]> gitweb.michael.orlitzky.com - mjotex.git/blob - examples.tex
a1605c11bd311340a5212754fe0cc7453220f662
[mjotex.git] / examples.tex
1 \documentclass{report}
2
3 \usepackage{mjotex}
4 \usepackage{mathtools}
5
6 \begin{document}
7
8 \begin{section}{Algorithm}
9 An example of an algorithm (bogosort) environment.
10
11 \begin{algorithm}[H]
12 \caption{Sort a list of numbers}
13 \begin{algorithmic}
14 \Require{A list of numbers $L$}
15 \Ensure{A new, sorted copy $M$ of the list $L$}
16
17 \State{$M \gets L$}
18
19 \While{$M$ is not sorted}
20 \State{Rearrange $M$ randomly}
21 \EndWhile
22
23 \Return{$M$}
24 \end{algorithmic}
25 \end{algorithm}
26 \end{section}
27
28 \begin{section}{Arrow}
29 The identity operator on $V$ is $\identity{V}$. The composition of
30 $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
31 $\inverse{f}$. If $f$ is a function and $A$ is a subset of its
32 domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$.
33 \end{section}
34
35 \begin{section}{Common}
36 The function $f$ applied to $x$ is $f\of{x}$. We can group terms
37 like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a
38 set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair
39 of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$,
40 and the factorial of the number $10$ is $\factorial{10}$.
41
42 The Cartesian product of two sets $A$ and $B$ is
43 $\cartprod{A}{B}$; if we take the product with $C$ as well, then
44 we obtain $\cartprodthree{A}{B}{C}$. The direct sum of $V$ and $W$
45 is $\directsum{V}{W}$. Or three things,
46 $\directsumthree{U}{V}{W}$. How about more things? Like
47 $\directsummany{k=1}{\infty}{V_{k}} \ne
48 \cartprodmany{k=1}{\infty}{V_{k}}$. Those direct sums and
49 cartesian products adapt nicely to display equations:
50 %
51 \begin{equation*}
52 \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}.
53 \end{equation*}
54 Here are a few common tuple spaces that should not have a
55 superscript when that superscript would be one: $\Nn[1]$,
56 $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the
57 superscript is (say) two, then it appears: $\Nn[2]$, $\Zn[2]$,
58 $\Qn[2]$, $\Rn[2]$, $\Cn[2]$.
59
60 We also have a few basic set operations, for example the union of
61 two or three sets: $\union{A}{B}$, $\unionthree{A}{B}{C}$. And of
62 course with union comes intersection: $\intersect{A}{B}$,
63 $\intersectthree{A}{B}{C}$. We can also take an arbitrary
64 (indexed) union and intersections of things, like
65 $\unionmany{k=1}{\infty}{A_{k}}$ or
66 $\intersectmany{k=1}{\infty}{B_{k}}$. The best part about those
67 is that they do the right thing in a display equation:
68 %
69 \begin{equation*}
70 \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
71 \end{equation*}
72
73 Finally, we have the four standard types of intervals in $\Rn[1]$,
74 %
75 \begin{align*}
76 \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
77 \intervaloc{a}{b} &= \setc{ x \in \Rn[1]}{ a < x \le b },\\
78 \intervalco{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x < b }, \text{ and }\\
79 \intervalcc{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x \le b }.
80 \end{align*}
81 \end{section}
82
83 \begin{section}{Complex}
84 We sometimes want to conjugate complex numbers like
85 $\compconj{a+bi} = a - bi$.
86 \end{section}
87
88 \begin{section}{Cone}
89 The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones
90 are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones
91 $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$,
92 $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$,
93 $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x
94 \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x
95 \ltcone_{K} y$ with respect to a cone $K$.
96 \end{section}
97
98 \begin{section}{Convex}
99 The conic hull of a set $X$ is $\cone{X}$; its affine hull is
100 $\aff{X}$, and its convex hull is $\conv{X}$. If $K$ is a cone,
101 then its lineality space is $\linspace{K}$, its lineality is
102 $\lin{K}$, and its extreme directions are $\Ext{K}$. The fact that
103 $F$ is a face of $K$ is denoted by $F \faceof K$; if $F$ is a
104 proper face, then we write $F \properfaceof K$.
105 \end{section}
106
107 \begin{section}{Font}
108 We can write things like Carathéodory and Güler and $\mathbb{R}$.
109 \end{section}
110
111 \begin{section}{Linear algebra}
112 The absolute value of $x$ is $\abs{x}$, or its norm is
113 $\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and
114 their tensor product is $\tp{x}{y}$. The Kronecker product of
115 matrices $A$ and $B$ is $\kp{A}{B}$. The adjoint of the operator
116 $L$ is $\adjoint{L}$, or if it's a matrix, then its transpose is
117 $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific
118 concept is the Moore-Penrose pseudoinverse of $L$, denoted by
119 $\pseudoinverse{L}$.
