]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
1f48f3c574454a1b59df75061f53b123c7ca986f
[sage.d.git] / mjo / eja / eja_algebra.py
1 """
2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
6 """
7
8 from itertools import repeat
9
10 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
11 from sage.categories.magmatic_algebras import MagmaticAlgebras
12 from sage.combinat.free_module import CombinatorialFreeModule
13 from sage.matrix.constructor import matrix
14 from sage.matrix.matrix_space import MatrixSpace
15 from sage.misc.cachefunc import cached_method
16 from sage.misc.lazy_import import lazy_import
17 from sage.misc.prandom import choice
18 from sage.misc.table import table
19 from sage.modules.free_module import FreeModule, VectorSpace
20 from sage.rings.all import (ZZ, QQ, RR, RLF, CLF,
21 PolynomialRing,
22 QuadraticField)
23 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
24 lazy_import('mjo.eja.eja_subalgebra',
25 'FiniteDimensionalEuclideanJordanSubalgebra')
26 from mjo.eja.eja_utils import _mat2vec
27
28 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
29
30 def _coerce_map_from_base_ring(self):
31 """
32 Disable the map from the base ring into the algebra.
33
34 Performing a nonsense conversion like this automatically
35 is counterpedagogical. The fallback is to try the usual
36 element constructor, which should also fail.
37
38 SETUP::
39
40 sage: from mjo.eja.eja_algebra import random_eja
41
42 TESTS::
43
44 sage: set_random_seed()
45 sage: J = random_eja()
46 sage: J(1)
47 Traceback (most recent call last):
48 ...
49 ValueError: not a naturally-represented algebra element
50
51 """
52 return None
53
54 def __init__(self,
55 field,
56 mult_table,
57 rank,
58 prefix='e',
59 category=None,
60 natural_basis=None,
61 check=True):
62 """
63 SETUP::
64
65 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
66
67 EXAMPLES:
68
69 By definition, Jordan multiplication commutes::
70
71 sage: set_random_seed()
72 sage: J = random_eja()
73 sage: x,y = J.random_elements(2)
74 sage: x*y == y*x
75 True
76
77 TESTS:
78
79 The ``field`` we're given must be real::
80
81 sage: JordanSpinEJA(2,QQbar)
82 Traceback (most recent call last):
83 ...
84 ValueError: field is not real
85
86 """
87 if check:
88 if not field.is_subring(RR):
89 # Note: this does return true for the real algebraic
90 # field, and any quadratic field where we've specified
91 # a real embedding.
92 raise ValueError('field is not real')
93
94 self._rank = rank
95 self._natural_basis = natural_basis
96
97 if category is None:
98 category = MagmaticAlgebras(field).FiniteDimensional()
99 category = category.WithBasis().Unital()
100
101 fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
102 fda.__init__(field,
103 range(len(mult_table)),
104 prefix=prefix,
105 category=category)
106 self.print_options(bracket='')
107
108 # The multiplication table we're given is necessarily in terms
109 # of vectors, because we don't have an algebra yet for
110 # anything to be an element of. However, it's faster in the
111 # long run to have the multiplication table be in terms of
112 # algebra elements. We do this after calling the superclass
113 # constructor so that from_vector() knows what to do.
114 self._multiplication_table = [
115 list(map(lambda x: self.from_vector(x), ls))
116 for ls in mult_table
117 ]
118
119
120 def _element_constructor_(self, elt):
121 """
122 Construct an element of this algebra from its natural
123 representation.
124
125 This gets called only after the parent element _call_ method
126 fails to find a coercion for the argument.
127
128 SETUP::
129
130 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
131 ....: HadamardEJA,
132 ....: RealSymmetricEJA)
133
134 EXAMPLES:
135
136 The identity in `S^n` is converted to the identity in the EJA::
137
138 sage: J = RealSymmetricEJA(3)
139 sage: I = matrix.identity(QQ,3)
140 sage: J(I) == J.one()
141 True
142
143 This skew-symmetric matrix can't be represented in the EJA::
144
145 sage: J = RealSymmetricEJA(3)
146 sage: A = matrix(QQ,3, lambda i,j: i-j)
147 sage: J(A)
148 Traceback (most recent call last):
149 ...
150 ArithmeticError: vector is not in free module
151
152 TESTS:
153
154 Ensure that we can convert any element of the two non-matrix
155 simple algebras (whose natural representations are their usual
156 vector representations) back and forth faithfully::
157
158 sage: set_random_seed()
159 sage: J = HadamardEJA.random_instance()
160 sage: x = J.random_element()
161 sage: J(x.to_vector().column()) == x
162 True
163 sage: J = JordanSpinEJA.random_instance()
164 sage: x = J.random_element()
165 sage: J(x.to_vector().column()) == x
166 True
167
168 """
169 msg = "not a naturally-represented algebra element"
170 if elt == 0:
171 # The superclass implementation of random_element()
172 # needs to be able to coerce "0" into the algebra.
173 return self.zero()
174 elif elt in self.base_ring():
175 # Ensure that no base ring -> algebra coercion is performed
176 # by this method. There's some stupidity in sage that would
177 # otherwise propagate to this method; for example, sage thinks
178 # that the integer 3 belongs to the space of 2-by-2 matrices.
179 raise ValueError(msg)
180
181 natural_basis = self.natural_basis()
182 basis_space = natural_basis[0].matrix_space()
183 if elt not in basis_space:
184 raise ValueError(msg)
185
186 # Thanks for nothing! Matrix spaces aren't vector spaces in
187 # Sage, so we have to figure out its natural-basis coordinates
188 # ourselves. We use the basis space's ring instead of the
189 # element's ring because the basis space might be an algebraic
190 # closure whereas the base ring of the 3-by-3 identity matrix
191 # could be QQ instead of QQbar.
192 V = VectorSpace(basis_space.base_ring(), elt.nrows()*elt.ncols())
193 W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
194 coords = W.coordinate_vector(_mat2vec(elt))
195 return self.from_vector(coords)
196
197
198 def _repr_(self):
199 """
200 Return a string representation of ``self``.
201
202 SETUP::
203
204 sage: from mjo.eja.eja_algebra import JordanSpinEJA
205
206 TESTS:
207
208 Ensure that it says what we think it says::
209
210 sage: JordanSpinEJA(2, field=QQ)
211 Euclidean Jordan algebra of dimension 2 over Rational Field
212 sage: JordanSpinEJA(3, field=RDF)
213 Euclidean Jordan algebra of dimension 3 over Real Double Field
214
215 """
216 fmt = "Euclidean Jordan algebra of dimension {} over {}"
217 return fmt.format(self.dimension(), self.base_ring())
218
219 def product_on_basis(self, i, j):
220 return self._multiplication_table[i][j]
221
222 def _a_regular_element(self):
223 """
224 Guess a regular element. Needed to compute the basis for our
225 characteristic polynomial coefficients.
226
227 SETUP::
228
229 sage: from mjo.eja.eja_algebra import random_eja
230
231 TESTS:
232
233 Ensure that this hacky method succeeds for every algebra that we
234 know how to construct::
235
236 sage: set_random_seed()
237 sage: J = random_eja()
238 sage: J._a_regular_element().is_regular()
239 True
240
241 """
242 gs = self.gens()
243 z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
244 if not z.is_regular():
245 raise ValueError("don't know a regular element")
246 return z
247
248
249 @cached_method
250 def _charpoly_basis_space(self):
251 """
252 Return the vector space spanned by the basis used in our
253 characteristic polynomial coefficients. This is used not only to
254 compute those coefficients, but also any time we need to
255 evaluate the coefficients (like when we compute the trace or
256 determinant).
257 """
258 z = self._a_regular_element()
259 # Don't use the parent vector space directly here in case this
260 # happens to be a subalgebra. In that case, we would be e.g.
261 # two-dimensional but span_of_basis() would expect three
262 # coordinates.
263 V = VectorSpace(self.base_ring(), self.vector_space().dimension())
264 basis = [ (z**k).to_vector() for k in range(self.rank()) ]
265 V1 = V.span_of_basis( basis )
266 b = (V1.basis() + V1.complement().basis())
267 return V.span_of_basis(b)
268
269
270
271 @cached_method
272 def _charpoly_coeff(self, i):
273 """
274 Return the coefficient polynomial "a_{i}" of this algebra's
275 general characteristic polynomial.
276
277 Having this be a separate cached method lets us compute and
278 store the trace/determinant (a_{r-1} and a_{0} respectively)
279 separate from the entire characteristic polynomial.
