrices in SageMath must have entries in the same
139 (commutative and associative) ring as its scalars. There are many
140 Euclidean Jordan algebras whose elements are matrices that violate
141 those assumptions. The complex, quaternion, and octonion Hermitian
142 matrices all have entries in a ring (the complex numbers, quaternions,
143 or octonions...) that differs from the algebra's scalar ring (the real
144 numbers). Quaternions are also non-commutative; the octonions are
145 neither commutative nor associative.
146
147 SETUP::
148
149 sage: from mjo.eja.eja_algebra import random_eja
150
151 EXAMPLES::
152
153 sage: random_eja()
154 Euclidean Jordan algebra of dimension...
155 """
156
157 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
158 from sage.categories.magmatic_algebras import MagmaticAlgebras
159 from sage.categories.sets_cat import cartesian_product
160 from sage.combinat.free_module import CombinatorialFreeModule
161 from sage.matrix.constructor import matrix
162 from sage.matrix.matrix_space import MatrixSpace
163 from sage.misc.cachefunc import cached_method
164 from sage.misc.table import table
165 from sage.modules.free_module import FreeModule, VectorSpace
166 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
167 PolynomialRing,
168 QuadraticField)
169 from mjo.eja.eja_element import FiniteDimensionalEJAElement
170 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
171 from mjo.eja.eja_utils import _all2list, _mat2vec
172
173 def EuclideanJordanAlgebras(field):
174 r"""
175 The category of Euclidean Jordan algebras over ``field``, which
176 must be a subfield of the real numbers. For now this is just a
177 convenient wrapper around all of the other category axioms that
178 apply to all EJAs.
179 """
180 category = MagmaticAlgebras(field).FiniteDimensional()
181 category = category.WithBasis().Unital().Commutative()
182 return category
183
184 class FiniteDimensionalEJA(CombinatorialFreeModule):
185 r"""
186 A finite-dimensional Euclidean Jordan algebra.
187
188 INPUT:
189
190 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
191 form," which must be the same form as the arguments to
192 ``jordan_product`` and ``inner_product``. In reality, "matrix
193 form" can be either vectors, matrices, or a Cartesian product
194 (ordered tuple) of vectors or matrices. All of these would
195 ideally be vector spaces in sage with no special-casing
196 needed; but in reality we turn vectors into column-matrices
197 and Cartesian products `(a,b)` into column matrices
198 `(a,b)^{T}` after converting `a` and `b` themselves.
199
200 - ``jordan_product`` -- a function; afunction of two ``basis``
201 elements (in matrix form) that returns their jordan product,
202 also in matrix form; this will be applied to ``basis`` to
203 compute a multiplication table for the algebra.
204
205 - ``inner_product`` -- a function; a function of two ``basis``
206 elements (in matrix form) that returns their inner
207 product. This will be applied to ``basis`` to compute an
208 inner-product table (basically a matrix) for this algebra.
209
210 - ``matrix_space`` -- the space that your matrix basis lives in,
211 or ``None`` (the default). So long as your basis does not have
212 length zero you can omit this. But in trivial algebras, it is
213 required.
214
215 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
216 field for the algebra.
217
218 - ``orthonormalize`` -- boolean (default: ``True``); whether or
219 not to orthonormalize the basis. Doing so is expensive and
220 generally rules out using the rationals as your ``field``, but
221 is required for spectral decompositions.
222
223 SETUP::
224
225 sage: from mjo.eja.eja_algebra import random_eja
226
227 TESTS:
228
229 We should compute that an element subalgebra is associative even
230 if we circumvent the element method::
231
232 sage: set_random_seed()
233 sage: J = random_eja(field=QQ,orthonormalize=False)
234 sage: x = J.random_element()
235 sage: A = x.subalgebra_generated_by(orthonormalize=False)
236 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
237 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
238 True
239 """
240 Element = FiniteDimensionalEJAElement
241
242 @staticmethod
243 def _check_input_field(field):
244 if not field.is_subring(RR):
245 # Note: this does return true for the real algebraic
246 # field, the rationals, and any quadratic field where
247 # we've specified a real embedding.
248 raise ValueError("scalar field is not real")
249
250 @staticmethod
251 def _check_input_axioms(basis, jordan_product, inner_product):
252 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
253 for bi in basis
254 for bj in basis ):
255 raise ValueError("Jordan product is not commutative")
256
257 if not all( inner_product(bi,bj) == inner_product(bj,bi)
258 for bi in basis
259 for bj in basis ):
260 raise ValueError("inner-product is not commutative")
261
262 def __init__(self,
263 basis,
264 jordan_product,
265 inner_product,
266 field=AA,
267 matrix_space=None,
268 orthonormalize=True,
269 associative=None,
270 check_field=True,
271 check_axioms=True,
272 prefix="b"):
273
274 n = len(basis)
275
276 if check_field:
277 self._check_input_field(field)
278
279 if check_axioms:
280 # Check commutativity of the Jordan and inner-products.
281 # This has to be done before we build the multiplication
282 # and inner-product tables/matrices, because we take
283 # advantage of symmetry in the process.
284 self._check_input_axioms(basis, jordan_product, inner_product)
285
286 if n <= 1:
287 # All zero- and one-dimensional algebras are just the real
288 # numbers with (some positive multiples of) the usual
289 # multiplication as its Jordan and inner-product.
290 associative = True
291 if associative is None:
292 # We should figure it out. As with check_axioms, we have to do
293 # this without the help of the _jordan_product_is_associative()
294 # method because we need to know the category before we
295 # initialize the algebra.
296 associative = all( jordan_product(jordan_product(bi,bj),bk)
297 ==
298 jordan_product(bi,jordan_product(bj,bk))
299 for bi in basis
300 for bj in basis
301 for bk in basis)
302
303 category = EuclideanJordanAlgebras(field)
304
305 if associative:
306 # Element subalgebras can take advantage of this.
307 category = category.Associative()
308
309 # Call the superclass constructor so that we can use its from_vector()
310 # method to build our multiplication table.
311 CombinatorialFreeModule.__init__(self,
312 field,
313 range(n),
314 prefix=prefix,
315 category=category,
316 bracket=False)
317
318 # Now comes all of the hard work. We'll be constructing an
319 # ambient vector space V that our (vectorized) basis lives in,
320 # as well as a subspace W of V spanned by those (vectorized)
321 # basis elements. The W-coordinates are the coefficients that
322 # we see in things like x = 1*b1 + 2*b2.
323
324 degree = 0
325 if n > 0:
326 degree = len(_all2list(basis[0]))
327
328 # Build an ambient space that fits our matrix basis when
329 # written out as "long vectors."
330 V = VectorSpace(field, degree)
331
332 # The matrix that will hold the orthonormal -> unorthonormal
333 # coordinate transformation. Default to an identity matrix of
334 # the appropriate size to avoid special cases for None
335 # everywhere.
336 self._deortho_matrix = matrix.identity(field,n)
337
338 if orthonormalize:
339 # Save a copy of the un-orthonormalized basis for later.
340 # Convert it to ambient V (vector) coordinates while we're
341 # at it, because we'd have to do it later anyway.
342 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
343
344 from mjo.eja.eja_utils import gram_schmidt
345 basis = tuple(gram_schmidt(basis, inner_product))
346
347 # Save the (possibly orthonormalized) matrix basis for
348 # later, as well as the space that its elements live in.
349 # In most cases we can deduce the matrix space, but when
350 # n == 0 (that is, there are no basis elements) we cannot.
351 self._matrix_basis = basis
352 if matrix_space is None:
353 self._matrix_space = self._matrix_basis[0].parent()
354 else:
355 self._matrix_space = matrix_space
356
357 # Now create the vector space for the algebra, which will have
358 # its own set of non-ambient coordinates (in terms of the
359 # supplied basis).
360 vector_basis = tuple( V(_all2list(b)) for b in basis )
361
362 # Save the span of our matrix basis (when written out as long
363 # vectors) because otherwise we'll have to reconstruct it
364 # every time we want to coerce a matrix into the algebra.
365 self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms)
366
367 if orthonormalize:
368 # Now "self._matrix_span" is the vector space of our
369 # algebra coordinates. The variables "X1", "X2",... refer
370 # to the entries of vectors in self._matrix_span. Thus to
371 # convert back and forth between the orthonormal
372 # coordinates and the given ones, we need to stick the
373 # original basis in self._matrix_span.
374 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
375 self._deortho_matrix = matrix.column( U.coordinate_vector(q)
376 for q in vector_basis )
377
378
379 # Now we actually compute the multiplication and inner-product
380 # tables/matrices using the possibly-orthonormalized basis.
381 self._inner_product_matrix = matrix.identity(field, n)
382 zed = self.zero()
383 self._multiplication_table = [ [zed for j in range(i+1)]
384 for i in range(n) ]
385
386 # Note: the Jordan and inner-products are defined in terms
387 # of the ambient basis. It's important that their arguments
388 # are in ambient coordinates as well.
389 for i in range(n):
390 for j in range(i+1):
391 # ortho basis w.r.t. ambient coords
392 q_i = basis[i]
393 q_j = basis[j]
394
395 # The jordan product returns a matrixy answer, so we
396 # have to convert it to the algebra coordinates.
397 elt = jordan_product(q_i, q_j)
398 elt = self._matrix_span.coordinate_vector(V(_all2list(elt)))
399 self._multiplication_table[i][j] = self.from_vector(elt)
400
401 if not orthonormalize:
402 # If we're orthonormalizing the basis with respect
403 # to an inner-product, then the inner-product
404 # matrix with respect to the resulting basis is
405 # just going to be the identity.
406 ip = inner_product(q_i, q_j)
407 self._inner_product_matrix[i,j] = ip
408 self._inner_product_matrix[j,i] = ip
409
410 self._inner_product_matrix._cache = {'hermitian': True}
411 self._inner_product_matrix.set_immutable()
412
413 if check_axioms:
414 if not self._is_jordanian():
415 raise ValueError("Jordan identity does not hold")
416 if not self._inner_product_is_associative():
417 raise ValueError("inner product is not associative")
418
419
420 def _coerce_map_from_base_ring(self):
421 """
422 Disable the map from the base ring into the algebra.
423
424 Performing a nonsense conversion like this automatically
425 is counterpedagogical. The fallback is to try the usual
426 element constructor, which should also fail.
427
428 SETUP::
429
430 sage: from mjo.eja.eja_algebra import random_eja
431
432 TESTS::
433
434 sage: set_random_seed()
435 sage: J = random_eja()
436 sage: J(1)
437 Traceback (most recent call last):
438 ...
439 ValueError: not an element of this algebra
440
441 """
442 return None
443
444
445 def product_on_basis(self, i, j):
446 r"""
447 Returns the Jordan product of the `i` and `j`th basis elements.
448
449 This completely defines the Jordan product on the algebra, and
450 is used direclty by our superclass machinery to implement
451 :meth:`product`.
452
453 SETUP::
454
455 sage: from mjo.eja.eja_algebra import random_eja
456
457 TESTS::
458
459 sage: set_random_seed()
460 sage: J = random_eja()
461 sage: n = J.dimension()
462 sage: bi = J.zero()
463 sage: bj = J.zero()
464 sage: bi_bj = J.zero()*J.zero()
465 sage: if n > 0:
466 ....: i = ZZ.random_element(n)
467 ....: j = ZZ.random_element(n)
468 ....: bi = J.monomial(i)
469 ....: bj = J.monomial(j)
470 ....: bi_bj = J.product_on_basis(i,j)
471 sage: bi*bj == bi_bj
472 True
473
474 """
475 # We only stored the lower-triangular portion of the
476 # multiplication table.
477 if j <= i:
478 return self._multiplication_table[i][j]
479 else:
480 return self._multiplication_table[j][i]
481
482 def inner_product(self, x, y):
483 """
484 The inner product associated with this Euclidean Jordan algebra.
485
486 Defaults to the trace inner product, but can be overridden by
487 subclasses if they are sure that the necessary properties are
488 satisfied.
489
490 SETUP::
491
492 sage: from mjo.eja.eja_algebra import (random_eja,
493 ....: HadamardEJA,
494 ....: BilinearFormEJA)
495
496 EXAMPLES:
497
498 Our inner product is "associative," which means the following for
499 a symmetric bilinear form::
500
501 sage: set_random_seed()
502 sage: J = random_eja()
503 sage: x,y,z = J.random_elements(3)
504 sage: (x*y).inner_product(z) == y.inner_product(x*z)
505 True
506
507 TESTS:
508
509 Ensure that this is the usual inner product for the algebras
510 over `R^n`::
511
512 sage: set_random_seed()
513 sage: J = HadamardEJA.random_instance()
514 sage: x,y = J.random_elements(2)
515 sage: actual = x.inner_product(y)
516 sage: expected = x.to_vector().inner_product(y.to_vector())
517 sage: actual == expected
518 True
519
520 Ensure that this is one-half of the trace inner-product in a
521 BilinearFormEJA that isn't just the reals (when ``n`` isn't
522 one). This is in Faraut and Koranyi, and also my "On the
523 symmetry..." paper::
524
525 sage: set_random_seed()
526 sage: J = BilinearFormEJA.random_instance()
527 sage: n = J.dimension()
528 sage: x = J.random_element()
529 sage: y = J.random_element()
530 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
531 True
532
533 """
534 B = self._inner_product_matrix
535 return (B*x.to_vector()).inner_product(y.to_vector())
536
537
538 def is_associative(self):
539 r"""
540 Return whether or not this algebra's Jordan product is associative.
541
542 SETUP::
543
544 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
545
546 EXAMPLES::
547
548 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
549 sage: J.is_associative()
550 False
551 sage: x = sum(J.gens())
552 sage: A = x.subalgebra_generated_by(orthonormalize=False)
553 sage: A.is_associative()
554 True
555
556 """
557 return "Associative" in self.category().axioms()
558
559 def _is_commutative(self):
560 r"""
561 Whether or not this algebra's multiplication table is commutative.
562
563 This method should of course always return ``True``, unless
564 this algebra was constructed with ``check_axioms=False`` and
565 passed an invalid multiplication table.
