]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/basis_repr.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / basis_repr.py
1 r"""
2 In an `n`-dimensional vector space, representation with respect to
3 a basis is an isometry between that space and `\mathbb{R}^{n}`.
4
5 Sage is able to go back/forth relatively easy when you start with a
6 ``VectorSpace``, but unfortunately, it does not know that a
7 ``MatrixSpace`` is also a ``VectorSpace``. So, this module exists to
8 perform the "basis representation" isometry between a matrix space and
9 a vector space of the same dimension.
10
11 """
12
13 from sage.all import *
14 from sage.matrix.matrix_space import is_MatrixSpace
15
16 def _mat2vec(m):
17 return vector(m.base_ring(), m.list())
18
19 def basis_repr(M):
20 """
21 Return the forward (``MatrixSpace`` -> ``VectorSpace``) and
22 inverse isometries, as a pair, that take elements of the given
23 ``MatrixSpace`` `M` to their representations as "long vectors,"
24 and vice-versa.
25
26 The argument ``M`` can be either a ``MatrixSpace`` or a basis for
27 a space of matrices. This function is needed because SageMath does
28 not know that matrix spaces are vector spaces, and therefore
29 cannot perform common operations with them -- like computing the
30 basis representation of an element.
31
32 Moreover, the ability to pass in a basis (rather than a
33 ``MatrixSpace``) is needed because SageMath has no way to express
34 that e.g. a (sub)space of symmetric matrices is itself a
35 ``MatrixSpace``.
36
37 INPUT:
38
39 - ``M`` -- Either a ``MatrixSpace``, or a list of matrices that form
40 a basis for a matrix space.
41
42 OUTPUT:
43
44 A pair of isometries ``(phi, phi_inv)``.
45
46 If the matrix space associated with `M` has dimension `n`, then
47 ``phi`` will map its elements to vectors of length `n` over the
48 same base ring. The inverse map ``phi_inv`` reverses that
49 operation.
50
51 SETUP::
52
53 sage: from mjo.basis_repr import basis_repr
54
55 EXAMPLES:
56
57 This function computes the correct coordinate representations (of
58 length 3) for a basis of the space of two-by-two symmetric
59 matrices, the the inverse does indeed invert the process::
60
61 sage: E11 = matrix(QQbar,[ [1,0],
62 ....: [0,0] ])
63 sage: E12 = matrix(QQbar,[ [0, 1/sqrt(2)],
64 ....: [1/sqrt(2), 0] ])
65 sage: E22 = matrix(QQbar,[ [0,0],
66 ....: [0,1] ])
67 sage: basis = [E11, E12, E22]
68 sage: phi, phi_inv = basis_repr(basis)
69 sage: phi(E11); phi(E12); phi(E22)
70 (1, 0, 0)
71 (0, 1, 0)
72 (0, 0, 1)
73 sage: phi_inv(phi(E11)) == E11
74 True
75 sage: phi_inv(phi(E12)) == E12
76 True
77 sage: phi_inv(phi(E22)) == E22
78 True
79
80 MatrixSpace arguments work too::
81
82 sage: M = MatrixSpace(QQ,2)
83 sage: phi, phi_inv = basis_repr(M)
84 sage: X = matrix(QQ, [ [1,2],
85 ....: [3,4] ])
86 sage: phi(X)
87 (1, 2, 3, 4)
88 sage: phi_inv(phi(X)) == X
89 True
90
91 TESTS:
92
93 The inverse is generally an inverse::
94
95 sage: n = ZZ.random_element(10)
96 sage: M = MatrixSpace(QQ,n)
97 sage: X = M.random_element()
98 sage: (phi, phi_inv) = basis_repr(M)
99 sage: phi_inv(phi(X)) == X
100 True
101
102 """
103 if is_MatrixSpace(M):
104 basis_space = M
105 basis = list(M.basis())
106 else:
107 basis_space = M[0].matrix_space()
108 basis = M
109
110 def phi(X):
111 """
112 The isometry sending ``X`` to its representation as a long vector.
113 """
114 if X not in basis_space:
115 raise ValueError("X does not live in the domain of phi")
116
117 V = VectorSpace(basis_space.base_ring(), X.nrows()*X.ncols())
118 W = V.span_of_basis( _mat2vec(s) for s in basis )
119 return W.coordinate_vector(_mat2vec(X))
120
121 def phi_inv(Y):
122 """
123 The isometry sending the long vector `Y` to an element of either
124 `M` or the span of `M` (depending on whether or not ``M``
125 is a ``MatrixSpace`` or a basis).