280 """
281 (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
282 R = A_of_x.base_ring()
283
284 if i == self.rank():
285 return R.one()
286 if i > self.rank():
287 # Guaranteed by theory
288 return R.zero()
289
290 # Danger: the in-place modification is done for performance
291 # reasons (reconstructing a matrix with huge polynomial
292 # entries is slow), but I don't know how cached_method works,
293 # so it's highly possible that we're modifying some global
294 # list variable by reference, here. In other words, you
295 # probably shouldn't call this method twice on the same
296 # algebra, at the same time, in two threads
297 Ai_orig = A_of_x.column(i)
298 A_of_x.set_column(i,xr)
299 numerator = A_of_x.det()
300 A_of_x.set_column(i,Ai_orig)
301
302 # We're relying on the theory here to ensure that each a_i is
303 # indeed back in R, and the added negative signs are to make
304 # the whole charpoly expression sum to zero.
305 return R(-numerator/detA)
306
307
308 @cached_method
309 def _charpoly_matrix_system(self):
310 """
311 Compute the matrix whose entries A_ij are polynomials in
312 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
313 corresponding to `x^r` and the determinent of the matrix A =
314 [A_ij]. In other words, all of the fixed (cachable) data needed
315 to compute the coefficients of the characteristic polynomial.
316 """
317 r = self.rank()
318 n = self.dimension()
319
320 # Turn my vector space into a module so that "vectors" can
321 # have multivatiate polynomial entries.
322 names = tuple('X' + str(i) for i in range(1,n+1))
323 R = PolynomialRing(self.base_ring(), names)
324
325 # Using change_ring() on the parent's vector space doesn't work
326 # here because, in a subalgebra, that vector space has a basis
327 # and change_ring() tries to bring the basis along with it. And
328 # that doesn't work unless the new ring is a PID, which it usually
329 # won't be.
330 V = FreeModule(R,n)
331
332 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
333 # indeterminates...
334 x = V(names)
335
336 # And figure out the "left multiplication by x" matrix in
337 # that setting.
338 lmbx_cols = []
339 monomial_matrices = [ self.monomial(i).operator().matrix()
340 for i in range(n) ] # don't recompute these!
341 for k in range(n):
342 ek = self.monomial(k).to_vector()
343 lmbx_cols.append(
344 sum( x[i]*(monomial_matrices[i]*ek)
345 for i in range(n) ) )
346 Lx = matrix.column(R, lmbx_cols)
347
348 # Now we can compute powers of x "symbolically"
349 x_powers = [self.one().to_vector(), x]
350 for d in range(2, r+1):
351 x_powers.append( Lx*(x_powers[-1]) )
352
353 idmat = matrix.identity(R, n)
354
355 W = self._charpoly_basis_space()
356 W = W.change_ring(R.fraction_field())
357
358 # Starting with the standard coordinates x = (X1,X2,...,Xn)
359 # and then converting the entries to W-coordinates allows us
360 # to pass in the standard coordinates to the charpoly and get
361 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
362 # we have
363 #
364 # W.coordinates(x^2) eval'd at (standard z-coords)
365 # =
366 # W-coords of (z^2)
367 # =
368 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
369 #
370 # We want the middle equivalent thing in our matrix, but use
371 # the first equivalent thing instead so that we can pass in
372 # standard coordinates.
373 x_powers = [ W.coordinate_vector(xp) for xp in x_powers ]
374 l2 = [idmat.column(k-1) for k in range(r+1, n+1)]
375 A_of_x = matrix.column(R, n, (x_powers[:r] + l2))
376 return (A_of_x, x, x_powers[r], A_of_x.det())
377
378
379 @cached_method
380 def characteristic_polynomial(self):
381 """
382 Return a characteristic polynomial that works for all elements
383 of this algebra.
384
385 The resulting polynomial has `n+1` variables, where `n` is the
386 dimension of this algebra. The first `n` variables correspond to
387 the coordinates of an algebra element: when evaluated at the
388 coordinates of an algebra element with respect to a certain
389 basis, the result is a univariate polynomial (in the one
390 remaining variable ``t``), namely the characteristic polynomial
391 of that element.
392
393 SETUP::
394
395 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
396
397 EXAMPLES:
398
399 The characteristic polynomial in the spin algebra is given in
400 Alizadeh, Example 11.11::
401
402 sage: J = JordanSpinEJA(3)
403 sage: p = J.characteristic_polynomial(); p
404 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
405 sage: xvec = J.one().to_vector()
406 sage: p(*xvec)
407 t^2 - 2*t + 1
408
409 By definition, the characteristic polynomial is a monic
410 degree-zero polynomial in a rank-zero algebra. Note that
411 Cayley-Hamilton is indeed satisfied since the polynomial
412 ``1`` evaluates to the identity element of the algebra on
413 any argument::
414
415 sage: J = TrivialEJA()
416 sage: J.characteristic_polynomial()
417 1
418
419 """
420 r = self.rank()
421 n = self.dimension()
422
423 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_n.
424 a = [ self._charpoly_coeff(i) for i in range(r+1) ]
425
426 # We go to a bit of trouble here to reorder the
427 # indeterminates, so that it's easier to evaluate the
428 # characteristic polynomial at x's coordinates and get back
429 # something in terms of t, which is what we want.
430 R = a[0].parent()
431 S = PolynomialRing(self.base_ring(),'t')
432 t = S.gen(0)
433 S = PolynomialRing(S, R.variable_names())
434 t = S(t)
435
436 return sum( a[k]*(t**k) for k in range(len(a)) )
437
438
439 def inner_product(self, x, y):
440 """
441 The inner product associated with this Euclidean Jordan algebra.
442
443 Defaults to the trace inner product, but can be overridden by
444 subclasses if they are sure that the necessary properties are
445 satisfied.
446
447 SETUP::
448
449 sage: from mjo.eja.eja_algebra import random_eja
450
451 EXAMPLES:
452
453 Our inner product is "associative," which means the following for
454 a symmetric bilinear form::
455
456 sage: set_random_seed()
457 sage: J = random_eja()
458 sage: x,y,z = J.random_elements(3)
459 sage: (x*y).inner_product(z) == y.inner_product(x*z)
460 True
461
462 """
463 X = x.natural_representation()
464 Y = y.natural_representation()
465 return self.natural_inner_product(X,Y)
466
467
468 def is_trivial(self):
469 """
470 Return whether or not this algebra is trivial.
471
472 A trivial algebra contains only the zero element.
473
474 SETUP::
475
476 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
477 ....: TrivialEJA)
478
479 EXAMPLES::
480
481 sage: J = ComplexHermitianEJA(3)
482 sage: J.is_trivial()
483 False
484
485 ::
486
487 sage: J = TrivialEJA()
488 sage: J.is_trivial()
489 True
490
491 """
492 return self.dimension() == 0
493
494
495 def multiplication_table(self):
496 """
497 Return a visual representation of this algebra's multiplication
498 table (on basis elements).
499
500 SETUP::
501
502 sage: from mjo.eja.eja_algebra import JordanSpinEJA
503
504 EXAMPLES::
505
506 sage: J = JordanSpinEJA(4)
507 sage: J.multiplication_table()
508 +----++----+----+----+----+
509 | * || e0 | e1 | e2 | e3 |
510 +====++====+====+====+====+
511 | e0 || e0 | e1 | e2 | e3 |
512 +----++----+----+----+----+
513 | e1 || e1 | e0 | 0 | 0 |
514 +----++----+----+----+----+
515 | e2 || e2 | 0 | e0 | 0 |
516 +----++----+----+----+----+
517 | e3 || e3 | 0 | 0 | e0 |
518 +----++----+----+----+----+
519
520 """
521 M = list(self._multiplication_table) # copy
522 for i in range(len(M)):
523 # M had better be "square"
524 M[i] = [self.monomial(i)] + M[i]
525 M = [["*"] + list(self.gens())] + M
526 return table(M, header_row=True, header_column=True, frame=True)
527
528
529 def natural_basis(self):
530 """
531 Return a more-natural representation of this algebra's basis.
532
533 Every finite-dimensional Euclidean Jordan Algebra is a direct
534 sum of five simple algebras, four of which comprise Hermitian
535 matrices. This method returns the original "natural" basis
536 for our underlying vector space. (Typically, the natural basis
537 is used to construct the multiplication table in the first place.)
538
539 Note that this will always return a matrix. The standard basis
540 in `R^n` will be returned as `n`-by-`1` column matrices.
541
542 SETUP::
543
544 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
545 ....: RealSymmetricEJA)
546
547 EXAMPLES::
548
549 sage: J = RealSymmetricEJA(2)
550 sage: J.basis()
551 Finite family {0: e0, 1: e1, 2: e2}
552 sage: J.natural_basis()
553 (
554 [1 0] [ 0 1/2*sqrt2] [0 0]
555 [0 0], [1/2*sqrt2 0], [0 1]
556 )
557
558 ::
559
560 sage: J = JordanSpinEJA(2)
561 sage: J.basis()
562 Finite family {0: e0, 1: e1}
563 sage: J.natural_basis()
564 (
565 [1] [0]
566 [0], [1]
567 )
568
569 """
570 if self._natural_basis is None:
571 M = self.natural_basis_space()
572 return tuple( M(b.to_vector()) for b in self.basis() )
573 else:
574 return self._natural_basis
575
576
577 def natural_basis_space(self):
578 """
579 Return the matrix space in which this algebra's natural basis
580 elements live.
