]> gitweb.michael.orlitzky.com - mjotex.git/blob - examples.tex
897396c1061d05706da5b7d21cd187aa6199b76b
[mjotex.git] / examples.tex
1 \documentclass{report}
2
3 \usepackage{mjotex}
4 \usepackage{mathtools}
5
6 \begin{document}
7
8 \begin{section}{Algorithm}
9 An example of an algorithm (bogosort) environment.
10
11 \begin{algorithm}[H]
12 \caption{Sort a list of numbers}
13 \begin{algorithmic}
14 \Require{A list of numbers $L$}
15 \Ensure{A new, sorted copy $M$ of the list $L$}
16
17 \State{$M \gets L$}
18
19 \While{$M$ is not sorted}
20 \State{Rearrange $M$ randomly}
21 \EndWhile
22
23 \Return{$M$}
24 \end{algorithmic}
25 \end{algorithm}
26 \end{section}
27
28 \begin{section}{Arrow}
29 The identity operator on $V$ is $\identity{V}$. The composition of
30 $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
31 $\inverse{f}$. If $f$ is a function and $A$ is a subset of its
32 domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$.
33 \end{section}
34
35 \begin{section}{Common}
36 The function $f$ applied to $x$ is $f\of{x}$. We can group terms
37 like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a
38 set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair
39 of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$,
40 and the factorial of the number $10$ is $\factorial{10}$.
41
42 The Cartesian product of two sets $A$ and $B$ is
43 $\cartprod{A}{B}$; if we take the product with $C$ as well, then
44 we obtain $\cartprodthree{A}{B}{C}$. The direct sum of $V$ and $W$
45 is $\directsum{V}{W}$. Or three things,
46 $\directsumthree{U}{V}{W}$. How about more things? Like
47 $\directsummany{k=1}{\infty}{V_{k}} \ne
48 \cartprodmany{k=1}{\infty}{V_{k}}$. Those direct sums and
49 cartesian products adapt nicely to display equations:
50 %
51 \begin{equation*}
52 \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}.
53 \end{equation*}
54 Here are a few common tuple spaces that should not have a
55 superscript when that superscript would be one: $\Nn[1]$,
56 $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the
57 superscript is (say) two, then it appears: $\Nn[2]$, $\Zn[2]$,
58 $\Qn[2]$, $\Rn[2]$, $\Cn[2]$.
59
60 We also have a few basic set operations, for example the union of
61 two or three sets: $\union{A}{B}$, $\unionthree{A}{B}{C}$. And of
62 course with union comes intersection: $\intersect{A}{B}$,
63 $\intersectthree{A}{B}{C}$. We can also take an arbitrary
64 (indexed) union and intersections of things, like
65 $\unionmany{k=1}{\infty}{A_{k}}$ or
66 $\intersectmany{k=1}{\infty}{B_{k}}$. The best part about those
67 is that they do the right thing in a display equation:
68 %
69 \begin{equation*}
70 \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
71 \end{equation*}
72
73 Finally, we have the four standard types of intervals in $\Rn[1]$,
74 %
75 \begin{align*}
76 \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
77 \intervaloc{a}{b} &= \setc{ x \in \Rn[1]}{ a < x \le b },\\
78 \intervalco{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x < b }, \text{ and }\\
79 \intervalcc{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x \le b }.
80 \end{align*}
81 \end{section}
82
83 \begin{section}{Cone}
84 The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones
85 are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones
86 $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$,
87 $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$,
88 $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x
89 \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x
90 \ltcone_{K} y$ with respect to a cone $K$.
91 \end{section}
92
93 \begin{section}{Convex}
94 The conic hull of a set $X$ is $\cone{X}$; its affine hull is
95 $\aff{X}$, and its convex hull is $\conv{X}$. If $K$ is a cone,
96 then its lineality space is $\linspace{K}$, its lineality is
97 $\lin{K}$, and its extreme directions are $\Ext{K}$.
98 \end{section}
99
100 \begin{section}{Font}
101 We can write things like Carathéodory and Güler and $\mathbb{R}$.
102 \end{section}
103
104 \begin{section}{Linear algebra}
105 The absolute value of $x$ is $\abs{x}$, or its norm is
106 $\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and
107 their tensor product is $\tp{x}{y}$. The Kronecker product of
108 matrices $A$ and $B$ is $\kp{A}{B}$. The adjoint of the operator
109 $L$ is $\adjoint{L}$, or if it's a matrix, then its transpose is
110 $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific
111 concept is the Moore-Penrose pseudoinverse of $L$, denoted by
112 $\pseudoinverse{L}$.