566 """
567 return all( x*y == y*x for x in self.gens() for y in self.gens() )
568
569 def _is_jordanian(self):
570 r"""
571 Whether or not this algebra's multiplication table respects the
572 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
573
574 We only check one arrangement of `x` and `y`, so for a
575 ``True`` result to be truly true, you should also check
576 :meth:`_is_commutative`. This method should of course always
577 return ``True``, unless this algebra was constructed with
578 ``check_axioms=False`` and passed an invalid multiplication table.
579 """
580 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
581 ==
582 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
583 for i in range(self.dimension())
584 for j in range(self.dimension()) )
585
586 def _jordan_product_is_associative(self):
587 r"""
588 Return whether or not this algebra's Jordan product is
589 associative; that is, whether or not `x*(y*z) = (x*y)*z`
590 for all `x,y,x`.
591
592 This method should agree with :meth:`is_associative` unless
593 you lied about the value of the ``associative`` parameter
594 when you constructed the algebra.
595
596 SETUP::
597
598 sage: from mjo.eja.eja_algebra import (random_eja,
599 ....: RealSymmetricEJA,
600 ....: ComplexHermitianEJA,
601 ....: QuaternionHermitianEJA)
602
603 EXAMPLES::
604
605 sage: J = RealSymmetricEJA(4, orthonormalize=False)
606 sage: J._jordan_product_is_associative()
607 False
608 sage: x = sum(J.gens())
609 sage: A = x.subalgebra_generated_by()
610 sage: A._jordan_product_is_associative()
611 True
612
613 ::
614
615 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
616 sage: J._jordan_product_is_associative()
617 False
618 sage: x = sum(J.gens())
619 sage: A = x.subalgebra_generated_by(orthonormalize=False)
620 sage: A._jordan_product_is_associative()
621 True
622
623 ::
624
625 sage: J = QuaternionHermitianEJA(2)
626 sage: J._jordan_product_is_associative()
627 False
628 sage: x = sum(J.gens())
629 sage: A = x.subalgebra_generated_by()
630 sage: A._jordan_product_is_associative()
631 True
632
633 TESTS:
634
635 The values we've presupplied to the constructors agree with
636 the computation::
637
638 sage: set_random_seed()
639 sage: J = random_eja()
640 sage: J.is_associative() == J._jordan_product_is_associative()
641 True
642
643 """
644 R = self.base_ring()
645
646 # Used to check whether or not something is zero.
647 epsilon = R.zero()
648 if not R.is_exact():
649 # I don't know of any examples that make this magnitude
650 # necessary because I don't know how to make an
651 # associative algebra when the element subalgebra
652 # construction is unreliable (as it is over RDF; we can't
653 # find the degree of an element because we can't compute
654 # the rank of a matrix). But even multiplication of floats
655 # is non-associative, so *some* epsilon is needed... let's
656 # just take the one from _inner_product_is_associative?
657 epsilon = 1e-15
658
659 for i in range(self.dimension()):
660 for j in range(self.dimension()):
661 for k in range(self.dimension()):
662 x = self.monomial(i)
663 y = self.monomial(j)
664 z = self.monomial(k)
665 diff = (x*y)*z - x*(y*z)
666
667 if diff.norm() > epsilon:
668 return False
669
670 return True
671
672 def _inner_product_is_associative(self):
673 r"""
674 Return whether or not this algebra's inner product `B` is
675 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
676
677 This method should of course always return ``True``, unless
678 this algebra was constructed with ``check_axioms=False`` and
679 passed an invalid Jordan or inner-product.
680 """
681 R = self.base_ring()
682
683 # Used to check whether or not something is zero.
684 epsilon = R.zero()
685 if not R.is_exact():
686 # This choice is sufficient to allow the construction of
687 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
688 epsilon = 1e-15
689
690 for i in range(self.dimension()):
691 for j in range(self.dimension()):
692 for k in range(self.dimension()):
693 x = self.monomial(i)
694 y = self.monomial(j)
695 z = self.monomial(k)
696 diff = (x*y).inner_product(z) - x.inner_product(y*z)
697
698 if diff.abs() > epsilon:
699 return False
700
701 return True
702
703 def _element_constructor_(self, elt):
704 """
705 Construct an element of this algebra or a subalgebra from its
706 EJA element, vector, or matrix representation.
707
708 This gets called only after the parent element _call_ method
709 fails to find a coercion for the argument.
710
711 SETUP::
712
713 sage: from mjo.eja.eja_algebra import (random_eja,
714 ....: JordanSpinEJA,
715 ....: HadamardEJA,
716 ....: RealSymmetricEJA)
717
718 EXAMPLES:
719
720 The identity in `S^n` is converted to the identity in the EJA::
721
722 sage: J = RealSymmetricEJA(3)
723 sage: I = matrix.identity(QQ,3)
724 sage: J(I) == J.one()
725 True
726
727 This skew-symmetric matrix can't be represented in the EJA::
728
729 sage: J = RealSymmetricEJA(3)
730 sage: A = matrix(QQ,3, lambda i,j: i-j)
731 sage: J(A)
732 Traceback (most recent call last):
733 ...
734 ValueError: not an element of this algebra
735
736 Tuples work as well, provided that the matrix basis for the
737 algebra consists of them::
738
739 sage: J1 = HadamardEJA(3)
740 sage: J2 = RealSymmetricEJA(2)
741 sage: J = cartesian_product([J1,J2])
742 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
743 b1 + b5
744
745 Subalgebra elements are embedded into the superalgebra::
746
747 sage: J = JordanSpinEJA(3)
748 sage: J.one()
749 b0
750 sage: x = sum(J.gens())
751 sage: A = x.subalgebra_generated_by()
752 sage: J(A.one())
753 b0
754
755 TESTS:
756
757 Ensure that we can convert any element back and forth
758 faithfully between its matrix and algebra representations::
759
760 sage: set_random_seed()
761 sage: J = random_eja()
762 sage: x = J.random_element()
763 sage: J(x.to_matrix()) == x
764 True
765
766 We cannot coerce elements between algebras just because their
767 matrix representations are compatible::
768
769 sage: J1 = HadamardEJA(3)
770 sage: J2 = JordanSpinEJA(3)
771 sage: J2(J1.one())
772 Traceback (most recent call last):
773 ...
774 ValueError: not an element of this algebra
775 sage: J1(J2.zero())
776 Traceback (most recent call last):
777 ...
778 ValueError: not an element of this algebra
779
780 """
781 msg = "not an element of this algebra"
782 if elt in self.base_ring():
783 # Ensure that no base ring -> algebra coercion is performed
784 # by this method. There's some stupidity in sage that would
785 # otherwise propagate to this method; for example, sage thinks
786 # that the integer 3 belongs to the space of 2-by-2 matrices.
787 raise ValueError(msg)
788
789 if hasattr(elt, 'superalgebra_element'):
790 # Handle subalgebra elements
791 if elt.parent().superalgebra() == self:
792 return elt.superalgebra_element()
793
794 if hasattr(elt, 'sparse_vector'):
795 # Convert a vector into a column-matrix. We check for
796 # "sparse_vector" and not "column" because matrices also
797 # have a "column" method.
798 elt = elt.column()
799
800 if elt not in self.matrix_space():
801 raise ValueError(msg)
802
803 # Thanks for nothing! Matrix spaces aren't vector spaces in
804 # Sage, so we have to figure out its matrix-basis coordinates
805 # ourselves. We use the basis space's ring instead of the
806 # element's ring because the basis space might be an algebraic
807 # closure whereas the base ring of the 3-by-3 identity matrix
808 # could be QQ instead of QQbar.
809 #
810 # And, we also have to handle Cartesian product bases (when
811 # the matrix basis consists of tuples) here. The "good news"
812 # is that we're already converting everything to long vectors,
813 # and that strategy works for tuples as well.
814 #
815 elt = self._matrix_span.ambient_vector_space()(_all2list(elt))
816
817 try:
818 coords = self._matrix_span.coordinate_vector(elt)
819 except ArithmeticError: # vector is not in free module
820 raise ValueError(msg)
821
822 return self.from_vector(coords)
823
824 def _repr_(self):
825 """
826 Return a string representation of ``self``.
827
828 SETUP::
829
830 sage: from mjo.eja.eja_algebra import JordanSpinEJA
831
832 TESTS:
833
834 Ensure that it says what we think it says::
835
836 sage: JordanSpinEJA(2, field=AA)
837 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
838 sage: JordanSpinEJA(3, field=RDF)
839 Euclidean Jordan algebra of dimension 3 over Real Double Field
840
841 """
842 fmt = "Euclidean Jordan algebra of dimension {} over {}"
843 return fmt.format(self.dimension(), self.base_ring())
844
845
846 @cached_method
847 def characteristic_polynomial_of(self):
848 """
849 Return the algebra's "characteristic polynomial of" function,
850 which is itself a multivariate polynomial that, when evaluated
851 at the coordinates of some algebra element, returns that
852 element's characteristic polynomial.
853
854 The resulting polynomial has `n+1` variables, where `n` is the
855 dimension of this algebra. The first `n` variables correspond to
856 the coordinates of an algebra element: when evaluated at the
857 coordinates of an algebra element with respect to a certain
858 basis, the result is a univariate polynomial (in the one
859 remaining variable ``t``), namely the characteristic polynomial
860 of that element.
861
862 SETUP::
863
864 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
865
866 EXAMPLES:
867
868 The characteristic polynomial in the spin algebra is given in
869 Alizadeh, Example 11.11::
870
871 sage: J = JordanSpinEJA(3)
872 sage: p = J.characteristic_polynomial_of(); p
873 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
874 sage: xvec = J.one().to_vector()
875 sage: p(*xvec)
876 t^2 - 2*t + 1
877
878 By definition, the characteristic polynomial is a monic
879 degree-zero polynomial in a rank-zero algebra. Note that
880 Cayley-Hamilton is indeed satisfied since the polynomial
881 ``1`` evaluates to the identity element of the algebra on
882 any argument::
883
884 sage: J = TrivialEJA()
885 sage: J.characteristic_polynomial_of()
886 1
887
888 """
889 r = self.rank()
890 n = self.dimension()
891
892 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
893 a = self._charpoly_coefficients()
894
895 # We go to a bit of trouble here to reorder the
896 # indeterminates, so that it's easier to evaluate the
897 # characteristic polynomial at x's coordinates and get back
898 # something in terms of t, which is what we want.
899 S = PolynomialRing(self.base_ring(),'t')
900 t = S.gen(0)
901 if r > 0:
902 R = a[0].parent()
903 S = PolynomialRing(S, R.variable_names())
904 t = S(t)
905
906 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
907
908 def coordinate_polynomial_ring(self):
909 r"""
910 The multivariate polynomial ring in which this algebra's
911 :meth:`characteristic_polynomial_of` lives.
912
913 SETUP::
914
915 sage: from mjo.eja.eja_algebra import (HadamardEJA,
916 ....: RealSymmetricEJA)
917
918 EXAMPLES::
919
920 sage: J = HadamardEJA(2)
921 sage: J.coordinate_polynomial_ring()
922 Multivariate Polynomial Ring in X1, X2...
923 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
924 sage: J.coordinate_polynomial_ring()
925 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
926
927 """
928 var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
929 return PolynomialRing(self.base_ring(), var_names)
930
931 def inner_product(self, x, y):
932 """
933 The inner product associated with this Euclidean Jordan algebra.
934
935 Defaults to the trace inner product, but can be overridden by
936 subclasses if they are sure that the necessary properties are
937 satisfied.
938
939 SETUP::
940
941 sage: from mjo.eja.eja_algebra import (random_eja,
942 ....: HadamardEJA,
943 ....: BilinearFormEJA)
944
945 EXAMPLES:
946
947 Our inner product is "associative," which means the following for
948 a symmetric bilinear form::
949
950 sage: set_random_seed()
951 sage: J = random_eja()
952 sage: x,y,z = J.random_elements(3)
953 sage: (x*y).inner_product(z) == y.inner_product(x*z)
954 True
955
956 TESTS:
957
958 Ensure that this is the usual inner product for the algebras
959 over `R^n`::
960
961 sage: set_random_seed()
962 sage: J = HadamardEJA.random_instance()
963 sage: x,y = J.random_elements(2)
964 sage: actual = x.inner_product(y)
965 sage: expected = x.to_vector().inner_product(y.to_vector())
966 sage: actual == expected
967 True
968
969 Ensure that this is one-half of the trace inner-product in a
970 BilinearFormEJA that isn't just the reals (when ``n`` isn't
971 one). This is in Faraut and Koranyi, and also my "On the
972 symmetry..." paper::
973
974 sage: set_random_seed()
975 sage: J = BilinearFormEJA.random_instance()
976 sage: n = J.dimension()
977 sage: x = J.random_element()
978 sage: y = J.random_element()
979 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
980 True
981 """
982 B = self._inner_product_matrix
983 return (B*x.to_vector()).inner_product(y.to_vector())
984
985
986 def is_trivial(self):
987 """
988 Return whether or not this algebra is trivial.
989
990 A trivial algebra contains only the zero element.
991
992 SETUP::
993
994 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
995 ....: TrivialEJA)
996
997 EXAMPLES::
998
999 sage: J = ComplexHermitianEJA(3)
1000 sage: J.is_trivial()
1001 False
1002
1003 ::
1004
1005 sage: J = TrivialEJA()
1006 sage: J.is_trivial()
1007 True
1008
1009 """
1010 return self.dimension() == 0
1011
1012
1013 def multiplication_table(self):
1014 """
1015 Return a visual representation of this algebra's multiplication
1016 table (on basis elements).