581 """
582 if self._natural_basis is None or len(self._natural_basis) == 0:
583 return MatrixSpace(self.base_ring(), self.dimension(), 1)
584 else:
585 return self._natural_basis[0].matrix_space()
586
587
588 @staticmethod
589 def natural_inner_product(X,Y):
590 """
591 Compute the inner product of two naturally-represented elements.
592
593 For example in the real symmetric matrix EJA, this will compute
594 the trace inner-product of two n-by-n symmetric matrices. The
595 default should work for the real cartesian product EJA, the
596 Jordan spin EJA, and the real symmetric matrices. The others
597 will have to be overridden.
598 """
599 return (X.conjugate_transpose()*Y).trace()
600
601
602 @cached_method
603 def one(self):
604 """
605 Return the unit element of this algebra.
606
607 SETUP::
608
609 sage: from mjo.eja.eja_algebra import (HadamardEJA,
610 ....: random_eja)
611
612 EXAMPLES::
613
614 sage: J = HadamardEJA(5)
615 sage: J.one()
616 e0 + e1 + e2 + e3 + e4
617
618 TESTS:
619
620 The identity element acts like the identity::
621
622 sage: set_random_seed()
623 sage: J = random_eja()
624 sage: x = J.random_element()
625 sage: J.one()*x == x and x*J.one() == x
626 True
627
628 The matrix of the unit element's operator is the identity::
629
630 sage: set_random_seed()
631 sage: J = random_eja()
632 sage: actual = J.one().operator().matrix()
633 sage: expected = matrix.identity(J.base_ring(), J.dimension())
634 sage: actual == expected
635 True
636
637 """
638 # We can brute-force compute the matrices of the operators
639 # that correspond to the basis elements of this algebra.
640 # If some linear combination of those basis elements is the
641 # algebra identity, then the same linear combination of
642 # their matrices has to be the identity matrix.
643 #
644 # Of course, matrices aren't vectors in sage, so we have to
645 # appeal to the "long vectors" isometry.
646 oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
647
648 # Now we use basis linear algebra to find the coefficients,
649 # of the matrices-as-vectors-linear-combination, which should
650 # work for the original algebra basis too.
651 A = matrix.column(self.base_ring(), oper_vecs)
652
653 # We used the isometry on the left-hand side already, but we
654 # still need to do it for the right-hand side. Recall that we
655 # wanted something that summed to the identity matrix.
656 b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
657
658 # Now if there's an identity element in the algebra, this should work.
659 coeffs = A.solve_right(b)
660 return self.linear_combination(zip(self.gens(), coeffs))
661
662
663 def peirce_decomposition(self, c):
664 """
665 The Peirce decomposition of this algebra relative to the
666 idempotent ``c``.
667
668 In the future, this can be extended to a complete system of
669 orthogonal idempotents.
670
671 INPUT:
672
673 - ``c`` -- an idempotent of this algebra.
674
675 OUTPUT:
676
677 A triple (J0, J5, J1) containing two subalgebras and one subspace
678 of this algebra,
679
680 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
681 corresponding to the eigenvalue zero.
682
683 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
684 corresponding to the eigenvalue one-half.
685
686 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
687 corresponding to the eigenvalue one.
688
689 These are the only possible eigenspaces for that operator, and this
690 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
691 orthogonal, and are subalgebras of this algebra with the appropriate
692 restrictions.
693
694 SETUP::
695
696 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
697
698 EXAMPLES:
699
700 The canonical example comes from the symmetric matrices, which
701 decompose into diagonal and off-diagonal parts::
702
703 sage: J = RealSymmetricEJA(3)
704 sage: C = matrix(QQ, [ [1,0,0],
705 ....: [0,1,0],
706 ....: [0,0,0] ])
707 sage: c = J(C)
708 sage: J0,J5,J1 = J.peirce_decomposition(c)
709 sage: J0
710 Euclidean Jordan algebra of dimension 1...
711 sage: J5
712 Vector space of degree 6 and dimension 2...
713 sage: J1
714 Euclidean Jordan algebra of dimension 3...
715
716 TESTS:
717
718 Every algebra decomposes trivially with respect to its identity
719 element::
720
721 sage: set_random_seed()
722 sage: J = random_eja()
723 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
724 sage: J0.dimension() == 0 and J5.dimension() == 0
725 True
726 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
727 True
728
729 The identity elements in the two subalgebras are the
730 projections onto their respective subspaces of the
731 superalgebra's identity element::
732
733 sage: set_random_seed()
734 sage: J = random_eja()
735 sage: x = J.random_element()
736 sage: if not J.is_trivial():
737 ....: while x.is_nilpotent():
738 ....: x = J.random_element()
739 sage: c = x.subalgebra_idempotent()
740 sage: J0,J5,J1 = J.peirce_decomposition(c)
741 sage: J1(c) == J1.one()
742 True
743 sage: J0(J.one() - c) == J0.one()
744 True
745
746 """
747 if not c.is_idempotent():
748 raise ValueError("element is not idempotent: %s" % c)
749
750 # Default these to what they should be if they turn out to be
751 # trivial, because eigenspaces_left() won't return eigenvalues
752 # corresponding to trivial spaces (e.g. it returns only the
753 # eigenspace corresponding to lambda=1 if you take the
754 # decomposition relative to the identity element).
755 trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
756 J0 = trivial # eigenvalue zero
757 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
758 J1 = trivial # eigenvalue one
759
760 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
761 if eigval == ~(self.base_ring()(2)):
762 J5 = eigspace
763 else:
764 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
765 subalg = FiniteDimensionalEuclideanJordanSubalgebra(self, gens)
766 if eigval == 0:
767 J0 = subalg
768 elif eigval == 1:
769 J1 = subalg
770 else:
771 raise ValueError("unexpected eigenvalue: %s" % eigval)
772
773 return (J0, J5, J1)
774
775
776 def a_jordan_frame(self):
777 r"""
778 Generate a Jordan frame for this algebra.
779
780 This implementation is based on the so-called "central
781 orthogonal idempotents" implemented for (semisimple) centers
782 of SageMath ``FiniteDimensionalAlgebrasWithBasis``. Since all
783 Euclidean Jordan algebas are commutative (and thus equal to
784 their own centers) and semisimple, the method should work more
785 or less as implemented, if it ever worked in the first place.
786 (I don't know the justification for the original implementation.
787 yet).
788
789 How it works: we loop through the algebras generators, looking
790 for their eigenspaces. If there's more than one eigenspace,
791 and if they result in more than one subalgebra, then we split
792 those subalgebras recursively until we get to subalgebras of
793 dimension one (whose idempotent is the unit element). Why does
794 some generator have to produce at least two subalgebras? I
795 dunno. But it seems to work.
796
797 Beware that Koecher defines the "center" of a Jordan algebra to
798 be something else, because the usual definition is stupid in a
799 (necessarily commutative) Jordan algebra.
800
801 SETUP::
802
803 sage: from mjo.eja.eja_algebra import (random_eja,
804 ....: JordanSpinEJA,
805 ....: TrivialEJA)
806
807 EXAMPLES:
808
809 A Jordan frame for the trivial algebra has to be empty
810 (zero-length) since its rank is zero. More to the point, there
811 are no non-zero idempotents in the trivial EJA. This does not
812 cause any problems so long as we adopt the convention that the
813 empty sum is zero, since then the sole element of the trivial
814 EJA has an (empty) spectral decomposition::
815
816 sage: J = TrivialEJA()
817 sage: J.a_jordan_frame()
818 ()
819
820 A one-dimensional algebra has rank one (equal to its dimension),
821 and only one primitive idempotent, namely the algebra's unit
822 element::
823
824 sage: J = JordanSpinEJA(1)
825 sage: J.a_jordan_frame()
826 (e0,)
827
828 TESTS::
829
830 sage: J = random_eja()
831 sage: c = J.a_jordan_frame()
832 sage: all( x^2 == x for x in c )
833 True
834 sage: r = len(c)
835 sage: all( c[i]*c[j] == c[i]*(i==j) for i in range(r)
836 ....: for j in range(r) )
837 True
838
839 """
840 if self.dimension() == 0:
841 return ()
842 if self.dimension() == 1:
843 return (self.one(),)
844
845 for g in self.gens():
846 eigenpairs = g.operator().matrix().right_eigenspaces()
847 if len(eigenpairs) >= 2:
848 subalgebras = []
849 for eigval, eigspace in eigenpairs:
850 # Make sub-EJAs from the matrix eigenspaces...