113
114 The span of a set $X$ is $\spanof{X}$, and its codimension is
115 $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The
116 automorphism group of $X$ is $\Aut{X}$, and its Lie algebra is
117 $\Lie{X}$. We can write a column vector $x \coloneqq
118 \colvec{x_{1},x_{2},x_{3},x_{4}}$ and turn it into a $2 \times 2$
119 matrix with $\matricize{x}$. To recover the vector, we use
120 $\vectorize{\matricize{x}}$.
121
122 The set of all bounded linear operators from $V$ to $W$ is
123 $\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$
124 instead.
125
126 The direct sum of $V$ and $W$ is $\directsum{V}{W}$, of course,
127 but what if $W = V^{\perp}$? Then we wish to indicate that fact by
128 writing $\directsumperp{V}{W}$. That operator should survive a
129 display equation, too, and the weight of the circle should match
130 that of the usual direct sum operator.
131 %
132 \begin{align*}
133 Z = \directsumperp{V}{W}\\
134 \oplus \oplusperp \oplus \oplusperp
135 \end{align*}
136 %
137 Its form should also survive in different font sizes...
138 \Large
139 \begin{align*}
140 Z = \directsumperp{V}{W}\\
141 \oplus \oplusperp \oplus \oplusperp
142 \end{align*}
143 \Huge
144 \begin{align*}
145 Z = \directsumperp{V}{W}\\
146 \oplus \oplusperp \oplus \oplusperp
147 \end{align*}
148 \normalsize
149 \end{section}
150
151 \begin{section}{Listing}
152 Here's an interactive sage prompt:
153
154 \begin{tcblisting}{listing only,
155 colback=codebg,
156 coltext=codefg,
157 listing options={language=sage,style=sage}}
158 sage: K = Cone([ (1,0), (0,1) ])
159 sage: K.positive_operator_gens()
160 [
161 [1 0] [0 1] [0 0] [0 0]
162 [0 0], [0 0], [1 0], [0 1]
163 ]
164 \end{tcblisting}
165 \end{section}
166
167 \begin{section}{Miscellaneous}
168 The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X}
169 = 3$.
170 \end{section}
171
172 \begin{section}{Proof by cases}
173
174 \begin{proposition}
175 There are two cases in the following proof.
176
177 \begin{proof}
178 The result should be self-evident once we have considered the
179 following two cases.
180 \begin{pcases}
181 \begin{case}[first case]
182 Nothing happens in the first case.
183 \end{case}
184 \begin{case}[second case]
185 The same thing happens in the second case.
186 \end{case}
187 \end{pcases}
188
189 You see?
190 \end{proof}
191 \end{proposition}
192
193 Here's another one.
194
195 \renewcommand{\baselinestretch}{2}
196 \begin{proposition}
197 Cases should display intelligently even when the document is
198 double-spaced.
199
200 \begin{proof}
201 Here we go again.
202
203 \begin{pcases}
204 \begin{case}[first case]
205 Nothing happens in the first case.
206 \end{case}
207 \begin{case}[second case]
208 The same thing happens in the second case.
209 \end{case}
210 \end{pcases}
211
212 Now it's over.
213 \end{proof}
214 \end{proposition}
215 \renewcommand{\baselinestretch}{1}
216 \end{section}
217
218 \begin{section}{Theorems}
219 \begin{corollary}
220 The
221 \end{corollary}
222
223 \begin{lemma}
224 quick
225 \end{lemma}
226
227 \begin{proposition}
228 brown
229 \end{proposition}
230
231 \begin{theorem}
232 fox
233 \end{theorem}
234
235 \begin{definition}
236 quod
237 \end{definition}
238
239 \begin{example}
240 erat
241 \end{example}
242
243 \begin{remark}
244 demonstradum.
245 \end{remark}
246 \end{section}
247
248 \begin{section}{Theorems (starred)}
249 \begin{corollary*}
250 The
251 \end{corollary*}
252
253 \begin{lemma*}
254 quick
255 \end{lemma*}
256
257 \begin{proposition*}
258 brown
259 \end{proposition*}
260
261 \begin{theorem*}
262 fox
263 \end{theorem*}
264
265 \begin{definition*}
266 quod
267 \end{definition*}
268
269 \begin{example*}
270 erat
271 \end{example*}
272
273 \begin{remark*}
274 demonstradum.
275 \end{remark*}
276 \end{section}
277
278 \begin{section}{Topology}
279 The interior of a set $X$ is $\interior{X}$. Its closure is
280 $\closure{X}$ and its boundary is $\boundary{X}$.
281 \end{section}
282
283 \end{document}