1017
1018 SETUP::
1019
1020 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1021
1022 EXAMPLES::
1023
1024 sage: J = JordanSpinEJA(4)
1025 sage: J.multiplication_table()
1026 +----++----+----+----+----+
1027 | * || b0 | b1 | b2 | b3 |
1028 +====++====+====+====+====+
1029 | b0 || b0 | b1 | b2 | b3 |
1030 +----++----+----+----+----+
1031 | b1 || b1 | b0 | 0 | 0 |
1032 +----++----+----+----+----+
1033 | b2 || b2 | 0 | b0 | 0 |
1034 +----++----+----+----+----+
1035 | b3 || b3 | 0 | 0 | b0 |
1036 +----++----+----+----+----+
1037
1038 """
1039 n = self.dimension()
1040 # Prepend the header row.
1041 M = [["*"] + list(self.gens())]
1042
1043 # And to each subsequent row, prepend an entry that belongs to
1044 # the left-side "header column."
1045 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
1046 for j in range(n) ]
1047 for i in range(n) ]
1048
1049 return table(M, header_row=True, header_column=True, frame=True)
1050
1051
1052 def matrix_basis(self):
1053 """
1054 Return an (often more natural) representation of this algebras
1055 basis as an ordered tuple of matrices.
1056
1057 Every finite-dimensional Euclidean Jordan Algebra is a, up to
1058 Jordan isomorphism, a direct sum of five simple
1059 algebras---four of which comprise Hermitian matrices. And the
1060 last type of algebra can of course be thought of as `n`-by-`1`
1061 column matrices (ambiguusly called column vectors) to avoid
1062 special cases. As a result, matrices (and column vectors) are
1063 a natural representation format for Euclidean Jordan algebra
1064 elements.
1065
1066 But, when we construct an algebra from a basis of matrices,
1067 those matrix representations are lost in favor of coordinate
1068 vectors *with respect to* that basis. We could eventually
1069 convert back if we tried hard enough, but having the original
1070 representations handy is valuable enough that we simply store
1071 them and return them from this method.
1072
1073 Why implement this for non-matrix algebras? Avoiding special
1074 cases for the :class:`BilinearFormEJA` pays with simplicity in
1075 its own right. But mainly, we would like to be able to assume
1076 that elements of a :class:`CartesianProductEJA` can be displayed
1077 nicely, without having to have special classes for direct sums
1078 one of whose components was a matrix algebra.
1079
1080 SETUP::
1081
1082 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1083 ....: RealSymmetricEJA)
1084
1085 EXAMPLES::
1086
1087 sage: J = RealSymmetricEJA(2)
1088 sage: J.basis()
1089 Finite family {0: b0, 1: b1, 2: b2}
1090 sage: J.matrix_basis()
1091 (
1092 [1 0] [ 0 0.7071067811865475?] [0 0]
1093 [0 0], [0.7071067811865475? 0], [0 1]
1094 )
1095
1096 ::
1097
1098 sage: J = JordanSpinEJA(2)
1099 sage: J.basis()
1100 Finite family {0: b0, 1: b1}
1101 sage: J.matrix_basis()
1102 (
1103 [1] [0]
1104 [0], [1]
1105 )
1106 """
1107 return self._matrix_basis
1108
1109
1110 def matrix_space(self):
1111 """
1112 Return the matrix space in which this algebra's elements live, if
1113 we think of them as matrices (including column vectors of the
1114 appropriate size).
1115
1116 "By default" this will be an `n`-by-`1` column-matrix space,
1117 except when the algebra is trivial. There it's `n`-by-`n`
1118 (where `n` is zero), to ensure that two elements of the matrix
1119 space (empty matrices) can be multiplied. For algebras of
1120 matrices, this returns the space in which their
1121 real embeddings live.
1122
1123 SETUP::
1124
1125 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1126 ....: JordanSpinEJA,
1127 ....: QuaternionHermitianEJA,
1128 ....: TrivialEJA)
1129
1130 EXAMPLES:
1131
1132 By default, the matrix representation is just a column-matrix
1133 equivalent to the vector representation::
1134
1135 sage: J = JordanSpinEJA(3)
1136 sage: J.matrix_space()
1137 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1138 Real Field
1139
1140 The matrix representation in the trivial algebra is
1141 zero-by-zero instead of the usual `n`-by-one::
1142
1143 sage: J = TrivialEJA()
1144 sage: J.matrix_space()
1145 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1146 Real Field
1147
1148 The matrix space for complex/quaternion Hermitian matrix EJA
1149 is the space in which their real-embeddings live, not the
1150 original complex/quaternion matrix space::
1151
1152 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1153 sage: J.matrix_space()
1154 Module of 2 by 2 matrices with entries in Algebraic Field over
1155 the scalar ring Rational Field
1156 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1157 sage: J.matrix_space()
1158 Module of 1 by 1 matrices with entries in Quaternion
1159 Algebra (-1, -1) with base ring Rational Field over
1160 the scalar ring Rational Field
1161
1162 """
1163 return self._matrix_space
1164
1165
1166 @cached_method
1167 def one(self):
1168 """
1169 Return the unit element of this algebra.
1170
1171 SETUP::
1172
1173 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1174 ....: random_eja)
1175
1176 EXAMPLES:
1177
1178 We can compute unit element in the Hadamard EJA::
1179
1180 sage: J = HadamardEJA(5)
1181 sage: J.one()
1182 b0 + b1 + b2 + b3 + b4
1183
1184 The unit element in the Hadamard EJA is inherited in the
1185 subalgebras generated by its elements::
1186
1187 sage: J = HadamardEJA(5)
1188 sage: J.one()
1189 b0 + b1 + b2 + b3 + b4
1190 sage: x = sum(J.gens())
1191 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1192 sage: A.one()
1193 c0
1194 sage: A.one().superalgebra_element()
1195 b0 + b1 + b2 + b3 + b4
1196
1197 TESTS:
1198
1199 The identity element acts like the identity, regardless of
1200 whether or not we orthonormalize::
1201
1202 sage: set_random_seed()
1203 sage: J = random_eja()
1204 sage: x = J.random_element()
1205 sage: J.one()*x == x and x*J.one() == x
1206 True
1207 sage: A = x.subalgebra_generated_by()
1208 sage: y = A.random_element()
1209 sage: A.one()*y == y and y*A.one() == y
1210 True
1211
1212 ::
1213
1214 sage: set_random_seed()
1215 sage: J = random_eja(field=QQ, orthonormalize=False)
1216 sage: x = J.random_element()
1217 sage: J.one()*x == x and x*J.one() == x
1218 True
1219 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1220 sage: y = A.random_element()
1221 sage: A.one()*y == y and y*A.one() == y
1222 True
1223
1224 The matrix of the unit element's operator is the identity,
1225 regardless of the base field and whether or not we
1226 orthonormalize::
1227
1228 sage: set_random_seed()
1229 sage: J = random_eja()
1230 sage: actual = J.one().operator().matrix()
1231 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1232 sage: actual == expected
1233 True
1234 sage: x = J.random_element()
1235 sage: A = x.subalgebra_generated_by()
1236 sage: actual = A.one().operator().matrix()
1237 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1238 sage: actual == expected
1239 True
1240
1241 ::
1242
1243 sage: set_random_seed()
1244 sage: J = random_eja(field=QQ, orthonormalize=False)
1245 sage: actual = J.one().operator().matrix()
1246 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1247 sage: actual == expected
1248 True
1249 sage: x = J.random_element()
1250 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1251 sage: actual = A.one().operator().matrix()
1252 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1253 sage: actual == expected
1254 True
1255
1256 Ensure that the cached unit element (often precomputed by
1257 hand) agrees with the computed one::
1258
1259 sage: set_random_seed()
1260 sage: J = random_eja()
1261 sage: cached = J.one()
1262 sage: J.one.clear_cache()
1263 sage: J.one() == cached
1264 True
1265
1266 ::
1267
1268 sage: set_random_seed()
1269 sage: J = random_eja(field=QQ, orthonormalize=False)
1270 sage: cached = J.one()
1271 sage: J.one.clear_cache()
1272 sage: J.one() == cached
1273 True
1274
1275 """
1276 # We can brute-force compute the matrices of the operators
1277 # that correspond to the basis elements of this algebra.
1278 # If some linear combination of those basis elements is the
1279 # algebra identity, then the same linear combination of
1280 # their matrices has to be the identity matrix.
1281 #
1282 # Of course, matrices aren't vectors in sage, so we have to
1283 # appeal to the "long vectors" isometry.
1284 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
1285
1286 # Now we use basic linear algebra to find the coefficients,
1287 # of the matrices-as-vectors-linear-combination, which should
1288 # work for the original algebra basis too.
1289 A = matrix(self.base_ring(), oper_vecs)
1290
1291 # We used the isometry on the left-hand side already, but we
1292 # still need to do it for the right-hand side. Recall that we
1293 # wanted something that summed to the identity matrix.
1294 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
1295
1296 # Now if there's an identity element in the algebra, this
1297 # should work. We solve on the left to avoid having to
1298 # transpose the matrix "A".
1299 return self.from_vector(A.solve_left(b))
1300
1301
1302 def peirce_decomposition(self, c):
1303 """
1304 The Peirce decomposition of this algebra relative to the
1305 idempotent ``c``.
1306
1307 In the future, this can be extended to a complete system of
1308 orthogonal idempotents.
1309
1310 INPUT:
1311
1312 - ``c`` -- an idempotent of this algebra.
1313
1314 OUTPUT:
1315
1316 A triple (J0, J5, J1) containing two subalgebras and one subspace
1317 of this algebra,
1318
1319 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1320 corresponding to the eigenvalue zero.
1321
1322 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1323 corresponding to the eigenvalue one-half.
1324
1325 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1326 corresponding to the eigenvalue one.
1327
1328 These are the only possible eigenspaces for that operator, and this
1329 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1330 orthogonal, and are subalgebras of this algebra with the appropriate
1331 restrictions.
1332
1333 SETUP::
1334
1335 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1336
1337 EXAMPLES:
1338
1339 The canonical example comes from the symmetric matrices, which
1340 decompose into diagonal and off-diagonal parts::
1341
1342 sage: J = RealSymmetricEJA(3)
1343 sage: C = matrix(QQ, [ [1,0,0],
1344 ....: [0,1,0],
1345 ....: [0,0,0] ])
1346 sage: c = J(C)
1347 sage: J0,J5,J1 = J.peirce_decomposition(c)
1348 sage: J0
1349 Euclidean Jordan algebra of dimension 1...
1350 sage: J5
1351 Vector space of degree 6 and dimension 2...
1352 sage: J1
1353 Euclidean Jordan algebra of dimension 3...
1354 sage: J0.one().to_matrix()
1355 [0 0 0]
1356 [0 0 0]
1357 [0 0 1]
1358 sage: orig_df = AA.options.display_format
1359 sage: AA.options.display_format = 'radical'
1360 sage: J.from_vector(J5.basis()[0]).to_matrix()
1361 [ 0 0 1/2*sqrt(2)]
1362 [ 0 0 0]
1363 [1/2*sqrt(2) 0 0]
1364 sage: J.from_vector(J5.basis()[1]).to_matrix()
1365 [ 0 0 0]
1366 [ 0 0 1/2*sqrt(2)]
1367 [ 0 1/2*sqrt(2) 0]
1368 sage: AA.options.display_format = orig_df
1369 sage: J1.one().to_matrix()
1370 [1 0 0]
1371 [0 1 0]
1372 [0 0 0]
1373
1374 TESTS:
1375
1376 Every algebra decomposes trivially with respect to its identity
1377 element::
1378
1379 sage: set_random_seed()
1380 sage: J = random_eja()
1381 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1382 sage: J0.dimension() == 0 and J5.dimension() == 0
1383 True
1384 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1385 True
1386
1387 The decomposition is into eigenspaces, and its components are
1388 therefore necessarily orthogonal. Moreover, the identity
1389 elements in the two subalgebras are the projections onto their
1390 respective subspaces of the superalgebra's identity element::
1391
1392 sage: set_random_seed()
1393 sage: J = random_eja()
1394 sage: x = J.random_element()
1395 sage: if not J.is_trivial():
1396 ....: while x.is_nilpotent():
1397 ....: x = J.random_element()
1398 sage: c = x.subalgebra_idempotent()
1399 sage: J0,J5,J1 = J.peirce_decomposition(c)
1400 sage: ipsum = 0
1401 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1402 ....: w = w.superalgebra_element()
1403 ....: y = J.from_vector(y)
1404 ....: z = z.superalgebra_element()
1405 ....: ipsum += w.inner_product(y).abs()
1406 ....: ipsum += w.inner_product(z).abs()
1407 ....: ipsum += y.inner_product(z).abs()
1408 sage: ipsum
1409 0
1410 sage: J1(c) == J1.one()
1411 True
1412 sage: J0(J.one() - c) == J0.one()
1413 True
1414
1415 """
1416 if not c.is_idempotent():
1417 raise ValueError("element is not idempotent: %s" % c)
1418
1419 # Default these to what they should be if they turn out to be
1420 # trivial, because eigenspaces_left() won't return eigenvalues
1421 # corresponding to trivial spaces (e.g. it returns only the
1422 # eigenspace corresponding to lambda=1 if you take the
1423 # decomposition relative to the identity element).
1424 trivial = self.subalgebra((), check_axioms=False)
1425 J0 = trivial # eigenvalue zero
1426 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1427 J1 = trivial # eigenvalue one
1428
1429 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1430 if eigval == ~(self.base_ring()(2)):
1431 J5 = eigspace
1432 else:
1433 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1434 subalg = self.subalgebra(gens, check_axioms=False)
1435 if eigval == 0:
1436 J0 = subalg
1437 elif eigval == 1:
1438 J1 = subalg
1439 else:
1440 raise ValueError("unexpected eigenvalue: %s" % eigval)
1441
1442 return (J0, J5, J1)
1443
1444
1445 def random_element(self, thorough=False):
1446 r"""
1447 Return a random element of this algebra.
1448
1449 Our algebra superclass method only returns a linear
1450 combination of at most two basis elements. We instead
1451 want the vector space "random element" method that
1452 returns a more diverse selection.