851 sb = tuple( self.from_vector(b) for b in eigspace.basis() )
852 try:
853 # This will fail if e.g. the eigenspace basis
854 # contains two elements and their product
855 # isn't a linear combination of the two of
856 # them (i.e. the generated EJA isn't actually
857 # two dimensional).
858 s = FiniteDimensionalEuclideanJordanSubalgebra(self, sb)
859 subalgebras.append(s)
860 except ArithmeticError as e:
861 if str(e) == "vector is not in free module":
862 # Ignore only the "not a sub-EJA" error
863 pass
864
865 if len(subalgebras) >= 2:
866 # apply this method recursively.
867 return tuple( c.superalgebra_element()
868 for subalgebra in subalgebras
869 for c in subalgebra.a_jordan_frame() )
870
871 # If we got here, the algebra didn't decompose, at least not when we looked at
872 # the eigenspaces corresponding only to basis elements of the algebra. The
873 # implementation I stole says that this should work because of Schur's Lemma,
874 # so I personally blame Schur's Lemma if it does not.
875 raise Exception("Schur's Lemma didn't work!")
876
877
878 def random_elements(self, count):
879 """
880 Return ``count`` random elements as a tuple.
881
882 SETUP::
883
884 sage: from mjo.eja.eja_algebra import JordanSpinEJA
885
886 EXAMPLES::
887
888 sage: J = JordanSpinEJA(3)
889 sage: x,y,z = J.random_elements(3)
890 sage: all( [ x in J, y in J, z in J ])
891 True
892 sage: len( J.random_elements(10) ) == 10
893 True
894
895 """
896 return tuple( self.random_element() for idx in range(count) )
897
898
899 def rank(self):
900 """
901 Return the rank of this EJA.
902
903 ALGORITHM:
904
905 The author knows of no algorithm to compute the rank of an EJA
906 where only the multiplication table is known. In lieu of one, we
907 require the rank to be specified when the algebra is created,
908 and simply pass along that number here.
909
910 SETUP::
911
912 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
913 ....: RealSymmetricEJA,
914 ....: ComplexHermitianEJA,
915 ....: QuaternionHermitianEJA,
916 ....: random_eja)
917
918 EXAMPLES:
919
920 The rank of the Jordan spin algebra is always two::
921
922 sage: JordanSpinEJA(2).rank()
923 2
924 sage: JordanSpinEJA(3).rank()
925 2
926 sage: JordanSpinEJA(4).rank()
927 2
928
929 The rank of the `n`-by-`n` Hermitian real, complex, or
930 quaternion matrices is `n`::
931
932 sage: RealSymmetricEJA(4).rank()
933 4
934 sage: ComplexHermitianEJA(3).rank()
935 3
936 sage: QuaternionHermitianEJA(2).rank()
937 2
938
939 TESTS:
940
941 Ensure that every EJA that we know how to construct has a
942 positive integer rank, unless the algebra is trivial in
943 which case its rank will be zero::
944
945 sage: set_random_seed()
946 sage: J = random_eja()
947 sage: r = J.rank()
948 sage: r in ZZ
949 True
950 sage: r > 0 or (r == 0 and J.is_trivial())
951 True
952
953 """
954 return self._rank
955
956
957 def vector_space(self):
958 """
959 Return the vector space that underlies this algebra.
960
961 SETUP::
962
963 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
964
965 EXAMPLES::
966
967 sage: J = RealSymmetricEJA(2)
968 sage: J.vector_space()
969 Vector space of dimension 3 over...
970
971 """
972 return self.zero().to_vector().parent().ambient_vector_space()
973
974
975 Element = FiniteDimensionalEuclideanJordanAlgebraElement
976
977
978 class KnownRankEJA(object):
979 """
980 A class for algebras that we actually know we can construct. The
981 main issue is that, for most of our methods to make sense, we need
982 to know the rank of our algebra. Thus we can't simply generate a
983 "random" algebra, or even check that a given basis and product
984 satisfy the axioms; because even if everything looks OK, we wouldn't
985 know the rank we need to actuallty build the thing.
986
987 Not really a subclass of FDEJA because doing that causes method
988 resolution errors, e.g.
989
990 TypeError: Error when calling the metaclass bases
991 Cannot create a consistent method resolution
992 order (MRO) for bases FiniteDimensionalEuclideanJordanAlgebra,
993 KnownRankEJA
994
995 """
996 @staticmethod
997 def _max_test_case_size():
998 """
999 Return an integer "size" that is an upper bound on the size of
1000 this algebra when it is used in a random test
1001 case. Unfortunately, the term "size" is quite vague -- when
1002 dealing with `R^n` under either the Hadamard or Jordan spin
1003 product, the "size" refers to the dimension `n`. When dealing
1004 with a matrix algebra (real symmetric or complex/quaternion
1005 Hermitian), it refers to the size of the matrix, which is
1006 far less than the dimension of the underlying vector space.
1007
1008 We default to five in this class, which is safe in `R^n`. The
1009 matrix algebra subclasses (or any class where the "size" is
1010 interpreted to be far less than the dimension) should override
1011 with a smaller number.
1012 """
1013 return 5
1014
1015 @classmethod
1016 def random_instance(cls, field=QQ, **kwargs):
1017 """
1018 Return a random instance of this type of algebra.
1019
1020 Beware, this will crash for "most instances" because the
1021 constructor below looks wrong.
1022 """
1023 if cls is TrivialEJA:
1024 # The TrivialEJA class doesn't take an "n" argument because
1025 # there's only one.
1026 return cls(field)
1027
1028 n = ZZ.random_element(cls._max_test_case_size()) + 1
1029 return cls(n, field, **kwargs)
1030
1031
1032 class HadamardEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
1033 """
1034 Return the Euclidean Jordan Algebra corresponding to the set
1035 `R^n` under the Hadamard product.
1036
1037 Note: this is nothing more than the Cartesian product of ``n``
1038 copies of the spin algebra. Once Cartesian product algebras
1039 are implemented, this can go.
1040
1041 SETUP::
1042
1043 sage: from mjo.eja.eja_algebra import HadamardEJA
1044
1045 EXAMPLES:
1046
1047 This multiplication table can be verified by hand::
1048
1049 sage: J = HadamardEJA(3)
1050 sage: e0,e1,e2 = J.gens()
1051 sage: e0*e0
1052 e0
1053 sage: e0*e1
1054 0
1055 sage: e0*e2
1056 0
1057 sage: e1*e1
1058 e1
1059 sage: e1*e2
1060 0
1061 sage: e2*e2
1062 e2
1063
1064 TESTS:
1065
1066 We can change the generator prefix::
1067
1068 sage: HadamardEJA(3, prefix='r').gens()
1069 (r0, r1, r2)
1070
1071 """
1072 def __init__(self, n, field=QQ, **kwargs):
1073 V = VectorSpace(field, n)
1074 mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
1075 for i in range(n) ]
1076
1077 fdeja = super(HadamardEJA, self)
1078 return fdeja.__init__(field, mult_table, rank=n, **kwargs)
1079
1080 def inner_product(self, x, y):
1081 """
1082 Faster to reimplement than to use natural representations.
1083
1084 SETUP::
1085
1086 sage: from mjo.eja.eja_algebra import HadamardEJA
1087
1088 TESTS:
1089
1090 Ensure that this is the usual inner product for the algebras
1091 over `R^n`::
1092
1093 sage: set_random_seed()
1094 sage: J = HadamardEJA.random_instance()
1095 sage: x,y = J.random_elements(2)
1096 sage: X = x.natural_representation()
1097 sage: Y = y.natural_representation()
1098 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1099 True
1100
1101 """
1102 return x.to_vector().inner_product(y.to_vector())
1103
1104
1105 def random_eja(field=QQ, nontrivial=False):
1106 """
1107 Return a "random" finite-dimensional Euclidean Jordan Algebra.
1108
1109 SETUP::
1110
1111 sage: from mjo.eja.eja_algebra import random_eja
1112
1113 TESTS::
1114
1115 sage: random_eja()
1116 Euclidean Jordan algebra of dimension...
1117
1118 """
1119 eja_classes = KnownRankEJA.__subclasses__()
1120 if nontrivial:
1121 eja_classes.remove(TrivialEJA)
1122 classname = choice(eja_classes)
1123 return classname.random_instance(field=field)
1124
1125
1126
1127
1128
1129
1130 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
1131 @staticmethod
1132 def _max_test_case_size():
1133 # Play it safe, since this will be squared and the underlying
1134 # field can have dimension 4 (quaternions) too.