120
121 The span of a set $X$ is $\spanof{X}$, and its codimension is
122 $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The
123 automorphism group of $X$ is $\Aut{X}$, and its Lie algebra is
124 $\Lie{X}$. We can write a column vector $x \coloneqq
125 \colvec{x_{1},x_{2},x_{3},x_{4}}$ and turn it into a $2 \times 2$
126 matrix with $\matricize{x}$. To recover the vector, we use
127 $\vectorize{\matricize{x}}$.
128
129 The set of all bounded linear operators from $V$ to $W$ is
130 $\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$
131 instead.
132
133 The direct sum of $V$ and $W$ is $\directsum{V}{W}$, of course,
134 but what if $W = V^{\perp}$? Then we wish to indicate that fact by
135 writing $\directsumperp{V}{W}$. That operator should survive a
136 display equation, too, and the weight of the circle should match
137 that of the usual direct sum operator.
138 %
139 \begin{align*}
140 Z = \directsumperp{V}{W}\\
141 \oplus \oplusperp \oplus \oplusperp
142 \end{align*}
143 %
144 Its form should also survive in different font sizes...
145 \Large
146 \begin{align*}
147 Z = \directsumperp{V}{W}\\
148 \oplus \oplusperp \oplus \oplusperp
149 \end{align*}
150 \Huge
151 \begin{align*}
152 Z = \directsumperp{V}{W}\\
153 \oplus \oplusperp \oplus \oplusperp
154 \end{align*}
155 \normalsize
156 \end{section}
157
158 \begin{section}{Listing}
159 Here's an interactive sage prompt:
160
161 \begin{tcblisting}{listing only,
162 colback=codebg,
163 coltext=codefg,
164 listing options={language=sage,style=sage}}
165 sage: K = Cone([ (1,0), (0,1) ])
166 sage: K.positive_operator_gens()
167 [
168 [1 0] [0 1] [0 0] [0 0]
169 [0 0], [0 0], [1 0], [0 1]
170 ]
171 \end{tcblisting}
172 \end{section}
173
174 \begin{section}{Miscellaneous}
175 The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X}
176 = 3$.
177 \end{section}
178
179 \begin{section}{Proof by cases}
180
181 \begin{proposition}
182 There are two cases in the following proof.
183
184 \begin{proof}
185 The result should be self-evident once we have considered the
186 following two cases.
187 \begin{pcases}
188 \begin{case}[first case]
189 Nothing happens in the first case.
190 \end{case}
191 \begin{case}[second case]
192 The same thing happens in the second case.
193 \end{case}
194 \end{pcases}
195
196 You see?
197 \end{proof}
198 \end{proposition}
199
200 Here's another one.
201
202 \renewcommand{\baselinestretch}{2}
203 \begin{proposition}
204 Cases should display intelligently even when the document is
205 double-spaced.
206
207 \begin{proof}
208 Here we go again.
209
210 \begin{pcases}
211 \begin{case}[first case]
212 Nothing happens in the first case.
213 \end{case}
214 \begin{case}[second case]
215 The same thing happens in the second case.
216 \end{case}
217 \end{pcases}
218
219 Now it's over.
220 \end{proof}
221 \end{proposition}
222 \renewcommand{\baselinestretch}{1}
223 \end{section}
224
225 \begin{section}{Theorems}
226 \begin{corollary}
227 The
228 \end{corollary}
229
230 \begin{lemma}
231 quick
232 \end{lemma}
233
234 \begin{proposition}
235 brown
236 \end{proposition}
237
238 \begin{theorem}
239 fox
240 \end{theorem}
241
242 \begin{exercise}
243 jumps
244 \end{exercise}
245
246 \begin{definition}
247 quod
248 \end{definition}
249
250 \begin{example}
251 erat
252 \end{example}
253
254 \begin{remark}
255 demonstradum.
256 \end{remark}
257 \end{section}
258
259 \begin{section}{Theorems (starred)}
260 \begin{corollary*}
261 The
262 \end{corollary*}
263
264 \begin{lemma*}
265 quick
266 \end{lemma*}
267
268 \begin{proposition*}
269 brown
270 \end{proposition*}
271
272 \begin{theorem*}
273 fox
274 \end{theorem*}
275
276 \begin{exercise*}
277 jumps
278 \end{exercise*}
279
280 \begin{definition*}
281 quod
282 \end{definition*}
283
284 \begin{example*}
285 erat
286 \end{example*}
287
288 \begin{remark*}
289 demonstradum.
290 \end{remark*}
291 \end{section}
292
293 \begin{section}{Topology}
294 The interior of a set $X$ is $\interior{X}$. Its closure is
295 $\closure{X}$ and its boundary is $\boundary{X}$.
296 \end{section}
297
298 \end{document}