1453
1454 INPUT:
1455
1456 - ``thorough`` -- (boolean; default False) whether or not we
1457 should generate irrational coefficients for the random
1458 element when our base ring is irrational; this slows the
1459 algebra operations to a crawl, but any truly random method
1460 should include them
1461
1462 """
1463 # For a general base ring... maybe we can trust this to do the
1464 # right thing? Unlikely, but.
1465 V = self.vector_space()
1466 v = V.random_element()
1467
1468 if self.base_ring() is AA:
1469 # The "random element" method of the algebraic reals is
1470 # stupid at the moment, and only returns integers between
1471 # -2 and 2, inclusive:
1472 #
1473 # https://trac.sagemath.org/ticket/30875
1474 #
1475 # Instead, we implement our own "random vector" method,
1476 # and then coerce that into the algebra. We use the vector
1477 # space degree here instead of the dimension because a
1478 # subalgebra could (for example) be spanned by only two
1479 # vectors, each with five coordinates. We need to
1480 # generate all five coordinates.
1481 if thorough:
1482 v *= QQbar.random_element().real()
1483 else:
1484 v *= QQ.random_element()
1485
1486 return self.from_vector(V.coordinate_vector(v))
1487
1488 def random_elements(self, count, thorough=False):
1489 """
1490 Return ``count`` random elements as a tuple.
1491
1492 INPUT:
1493
1494 - ``thorough`` -- (boolean; default False) whether or not we
1495 should generate irrational coefficients for the random
1496 elements when our base ring is irrational; this slows the
1497 algebra operations to a crawl, but any truly random method
1498 should include them
1499
1500 SETUP::
1501
1502 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1503
1504 EXAMPLES::
1505
1506 sage: J = JordanSpinEJA(3)
1507 sage: x,y,z = J.random_elements(3)
1508 sage: all( [ x in J, y in J, z in J ])
1509 True
1510 sage: len( J.random_elements(10) ) == 10
1511 True
1512
1513 """
1514 return tuple( self.random_element(thorough)
1515 for idx in range(count) )
1516
1517
1518 @cached_method
1519 def _charpoly_coefficients(self):
1520 r"""
1521 The `r` polynomial coefficients of the "characteristic polynomial
1522 of" function.
1523
1524 SETUP::
1525
1526 sage: from mjo.eja.eja_algebra import random_eja
1527
1528 TESTS:
1529
1530 The theory shows that these are all homogeneous polynomials of
1531 a known degree::
1532
1533 sage: set_random_seed()
1534 sage: J = random_eja()
1535 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1536 True
1537
1538 """
1539 n = self.dimension()
1540 R = self.coordinate_polynomial_ring()
1541 vars = R.gens()
1542 F = R.fraction_field()
1543
1544 def L_x_i_j(i,j):
1545 # From a result in my book, these are the entries of the
1546 # basis representation of L_x.
1547 return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
1548 for k in range(n) )
1549
1550 L_x = matrix(F, n, n, L_x_i_j)
1551
1552 r = None
1553 if self.rank.is_in_cache():
1554 r = self.rank()
1555 # There's no need to pad the system with redundant
1556 # columns if we *know* they'll be redundant.
1557 n = r
1558
1559 # Compute an extra power in case the rank is equal to
1560 # the dimension (otherwise, we would stop at x^(r-1)).
1561 x_powers = [ (L_x**k)*self.one().to_vector()
1562 for k in range(n+1) ]
1563 A = matrix.column(F, x_powers[:n])
1564 AE = A.extended_echelon_form()
1565 E = AE[:,n:]
1566 A_rref = AE[:,:n]
1567 if r is None:
1568 r = A_rref.rank()
1569 b = x_powers[r]
1570
1571 # The theory says that only the first "r" coefficients are
1572 # nonzero, and they actually live in the original polynomial
1573 # ring and not the fraction field. We negate them because in
1574 # the actual characteristic polynomial, they get moved to the
1575 # other side where x^r lives. We don't bother to trim A_rref
1576 # down to a square matrix and solve the resulting system,
1577 # because the upper-left r-by-r portion of A_rref is
1578 # guaranteed to be the identity matrix, so e.g.
1579 #
1580 # A_rref.solve_right(Y)
1581 #
1582 # would just be returning Y.
1583 return (-E*b)[:r].change_ring(R)
1584
1585 @cached_method
1586 def rank(self):
1587 r"""
1588 Return the rank of this EJA.
1589
1590 This is a cached method because we know the rank a priori for
1591 all of the algebras we can construct. Thus we can avoid the
1592 expensive ``_charpoly_coefficients()`` call unless we truly
1593 need to compute the whole characteristic polynomial.
1594
1595 SETUP::
1596
1597 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1598 ....: JordanSpinEJA,
1599 ....: RealSymmetricEJA,
1600 ....: ComplexHermitianEJA,
1601 ....: QuaternionHermitianEJA,
1602 ....: random_eja)
1603
1604 EXAMPLES:
1605
1606 The rank of the Jordan spin algebra is always two::
1607
1608 sage: JordanSpinEJA(2).rank()
1609 2
1610 sage: JordanSpinEJA(3).rank()
1611 2
1612 sage: JordanSpinEJA(4).rank()
1613 2
1614
1615 The rank of the `n`-by-`n` Hermitian real, complex, or
1616 quaternion matrices is `n`::
1617
1618 sage: RealSymmetricEJA(4).rank()
1619 4
1620 sage: ComplexHermitianEJA(3).rank()
1621 3
1622 sage: QuaternionHermitianEJA(2).rank()
1623 2
1624
1625 TESTS:
1626
1627 Ensure that every EJA that we know how to construct has a
1628 positive integer rank, unless the algebra is trivial in
1629 which case its rank will be zero::
1630
1631 sage: set_random_seed()
1632 sage: J = random_eja()
1633 sage: r = J.rank()
1634 sage: r in ZZ
1635 True
1636 sage: r > 0 or (r == 0 and J.is_trivial())
1637 True
1638
1639 Ensure that computing the rank actually works, since the ranks
1640 of all simple algebras are known and will be cached by default::
1641
1642 sage: set_random_seed() # long time
1643 sage: J = random_eja() # long time
1644 sage: cached = J.rank() # long time
1645 sage: J.rank.clear_cache() # long time
1646 sage: J.rank() == cached # long time
1647 True
1648
1649 """
1650 return len(self._charpoly_coefficients())
1651
1652
1653 def subalgebra(self, basis, **kwargs):
1654 r"""
1655 Create a subalgebra of this algebra from the given basis.
1656 """
1657 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1658 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1659
1660
1661 def vector_space(self):
1662 """
1663 Return the vector space that underlies this algebra.
1664
1665 SETUP::
1666
1667 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1668
1669 EXAMPLES::
1670
1671 sage: J = RealSymmetricEJA(2)
1672 sage: J.vector_space()
1673 Vector space of dimension 3 over...
1674
1675 """
1676 return self.zero().to_vector().parent().ambient_vector_space()
1677
1678
1679
1680 class RationalBasisEJA(FiniteDimensionalEJA):
1681 r"""
1682 Algebras whose supplied basis elements have all rational entries.
1683
1684 SETUP::
1685
1686 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1687
1688 EXAMPLES:
1689
1690 The supplied basis is orthonormalized by default::
1691
1692 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1693 sage: J = BilinearFormEJA(B)
1694 sage: J.matrix_basis()
1695 (
1696 [1] [ 0] [ 0]
1697 [0] [1/5] [32/5]
1698 [0], [ 0], [ 5]
1699 )
1700
1701 """
1702 def __init__(self,
1703 basis,
1704 jordan_product,
1705 inner_product,
1706 field=AA,
1707 check_field=True,
1708 **kwargs):
1709
1710 if check_field:
1711 # Abuse the check_field parameter to check that the entries of
1712 # out basis (in ambient coordinates) are in the field QQ.
1713 # Use _all2list to get the vector coordinates of octonion
1714 # entries and not the octonions themselves (which are not
1715 # rational).
1716 if not all( all(b_i in QQ for b_i in _all2list(b))
1717 for b in basis ):
1718 raise TypeError("basis not rational")
1719
1720 super().__init__(basis,
1721 jordan_product,
1722 inner_product,
1723 field=field,
1724 check_field=check_field,
1725 **kwargs)
1726
1727 self._rational_algebra = None
1728 if field is not QQ:
1729 # There's no point in constructing the extra algebra if this
1730 # one is already rational.
1731 #
1732 # Note: the same Jordan and inner-products work here,
1733 # because they are necessarily defined with respect to
1734 # ambient coordinates and not any particular basis.
1735 self._rational_algebra = FiniteDimensionalEJA(
1736 basis,
1737 jordan_product,
1738 inner_product,
1739 field=QQ,
1740 matrix_space=self.matrix_space(),
1741 associative=self.is_associative(),
1742 orthonormalize=False,
1743 check_field=False,
1744 check_axioms=False)
1745
1746 @cached_method
1747 def _charpoly_coefficients(self):
1748 r"""
1749 SETUP::
1750
1751 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1752 ....: JordanSpinEJA)
1753
1754 EXAMPLES:
1755
1756 The base ring of the resulting polynomial coefficients is what
1757 it should be, and not the rationals (unless the algebra was
1758 already over the rationals)::
1759
1760 sage: J = JordanSpinEJA(3)
1761 sage: J._charpoly_coefficients()
1762 (X1^2 - X2^2 - X3^2, -2*X1)
1763 sage: a0 = J._charpoly_coefficients()[0]
1764 sage: J.base_ring()
1765 Algebraic Real Field
1766 sage: a0.base_ring()
1767 Algebraic Real Field
1768
1769 """
1770 if self._rational_algebra is None:
1771 # There's no need to construct *another* algebra over the
1772 # rationals if this one is already over the
1773 # rationals. Likewise, if we never orthonormalized our
1774 # basis, we might as well just use the given one.
1775 return super()._charpoly_coefficients()
1776
1777 # Do the computation over the rationals. The answer will be
1778 # the same, because all we've done is a change of basis.
1779 # Then, change back from QQ to our real base ring
1780 a = ( a_i.change_ring(self.base_ring())
1781 for a_i in self._rational_algebra._charpoly_coefficients() )
1782
1783 # Otherwise, convert the coordinate variables back to the
1784 # deorthonormalized ones.
1785 R = self.coordinate_polynomial_ring()
1786 from sage.modules.free_module_element import vector
1787 X = vector(R, R.gens())
1788 BX = self._deortho_matrix*X
1789
1790 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1791 return tuple( a_i.subs(subs_dict) for a_i in a )
1792
1793 class ConcreteEJA(FiniteDimensionalEJA):
1794 r"""
1795 A class for the Euclidean Jordan algebras that we know by name.
1796
1797 These are the Jordan algebras whose basis, multiplication table,
1798 rank, and so on are known a priori. More to the point, they are
1799 the Euclidean Jordan algebras for which we are able to conjure up
1800 a "random instance."
1801
1802 SETUP::
1803
1804 sage: from mjo.eja.eja_algebra import ConcreteEJA
1805
1806 TESTS:
1807
1808 Our basis is normalized with respect to the algebra's inner
1809 product, unless we specify otherwise::
1810
1811 sage: set_random_seed()
1812 sage: J = ConcreteEJA.random_instance()
1813 sage: all( b.norm() == 1 for b in J.gens() )
1814 True
1815
1816 Since our basis is orthonormal with respect to the algebra's inner
1817 product, and since we know that this algebra is an EJA, any
1818 left-multiplication operator's matrix will be symmetric because
1819 natural->EJA basis representation is an isometry and within the
1820 EJA the operator is self-adjoint by the Jordan axiom::
1821
1822 sage: set_random_seed()
1823 sage: J = ConcreteEJA.random_instance()
1824 sage: x = J.random_element()
1825 sage: x.operator().is_self_adjoint()
1826 True
1827 """
1828
1829 @staticmethod
1830 def _max_random_instance_dimension():
1831 r"""
1832 The maximum dimension of any random instance. Ten dimensions seems
1833 to be about the point where everything takes a turn for the
1834 worse. And dimension ten (but not nine) allows the 4-by-4 real
1835 Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
1836 and the 2-by-2 octonion Hermitian matrices.
1837 """
1838 return 10
1839
1840 @staticmethod
1841 def _max_random_instance_size(max_dimension):
1842 """
1843 Return an integer "size" that is an upper bound on the size of
1844 this algebra when it is used in a random test case. This size
1845 (which can be passed to the algebra's constructor) is itself
1846 based on the ``max_dimension`` parameter.
1847
1848 This method must be implemented in each subclass.
1849 """
1850 raise NotImplementedError
1851
1852 @classmethod
1853 def random_instance(cls, max_dimension=None, *args, **kwargs):
1854 """
1855 Return a random instance of this type of algebra whose dimension
1856 is less than or equal to the lesser of ``max_dimension`` and
1857 the value returned by ``_max_random_instance_dimension()``. If
1858 the dimension bound is omitted, then only the
1859 ``_max_random_instance_dimension()`` is used as a bound.