1135 return 2
1136
1137 def __init__(self, field, basis, rank, normalize_basis=True, **kwargs):
1138 """
1139 Compared to the superclass constructor, we take a basis instead of
1140 a multiplication table because the latter can be computed in terms
1141 of the former when the product is known (like it is here).
1142 """
1143 # Used in this class's fast _charpoly_coeff() override.
1144 self._basis_normalizers = None
1145
1146 # We're going to loop through this a few times, so now's a good
1147 # time to ensure that it isn't a generator expression.
1148 basis = tuple(basis)
1149
1150 if rank > 1 and normalize_basis:
1151 # We'll need sqrt(2) to normalize the basis, and this
1152 # winds up in the multiplication table, so the whole
1153 # algebra needs to be over the field extension.
1154 R = PolynomialRing(field, 'z')
1155 z = R.gen()
1156 p = z**2 - 2
1157 if p.is_irreducible():
1158 field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
1159 basis = tuple( s.change_ring(field) for s in basis )
1160 self._basis_normalizers = tuple(
1161 ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
1162 basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
1163
1164 Qs = self.multiplication_table_from_matrix_basis(basis)
1165
1166 fdeja = super(MatrixEuclideanJordanAlgebra, self)
1167 return fdeja.__init__(field,
1168 Qs,
1169 rank=rank,
1170 natural_basis=basis,
1171 **kwargs)
1172
1173
1174 @cached_method
1175 def _charpoly_coeff(self, i):
1176 """
1177 Override the parent method with something that tries to compute
1178 over a faster (non-extension) field.
1179 """
1180 if self._basis_normalizers is None:
1181 # We didn't normalize, so assume that the basis we started
1182 # with had entries in a nice field.
1183 return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coeff(i)
1184 else:
1185 basis = ( (b/n) for (b,n) in zip(self.natural_basis(),
1186 self._basis_normalizers) )
1187
1188 # Do this over the rationals and convert back at the end.
1189 J = MatrixEuclideanJordanAlgebra(QQ,
1190 basis,
1191 self.rank(),
1192 normalize_basis=False)
1193 (_,x,_,_) = J._charpoly_matrix_system()
1194 p = J._charpoly_coeff(i)
1195 # p might be missing some vars, have to substitute "optionally"
1196 pairs = zip(x.base_ring().gens(), self._basis_normalizers)
1197 substitutions = { v: v*c for (v,c) in pairs }
1198 result = p.subs(substitutions)
1199
1200 # The result of "subs" can be either a coefficient-ring
1201 # element or a polynomial. Gotta handle both cases.
1202 if result in QQ:
1203 return self.base_ring()(result)
1204 else:
1205 return result.change_ring(self.base_ring())
1206
1207
1208 @staticmethod
1209 def multiplication_table_from_matrix_basis(basis):
1210 """
1211 At least three of the five simple Euclidean Jordan algebras have the
1212 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
1213 multiplication on the right is matrix multiplication. Given a basis
1214 for the underlying matrix space, this function returns a
1215 multiplication table (obtained by looping through the basis
1216 elements) for an algebra of those matrices.
1217 """
1218 # In S^2, for example, we nominally have four coordinates even
1219 # though the space is of dimension three only. The vector space V
1220 # is supposed to hold the entire long vector, and the subspace W
1221 # of V will be spanned by the vectors that arise from symmetric
1222 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
1223 field = basis[0].base_ring()
1224 dimension = basis[0].nrows()
1225
1226 V = VectorSpace(field, dimension**2)
1227 W = V.span_of_basis( _mat2vec(s) for s in basis )
1228 n = len(basis)
1229 mult_table = [[W.zero() for j in range(n)] for i in range(n)]
1230 for i in range(n):
1231 for j in range(n):
1232 mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
1233 mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
1234
1235 return mult_table
1236
1237
1238 @staticmethod
1239 def real_embed(M):
1240 """
1241 Embed the matrix ``M`` into a space of real matrices.
1242
1243 The matrix ``M`` can have entries in any field at the moment:
1244 the real numbers, complex numbers, or quaternions. And although
1245 they are not a field, we can probably support octonions at some
1246 point, too. This function returns a real matrix that "acts like"
1247 the original with respect to matrix multiplication; i.e.
1248
1249 real_embed(M*N) = real_embed(M)*real_embed(N)
1250
1251 """
1252 raise NotImplementedError
1253
1254
1255 @staticmethod
1256 def real_unembed(M):
1257 """
1258 The inverse of :meth:`real_embed`.
1259 """
1260 raise NotImplementedError
1261
1262
1263 @classmethod
1264 def natural_inner_product(cls,X,Y):
1265 Xu = cls.real_unembed(X)
1266 Yu = cls.real_unembed(Y)
1267 tr = (Xu*Yu).trace()
1268
1269 if tr in RLF:
1270 # It's real already.
1271 return tr
1272
1273 # Otherwise, try the thing that works for complex numbers; and
1274 # if that doesn't work, the thing that works for quaternions.
1275 try:
1276 return tr.vector()[0] # real part, imag part is index 1
1277 except AttributeError:
1278 # A quaternions doesn't have a vector() method, but does
1279 # have coefficient_tuple() method that returns the
1280 # coefficients of 1, i, j, and k -- in that order.
1281 return tr.coefficient_tuple()[0]
1282
1283
1284 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1285 @staticmethod
1286 def real_embed(M):
1287 """
1288 The identity function, for embedding real matrices into real
1289 matrices.
1290 """
1291 return M
1292
1293 @staticmethod
1294 def real_unembed(M):
1295 """
1296 The identity function, for unembedding real matrices from real
1297 matrices.
1298 """
1299 return M
1300
1301
1302 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA):
1303 """
1304 The rank-n simple EJA consisting of real symmetric n-by-n
1305 matrices, the usual symmetric Jordan product, and the trace inner
1306 product. It has dimension `(n^2 + n)/2` over the reals.
1307
1308 SETUP::
1309
1310 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1311
1312 EXAMPLES::
1313
1314 sage: J = RealSymmetricEJA(2)
1315 sage: e0, e1, e2 = J.gens()
1316 sage: e0*e0
1317 e0
1318 sage: e1*e1
1319 1/2*e0 + 1/2*e2
1320 sage: e2*e2
1321 e2
1322
1323 In theory, our "field" can be any subfield of the reals::
1324
1325 sage: RealSymmetricEJA(2, AA)
1326 Euclidean Jordan algebra of dimension 3 over Algebraic Real Field
1327 sage: RealSymmetricEJA(2, RR)
1328 Euclidean Jordan algebra of dimension 3 over Real Field with
1329 53 bits of precision
1330
1331 TESTS:
1332
1333 The dimension of this algebra is `(n^2 + n) / 2`::
1334
1335 sage: set_random_seed()
1336 sage: n_max = RealSymmetricEJA._max_test_case_size()
1337 sage: n = ZZ.random_element(1, n_max)
1338 sage: J = RealSymmetricEJA(n)
1339 sage: J.dimension() == (n^2 + n)/2
1340 True
1341
1342 The Jordan multiplication is what we think it is::
1343
1344 sage: set_random_seed()
1345 sage: J = RealSymmetricEJA.random_instance()
1346 sage: x,y = J.random_elements(2)
1347 sage: actual = (x*y).natural_representation()
1348 sage: X = x.natural_representation()
1349 sage: Y = y.natural_representation()
1350 sage: expected = (X*Y + Y*X)/2
1351 sage: actual == expected
1352 True
1353 sage: J(expected) == x*y
1354 True
1355
1356 We can change the generator prefix::
1357
1358 sage: RealSymmetricEJA(3, prefix='q').gens()
1359 (q0, q1, q2, q3, q4, q5)
1360
1361 Our natural basis is normalized with respect to the natural inner
1362 product unless we specify otherwise::
1363
1364 sage: set_random_seed()
1365 sage: J = RealSymmetricEJA.random_instance()
1366 sage: all( b.norm() == 1 for b in J.gens() )
1367 True
1368
1369 Since our natural basis is normalized with respect to the natural
1370 inner product, and since we know that this algebra is an EJA, any
1371 left-multiplication operator's matrix will be symmetric because
1372 natural->EJA basis representation is an isometry and within the EJA
1373 the operator is self-adjoint by the Jordan axiom::
1374
1375 sage: set_random_seed()
1376 sage: x = RealSymmetricEJA.random_instance().random_element()
1377 sage: x.operator().matrix().is_symmetric()
1378 True
1379
1380 """
1381 @classmethod
1382 def _denormalized_basis(cls, n, field):
1383 """
1384 Return a basis for the space of real symmetric n-by-n matrices.
1385
1386 SETUP::
1387
1388 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1389
1390 TESTS::
1391
1392 sage: set_random_seed()
1393 sage: n = ZZ.random_element(1,5)
1394 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1395 sage: all( M.is_symmetric() for M in B)
1396 True
1397
1398 """
1399 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1400 # coordinates.