126 """
127 return basis_space.linear_combination( zip(Y,basis) )
128
129 return (phi, phi_inv)
130
131
132
133 def basis_repr_of_operator(M, L):
134 """
135 Return the matrix of the operator `L` with respect to the basis
136 `M` if `M` is a list of basis vectors for a matrix space; or with
137 respect to the standard basis of `M` if `M` is a ``MatrixSpace``.
138
139 This function is necessary because SageMath does not know that
140 matrix spaces are vector spaces, and it moreover it doesn't know
141 that (for example) the subspace of symmetric matrices is a matrix
142 space in its own right.
143
144 Use ``linear_transformation().matrix()`` instead if you have a
145 true ``VectorSpace``.
146
147 INPUT:
148
149 - ``M`` -- Either a ``MatrixSpace``, or a list of matrices that form
150 a basis for a matrix space.
151
152 OUTPUT:
153
154 If the matrix space associated with `M` has dimension `n`, then an
155 `n`-by-`n` matrix over the same base ring is returned.
156
157 SETUP::
158
159 sage: from mjo.basis_repr import (basis_repr,
160 ....: basis_repr_of_operator)
161
162 EXAMPLES:
163
164 The matrix of the identity operator on the space of two-by-two
165 symmetric matrices is the identity matrix, regardless of the basis::
166
167 sage: E11 = matrix(QQbar,[ [1,0],
168 ....: [0,0] ])
169 sage: E12 = matrix(QQbar,[ [0, 1/sqrt(2)],
170 ....: [1/sqrt(2), 0] ])
171 sage: E22 = matrix(QQbar,[ [0,0],
172 ....: [0,1] ])
173 sage: basis = [E11, E12, E22]
174 sage: identity = lambda X: X
175 sage: basis_repr_of_operator(basis, identity)
176 [1 0 0]
177 [0 1 0]
178 [0 0 1]
179 sage: E11 = matrix(QQ,[[2,0],[0,0]])
180 sage: E12 = matrix(QQ,[[0,2],[2,0]])
181 sage: basis = [E11, E12, E22]
182 sage: basis_repr_of_operator(basis, identity)
183 [1 0 0]
184 [0 1 0]
185 [0 0 1]
186
187 A more complicated example confirms that we get a matrix consistent
188 with our ``matrix_to_vector`` function::
189
190 sage: M = MatrixSpace(QQ,3,3)
191 sage: Q = M([[0,1,0],[1,0,0],[0,0,1]])
192 sage: def f(x):
193 ....: return Q*x*Q.inverse()
194 ....:
195 sage: F = basis_repr_of_operator(M, f)
196 sage: F
197 [0 0 0 0 1 0 0 0 0]
198 [0 0 0 1 0 0 0 0 0]
199 [0 0 0 0 0 1 0 0 0]
200 [0 1 0 0 0 0 0 0 0]
201 [1 0 0 0 0 0 0 0 0]
202 [0 0 1 0 0 0 0 0 0]
203 [0 0 0 0 0 0 0 1 0]
204 [0 0 0 0 0 0 1 0 0]
205 [0 0 0 0 0 0 0 0 1]
206 sage: phi, phi_inv = basis_repr(M)
207 sage: X = M([[1,2,3],[4,5,6],[7,8,9]])
208 sage: F*phi(X) == phi(f(X))
209 True
210
211 """
212 if is_MatrixSpace(M):
213 basis_space = M
214 basis = list(M.basis())
215 else:
216 basis_space = M[0].matrix_space()
217 basis = M
218
219 (phi, phi_inv) = basis_repr(M)
220
221 # Get a basis for the image space. Since phi is an isometry,
222 # it takes one basis to another.
223 image_basis = [ phi(b) for b in basis ]
224
225 # Now construct the image space itself equipped with our custom basis.
226 W = VectorSpace(basis_space.base_ring(), len(basis))
227 W = W.span_of_basis(image_basis)
228
229 return matrix.column( W.coordinates(phi(L(b))) for b in basis )