1860
1861 This method should be implemented in each subclass.
1862
1863 SETUP::
1864
1865 sage: from mjo.eja.eja_algebra import ConcreteEJA
1866
1867 TESTS:
1868
1869 Both the class bound and the ``max_dimension`` argument are upper
1870 bounds on the dimension of the algebra returned::
1871
1872 sage: from sage.misc.prandom import choice
1873 sage: eja_class = choice(ConcreteEJA.__subclasses__())
1874 sage: class_max_d = eja_class._max_random_instance_dimension()
1875 sage: J = eja_class.random_instance(max_dimension=20,
1876 ....: field=QQ,
1877 ....: orthonormalize=False)
1878 sage: J.dimension() <= class_max_d
1879 True
1880 sage: J = eja_class.random_instance(max_dimension=2,
1881 ....: field=QQ,
1882 ....: orthonormalize=False)
1883 sage: J.dimension() <= 2
1884 True
1885
1886 """
1887 from sage.misc.prandom import choice
1888 eja_class = choice(cls.__subclasses__())
1889
1890 # These all bubble up to the RationalBasisEJA superclass
1891 # constructor, so any (kw)args valid there are also valid
1892 # here.
1893 return eja_class.random_instance(max_dimension, *args, **kwargs)
1894
1895
1896 class MatrixEJA(FiniteDimensionalEJA):
1897 @staticmethod
1898 def _denormalized_basis(A):
1899 """
1900 Returns a basis for the space of complex Hermitian n-by-n matrices.
1901
1902 Why do we embed these? Basically, because all of numerical linear
1903 algebra assumes that you're working with vectors consisting of `n`
1904 entries from a field and scalars from the same field. There's no way
1905 to tell SageMath that (for example) the vectors contain complex
1906 numbers, while the scalar field is real.
1907
1908 SETUP::
1909
1910 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1911 ....: QuaternionMatrixAlgebra,
1912 ....: OctonionMatrixAlgebra)
1913 sage: from mjo.eja.eja_algebra import MatrixEJA
1914
1915 TESTS::
1916
1917 sage: set_random_seed()
1918 sage: n = ZZ.random_element(1,5)
1919 sage: A = MatrixSpace(QQ, n)
1920 sage: B = MatrixEJA._denormalized_basis(A)
1921 sage: all( M.is_hermitian() for M in B)
1922 True
1923
1924 ::
1925
1926 sage: set_random_seed()
1927 sage: n = ZZ.random_element(1,5)
1928 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1929 sage: B = MatrixEJA._denormalized_basis(A)
1930 sage: all( M.is_hermitian() for M in B)
1931 True
1932
1933 ::
1934
1935 sage: set_random_seed()
1936 sage: n = ZZ.random_element(1,5)
1937 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1938 sage: B = MatrixEJA._denormalized_basis(A)
1939 sage: all( M.is_hermitian() for M in B )
1940 True
1941
1942 ::
1943
1944 sage: set_random_seed()
1945 sage: n = ZZ.random_element(1,5)
1946 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1947 sage: B = MatrixEJA._denormalized_basis(A)
1948 sage: all( M.is_hermitian() for M in B )
1949 True
1950
1951 """
1952 # These work for real MatrixSpace, whose monomials only have
1953 # two coordinates (because the last one would always be "1").
1954 es = A.base_ring().gens()
1955 gen = lambda A,m: A.monomial(m[:2])
1956
1957 if hasattr(A, 'entry_algebra_gens'):
1958 # We've got a MatrixAlgebra, and its monomials will have
1959 # three coordinates.
1960 es = A.entry_algebra_gens()
1961 gen = lambda A,m: A.monomial(m)
1962
1963 basis = []
1964 for i in range(A.nrows()):
1965 for j in range(i+1):
1966 if i == j:
1967 E_ii = gen(A, (i,j,es[0]))
1968 basis.append(E_ii)
1969 else:
1970 for e in es:
1971 E_ij = gen(A, (i,j,e))
1972 E_ij += E_ij.conjugate_transpose()
1973 basis.append(E_ij)
1974
1975 return tuple( basis )
1976
1977 @staticmethod
1978 def jordan_product(X,Y):
1979 return (X*Y + Y*X)/2
1980
1981 @staticmethod
1982 def trace_inner_product(X,Y):
1983 r"""
1984 A trace inner-product for matrices that aren't embedded in the
1985 reals. It takes MATRICES as arguments, not EJA elements.
1986
1987 SETUP::
1988
1989 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
1990 ....: ComplexHermitianEJA,
1991 ....: QuaternionHermitianEJA,
1992 ....: OctonionHermitianEJA)
1993
1994 EXAMPLES::
1995
1996 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
1997 sage: I = J.one().to_matrix()
1998 sage: J.trace_inner_product(I, -I)
1999 -2
2000
2001 ::
2002
2003 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
2004 sage: I = J.one().to_matrix()
2005 sage: J.trace_inner_product(I, -I)
2006 -2
2007
2008 ::
2009
2010 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2011 sage: I = J.one().to_matrix()
2012 sage: J.trace_inner_product(I, -I)
2013 -2
2014
2015 ::
2016
2017 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
2018 sage: I = J.one().to_matrix()
2019 sage: J.trace_inner_product(I, -I)
2020 -2
2021
2022 """
2023 tr = (X*Y).trace()
2024 if hasattr(tr, 'coefficient'):
2025 # Works for octonions, and has to come first because they
2026 # also have a "real()" method that doesn't return an
2027 # element of the scalar ring.
2028 return tr.coefficient(0)
2029 elif hasattr(tr, 'coefficient_tuple'):
2030 # Works for quaternions.
2031 return tr.coefficient_tuple()[0]
2032
2033 # Works for real and complex numbers.
2034 return tr.real()
2035
2036
2037 def __init__(self, matrix_space, **kwargs):
2038 # We know this is a valid EJA, but will double-check
2039 # if the user passes check_axioms=True.
2040 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2041
2042
2043 super().__init__(self._denormalized_basis(matrix_space),
2044 self.jordan_product,
2045 self.trace_inner_product,
2046 field=matrix_space.base_ring(),
2047 matrix_space=matrix_space,
2048 **kwargs)
2049
2050 self.rank.set_cache(matrix_space.nrows())
2051 self.one.set_cache( self(matrix_space.one()) )
2052
2053 class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2054 """
2055 The rank-n simple EJA consisting of real symmetric n-by-n
2056 matrices, the usual symmetric Jordan product, and the trace inner
2057 product. It has dimension `(n^2 + n)/2` over the reals.
2058
2059 SETUP::
2060
2061 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
2062
2063 EXAMPLES::
2064
2065 sage: J = RealSymmetricEJA(2)
2066 sage: b0, b1, b2 = J.gens()
2067 sage: b0*b0
2068 b0
2069 sage: b1*b1
2070 1/2*b0 + 1/2*b2
2071 sage: b2*b2
2072 b2
2073
2074 In theory, our "field" can be any subfield of the reals::
2075
2076 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
2077 Euclidean Jordan algebra of dimension 3 over Real Double Field
2078 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
2079 Euclidean Jordan algebra of dimension 3 over Real Field with
2080 53 bits of precision
2081
2082 TESTS:
2083
2084 The dimension of this algebra is `(n^2 + n) / 2`::
2085
2086 sage: set_random_seed()
2087 sage: d = RealSymmetricEJA._max_random_instance_dimension()
2088 sage: n = RealSymmetricEJA._max_random_instance_size(d)
2089 sage: J = RealSymmetricEJA(n)
2090 sage: J.dimension() == (n^2 + n)/2
2091 True
2092
2093 The Jordan multiplication is what we think it is::
2094
2095 sage: set_random_seed()
2096 sage: J = RealSymmetricEJA.random_instance()
2097 sage: x,y = J.random_elements(2)
2098 sage: actual = (x*y).to_matrix()
2099 sage: X = x.to_matrix()
2100 sage: Y = y.to_matrix()
2101 sage: expected = (X*Y + Y*X)/2
2102 sage: actual == expected
2103 True
2104 sage: J(expected) == x*y
2105 True
2106
2107 We can change the generator prefix::
2108
2109 sage: RealSymmetricEJA(3, prefix='q').gens()
2110 (q0, q1, q2, q3, q4, q5)
2111
2112 We can construct the (trivial) algebra of rank zero::
2113
2114 sage: RealSymmetricEJA(0)
2115 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2116
2117 """
2118 @staticmethod
2119 def _max_random_instance_size(max_dimension):
2120 # Obtained by solving d = (n^2 + n)/2.
2121 # The ZZ-int-ZZ thing is just "floor."
2122 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
2123
2124 @classmethod
2125 def random_instance(cls, max_dimension=None, *args, **kwargs):
2126 """
2127 Return a random instance of this type of algebra.
2128 """
2129 class_max_d = cls._max_random_instance_dimension()
2130 if (max_dimension is None or max_dimension > class_max_d):
2131 max_dimension = class_max_d
2132 max_size = cls._max_random_instance_size(max_dimension)
2133 n = ZZ.random_element(max_size + 1)
2134 return cls(n, **kwargs)
2135
2136 def __init__(self, n, field=AA, **kwargs):
2137 # We know this is a valid EJA, but will double-check
2138 # if the user passes check_axioms=True.
2139 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2140
2141 A = MatrixSpace(field, n)
2142 super().__init__(A, **kwargs)
2143
2144 from mjo.eja.eja_cache import real_symmetric_eja_coeffs
2145 a = real_symmetric_eja_coeffs(self)
2146 if a is not None:
2147 if self._rational_algebra is None:
2148 self._charpoly_coefficients.set_cache(a)
2149 else:
2150 self._rational_algebra._charpoly_coefficients.set_cache(a)
2151
2152
2153
2154 class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2155 """
2156 The rank-n simple EJA consisting of complex Hermitian n-by-n
2157 matrices over the real numbers, the usual symmetric Jordan product,
2158 and the real-part-of-trace inner product. It has dimension `n^2` over
2159 the reals.
2160
2161 SETUP::
2162
2163 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2164
2165 EXAMPLES:
2166
2167 In theory, our "field" can be any subfield of the reals, but we
2168 can't use inexact real fields at the moment because SageMath
2169 doesn't know how to convert their elements into complex numbers,
2170 or even into algebraic reals::
2171
2172 sage: QQbar(RDF(1))
2173 Traceback (most recent call last):
2174 ...
2175 TypeError: Illegal initializer for algebraic number
2176 sage: AA(RR(1))
2177 Traceback (most recent call last):
2178 ...
2179 TypeError: Illegal initializer for algebraic number
2180
2181 This causes the following error when we try to scale a matrix of
2182 complex numbers by an inexact real number::
2183
2184 sage: ComplexHermitianEJA(2,field=RR)
2185 Traceback (most recent call last):
2186 ...
2187 TypeError: Unable to coerce entries (=(1.00000000000000,
2188 -0.000000000000000)) to coefficients in Algebraic Real Field
2189
2190 TESTS:
2191
2192 The dimension of this algebra is `n^2`::
2193
2194 sage: set_random_seed()
2195 sage: d = ComplexHermitianEJA._max_random_instance_dimension()
2196 sage: n = ComplexHermitianEJA._max_random_instance_size(d)
2197 sage: J = ComplexHermitianEJA(n)
2198 sage: J.dimension() == n^2
2199 True
2200
2201 The Jordan multiplication is what we think it is::
2202
2203 sage: set_random_seed()
2204 sage: J = ComplexHermitianEJA.random_instance()
2205 sage: x,y = J.random_elements(2)
2206 sage: actual = (x*y).to_matrix()
2207 sage: X = x.to_matrix()
2208 sage: Y = y.to_matrix()
2209 sage: expected = (X*Y + Y*X)/2
2210 sage: actual == expected
2211 True
2212 sage: J(expected) == x*y
2213 True
2214
2215 We can change the generator prefix::
2216
2217 sage: ComplexHermitianEJA(2, prefix='z').gens()
2218 (z0, z1, z2, z3)
2219
2220 We can construct the (trivial) algebra of rank zero::
2221
2222 sage: ComplexHermitianEJA(0)
2223 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2224
2225 """
2226 def __init__(self, n, field=AA, **kwargs):
2227 # We know this is a valid EJA, but will double-check
2228 # if the user passes check_axioms=True.
2229 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2230
2231 from mjo.hurwitz import ComplexMatrixAlgebra
2232 A = ComplexMatrixAlgebra(n, scalars=field)
2233 super().__init__(A, **kwargs)
2234
2235 from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
2236 a = complex_hermitian_eja_coeffs(self)
2237 if a is not None:
2238 if self._rational_algebra is None:
2239 self._charpoly_coefficients.set_cache(a)
2240 else:
2241 self._rational_algebra._charpoly_coefficients.set_cache(a)
2242
2243 @staticmethod
2244 def _max_random_instance_size(max_dimension):
2245 # Obtained by solving d = n^2.
2246 # The ZZ-int-ZZ thing is just "floor."
2247 return ZZ(int(ZZ(max_dimension).sqrt()))
2248
2249 @classmethod
2250 def random_instance(cls, max_dimension=None, *args, **kwargs):
2251 """
2252 Return a random instance of this type of algebra.
2253 """
2254 class_max_d = cls._max_random_instance_dimension()
2255 if (max_dimension is None or max_dimension > class_max_d):
2256 max_dimension = class_max_d
2257 max_size = cls._max_random_instance_size(max_dimension)
2258 n = ZZ.random_element(max_size + 1)
2259 return cls(n, **kwargs)
2260
2261
2262 class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2263 r"""
2264 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2265 matrices, the usual symmetric Jordan product, and the
2266 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2267 the reals.