1401 S = []
1402 for i in range(n):
1403 for j in range(i+1):
1404 Eij = matrix(field, n, lambda k,l: k==i and l==j)
1405 if i == j:
1406 Sij = Eij
1407 else:
1408 Sij = Eij + Eij.transpose()
1409 S.append(Sij)
1410 return S
1411
1412
1413 @staticmethod
1414 def _max_test_case_size():
1415 return 4 # Dimension 10
1416
1417
1418 def __init__(self, n, field=QQ, **kwargs):
1419 basis = self._denormalized_basis(n, field)
1420 super(RealSymmetricEJA, self).__init__(field, basis, n, **kwargs)
1421
1422
1423 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1424 @staticmethod
1425 def real_embed(M):
1426 """
1427 Embed the n-by-n complex matrix ``M`` into the space of real
1428 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1429 bi` to the block matrix ``[[a,b],[-b,a]]``.
1430
1431 SETUP::
1432
1433 sage: from mjo.eja.eja_algebra import \
1434 ....: ComplexMatrixEuclideanJordanAlgebra
1435
1436 EXAMPLES::
1437
1438 sage: F = QuadraticField(-1, 'i')
1439 sage: x1 = F(4 - 2*i)
1440 sage: x2 = F(1 + 2*i)
1441 sage: x3 = F(-i)
1442 sage: x4 = F(6)
1443 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1444 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1445 [ 4 -2| 1 2]
1446 [ 2 4|-2 1]
1447 [-----+-----]
1448 [ 0 -1| 6 0]
1449 [ 1 0| 0 6]
1450
1451 TESTS:
1452
1453 Embedding is a homomorphism (isomorphism, in fact)::
1454
1455 sage: set_random_seed()
1456 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1457 sage: n = ZZ.random_element(n_max)
1458 sage: F = QuadraticField(-1, 'i')
1459 sage: X = random_matrix(F, n)
1460 sage: Y = random_matrix(F, n)
1461 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1462 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1463 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1464 sage: Xe*Ye == XYe
1465 True
1466
1467 """
1468 n = M.nrows()
1469 if M.ncols() != n:
1470 raise ValueError("the matrix 'M' must be square")
1471
1472 # We don't need any adjoined elements...
1473 field = M.base_ring().base_ring()
1474
1475 blocks = []
1476 for z in M.list():
1477 a = z.list()[0] # real part, I guess
1478 b = z.list()[1] # imag part, I guess
1479 blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
1480
1481 return matrix.block(field, n, blocks)
1482
1483
1484 @staticmethod
1485 def real_unembed(M):
1486 """
1487 The inverse of _embed_complex_matrix().
1488
1489 SETUP::
1490
1491 sage: from mjo.eja.eja_algebra import \
1492 ....: ComplexMatrixEuclideanJordanAlgebra
1493
1494 EXAMPLES::
1495
1496 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1497 ....: [-2, 1, -4, 3],
1498 ....: [ 9, 10, 11, 12],
1499 ....: [-10, 9, -12, 11] ])
1500 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1501 [ 2*i + 1 4*i + 3]
1502 [ 10*i + 9 12*i + 11]
1503
1504 TESTS:
1505
1506 Unembedding is the inverse of embedding::
1507
1508 sage: set_random_seed()
1509 sage: F = QuadraticField(-1, 'i')
1510 sage: M = random_matrix(F, 3)
1511 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1512 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1513 True
1514
1515 """
1516 n = ZZ(M.nrows())
1517 if M.ncols() != n:
1518 raise ValueError("the matrix 'M' must be square")
1519 if not n.mod(2).is_zero():
1520 raise ValueError("the matrix 'M' must be a complex embedding")
1521
1522 # If "M" was normalized, its base ring might have roots
1523 # adjoined and they can stick around after unembedding.
1524 field = M.base_ring()
1525 R = PolynomialRing(field, 'z')
1526 z = R.gen()
1527 F = field.extension(z**2 + 1, 'i', embedding=CLF(-1).sqrt())
1528 i = F.gen()
1529
1530 # Go top-left to bottom-right (reading order), converting every
1531 # 2-by-2 block we see to a single complex element.
1532 elements = []
1533 for k in range(n/2):
1534 for j in range(n/2):
1535 submat = M[2*k:2*k+2,2*j:2*j+2]
1536 if submat[0,0] != submat[1,1]:
1537 raise ValueError('bad on-diagonal submatrix')
1538 if submat[0,1] != -submat[1,0]:
1539 raise ValueError('bad off-diagonal submatrix')
1540 z = submat[0,0] + submat[0,1]*i
1541 elements.append(z)
1542
1543 return matrix(F, n/2, elements)
1544
1545
1546 @classmethod
1547 def natural_inner_product(cls,X,Y):
1548 """
1549 Compute a natural inner product in this algebra directly from
1550 its real embedding.
1551
1552 SETUP::
1553
1554 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1555
1556 TESTS:
1557
1558 This gives the same answer as the slow, default method implemented
1559 in :class:`MatrixEuclideanJordanAlgebra`::
1560
1561 sage: set_random_seed()
1562 sage: J = ComplexHermitianEJA.random_instance()
1563 sage: x,y = J.random_elements(2)
1564 sage: Xe = x.natural_representation()
1565 sage: Ye = y.natural_representation()
1566 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1567 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1568 sage: expected = (X*Y).trace().vector()[0]
1569 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1570 sage: actual == expected
1571 True
1572
1573 """
1574 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/2
1575
1576
1577 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA):
1578 """
1579 The rank-n simple EJA consisting of complex Hermitian n-by-n
1580 matrices over the real numbers, the usual symmetric Jordan product,
1581 and the real-part-of-trace inner product. It has dimension `n^2` over
1582 the reals.
1583
1584 SETUP::
1585
1586 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1587
1588 EXAMPLES:
1589
1590 In theory, our "field" can be any subfield of the reals::
1591
1592 sage: ComplexHermitianEJA(2, AA)
1593 Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
1594 sage: ComplexHermitianEJA(2, RR)
1595 Euclidean Jordan algebra of dimension 4 over Real Field with
1596 53 bits of precision
1597
1598 TESTS:
1599
1600 The dimension of this algebra is `n^2`::
1601
1602 sage: set_random_seed()
1603 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1604 sage: n = ZZ.random_element(1, n_max)
1605 sage: J = ComplexHermitianEJA(n)
1606 sage: J.dimension() == n^2
1607 True
1608
1609 The Jordan multiplication is what we think it is::
1610
1611 sage: set_random_seed()
1612 sage: J = ComplexHermitianEJA.random_instance()
1613 sage: x,y = J.random_elements(2)
1614 sage: actual = (x*y).natural_representation()
1615 sage: X = x.natural_representation()
1616 sage: Y = y.natural_representation()
1617 sage: expected = (X*Y + Y*X)/2
1618 sage: actual == expected
1619 True
1620 sage: J(expected) == x*y
1621 True
1622
1623 We can change the generator prefix::
1624
1625 sage: ComplexHermitianEJA(2, prefix='z').gens()
1626 (z0, z1, z2, z3)
1627
1628 Our natural basis is normalized with respect to the natural inner
1629 product unless we specify otherwise::
1630
1631 sage: set_random_seed()
1632 sage: J = ComplexHermitianEJA.random_instance()
1633 sage: all( b.norm() == 1 for b in J.gens() )
1634 True
1635
1636 Since our natural basis is normalized with respect to the natural
1637 inner product, and since we know that this algebra is an EJA, any
1638 left-multiplication operator's matrix will be symmetric because
1639 natural->EJA basis representation is an isometry and within the EJA
1640 the operator is self-adjoint by the Jordan axiom::
1641
1642 sage: set_random_seed()
1643 sage: x = ComplexHermitianEJA.random_instance().random_element()
1644 sage: x.operator().matrix().is_symmetric()
1645 True
1646
1647 """
1648
1649 @classmethod
1650 def _denormalized_basis(cls, n, field):
1651 """
1652 Returns a basis for the space of complex Hermitian n-by-n matrices.
1653
1654 Why do we embed these? Basically, because all of numerical linear
1655 algebra assumes that you're working with vectors consisting of `n`
1656 entries from a field and scalars from the same field. There's no way
1657 to tell SageMath that (for example) the vectors contain complex
1658 numbers, while the scalar field is real.
1659
1660 SETUP::
1661
1662 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1663
1664 TESTS::
1665
1666 sage: set_random_seed()
1667 sage: n = ZZ.random_element(1,5)
1668 sage: field = QuadraticField(2, 'sqrt2')
1669 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1670 sage: all( M.is_symmetric() for M in B)
1671 True
1672
1673 """
1674 R = PolynomialRing(field, 'z')
1675 z = R.gen()
1676 F = field.extension(z**2 + 1, 'I')
1677 I = F.gen()
1678
1679 # This is like the symmetric case, but we need to be careful:
1680 #
1681 # * We want conjugate-symmetry, not just symmetry.
1682 # * The diagonal will (as a result) be real.
1683 #
1684 S = []
1685 for i in range(n):
1686 for j in range(i+1):
1687 Eij = matrix(F, n, lambda k,l: k==i and l==j)
1688 if i == j:
1689 Sij = cls.real_embed(Eij)
1690 S.append(Sij)
1691 else:
1692 # The second one has a minus because it's conjugated.
1693 Sij_real = cls.real_embed(Eij + Eij.transpose())
1694 S.append(Sij_real)
1695 Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
1696 S.append(Sij_imag)
1697
1698 # Since we embedded these, we can drop back to the "field" that we
1699 # started with instead of the complex extension "F".
1700 return ( s.change_ring(field) for s in S )
1701
1702
1703 def __init__(self, n, field=QQ, **kwargs):
1704 basis = self._denormalized_basis(n,field)
1705 super(ComplexHermitianEJA,self).__init__(field, basis, n, **kwargs)
1706
1707
1708 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
1709 @staticmethod
1710 def real_embed(M):
1711 """
1712 Embed the n-by-n quaternion matrix ``M`` into the space of real
1713 matrices of size 4n-by-4n by first sending each quaternion entry `z
1714 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1715 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1716 matrix.
1717
1718 SETUP::
1719
1720 sage: from mjo.eja.eja_algebra import \
1721 ....: QuaternionMatrixEuclideanJordanAlgebra
1722
1723 EXAMPLES::
1724
1725 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1726 sage: i,j,k = Q.gens()
1727 sage: x = 1 + 2*i + 3*j + 4*k
1728 sage: M = matrix(Q, 1, [[x]])
1729 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1730 [ 1 2 3 4]
1731 [-2 1 -4 3]
1732 [-3 4 1 -2]
1733 [-4 -3 2 1]
1734
1735 Embedding is a homomorphism (isomorphism, in fact)::
1736
1737 sage: set_random_seed()
1738 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1739 sage: n = ZZ.random_element(n_max)
1740 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1741 sage: X = random_matrix(Q, n)
1742 sage: Y = random_matrix(Q, n)
1743 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1744 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1745 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1746 sage: Xe*Ye == XYe
1747 True
1748
1749 """
1750 quaternions = M.base_ring()
1751 n = M.nrows()
1752 if M.ncols() != n:
1753 raise ValueError("the matrix 'M' must be square")
1754
1755 F = QuadraticField(-1, 'i')
1756 i = F.gen()
1757
1758 blocks = []
1759 for z in M.list():
1760 t = z.coefficient_tuple()
1761 a = t[0]
1762 b = t[1]
1763 c = t[2]
1764 d = t[3]
1765 cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
1766 [-c + d*i, a - b*i]])
1767 realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
1768 blocks.append(realM)
1769
1770 # We should have real entries by now, so use the realest field
1771 # we've got for the return value.
1772 return matrix.block(quaternions.base_ring(), n, blocks)
1773
1774
1775
1776 @staticmethod
1777 def real_unembed(M):
1778 """
1779 The inverse of _embed_quaternion_matrix().
1780
1781 SETUP::
1782
1783 sage: from mjo.eja.eja_algebra import \
1784 ....: QuaternionMatrixEuclideanJordanAlgebra
1785
1786 EXAMPLES::
1787
1788 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1789 ....: [-2, 1, -4, 3],
1790 ....: [-3, 4, 1, -2],
1791 ....: [-4, -3, 2, 1]])
1792 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1793 [1 + 2*i + 3*j + 4*k]
1794
1795 TESTS:
1796
1797 Unembedding is the inverse of embedding::
1798
1799 sage: set_random_seed()
1800 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1801 sage: M = random_matrix(Q, 3)
1802 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1803 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1804 True
1805
1806 """
1807 n = ZZ(M.nrows())
1808 if M.ncols() != n:
1809 raise ValueError("the matrix 'M' must be square")
1810 if not n.mod(4).is_zero():
1811 raise ValueError("the matrix 'M' must be a quaternion embedding")
1812
1813 # Use the base ring of the matrix to ensure that its entries can be
1814 # multiplied by elements of the quaternion algebra.
1815 field = M.base_ring()
1816 Q = QuaternionAlgebra(field,-1,-1)
1817 i,j,k = Q.gens()
1818
1819 # Go top-left to bottom-right (reading order), converting every
1820 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1821 # quaternion block.
1822 elements = []
1823 for l in range(n/4):
1824 for m in range(n/4):
1825 submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
1826 M[4*l:4*l+4,4*m:4*m+4] )
1827 if submat[0,0] != submat[1,1].conjugate():
1828 raise ValueError('bad on-diagonal submatrix')
1829 if submat[0,1] != -submat[1,0].conjugate():
1830 raise ValueError('bad off-diagonal submatrix')
1831 z = submat[0,0].vector()[0] # real part
1832 z += submat[0,0].vector()[1]*i # imag part
1833 z += submat[0,1].vector()[0]*j # real part
1834 z += submat[0,1].vector()[1]*k # imag part
1835 elements.append(z)
1836
1837 return matrix(Q, n/4, elements)
1838
1839
1840 @classmethod
1841 def natural_inner_product(cls,X,Y):
1842 """
1843 Compute a natural inner product in this algebra directly from
1844 its real embedding.
1845
1846 SETUP::
1847
1848 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1849
1850 TESTS:
1851
1852 This gives the same answer as the slow, default method implemented
1853 in :class:`MatrixEuclideanJordanAlgebra`::
1854
1855 sage: set_random_seed()
1856 sage: J = QuaternionHermitianEJA.random_instance()
1857 sage: x,y = J.random_elements(2)
1858 sage: Xe = x.natural_representation()
1859 sage: Ye = y.natural_representation()
1860 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1861 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1862 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1863 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1864 sage: actual == expected
1865 True
1866
1867 """
1868 return RealMatrixEuclideanJordanAlgebra.natural_inner_product(X,Y)/4
1869
1870
1871 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
1872 KnownRankEJA):
1873 """
1874 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1875 matrices, the usual symmetric Jordan product, and the
1876 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1877 the reals.
1878
1879 SETUP::
1880
1881 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1882
1883 EXAMPLES:
1884
1885 In theory, our "field" can be any subfield of the reals::
1886
1887 sage: QuaternionHermitianEJA(2, AA)
1888 Euclidean Jordan algebra of dimension 6 over Algebraic Real Field
1889 sage: QuaternionHermitianEJA(2, RR)
1890 Euclidean Jordan algebra of dimension 6 over Real Field with
1891 53 bits of precision
1892
1893 TESTS:
1894
1895 The dimension of this algebra is `2*n^2 - n`::
1896
1897 sage: set_random_seed()
1898 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1899 sage: n = ZZ.random_element(1, n_max)
1900 sage: J = QuaternionHermitianEJA(n)
1901 sage: J.dimension() == 2*(n^2) - n
1902 True
1903
1904 The Jordan multiplication is what we think it is::
1905
1906 sage: set_random_seed()
1907 sage: J = QuaternionHermitianEJA.random_instance()
1908 sage: x,y = J.random_elements(2)
1909 sage: actual = (x*y).natural_representation()
1910 sage: X = x.natural_representation()
1911 sage: Y = y.natural_representation()
1912 sage: expected = (X*Y + Y*X)/2
1913 sage: actual == expected
1914 True
1915 sage: J(expected) == x*y
1916 True
1917
1918 We can change the generator prefix::
1919
1920 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1921 (a0, a1, a2, a3, a4, a5)
1922
1923 Our natural basis is normalized with respect to the natural inner
1924 product unless we specify otherwise::
1925
1926 sage: set_random_seed()
1927 sage: J = QuaternionHermitianEJA.random_instance()
1928 sage: all( b.norm() == 1 for b in J.gens() )
1929 True
1930
1931 Since our natural basis is normalized with respect to the natural
1932 inner product, and since we know that this algebra is an EJA, any
1933 left-multiplication operator's matrix will be symmetric because
1934 natural->EJA basis representation is an isometry and within the EJA
1935 the operator is self-adjoint by the Jordan axiom::
1936
1937 sage: set_random_seed()
1938 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1939 sage: x.operator().matrix().is_symmetric()
1940 True
1941
1942 """
1943 @classmethod
1944 def _denormalized_basis(cls, n, field):
1945 """
1946 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1947
1948 Why do we embed these? Basically, because all of numerical
1949 linear algebra assumes that you're working with vectors consisting
1950 of `n` entries from a field and scalars from the same field. There's
1951 no way to tell SageMath that (for example) the vectors contain
1952 complex numbers, while the scalar field is real.