2268
2269 SETUP::
2270
2271 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2272
2273 EXAMPLES:
2274
2275 In theory, our "field" can be any subfield of the reals::
2276
2277 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2278 Euclidean Jordan algebra of dimension 6 over Real Double Field
2279 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2280 Euclidean Jordan algebra of dimension 6 over Real Field with
2281 53 bits of precision
2282
2283 TESTS:
2284
2285 The dimension of this algebra is `2*n^2 - n`::
2286
2287 sage: set_random_seed()
2288 sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
2289 sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
2290 sage: J = QuaternionHermitianEJA(n)
2291 sage: J.dimension() == 2*(n^2) - n
2292 True
2293
2294 The Jordan multiplication is what we think it is::
2295
2296 sage: set_random_seed()
2297 sage: J = QuaternionHermitianEJA.random_instance()
2298 sage: x,y = J.random_elements(2)
2299 sage: actual = (x*y).to_matrix()
2300 sage: X = x.to_matrix()
2301 sage: Y = y.to_matrix()
2302 sage: expected = (X*Y + Y*X)/2
2303 sage: actual == expected
2304 True
2305 sage: J(expected) == x*y
2306 True
2307
2308 We can change the generator prefix::
2309
2310 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2311 (a0, a1, a2, a3, a4, a5)
2312
2313 We can construct the (trivial) algebra of rank zero::
2314
2315 sage: QuaternionHermitianEJA(0)
2316 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2317
2318 """
2319 def __init__(self, n, field=AA, **kwargs):
2320 # We know this is a valid EJA, but will double-check
2321 # if the user passes check_axioms=True.
2322 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2323
2324 from mjo.hurwitz import QuaternionMatrixAlgebra
2325 A = QuaternionMatrixAlgebra(n, scalars=field)
2326 super().__init__(A, **kwargs)
2327
2328 from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
2329 a = quaternion_hermitian_eja_coeffs(self)
2330 if a is not None:
2331 if self._rational_algebra is None:
2332 self._charpoly_coefficients.set_cache(a)
2333 else:
2334 self._rational_algebra._charpoly_coefficients.set_cache(a)
2335
2336
2337
2338 @staticmethod
2339 def _max_random_instance_size(max_dimension):
2340 r"""
2341 The maximum rank of a random QuaternionHermitianEJA.
2342 """
2343 # Obtained by solving d = 2n^2 - n.
2344 # The ZZ-int-ZZ thing is just "floor."
2345 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
2346
2347 @classmethod
2348 def random_instance(cls, max_dimension=None, *args, **kwargs):
2349 """
2350 Return a random instance of this type of algebra.
2351 """
2352 class_max_d = cls._max_random_instance_dimension()
2353 if (max_dimension is None or max_dimension > class_max_d):
2354 max_dimension = class_max_d
2355 max_size = cls._max_random_instance_size(max_dimension)
2356 n = ZZ.random_element(max_size + 1)
2357 return cls(n, **kwargs)
2358
2359 class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
2360 r"""
2361 SETUP::
2362
2363 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2364 ....: OctonionHermitianEJA)
2365 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2366
2367 EXAMPLES:
2368
2369 The 3-by-3 algebra satisfies the axioms of an EJA::
2370
2371 sage: OctonionHermitianEJA(3, # long time
2372 ....: field=QQ, # long time
2373 ....: orthonormalize=False, # long time
2374 ....: check_axioms=True) # long time
2375 Euclidean Jordan algebra of dimension 27 over Rational Field
2376
2377 After a change-of-basis, the 2-by-2 algebra has the same
2378 multiplication table as the ten-dimensional Jordan spin algebra::
2379
2380 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2381 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2382 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2383 sage: jp = OctonionHermitianEJA.jordan_product
2384 sage: ip = OctonionHermitianEJA.trace_inner_product
2385 sage: J = FiniteDimensionalEJA(basis,
2386 ....: jp,
2387 ....: ip,
2388 ....: field=QQ,
2389 ....: orthonormalize=False)
2390 sage: J.multiplication_table()
2391 +----++----+----+----+----+----+----+----+----+----+----+
2392 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2393 +====++====+====+====+====+====+====+====+====+====+====+
2394 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2395 +----++----+----+----+----+----+----+----+----+----+----+
2396 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2397 +----++----+----+----+----+----+----+----+----+----+----+
2398 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2399 +----++----+----+----+----+----+----+----+----+----+----+
2400 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2401 +----++----+----+----+----+----+----+----+----+----+----+
2402 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2403 +----++----+----+----+----+----+----+----+----+----+----+
2404 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2405 +----++----+----+----+----+----+----+----+----+----+----+
2406 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2407 +----++----+----+----+----+----+----+----+----+----+----+
2408 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2409 +----++----+----+----+----+----+----+----+----+----+----+
2410 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2411 +----++----+----+----+----+----+----+----+----+----+----+
2412 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2413 +----++----+----+----+----+----+----+----+----+----+----+
2414
2415 TESTS:
2416
2417 We can actually construct the 27-dimensional Albert algebra,
2418 and we get the right unit element if we recompute it::
2419
2420 sage: J = OctonionHermitianEJA(3, # long time
2421 ....: field=QQ, # long time
2422 ....: orthonormalize=False) # long time
2423 sage: J.one.clear_cache() # long time
2424 sage: J.one() # long time
2425 b0 + b9 + b26
2426 sage: J.one().to_matrix() # long time
2427 +----+----+----+
2428 | e0 | 0 | 0 |
2429 +----+----+----+
2430 | 0 | e0 | 0 |
2431 +----+----+----+
2432 | 0 | 0 | e0 |
2433 +----+----+----+
2434
2435 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2436 spin algebra, but just to be sure, we recompute its rank::
2437
2438 sage: J = OctonionHermitianEJA(2, # long time
2439 ....: field=QQ, # long time
2440 ....: orthonormalize=False) # long time
2441 sage: J.rank.clear_cache() # long time
2442 sage: J.rank() # long time
2443 2
2444
2445 """
2446 @staticmethod
2447 def _max_random_instance_size(max_dimension):
2448 r"""
2449 The maximum rank of a random QuaternionHermitianEJA.
2450 """
2451 # There's certainly a formula for this, but with only four
2452 # cases to worry about, I'm not that motivated to derive it.
2453 if max_dimension >= 27:
2454 return 3
2455 elif max_dimension >= 10:
2456 return 2
2457 elif max_dimension >= 1:
2458 return 1
2459 else:
2460 return 0
2461
2462 @classmethod
2463 def random_instance(cls, max_dimension=None, *args, **kwargs):
2464 """
2465 Return a random instance of this type of algebra.
2466 """
2467 class_max_d = cls._max_random_instance_dimension()
2468 if (max_dimension is None or max_dimension > class_max_d):
2469 max_dimension = class_max_d
2470 max_size = cls._max_random_instance_size(max_dimension)
2471 n = ZZ.random_element(max_size + 1)
2472 return cls(n, **kwargs)
2473
2474 def __init__(self, n, field=AA, **kwargs):
2475 if n > 3:
2476 # Otherwise we don't get an EJA.
2477 raise ValueError("n cannot exceed 3")
2478
2479 # We know this is a valid EJA, but will double-check
2480 # if the user passes check_axioms=True.
2481 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2482
2483 from mjo.hurwitz import OctonionMatrixAlgebra
2484 A = OctonionMatrixAlgebra(n, scalars=field)
2485 super().__init__(A, **kwargs)
2486
2487 from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
2488 a = octonion_hermitian_eja_coeffs(self)
2489 if a is not None:
2490 if self._rational_algebra is None:
2491 self._charpoly_coefficients.set_cache(a)
2492 else:
2493 self._rational_algebra._charpoly_coefficients.set_cache(a)
2494
2495
2496 class AlbertEJA(OctonionHermitianEJA):
2497 r"""
2498 The Albert algebra is the algebra of three-by-three Hermitian
2499 matrices whose entries are octonions.
2500
2501 SETUP::
2502
2503 sage: from mjo.eja.eja_algebra import AlbertEJA
2504
2505 EXAMPLES::
2506
2507 sage: AlbertEJA(field=QQ, orthonormalize=False)
2508 Euclidean Jordan algebra of dimension 27 over Rational Field
2509 sage: AlbertEJA() # long time
2510 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2511
2512 """
2513 def __init__(self, *args, **kwargs):
2514 super().__init__(3, *args, **kwargs)
2515
2516
2517 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2518 """
2519 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2520 (pointwise real-number multiplication) Jordan product and the
2521 usual inner-product.
2522
2523 This is nothing more than the Cartesian product of ``n`` copies of
2524 the one-dimensional Jordan spin algebra, and is the most common
2525 example of a non-simple Euclidean Jordan algebra.
2526
2527 SETUP::
2528
2529 sage: from mjo.eja.eja_algebra import HadamardEJA
2530
2531 EXAMPLES:
2532
2533 This multiplication table can be verified by hand::
2534
2535 sage: J = HadamardEJA(3)
2536 sage: b0,b1,b2 = J.gens()
2537 sage: b0*b0
2538 b0
2539 sage: b0*b1
2540 0
2541 sage: b0*b2
2542 0
2543 sage: b1*b1
2544 b1
2545 sage: b1*b2
2546 0
2547 sage: b2*b2
2548 b2
2549
2550 TESTS:
2551
2552 We can change the generator prefix::
2553
2554 sage: HadamardEJA(3, prefix='r').gens()
2555 (r0, r1, r2)
2556 """
2557 def __init__(self, n, field=AA, **kwargs):
2558 MS = MatrixSpace(field, n, 1)
2559
2560 if n == 0:
2561 jordan_product = lambda x,y: x
2562 inner_product = lambda x,y: x
2563 else:
2564 def jordan_product(x,y):
2565 return MS( xi*yi for (xi,yi) in zip(x,y) )
2566
2567 def inner_product(x,y):
2568 return (x.T*y)[0,0]
2569
2570 # New defaults for keyword arguments. Don't orthonormalize
2571 # because our basis is already orthonormal with respect to our
2572 # inner-product. Don't check the axioms, because we know this
2573 # is a valid EJA... but do double-check if the user passes
2574 # check_axioms=True. Note: we DON'T override the "check_field"
2575 # default here, because the user can pass in a field!
2576 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2577 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2578
2579 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2580 super().__init__(column_basis,
2581 jordan_product,
2582 inner_product,
2583 field=field,
2584 matrix_space=MS,
2585 associative=True,
2586 **kwargs)
2587 self.rank.set_cache(n)
2588
2589 self.one.set_cache( self.sum(self.gens()) )
2590
2591 @staticmethod
2592 def _max_random_instance_dimension():
2593 r"""
2594 There's no reason to go higher than five here. That's
2595 enough to get the point across.
2596 """
2597 return 5
2598
2599 @staticmethod
2600 def _max_random_instance_size(max_dimension):
2601 r"""
2602 The maximum size (=dimension) of a random HadamardEJA.
2603 """
2604 return max_dimension
2605
2606 @classmethod
2607 def random_instance(cls, max_dimension=None, *args, **kwargs):
2608 """
2609 Return a random instance of this type of algebra.
2610 """
2611 class_max_d = cls._max_random_instance_dimension()
2612 if (max_dimension is None or max_dimension > class_max_d):
2613 max_dimension = class_max_d
2614 max_size = cls._max_random_instance_size(max_dimension)
2615 n = ZZ.random_element(max_size + 1)
2616 return cls(n, **kwargs)
2617
2618
2619 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2620 r"""
2621 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2622 with the half-trace inner product and jordan product ``x*y =
2623 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2624 a symmetric positive-definite "bilinear form" matrix. Its
2625 dimension is the size of `B`, and it has rank two in dimensions
2626 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2627 the identity matrix of order ``n``.
2628
2629 We insist that the one-by-one upper-left identity block of `B` be
2630 passed in as well so that we can be passed a matrix of size zero
2631 to construct a trivial algebra.
2632
2633 SETUP::
2634
2635 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2636 ....: JordanSpinEJA)
2637
2638 EXAMPLES:
2639
2640 When no bilinear form is specified, the identity matrix is used,
2641 and the resulting algebra is the Jordan spin algebra::
2642
2643 sage: B = matrix.identity(AA,3)
2644 sage: J0 = BilinearFormEJA(B)
2645 sage: J1 = JordanSpinEJA(3)
2646 sage: J0.multiplication_table() == J0.multiplication_table()
2647 True
2648
2649 An error is raised if the matrix `B` does not correspond to a
2650 positive-definite bilinear form::
2651
2652 sage: B = matrix.random(QQ,2,3)
2653 sage: J = BilinearFormEJA(B)
2654 Traceback (most recent call last):
2655 ...
2656 ValueError: bilinear form is not positive-definite
2657 sage: B = matrix.zero(QQ,3)
2658 sage: J = BilinearFormEJA(B)
2659 Traceback (most recent call last):
2660 ...
2661 ValueError: bilinear form is not positive-definite
2662
2663 TESTS:
2664
2665 We can create a zero-dimensional algebra::
2666
2667 sage: B = matrix.identity(AA,0)
2668 sage: J = BilinearFormEJA(B)
2669 sage: J.basis()
2670 Finite family {}
2671
2672 We can check the multiplication condition given in the Jordan, von
2673 Neumann, and Wigner paper (and also discussed on my "On the
2674 symmetry..." paper). Note that this relies heavily on the standard
2675 choice of basis, as does anything utilizing the bilinear form
2676 matrix. We opt not to orthonormalize the basis, because if we
2677 did, we would have to normalize the `s_{i}` in a similar manner::
2678
2679 sage: set_random_seed()
2680 sage: n = ZZ.random_element(5)
2681 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2682 sage: B11 = matrix.identity(QQ,1)
2683 sage: B22 = M.transpose()*M
2684 sage: B = block_matrix(2,2,[ [B11,0 ],
2685 ....: [0, B22 ] ])
2686 sage: J = BilinearFormEJA(B, orthonormalize=False)
2687 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2688 sage: V = J.vector_space()
2689 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2690 ....: for ei in eis ]
2691 sage: actual = [ sis[i]*sis[j]
2692 ....: for i in range(n-1)
2693 ....: for j in range(n-1) ]
2694 sage: expected = [ J.one() if i == j else J.zero()
2695 ....: for i in range(n-1)
2696 ....: for j in range(n-1) ]
2697 sage: actual == expected
2698 True
2699
2700 """
2701 def __init__(self, B, field=AA, **kwargs):
2702 # The matrix "B" is supplied by the user in most cases,
2703 # so it makes sense to check whether or not its positive-
2704 # definite unless we are specifically asked not to...
2705 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2706 if not B.is_positive_definite():
2707 raise ValueError("bilinear form is not positive-definite")
2708
2709 # However, all of the other data for this EJA is computed
2710 # by us in manner that guarantees the axioms are
2711 # satisfied. So, again, unless we are specifically asked to
2712 # verify things, we'll skip the rest of the checks.
2713 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2714
2715 n = B.nrows()
2716 MS = MatrixSpace(field, n, 1)
2717
2718 def inner_product(x,y):
2719 return (y.T*B*x)[0,0]
2720
2721 def jordan_product(x,y):
2722 x0 = x[0,0]
2723 xbar = x[1:,0]
2724 y0 = y[0,0]
2725 ybar = y[1:,0]
2726 z0 = inner_product(y,x)
2727 zbar = y0*xbar + x0*ybar
2728 return MS([z0] + zbar.list())
2729
2730 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2731
2732 # TODO: I haven't actually checked this, but it seems legit.
2733 associative = False
2734 if n <= 2:
2735 associative = True
2736
2737 super().__init__(column_basis,
2738 jordan_product,
2739 inner_product,
2740 field=field,
2741 matrix_space=MS,
2742 associative=associative,
2743 **kwargs)
2744
2745 # The rank of this algebra is two, unless we're in a
2746 # one-dimensional ambient space (because the rank is bounded
2747 # by the ambient dimension).
2748 self.rank.set_cache(min(n,2))
2749 if n == 0:
2750 self.one.set_cache( self.zero() )
2751 else:
2752 self.one.set_cache( self.monomial(0) )
2753
2754 @staticmethod
2755 def _max_random_instance_dimension():
2756 r"""
2757 There's no reason to go higher than five here. That's
2758 enough to get the point across.
2759 """
2760 return 5
2761
2762 @staticmethod
2763 def _max_random_instance_size(max_dimension):
2764 r"""
2765 The maximum size (=dimension) of a random BilinearFormEJA.
2766 """
2767 return max_dimension
2768
2769 @classmethod
2770 def random_instance(cls, max_dimension=None, *args, **kwargs):
2771 """
2772 Return a random instance of this algebra.
2773 """
2774 class_max_d = cls._max_random_instance_dimension()
2775 if (max_dimension is None or max_dimension > class_max_d):
2776 max_dimension = class_max_d
2777 max_size = cls._max_random_instance_size(max_dimension)
2778 n = ZZ.random_element(max_size + 1)
2779
2780 if n.is_zero():
2781 B = matrix.identity(ZZ, n)
2782 return cls(B, **kwargs)
2783
2784 B11 = matrix.identity(ZZ, 1)
2785 M = matrix.random(ZZ, n-1)
2786 I = matrix.identity(ZZ, n-1)
2787 alpha = ZZ.zero()
2788 while alpha.is_zero():
2789 alpha = ZZ.random_element().abs()
2790
2791 B22 = M.transpose()*M + alpha*I
2792
2793 from sage.matrix.special import block_matrix
2794 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2795 [ZZ(0), B22 ] ])
2796
2797 return cls(B, **kwargs)
2798
2799
2800 class JordanSpinEJA(BilinearFormEJA):
2801 """
2802 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2803 with the usual inner product and jordan product ``x*y =
2804 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2805 the reals.
2806
2807 SETUP::
2808
2809 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2810
2811 EXAMPLES:
2812
2813 This multiplication table can be verified by hand::
2814
2815 sage: J = JordanSpinEJA(4)
2816 sage: b0,b1,b2,b3 = J.gens()
2817 sage: b0*b0
2818 b0
2819 sage: b0*b1
2820 b1
2821 sage: b0*b2
2822 b2
2823 sage: b0*b3
2824 b3
2825 sage: b1*b2
2826 0
2827 sage: b1*b3
2828 0
2829 sage: b2*b3
2830 0
2831
2832 We can change the generator prefix::
2833
2834 sage: JordanSpinEJA(2, prefix='B').gens()
2835 (B0, B1)
2836
2837 TESTS:
2838
2839 Ensure that we have the usual inner product on `R^n`::
2840
2841 sage: set_random_seed()
2842 sage: J = JordanSpinEJA.random_instance()
2843 sage: x,y = J.random_elements(2)
2844 sage: actual = x.inner_product(y)
2845 sage: expected = x.to_vector().inner_product(y.to_vector())
2846 sage: actual == expected
2847 True
2848
2849 """
2850 def __init__(self, n, *args, **kwargs):
2851 # This is a special case of the BilinearFormEJA with the
2852 # identity matrix as its bilinear form.
2853 B = matrix.identity(ZZ, n)
2854
2855 # Don't orthonormalize because our basis is already
2856 # orthonormal with respect to our inner-product.
2857 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2858
2859 # But also don't pass check_field=False here, because the user
2860 # can pass in a field!
2861 super().__init__(B, *args, **kwargs)
2862
2863 @classmethod
2864 def random_instance(cls, max_dimension=None, *args, **kwargs):
2865 """
2866 Return a random instance of this type of algebra.
2867
2868 Needed here to override the implementation for ``BilinearFormEJA``.
2869 """
2870 class_max_d = cls._max_random_instance_dimension()
2871 if (max_dimension is None or max_dimension > class_max_d):
2872 max_dimension = class_max_d
2873 max_size = cls._max_random_instance_size(max_dimension)
2874 n = ZZ.random_element(max_size + 1)
2875 return cls(n, **kwargs)
2876
2877
2878 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2879 """
2880 The trivial Euclidean Jordan algebra consisting of only a zero element.
2881
2882 SETUP::
2883
2884 sage: from mjo.eja.eja_algebra import TrivialEJA
2885
2886 EXAMPLES::
2887
2888 sage: J = TrivialEJA()
2889 sage: J.dimension()
2890 0
2891 sage: J.zero()
2892 0
2893 sage: J.one()
2894 0
2895 sage: 7*J.one()*12*J.one()
2896 0
2897 sage: J.one().inner_product(J.one())
2898 0
2899 sage: J.one().norm()
2900 0
2901 sage: J.one().subalgebra_generated_by()
2902 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2903 sage: J.rank()
2904 0
2905
2906 """
2907 def __init__(self, field=AA, **kwargs):
2908 jordan_product = lambda x,y: x
2909 inner_product = lambda x,y: field.zero()
2910 basis = ()
2911 MS = MatrixSpace(field,0)
2912
2913 # New defaults for keyword arguments
2914 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2915 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2916
2917 super().__init__(basis,
2918 jordan_product,
2919 inner_product,
2920 associative=True,
2921 field=field,
2922 matrix_space=MS,
2923 **kwargs)
2924
2925 # The rank is zero using my definition, namely the dimension of the
2926 # largest subalgebra generated by any element.
2927 self.rank.set_cache(0)
2928 self.one.set_cache( self.zero() )
2929
2930 @classmethod
2931 def random_instance(cls, max_dimension=None, *args, **kwargs):
2932 # We don't take a "size" argument so the superclass method is
2933 # inappropriate for us. The ``max_dimension`` argument is
2934 # included so that if this method is called generically with a
2935 # ``max_dimension=<whatever>`` argument, we don't try to pass
2936 # it on to the algebra constructor.
2937 return cls(**kwargs)
2938
2939
2940 class CartesianProductEJA(FiniteDimensionalEJA):
2941 r"""
2942 The external (orthogonal) direct sum of two or more Euclidean
2943 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2944 orthogonal direct sum of simple Euclidean Jordan algebras which is
2945 then isometric to a Cartesian product, so no generality is lost by
2946 providing only this construction.
2947
2948 SETUP::
2949
2950 sage: from mjo.eja.eja_algebra import (random_eja,
2951 ....: CartesianProductEJA,
2952 ....: ComplexHermitianEJA,
2953 ....: HadamardEJA,
2954 ....: JordanSpinEJA,
2955 ....: RealSymmetricEJA)
2956
2957 EXAMPLES:
2958
2959 The Jordan product is inherited from our factors and implemented by
2960 our CombinatorialFreeModule Cartesian product superclass::
2961
2962 sage: set_random_seed()
2963 sage: J1 = HadamardEJA(2)
2964 sage: J2 = RealSymmetricEJA(2)
2965 sage: J = cartesian_product([J1,J2])
2966 sage: x,y = J.random_elements(2)
2967 sage: x*y in J
2968 True
2969
2970 The ability to retrieve the original factors is implemented by our
2971 CombinatorialFreeModule Cartesian product superclass::
2972
2973 sage: J1 = HadamardEJA(2, field=QQ)
2974 sage: J2 = JordanSpinEJA(3, field=QQ)
2975 sage: J = cartesian_product([J1,J2])
2976 sage: J.cartesian_factors()
2977 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2978 Euclidean Jordan algebra of dimension 3 over Rational Field)
2979
2980 You can provide more than two factors::
2981
2982 sage: J1 = HadamardEJA(2)
2983 sage: J2 = JordanSpinEJA(3)
2984 sage: J3 = RealSymmetricEJA(3)
2985 sage: cartesian_product([J1,J2,J3])
2986 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2987 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2988 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2989 Algebraic Real Field
2990
2991 Rank is additive on a Cartesian product::
2992
2993 sage: J1 = HadamardEJA(1)
2994 sage: J2 = RealSymmetricEJA(2)
2995 sage: J = cartesian_product([J1,J2])
2996 sage: J1.rank.clear_cache()
2997 sage: J2.rank.clear_cache()
2998 sage: J.rank.clear_cache()
2999 sage: J.rank()
3000 3
3001 sage: J.rank() == J1.rank() + J2.rank()
3002 True
3003
3004 The same rank computation works over the rationals, with whatever
3005 basis you like::
3006
3007 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
3008 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
3009 sage: J = cartesian_product([J1,J2])
3010 sage: J1.rank.clear_cache()
3011 sage: J2.rank.clear_cache()
3012 sage: J.rank.clear_cache()
3013 sage: J.rank()
3014 3
3015 sage: J.rank() == J1.rank() + J2.rank()
3016 True
3017
3018 The product algebra will be associative if and only if all of its
3019 components are associative::
3020
3021 sage: J1 = HadamardEJA(2)
3022 sage: J1.is_associative()
3023 True
3024 sage: J2 = HadamardEJA(3)
3025 sage: J2.is_associative()
3026 True
3027 sage: J3 = RealSymmetricEJA(3)
3028 sage: J3.is_associative()
3029 False
3030 sage: CP1 = cartesian_product([J1,J2])
3031 sage: CP1.is_associative()
3032 True
3033 sage: CP2 = cartesian_product([J1,J3])
3034 sage: CP2.is_associative()
3035 False
3036
3037 Cartesian products of Cartesian products work::
3038
3039 sage: J1 = JordanSpinEJA(1)
3040 sage: J2 = JordanSpinEJA(1)
3041 sage: J3 = JordanSpinEJA(1)
3042 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3043 sage: J.multiplication_table()
3044 +----++----+----+----+
3045 | * || b0 | b1 | b2 |
3046 +====++====+====+====+
3047 | b0 || b0 | 0 | 0 |
3048 +----++----+----+----+
3049 | b1 || 0 | b1 | 0 |
3050 +----++----+----+----+
3051 | b2 || 0 | 0 | b2 |
3052 +----++----+----+----+
3053 sage: HadamardEJA(3).multiplication_table()
3054 +----++----+----+----+
3055 | * || b0 | b1 | b2 |
3056 +====++====+====+====+
3057 | b0 || b0 | 0 | 0 |
3058 +----++----+----+----+
3059 | b1 || 0 | b1 | 0 |
3060 +----++----+----+----+
3061 | b2 || 0 | 0 | b2 |
3062 +----++----+----+----+
3063
3064 The "matrix space" of a Cartesian product always consists of
3065 ordered pairs (or triples, or...) whose components are the
3066 matrix spaces of its factors::
3067
3068 sage: J1 = HadamardEJA(2)
3069 sage: J2 = ComplexHermitianEJA(2)
3070 sage: J = cartesian_product([J1,J2])
3071 sage: J.matrix_space()
3072 The Cartesian product of (Full MatrixSpace of 2 by 1 dense
3073 matrices over Algebraic Real Field, Module of 2 by 2 matrices
3074 with entries in Algebraic Field over the scalar ring Algebraic
3075 Real Field)
3076 sage: J.one().to_matrix()[0]
3077 [1]
3078 [1]
3079 sage: J.one().to_matrix()[1]
3080 +---+---+
3081 | 1 | 0 |
3082 +---+---+
3083 | 0 | 1 |
3084 +---+---+
3085
3086 TESTS:
3087
3088 All factors must share the same base field::
3089
3090 sage: J1 = HadamardEJA(2, field=QQ)
3091 sage: J2 = RealSymmetricEJA(2)
3092 sage: CartesianProductEJA((J1,J2))
3093 Traceback (most recent call last):
3094 ...
3095 ValueError: all factors must share the same base field
3096
3097 The cached unit element is the same one that would be computed::
3098
3099 sage: set_random_seed() # long time
3100 sage: J1 = random_eja() # long time
3101 sage: J2 = random_eja() # long time
3102 sage: J = cartesian_product([J1,J2]) # long time
3103 sage: actual = J.one() # long time
3104 sage: J.one.clear_cache() # long time
3105 sage: expected = J.one() # long time
3106 sage: actual == expected # long time
3107 True
3108 """
3109 def __init__(self, factors, **kwargs):
3110 m = len(factors)
3111 if m == 0:
3112 return TrivialEJA()
3113
3114 self._sets = factors
3115
3116 field = factors[0].base_ring()
3117 if not all( J.base_ring() == field for J in factors ):
3118 raise ValueError("all factors must share the same base field")
3119
3120 # Figure out the category to use.