1953
1954 SETUP::
1955
1956 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1957
1958 TESTS::
1959
1960 sage: set_random_seed()
1961 sage: n = ZZ.random_element(1,5)
1962 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1963 sage: all( M.is_symmetric() for M in B )
1964 True
1965
1966 """
1967 Q = QuaternionAlgebra(QQ,-1,-1)
1968 I,J,K = Q.gens()
1969
1970 # This is like the symmetric case, but we need to be careful:
1971 #
1972 # * We want conjugate-symmetry, not just symmetry.
1973 # * The diagonal will (as a result) be real.
1974 #
1975 S = []
1976 for i in range(n):
1977 for j in range(i+1):
1978 Eij = matrix(Q, n, lambda k,l: k==i and l==j)
1979 if i == j:
1980 Sij = cls.real_embed(Eij)
1981 S.append(Sij)
1982 else:
1983 # The second, third, and fourth ones have a minus
1984 # because they're conjugated.
1985 Sij_real = cls.real_embed(Eij + Eij.transpose())
1986 S.append(Sij_real)
1987 Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
1988 S.append(Sij_I)
1989 Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
1990 S.append(Sij_J)
1991 Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
1992 S.append(Sij_K)
1993
1994 # Since we embedded these, we can drop back to the "field" that we
1995 # started with instead of the quaternion algebra "Q".
1996 return ( s.change_ring(field) for s in S )
1997
1998
1999 def __init__(self, n, field=QQ, **kwargs):
2000 basis = self._denormalized_basis(n,field)
2001 super(QuaternionHermitianEJA,self).__init__(field, basis, n, **kwargs)
2002
2003
2004 class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
2005 r"""
2006 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2007 with the half-trace inner product and jordan product ``x*y =
2008 (x0*y0 + <B*x_bar,y_bar>, x0*y_bar + y0*x_bar)`` where ``B`` is a
2009 symmetric positive-definite "bilinear form" matrix. It has
2010 dimension `n` over the reals, and reduces to the ``JordanSpinEJA``
2011 when ``B`` is the identity matrix of order ``n-1``.
2012
2013 SETUP::
2014
2015 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2016 ....: JordanSpinEJA)
2017
2018 EXAMPLES:
2019
2020 When no bilinear form is specified, the identity matrix is used,
2021 and the resulting algebra is the Jordan spin algebra::
2022
2023 sage: J0 = BilinearFormEJA(3)
2024 sage: J1 = JordanSpinEJA(3)
2025 sage: J0.multiplication_table() == J0.multiplication_table()
2026 True
2027
2028 TESTS:
2029
2030 We can create a zero-dimensional algebra::
2031
2032 sage: J = BilinearFormEJA(0)
2033 sage: J.basis()
2034 Finite family {}
2035
2036 We can check the multiplication condition given in the Jordan, von
2037 Neumann, and Wigner paper (and also discussed on my "On the
2038 symmetry..." paper). Note that this relies heavily on the standard
2039 choice of basis, as does anything utilizing the bilinear form matrix::
2040
2041 sage: set_random_seed()
2042 sage: n = ZZ.random_element(5)
2043 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2044 sage: B = M.transpose()*M
2045 sage: J = BilinearFormEJA(n, B=B)
2046 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2047 sage: V = J.vector_space()
2048 sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
2049 ....: for ei in eis ]
2050 sage: actual = [ sis[i]*sis[j]
2051 ....: for i in range(n-1)
2052 ....: for j in range(n-1) ]
2053 sage: expected = [ J.one() if i == j else J.zero()
2054 ....: for i in range(n-1)
2055 ....: for j in range(n-1) ]
2056 sage: actual == expected
2057 True
2058 """
2059 def __init__(self, n, field=QQ, B=None, **kwargs):
2060 if B is None:
2061 self._B = matrix.identity(field, max(0,n-1))
2062 else:
2063 self._B = B
2064
2065 V = VectorSpace(field, n)
2066 mult_table = [[V.zero() for j in range(n)] for i in range(n)]
2067 for i in range(n):
2068 for j in range(n):
2069 x = V.gen(i)
2070 y = V.gen(j)
2071 x0 = x[0]
2072 xbar = x[1:]
2073 y0 = y[0]
2074 ybar = y[1:]
2075 z0 = x0*y0 + (self._B*xbar).inner_product(ybar)
2076 zbar = y0*xbar + x0*ybar
2077 z = V([z0] + zbar.list())
2078 mult_table[i][j] = z
2079
2080 # The rank of this algebra is two, unless we're in a
2081 # one-dimensional ambient space (because the rank is bounded
2082 # by the ambient dimension).
2083 fdeja = super(BilinearFormEJA, self)
2084 return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs)
2085
2086 def inner_product(self, x, y):
2087 r"""
2088 Half of the trace inner product.
2089
2090 This is defined so that the special case of the Jordan spin
2091 algebra gets the usual inner product.
2092
2093 SETUP::
2094
2095 sage: from mjo.eja.eja_algebra import BilinearFormEJA
2096
2097 TESTS:
2098
2099 Ensure that this is one-half of the trace inner-product when
2100 the algebra isn't just the reals (when ``n`` isn't one). This
2101 is in Faraut and Koranyi, and also my "On the symmetry..."
2102 paper::
2103
2104 sage: set_random_seed()
2105 sage: n = ZZ.random_element(2,5)
2106 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2107 sage: B = M.transpose()*M
2108 sage: J = BilinearFormEJA(n, B=B)
2109 sage: x = J.random_element()
2110 sage: y = J.random_element()
2111 sage: x.inner_product(y) == (x*y).trace()/2
2112 True
2113
2114 """
2115 xvec = x.to_vector()
2116 xbar = xvec[1:]
2117 yvec = y.to_vector()
2118 ybar = yvec[1:]
2119 return x[0]*y[0] + (self._B*xbar).inner_product(ybar)
2120
2121
2122 class JordanSpinEJA(BilinearFormEJA):
2123 """
2124 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2125 with the usual inner product and jordan product ``x*y =
2126 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2127 the reals.
2128
2129 SETUP::
2130
2131 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2132
2133 EXAMPLES:
2134
2135 This multiplication table can be verified by hand::
2136
2137 sage: J = JordanSpinEJA(4)
2138 sage: e0,e1,e2,e3 = J.gens()
2139 sage: e0*e0
2140 e0
2141 sage: e0*e1
2142 e1
2143 sage: e0*e2
2144 e2
2145 sage: e0*e3
2146 e3
2147 sage: e1*e2
2148 0
2149 sage: e1*e3
2150 0
2151 sage: e2*e3
2152 0
2153
2154 We can change the generator prefix::
2155
2156 sage: JordanSpinEJA(2, prefix='B').gens()
2157 (B0, B1)
2158
2159 TESTS:
2160
2161 Ensure that we have the usual inner product on `R^n`::
2162
2163 sage: set_random_seed()
2164 sage: J = JordanSpinEJA.random_instance()
2165 sage: x,y = J.random_elements(2)
2166 sage: X = x.natural_representation()
2167 sage: Y = y.natural_representation()
2168 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
2169 True
2170
2171 """
2172 def __init__(self, n, field=QQ, **kwargs):
2173 # This is a special case of the BilinearFormEJA with the identity
2174 # matrix as its bilinear form.
2175 return super(JordanSpinEJA, self).__init__(n, field, **kwargs)
2176
2177
2178 class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):
2179 """
2180 The trivial Euclidean Jordan algebra consisting of only a zero element.
2181
2182 SETUP::
2183
2184 sage: from mjo.eja.eja_algebra import TrivialEJA
2185
2186 EXAMPLES::
2187
2188 sage: J = TrivialEJA()
2189 sage: J.dimension()
2190 0
2191 sage: J.zero()
2192 0
2193 sage: J.one()
2194 0
2195 sage: 7*J.one()*12*J.one()
2196 0
2197 sage: J.one().inner_product(J.one())
2198 0
2199 sage: J.one().norm()
2200 0
2201 sage: J.one().subalgebra_generated_by()
2202 Euclidean Jordan algebra of dimension 0 over Rational Field
2203 sage: J.rank()
2204 0
2205
2206 """
2207 def __init__(self, field=QQ, **kwargs):
2208 mult_table = []
2209 fdeja = super(TrivialEJA, self)
2210 # The rank is zero using my definition, namely the dimension of the
2211 # largest subalgebra generated by any element.
2212 return fdeja.__init__(field, mult_table, rank=0, **kwargs)