3121 associative = all( f.is_associative() for f in factors )
3122 category = EuclideanJordanAlgebras(field)
3123 if associative: category = category.Associative()
3124 category = category.join([category, category.CartesianProducts()])
3125
3126 # Compute my matrix space. We don't simply use the
3127 # ``cartesian_product()`` functor here because it acts
3128 # differently on SageMath MatrixSpaces and our custom
3129 # MatrixAlgebras, which are CombinatorialFreeModules. We
3130 # always want the result to be represented (and indexed) as an
3131 # ordered tuple. This category isn't perfect, but is good
3132 # enough for what we need to do.
3133 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
3134 MS_cat = MS_cat.Unital().CartesianProducts()
3135 MS_factors = tuple( J.matrix_space() for J in factors )
3136 from sage.sets.cartesian_product import CartesianProduct
3137 self._matrix_space = CartesianProduct(MS_factors, MS_cat)
3138
3139 self._matrix_basis = []
3140 zero = self._matrix_space.zero()
3141 for i in range(m):
3142 for b in factors[i].matrix_basis():
3143 z = list(zero)
3144 z[i] = b
3145 self._matrix_basis.append(z)
3146
3147 self._matrix_basis = tuple( self._matrix_space(b)
3148 for b in self._matrix_basis )
3149 n = len(self._matrix_basis)
3150
3151 # We already have what we need for the super-superclass constructor.
3152 CombinatorialFreeModule.__init__(self,
3153 field,
3154 range(n),
3155 prefix="b",
3156 category=category,
3157 bracket=False)
3158
3159 # Now create the vector space for the algebra, which will have
3160 # its own set of non-ambient coordinates (in terms of the
3161 # supplied basis).
3162 degree = sum( f._matrix_span.ambient_vector_space().degree()
3163 for f in factors )
3164 V = VectorSpace(field, degree)
3165 vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis )
3166
3167 # Save the span of our matrix basis (when written out as long
3168 # vectors) because otherwise we'll have to reconstruct it
3169 # every time we want to coerce a matrix into the algebra.
3170 self._matrix_span = V.span_of_basis( vector_basis, check=False)
3171
3172 # Since we don't (re)orthonormalize the basis, the FDEJA
3173 # constructor is going to set self._deortho_matrix to the
3174 # identity matrix. Here we set it to the correct value using
3175 # the deortho matrices from our factors.
3176 self._deortho_matrix = matrix.block_diagonal(
3177 [J._deortho_matrix for J in factors]
3178 )
3179
3180 self._inner_product_matrix = matrix.block_diagonal(
3181 [J._inner_product_matrix for J in factors]
3182 )
3183
3184 # Building the multiplication table is a bit more tricky
3185 # because we have to embed the entries of the factors'
3186 # multiplication tables into the product EJA.
3187 zed = self.zero()
3188 self._multiplication_table = [ [zed for j in range(i+1)]
3189 for i in range(n) ]
3190
3191 # Keep track of an offset that tallies the dimensions of all
3192 # previous factors. If the second factor is dim=2 and if the
3193 # first one is dim=3, then we want to skip the first 3x3 block
3194 # when copying the multiplication table for the second factor.
3195 offset = 0
3196 for f in range(m):
3197 phi_f = self.cartesian_embedding(f)
3198 factor_dim = factors[f].dimension()
3199 for i in range(factor_dim):
3200 for j in range(i+1):
3201 f_ij = factors[f]._multiplication_table[i][j]
3202 e = phi_f(f_ij)
3203 self._multiplication_table[offset+i][offset+j] = e
3204 offset += factor_dim
3205
3206 self.rank.set_cache(sum(J.rank() for J in factors))
3207 ones = tuple(J.one().to_matrix() for J in factors)
3208 self.one.set_cache(self(ones))
3209
3210 def cartesian_factors(self):
3211 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3212 return self._sets
3213
3214 def cartesian_factor(self, i):
3215 r"""
3216 Return the ``i``th factor of this algebra.
3217 """
3218 return self._sets[i]
3219
3220 def _repr_(self):
3221 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3222 from sage.categories.cartesian_product import cartesian_product
3223 return cartesian_product.symbol.join("%s" % factor
3224 for factor in self._sets)
3225
3226
3227 @cached_method
3228 def cartesian_projection(self, i):
3229 r"""
3230 SETUP::
3231
3232 sage: from mjo.eja.eja_algebra import (random_eja,
3233 ....: JordanSpinEJA,
3234 ....: HadamardEJA,
3235 ....: RealSymmetricEJA,
3236 ....: ComplexHermitianEJA)
3237
3238 EXAMPLES:
3239
3240 The projection morphisms are Euclidean Jordan algebra
3241 operators::
3242
3243 sage: J1 = HadamardEJA(2)
3244 sage: J2 = RealSymmetricEJA(2)
3245 sage: J = cartesian_product([J1,J2])
3246 sage: J.cartesian_projection(0)
3247 Linear operator between finite-dimensional Euclidean Jordan
3248 algebras represented by the matrix:
3249 [1 0 0 0 0]
3250 [0 1 0 0 0]
3251 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3252 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3253 Algebraic Real Field
3254 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3255 Real Field
3256 sage: J.cartesian_projection(1)
3257 Linear operator between finite-dimensional Euclidean Jordan
3258 algebras represented by the matrix:
3259 [0 0 1 0 0]
3260 [0 0 0 1 0]
3261 [0 0 0 0 1]
3262 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3263 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3264 Algebraic Real Field
3265 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3266 Real Field
3267
3268 The projections work the way you'd expect on the vector
3269 representation of an element::
3270
3271 sage: J1 = JordanSpinEJA(2)
3272 sage: J2 = ComplexHermitianEJA(2)
3273 sage: J = cartesian_product([J1,J2])
3274 sage: pi_left = J.cartesian_projection(0)
3275 sage: pi_right = J.cartesian_projection(1)
3276 sage: pi_left(J.one()).to_vector()
3277 (1, 0)
3278 sage: pi_right(J.one()).to_vector()
3279 (1, 0, 0, 1)
3280 sage: J.one().to_vector()
3281 (1, 0, 1, 0, 0, 1)
3282
3283 TESTS:
3284
3285 The answer never changes::
3286
3287 sage: set_random_seed()
3288 sage: J1 = random_eja()
3289 sage: J2 = random_eja()
3290 sage: J = cartesian_product([J1,J2])
3291 sage: P0 = J.cartesian_projection(0)
3292 sage: P1 = J.cartesian_projection(0)
3293 sage: P0 == P1
3294 True
3295
3296 """
3297 offset = sum( self.cartesian_factor(k).dimension()
3298 for k in range(i) )
3299 Ji = self.cartesian_factor(i)
3300 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3301 codomain=Ji)
3302
3303 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3304
3305 @cached_method
3306 def cartesian_embedding(self, i):
3307 r"""
3308 SETUP::
3309
3310 sage: from mjo.eja.eja_algebra import (random_eja,
3311 ....: JordanSpinEJA,
3312 ....: HadamardEJA,
3313 ....: RealSymmetricEJA)
3314
3315 EXAMPLES:
3316
3317 The embedding morphisms are Euclidean Jordan algebra
3318 operators::
3319
3320 sage: J1 = HadamardEJA(2)
3321 sage: J2 = RealSymmetricEJA(2)
3322 sage: J = cartesian_product([J1,J2])
3323 sage: J.cartesian_embedding(0)
3324 Linear operator between finite-dimensional Euclidean Jordan
3325 algebras represented by the matrix:
3326 [1 0]
3327 [0 1]
3328 [0 0]
3329 [0 0]
3330 [0 0]
3331 Domain: Euclidean Jordan algebra of dimension 2 over
3332 Algebraic Real Field
3333 Codomain: Euclidean Jordan algebra of dimension 2 over
3334 Algebraic Real Field (+) Euclidean Jordan algebra of
3335 dimension 3 over Algebraic Real Field
3336 sage: J.cartesian_embedding(1)
3337 Linear operator between finite-dimensional Euclidean Jordan
3338 algebras represented by the matrix:
3339 [0 0 0]
3340 [0 0 0]
3341 [1 0 0]
3342 [0 1 0]
3343 [0 0 1]
3344 Domain: Euclidean Jordan algebra of dimension 3 over
3345 Algebraic Real Field
3346 Codomain: Euclidean Jordan algebra of dimension 2 over
3347 Algebraic Real Field (+) Euclidean Jordan algebra of
3348 dimension 3 over Algebraic Real Field
3349
3350 The embeddings work the way you'd expect on the vector
3351 representation of an element::
3352
3353 sage: J1 = JordanSpinEJA(3)
3354 sage: J2 = RealSymmetricEJA(2)
3355 sage: J = cartesian_product([J1,J2])
3356 sage: iota_left = J.cartesian_embedding(0)
3357 sage: iota_right = J.cartesian_embedding(1)
3358 sage: iota_left(J1.zero()) == J.zero()
3359 True
3360 sage: iota_right(J2.zero()) == J.zero()
3361 True
3362 sage: J1.one().to_vector()
3363 (1, 0, 0)
3364 sage: iota_left(J1.one()).to_vector()
3365 (1, 0, 0, 0, 0, 0)
3366 sage: J2.one().to_vector()
3367 (1, 0, 1)
3368 sage: iota_right(J2.one()).to_vector()
3369 (0, 0, 0, 1, 0, 1)
3370 sage: J.one().to_vector()
3371 (1, 0, 0, 1, 0, 1)
3372
3373 TESTS:
3374
3375 The answer never changes::
3376
3377 sage: set_random_seed()
3378 sage: J1 = random_eja()
3379 sage: J2 = random_eja()
3380 sage: J = cartesian_product([J1,J2])
3381 sage: E0 = J.cartesian_embedding(0)
3382 sage: E1 = J.cartesian_embedding(0)
3383 sage: E0 == E1
3384 True
3385
3386 Composing a projection with the corresponding inclusion should
3387 produce the identity map, and mismatching them should produce
3388 the zero map::
3389
3390 sage: set_random_seed()
3391 sage: J1 = random_eja()
3392 sage: J2 = random_eja()
3393 sage: J = cartesian_product([J1,J2])
3394 sage: iota_left = J.cartesian_embedding(0)
3395 sage: iota_right = J.cartesian_embedding(1)
3396 sage: pi_left = J.cartesian_projection(0)
3397 sage: pi_right = J.cartesian_projection(1)
3398 sage: pi_left*iota_left == J1.one().operator()
3399 True
3400 sage: pi_right*iota_right == J2.one().operator()
3401 True
3402 sage: (pi_left*iota_right).is_zero()
3403 True
3404 sage: (pi_right*iota_left).is_zero()
3405 True
3406
3407 """
3408 offset = sum( self.cartesian_factor(k).dimension()
3409 for k in range(i) )
3410 Ji = self.cartesian_factor(i)
3411 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3412 codomain=self)
3413 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3414
3415
3416
3417 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3418
3419 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3420 RationalBasisEJA):
3421 r"""
3422 A separate class for products of algebras for which we know a
3423 rational basis.
3424
3425 SETUP::
3426
3427 sage: from mjo.eja.eja_algebra import (HadamardEJA,
3428 ....: JordanSpinEJA,
3429 ....: OctonionHermitianEJA,
3430 ....: RealSymmetricEJA)
3431
3432 EXAMPLES:
3433
3434 This gives us fast characteristic polynomial computations in
3435 product algebras, too::
3436
3437
3438 sage: J1 = JordanSpinEJA(2)
3439 sage: J2 = RealSymmetricEJA(3)
3440 sage: J = cartesian_product([J1,J2])
3441 sage: J.characteristic_polynomial_of().degree()
3442 5
3443 sage: J.rank()
3444 5
3445
3446 TESTS:
3447
3448 The ``cartesian_product()`` function only uses the first factor to
3449 decide where the result will live; thus we have to be careful to
3450 check that all factors do indeed have a `_rational_algebra` member
3451 before we try to access it::
3452
3453 sage: J1 = OctonionHermitianEJA(1) # no rational basis
3454 sage: J2 = HadamardEJA(2)
3455 sage: cartesian_product([J1,J2])
3456 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3457 (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3458 sage: cartesian_product([J2,J1])
3459 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
3460 (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
3461
3462 """
3463 def __init__(self, algebras, **kwargs):
3464 CartesianProductEJA.__init__(self, algebras, **kwargs)
3465
3466 self._rational_algebra = None
3467 if self.vector_space().base_field() is not QQ:
3468 if all( hasattr(r, "_rational_algebra") for r in algebras ):
3469 self._rational_algebra = cartesian_product([
3470 r._rational_algebra for r in algebras
3471 ])
3472
3473
3474 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3475
3476 def random_eja(max_dimension=None, *args, **kwargs):
3477 r"""
3478
3479 SETUP::
3480
3481 sage: from mjo.eja.eja_algebra import random_eja
3482
3483 TESTS::
3484
3485 sage: set_random_seed()
3486 sage: n = ZZ.random_element(1,5)
3487 sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False)
3488 sage: J.dimension() <= n
3489 True
3490
3491 """
3492 # Use the ConcreteEJA default as the total upper bound (regardless
3493 # of any whether or not any individual factors set a lower limit).
3494 if max_dimension is None:
3495 max_dimension = ConcreteEJA._max_random_instance_dimension()
3496 J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
3497
3498
3499 # Roll the dice to see if we attempt a Cartesian product.
3500 dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
3501 new_max_dimension = max_dimension - J1.dimension()
3502 if new_max_dimension == 0 or dice_roll != 0:
3503 # If it's already as big as we're willing to tolerate, just
3504 # return it and don't worry about Cartesian products.
3505 return J1
3506 else:
3507 # Use random_eja() again so we can get more than two factors
3508 # if the sub-call also Decides on a cartesian product.
3509 J2 = random_eja(new_max_dimension, *args, **kwargs)
3510 return cartesian_product([J1,J2])